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ABSTRACT. We give null controllability results for some degenerate parabolic
equations in non divergence form with a drift term in one space dimension. In
particular, the coefficient of the second order term may degenerate at the ex-
treme points of the space domain. For this purpose, we obtain an observability
inequality for the adjoint problem using suitable Carleman estimates.

1. Introduction. Recently, interest in the null controllability of degenerate par-
abolic equations has increased. Indeed, as pointed out by several authors, many
problems that are relevant for applications are described by degenerate parabolic
equations, with degeneracy occurring at the boundary of the space domain. For
instance, degenerate equations can be obtained as suitable linearizations of the
Prandtl equations, see [25]. In a different context, degenerate operators have been
extensively studied since Feller’s investigations in [17], [18], where the main moti-
vation was the relevance of the previous equations in transition probabilities.

The case of parabolic equations in divergence form is well-understood (see, e.g.,
(1], [, [6] - [10], [24], [25]): for all T > O and ug € L?*(0,1) there is a control
f € L?((0,T) x (0,1)) such that the solution of

ur — (a(x)ug), + c(t,x)u = f(t,z)xw(x), (t,z) € (0,T)x(0,1),
u(t,0) =wu(t,1) =0, te(0,7T), (1)
U(va) = U‘O(x)v TE (07 1)a
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satisfies u(T,z) = 0 for all x € [0,1]. Here, a € C°[0,1] satisfies a(0) = a(1) = 0,
a>0in (0,1), ¢ € L>((0,T) x (O 1)) and x, is the characteristic function of a
non-empty interval w = («, 3) CC [0, 1]. For the uniformly parabolic case we refer,
e. g., to [2], [12], [13], [19], [20], [22], [29] and [31]. Several results have also been
obtained for semilinear versions of (1), see, for example, [1], [1], [6], [27], [28].

However, many problems arising in applications (see, e.g., [21], [23] and [30])
are described by degenerate parabolic equations that are not in divergence form.
In such a context, a null controllability result was obtained in [5] for the following
problem:

up — a(x)ugy + c(t,x)u = f(t, 2)xw(z), (t,z)€ (0,T) % (0,1),
u(t,0) =wu(t,1) =0, te (0,71), (2)
u(0,2) = uo(x), z € (0,1).
The main goal of this paper is to provide a full analysis of the null controllability
problem for

Ug — a(I)’Ume - b(I)’UJm + C(t5 I)u = f(tvx)XW(I)a (ta I) € (Oa T) X (Oa 1)7
u(t,0) =wu(t,1) =0, te(0,7T), (3)
u(0, z) = up(z) € (0,1),

where ¢ € L>=((0,T) x (0,1)), a and b € C°[0, 1]. Here, a is allowed to degenerate at

2z = 0and z = 1, as long as suitable assumptions are satisfied near these points (see
Hypothesis 3.1). A model example of such a degenerate coefficient a is the function
a(z) =z (1—2), Ky, K; €(0,2), (4)
whereas, for b, we can take
b(z) = 2" (1 — )", ()
where k; are such that k; > 0 and k; > (K; — 1) for ¢« = 1,2. We observe that the
restriction Ky, Ky € (0,2) is natural if we want to obtain global null controllability:
if K1 or K3 > 2, then the model fails to be null controllable (see [5] for details).
We underline the fact that we cannot consider bu,. as a small perturbation of atu,
(see [16]). Therefore, the problem cannot be solved by a straightforward adaptation
of the recalled results of [5]. In order to deal with the well-posedness of (3) we refer
to [14], [15], [16], [26] and Section 2 of this paper.
The paper is organized as follows:
- in Section 2, we prove the well-posedness of the linear problem (3) when ¢ = 0;
- in Section 3, we state Carleman estimates for the adjoint problem of (3) when
c=0;
- in Section 4, we prove the observability inequality for the adjoint problem (3) and,
as a consequence, we give a null controllability result for (3) when ¢ = 0;
- in Section 5, we extend the previous results to (3) when ¢ # 0.

2. Well-posedness. Let T' > 0, Q := (0,T) x (0,1), w := (e, ) CC (0,1) be a
non-empty given interval, we consider the degenerate parabolic problem

Uy — a(x)Ugy — D(X)uy = f(t,2)xw(x), ()€ Q,
u(t,0) =u(t,1) =0, te(0,7), (6)

u(0,2) = up(x), x € (0,1).
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Here a,b € C°[0, 1] are such that a(0) = a(1) =0, a > 0on (0,1) and b/a € L*(0,1).
In order to study the well-posedness of (6), let us recall the well-known weight

function
n(w) = xp{/ mdy}, v e 0,1,
1 a(y)
introduced by Feller in a related contex [17] and used by several authors, see, e.g.
[16], [26]. Define

o(z) := a(z)n* (z),
and observe that if u is sufficiently smooth, e.g. u € Wli’cl (0,1), then
Au = aug, + bu, = c(Nug ).,

for almost every = € (0,1). For this purpose, let us consider the following Hilbert
spaces

13.(0,1) = {u e 22(0,1) | Jull, < oo}, lull? =[5 u*3d,
HY(0,1) := L3 (0,1) N H} (0, 1), lall? s o= lluld + fy udde,
H2(0,1) = {ue HL(0,1) [ Aue L2 (0, 1)}, |lul, i= llul? , + | Aull%.

Observe that since b/a € L'(0,1), n € C°[0,1](NC'(0,1) is a strictly positive
function. Thus, in the sense of Banach spaces, one has that

{201, B 0.1), B0} =~ {L3(0,1), HLO,1), H(0,1)},

l

where the last triplet is the triplet related to well-posedness as in [5].

Lemma 1. For all (u,v) € H2(0,1) x H1(0,1) one has

1
< Au,v >1= —/ NV dT. (7)
7 0

Proof. First, we claim that the space H}(0,1) := {v € H'(0,1)]| supp{v} C (0,1)}
is dense in H% (0,1). Indeed, if we consider the sequence (v,)n>4, Where v, 1= &,v
for a fixed function v € HY (0,1) and

0, ze [0,1/n)]U[l—1/n,1],
)1, x € [2/n,1-2/n],
En(@) := nx — 1, x € (1/n,2/n),
n(l—z)—1, z€ (1-2/n,1—1/n),

then one has that v, — v in HY(0,1) (see [5]). Now, set

1
1
d(v) = / ((aum + bug)v— + nuzvx)d:c,
0 g

with u € H%(0,1). Then, @ is a bounded linear functional on H1 (0,1). Moreover,
@ =0on H!(0,1). Indeed, let v € H}(0,1), one has that
1 1 1 1 1
/ (atgzy + bug)v—dx :/ o(Nug)zv—dr = —/ NV dT.
0 g 0 g 0

Thus, ® = 0 on H:(0,1), that is, (7) holds. O
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The following theorems refine Theorems 1.1 and 1.2 by Barbu-Favini-Romanelli
[3] for the case of n = 1.
Theorem 1. The operator (A, D(A)) given by
Au = augy + bugy, D(A) = H1(0,1)

is m-dissipative and self adjoint in L2 (0,1).

Proof. By (7) we have that A is dissipative and selfadjoint in L2 (0,1). Let q(u,v)

the quadratic form in H1 (0,1) x H1 (0,1) defined as g(u,v) fo Nugv,dx. Then,

using the Lax-Milgram Theorem as in [5] one proves that A is maximal. O
As usual, one can prove the following well-posedness theorem.

Theorem 2. For all f € L*(Q) and ug € L2 (0,1), there exists a unique weak

solution u € U = C° ([O, TY; L% (0, 1)) N L? (O, %; Hé (0, 1)) of (6). Moreover, one

has
T T
2 2 2 2
s I o)+ / Il e < C ol o + / 115 ot )

for a positive constant C'.

Lastly, we remember the following results that will be helpful in the rest of the
paper and, with additional assumptions on the degenerate function a(x), we can
prove a characterization for the space H1 (0,1) (for the proof we refer to [7]).

Hypothesis 2.1. The function a € C°[0,1] is such that a(0) = a(1) =0, a > 0 on
(0,1) and there exist K1, Ko € (0,2) such that

a(x)

1) the function x — — 1S MONINCTeasing near zero;
K1

a(z)
(1—a)x

2) the function x — is nondecreasing near one.

Lemma 2. Assume that Hypothesis 2.1 is satisfied. Then,
1) lim,_o+ 2%/a(x) = lim,_,- (1 — x)?/a(z) = 0;
2) ifwe HE(JI) and b/a € L*(0,1), then
lim, o+ 2w (z) = lim,_,; - (v — Dw?2(z) = 0;

3) the following Hardy-Poincaré inequality holds

a

1 1
1
/02—dac§C/ vidr Y ov e H(0,1).
0 0

where C' is a positive constant. Moreover, if b/a € L'(0,1) then the Banach
spaces HY (0,1) and H}(0,1) coincide.

3. Carleman Estimates for Degenerate Parabolic Problems. In this section
we prove crucial estimates of Carleman’s type, that will be useful to prove the obser-
vability inequality for the adjoint problem of (6).
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3.1. Statement of the main results. Given T' > 0, J, := (0,3, ) and J, := (j,,1)
proper subintervals of (0,1) and h € L? (O, T; L7 (0, 1)), we consider, for ¢ = 1,2,
the parabolic problems ’

vy + a(2)vge + b(x)v, = h(t, ), (t,z) € Q;:=(0,T) x J;,

(8)

v(t,0J;) =0, te(0,7T).
Here, the coefficients a, b satisfy the following assumption.
Hypothesis 3.1. The function a € C°[0,1](C3(0,1) is such that a(0) = a(1) = 0,
a > 0 on (0,1); the function b € C°[0,1](C?(0,1) is such that b/a € L'(0,1).
There exists € € (0,1) such that

1.a) the function @ € L>(0,¢);

zaz ()
a(x)
l.c) there exists a function Cy = C1(e") > 0, defined in (0,¢), such that

1.b) there exists Ky € (0,2) such that <Ki VYze(0¢);

Ci(g)—0 as & —0F,

<Ci(e)—=, Vae(0,&);

“) e [®(1—¢,1);

2.a) the function (- 1)((11) —

2.b) there exists Ko € (0,2) such that % <Ky Vze (1-gl);

2.c) there exists a function Cy = Ca(e’) > 0, defined in (0,¢€), such that

Co(e') =0 as & —0", Ve (1-¢£,1)

and

(z -1)b@) —ax(x)\ _ bx) ((z=1)(b(z) - as(z)) 1
(=) - () [seos iy
We observe that Hypotheses 3.1.1.b and 3.1.2.b are equivalent to Hypothesis 2.1

(see [9]).

Now, as in [5], let us introduce the weight functions

it ) 1= 600 i) ~ 2ol 1), =12

mlo) = [ ety )= [ Oy Ro0
1

0(t) :== T
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Observe that ¢;(t,z) <0 V (t,z) € Qi, pi(t,x) = —o0 as t — 07,7 and, by the
assumptions on a(z), one has that p; € C*(0,1) \WH(J,) (for i = 1,2).
Our main results are the following.

Theorem 3. Assume that Hypothesis 3.1.1 is satisfied for some ¢ € (0,1) such that
€ < j,. Then, there exist two positive constants C' and so such that every solution
v of (8) in

Vi = L*(0,T; H3 (J,)) N H' (0, T; H' (J,))

satisfies, for all s > sq,

/ 7 (sovi + 5393(2)%2) 251 dadt

1

e2s<p1 T
<C / h? dadt +2sC / o(t) [nxvie%wl}(t, 4,)dt.
Q, 7 0

Theorem 4. Assume that Hypothesis 3.1.2 is satisfied for some ¢ € (0,1) such
that 1 —e > j,. Then, there exist two positive constants C' and so such that every
solution v of (8) in

Vo= L*(0. 75 H3 (J,)) N H' (0.T: H} (J,))
satisfies, for all s > sq,

/ n (002 + 5°6° ("”T‘l)Qzﬂ) ¢25%2 drd

2

g €¥%2 ! 2 2s ,
<C h = dzxdt + 2sC 0(t) [77(1 —T)vse “’2} (t,7,)dt.
0

2

We will prove only Theorem 3 since the proof of Theorem 4 is analogous.

3.2. Proof of Theorem 3. In order to prove Theorem 3 the following result is
necessary:

Proposition 1. Assume that Hypothesis 3.1.1 is satisfied. Then there exists | € R
such that
rb(x) —a(@))
a(x) o
Proof. Set p(z) := W, we have that p satisfies Hypothesis 3.1.1.c if and

only if
_M xXr) = g x)sgn xX _@ xX X g
prsl) = 2 pa(0) = Gorf@lsan {puato) - 20 pu0) ) 2 (10

where « is a suitable continuous function such that v(z) € [0, 1].

Now, set 7 := v sgn {pm — %pm}, for some fixed x € (0,¢) and h > 0 such that
x+ h € (0,e), by classical representation formula of the solutions of (10) one has
that

pz(x+h) = exp {/:Jrh %dy} (px(x) +Cy /:Jrh exp {— /: %dy} z(j) ds) .

(11)

lim x
z—0t
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Finally, by (11) and assumptions, there exists a positive constant C' such that

{ ac+h ( }

a(y)
+ :1301 exp { / W) dy} ds (12)
( |pa(@ + )| + —2) .

Passing to the limit, the conclusion follows. O

21pa(@)] <z |pa(z + b)) exp

Now, we define, for s > 0, the function
w(t,z) = e>*1B2)y(t, x)

where v is the solution of (8) in V;; observe that, since v € Vy, w € V;. Setting, for
simplicity, ¢ := @1 and p := p1, one has that w satisfies

(e7*Pw)e + a(z)(e %P w)zy + b(z)(e ¥ w), = h(t,x), (t,x)€ Q,,
w(0,z) =w(T,z) =0, x e J, (13)
w(tv O) = w(taji) =0, te (O,T)

Defining Lv := vt + avy, + bv, and Lgw := e3¢ L(e™ *?w), the equation of (13) can
be recast as follows

Lsw= LIw+ L;w = e%?h,
where

Liw = Aw — spw + s2apw

LTw :=w — sApw — 2sap,w,.

1
Moreover, set < u,v >12(Q,) = / uv—dzdt, one has
= Q, 9

”L:w”%i @)t ||Ls_w|\%’i(Ql) +2<Liw Liw>p3 ()= ”heS(pH%i(Ql)' (14)

Lemma 3. The following identity holds

<Liw Liw>p2 ) = S/Q N(apes + (ape)s)widedt

1

+ 83/ 77()0;% (aspww + (aﬁpm)m)’LUQd(Edt
@

. (0.7}
- 252/ n¢m¢mtw2dxdt + = / n@w2d:cdt
2 Ql a

@

E ((A@M - S(Aso)z> whdedt

1

(15)
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1 J T T j T j
=5 [ afu] e [ ]S [ nagn?]) @
2 Jo 0 0 0 2 Jo 0

{B.T.} { — S/OT [nawwwi}? dt — s /OT [nAgpwwm}: dt

1 (% T T J
+ 5/ n[(s%@i — sﬁ)wﬂ dx —/ {n(sgagpi — s2g0$g0t)w2] " dt.
0 a 0 0 0

Proof. Tt results, integrating by parts,

< Aw, L;w >L2i (Ql)

:/ (nww)mwtd:vdt—s/ (nwm)mAgowd:Edt—%/ (Nwz ) zapzwydzdt

1 1 1

T .
=— / NWg W drdt + / [nwzwt]él dt + s/ N(Apw), w,dxdt
Q 0

1 1

T ) T .
— s/ [nA(pwwm]Jol dt + S/ n((aps)z — b, )w?drdt — s/ [nagpzwg]f; dt
0 0

1
1 [h T T j
= — 5/ n[wi]od:c—k/ [mewt}oldt
0 0

1 e ;
+ s/ nApw?ddt — 55/ (n(A@) ) rwdadt + 58/ [n(Ap)w?] ! dt
0
T ‘ . T 4
_ S/o [nAcpwww]él dt + S/Q n((apz)s — bcpw)wgdxdt — S/o [nawwwg]él dt.
1 (16)

Therefore, integrating again by parts,

< —spw + s*apiw, Ly w ZL2(Q,)

:/ n(s%@i — s%)wwtdxdt

1

— / nA(p(s?’gai — s2ﬁ)w2d:cdt — 2/ NGy (s‘o’gai — szﬁ)wwmd:cdt
a a

1 1

1 %) 1 (h %) T
:5/ n(—52<pi+si)tw2d:rdt+§/o W[(Szwi—s;t)wﬂodx

1

-5 / N Apw? dadt + s* / nAcpﬁdexdt
Q, a

@

T .
—|—/ (n(sgagpi — 52<pm<pt))mw2d:cdt — / [77(53&(/72 — 52%6%)102%1 dt
0

1

S
2 Q1 a Ql a

j
+ 53/ ((nap2)s — np2Ap)wdadt + %/ Cnl(s22 - s%)wﬂgd;p
0

1
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T )
—/0 [n(s%g@i — 3290130,5)102]{)1 dt
:f/ nﬁw2d:vdt—232/ NP Purw>drdt
2 Ql a

@

J
+ 33/ 02 ((ape)s + ape ) wdzdt + %/ ' n[(s%¢2 — s%)uﬂ]gdx
0

@

T ,
—/ [n(s%g@i — 3290130,5)102]{)1 dt.
0
Adding (16)-(17), (15) follows immediately. O

The next lemma holds.

Lemma 4. The boundary terms in (15) become

2 T
(BT} = —se™; / n(0)8(E), w3t j, . (18)

Proof. Using the definition of ¢ and the fact that w(t, j,) = 0, the boundary terms
of <Liw,L7w>p2 ) become

{BT.} = - %/031 n[wg d:zc—f—/T {nwwwt}? dt

1 [ . .
* 5/() n 82 - e(p(x) - 2Hp ||L°O(Jl)))w2:|0 dx

T —
/ O(t 77 1 + 2 az))wwx} (t,0)d
0
T 3
3 3 z
+s | 0°( nﬁw }(t 0)dt

+252|\PHL°@(JI)/O 0(t)0(t) [ngwﬂ (t,0)dLt.

Since w € Vi, where Vi is as in (10), w € C°([0,T]; H1 (J1)). Thus wy(z,0),
wg(z,T) and foj ! n[wﬂona: are well defined and, using the boundary conditions of

w, it results that
1 T
/ i [wi] dr = 0.
0 0

Moreover, since w € H*(0,T; H1 (J,)), we(t,0) and wy(t, j,) are well defined. Now,

by Lemma 2, we have that lim, .o /Zw,(t,2) = 0. Since w,(t,z) € L?(J,), then,
by Holder’s inequality,

ot )] < /O et y)ldy < V7 ( /0 ' |wm(t,y)|2dy>l/2.
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Thus, if w € V; then fOT [wwwt]él dt is well defined and it is 0. Now, we consider the
term

%/ n[(262(2) e 2 6(p(a) ~ 2o~ i) 0] do.

Since w € Vi, then w € C°([0,T]; L2 (J,)). Thus w(0,z) and w(T,x) are well
defined and w(0,z) = w(T,z) = 0. This implies that

%Ajl 77[(5292(2)2621%12 — 2 H(p(x) —2|lp ||L°°(Jl)))w2}jdx —0.

By Lemma 2

4 Ra? . 210 T Rz?, . 2 .
—s/ 0(t) {ne * xwx} dt = —s/ 0(t) [7’]6 v xwz} (t,7,)dt.
0 0 0

Thus, the boundary terms become

By = - st | OO, )it~ / o0 0 (b) w?| .0y

0

o0 (1 2= ] 0
+ 53 /OT93(t) [nZ—sz] (t,0)dt

T
. T
220 =y [ 0000 [170?] (1. 0)ar

By Proposition 1,
o[ (5522) 7] o s e (25522 0

as € — 07. Thus

o p(22522) <] o
ZP%EAZ@{n(ﬂﬁiﬂﬁ)xﬁ}aﬁmtzo

Moreover, by assumption, it results

o (10255

€ 3
|wﬂgm(3/|wﬂawﬁm> ~ 0
Lo (Jy) 0

€
< 0(1) / W2t y)dy — 0
0

x(b—ay)

a

gm@(1+

as € — 07, thus
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Now, by Lemma 2,

< 001001 [ wegay—o,

as € — 07, thus

T
. T
25 1=y [ 600(0) [n w?] (1,00
0 a/
T . "
= lim 25%|)p |\Lm(Jl)/ ()6 (t) [n— w2] (t,€)dt = 0.
e—0 0 a

Finally,

T 3 T 3
53/ 03(t) {n% w2] (t,0)dt = lim 53/ 03 (t) {n% wQ} (t,e)dt = 0.
0 a 0 a

e—0

In fact, by Hélder’s inequality, it results w”(t,z) < 1:/ w2 (t,y)dy. Thus
0

/oT 64 1) [%%3 wz} (t €)dt < /OT 6 (t) [”ai; /0 widy} o

and again, by Lemma 2,

T 4 x
/ 03 (t) [n%/ wgdy} (t,e)dt — 0, as e— 0.
0 a= Jo

The crucial step is to prove now the following estimate.
Lemma 5. The distributed terms of (15) satisfy the following estimate

2
5(2—K1)/ n9w§dwdt+s3(2—K1)/ n93(z) w?dadt
Q, Q

a

2
-C <s2/ no> (E) w?dxdt + sC4 (5')/ nOw?dxdt + SA(EI)/
@

0z
n—w-dxdt
a ) Ql a

< 5/ n(apzz + (C“Px)z)widxdt + 53/ 77‘%7:% (apze + (Q<Px)x)w2dxdt

1 Ql

a

b
— 232/77<pw<pmtw2d:vdt + s /n@uﬂda@dt _2 /n ((Acp)m — —(Acp)w> w?dzdt,
Ql 2 Ql 2 a

1

where C' is a positive constant and A(g') is a suitable positive function defined in

(0,e) (see (22)) .
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Proof. Using the definition of ¢, the distributed terms of < L}w,L;w >12(Q,)
take the form ’

Ty

{D1.} = s/ 770(2 -—+ 4Rx2)eRw2wid:cdt
Q a

1

2
+ s° / no> (E) (2 - M + 4R:c2)e3RI2w2d:cdt
Q, a a

a2 0
_252/ e e2Rzzw2dIdt+§/ n=(p = 2/l ) w?dodt
Q, @

(), ) Yo

0 b a,
- s/ n— Rzb ((M) +3+2x2R) B w2 drdt
a a

1

- s/ noR (2$(M)m +(1+ 2R:C2)(x(b+%))) e w2 dadt

1

- s/ nOR(3 + 12Ra” + 4R2:v4)eR””2w2d:vdt.

1

(19)
Because of Hypothesis 3.1.1.b
2—% >2-K, >0 Yaze(0e);

thus there exists R > 0 such that

Ty

2 — +4R2*>2- K, Vxel,.

a
Moreover, for all x € J, one has that

b <(M) +3+ 2:1:2R) ‘

S (H(M)

Using Hypothesis 3.1.1.a and Proposition 1, for all = € J, one has

R

+ 3 + 2R> = CRJ.
Lo°(Jy)

R ‘ <2x(@)w +(1+ 2Rz2)(@) + (3 + 12R2* + 4R2x4)> ’ <

(o5,
=:CRpa.

+(1+2R) H(M)

+ 3+ 12R + 4R2)>

Lm(Jl) Loo(Jl)

Then, set p(x) := W as in Proposition 1, and applying Hypothesis 3.1.1.c,
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one has

(DT}

2
>s(2 — Kl)/ now?drdt + s*(2 — Kl)/ no? (E) w?dxdt
Q, @ “

. 2 |@'|
—2“R/ 99(5) 2dzdt — - / Zlw?drdt
s’e an 16| " w’dx slipllz (1) anaw T (20)

0
- feRC'l (5/)/ N3 w2d:cdt — SR max |pzz — (b/a)pz|/ now?dxdt
2 Q 2 Q,

1 1]

0
—seRCRJ/ n—w2dxdt—seRCR)2/ nbw?dxdt,
R, ¢

@

where ¢’ € (0,¢). Observing that there exists C7 > 0 such that 64| < Cr6?,
0] < Crf3 and 0 < CTH%, one can deduce the next estimate:

{D.T.}

2
25(2—K1)/ nowidrdt + s (2—K1)/ 7793(2) w?dzdt
@

0
— 252y / 776‘3 2dwdt—seRCl(5')/ n—w’dwdt
Q T (21)
0z
ey <[mx] s = (b/a)ps] + Cia ) a0 /Q 12 Py
1
R 0>
— se*Cr (CRJ + ||p HLoo(Jl)) 777 wdxdt.
@

By Hardy’s inequality (see, e.g., [11]) and because 7 is continuous and strictly

positive, it is possible to estimate the last term of (21) in the following way

up y, {n}
lanl {77}

Here, Cp is a positive constant. Finally, set

0
/ 3 wzdxdt<CH nﬁwgd:ﬁdt.
@

M) = mx Ipes = /o] + Cra ) el oy + Crna + I lamny (22)

e’

we obtain the conclusion. O

Proposition 2. There exist two positive constants C' and sg such that, for all
s > sg, all solutions w of (13) in Vi satisfy

2
/ 7 (s@wg + 5%60° (E) ) w?dzdt
a

1

2s T
<C </ h? ea‘f’ dxdt + 28/ n(jl)ﬁ(t)jlwg(t,jl)dt> .
0

1
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Proof. By (14) and by Lemmas 4 and 5 it is sufficient to estimate only the term

3

—sC’A(E')/ n?de:cdt. For A > 0 it results
@

1 1
& 1 2 L\ 0 z
/ n—2w2d:cdt:/ <—7792 (E) w2) <)\77—2 w2> dxdt
Q @ Q, A a T

1 2 (T\? o 0 o
< - no (—) w dxdt + A n—s wdzdt.
A a x?
Q 1
By Hardy’s inequality one has
02 1 2
/ 77—2 widzdt < —/ no? (E) wdxdt + /\CHM nw?dxdt,
a Alg, a inf s, {n} Q,

for some positive constant C. Thus, for sg large enough and A small enough,

1

T

2 .2
C s/ n@widwdt—i—f/ no? (f) w?dxdt —2S€RJ1/ n(j1)0(t)F, wi(t, 5,)dt
Q Q, a 0

2s5¢
< / h2E " dadt,

g

1

for some positive constant C'\ and for all s > sq. |

Recalling the definition of w, we have v = e™*?w and v, = (w; — s, w)e™*¥.
Thus, Theorem 3 follows immediately by Proposition 2.

4. Observability and controllability of linear equations. In this section we
will prove, as a consequence of the Carleman estimates established in Section 3, an
observability inequality for the adjoint problem

v+ a(X) gy + 0(z)vy, =0, () € Q,
v(t,0) = wv(t,1) =0, te(0,7T), (23)
v(T,z) = vr(z) € L2 (0,1)

of (6). In particular, the following result hglds.

Proposition 3. Assume that Hypothesis 3.1 is satisfied. Then there exists a positive
constant Cr such that every solution v € U of (23) satisfies

1 1 T 1
/ v%(0,2)—dx < OT/ /UQ—dIdt. (24)
0 g 0 Jw @

Here U :=C°([0,T]; L3 (0,1)) N L2(0,T; H1 (0,1)).

Before proving this proposition we will give some results that will be very helpful
to this aim. As a first step we introduce the following class of functions

W= {v solution of (23) | vy € D(A2)}

where
D(A?) = {u € HL(0,1) | Au € H3(0,1) }
Obviously,
wcC([0,T]; Hi(0,1)) CV:=L*(0,T;H3(0,1))NH"(0,T;Hi(0,1)) CU.
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Proposition 4 (Caccioppoli’s inequality). Let w’ and w two open subintervals of
(0,1) such that w' CC w CC (0,1). Let s > 0 and ¥(t,x) := 0(t)¥(z), where 0 is
defined in (9) and ¥ € C*(0,1) is a strictly negative function. Then, there exists a
positive constant C' such that

T T
/ / vie®Vdedt < C / / v?dadt, (25)
0 w’ 0 w

for every solution v of the adjoint problem (23).

Proof. Let us consider a smooth function ¢ : [0,1] — R such that

0<¢&(x) < for all z € [0,1],
&(x) =1, rew,
&(z) =0, ze(0,1)\w

Then,
_ g d ' s _ sy s
o= [ 4 ([ i) ‘”—/Q%wt(se PR 4 26 o~ (o)) dudd

= 25/ wt(fesw)202d:tdt+2/ (52625w0)w77vv1d:5dt+2/ (£2e*Y a)v2drdt.
Q

Q Q
Hence,
2/(52625wa)v5dxdt
Q
S’I,ZJ\/_
=—2 57»[’ 2d dt — 2 / 2 251j} 56 . dadt
S/ 1/)t 56 € o 5 wé-esw\/— nuv €L
—28/ Py (EeV)? 2d:vdt+4/ (¢e*¥ /o) nvzdacdt—i—/(fzezswa)vgdxdt.
Q Q
Thus,
T T
inf{a}/ /ezswvidxdt< sup {‘477 5651/’\/—) — 259 (Ee®Y)? ‘}/ /’UQdIdt.
W’ 0 w’ wx(0,T) 0 w

O

As a consequence of Proposition 24 one has:

Lemma 6. Assume that Hypothesis 5.1 is satisfied. Let Ty, Ty be such that 0 <
To < Ty < T. Then there exists a positive constant C = C(Ty,T1) such that every
solution v € W of (23) satisfies

/ / v —d:vdt< C/ /v —dzdt.

Proof. Let us consider a smooth function ¢ : [0,1] — R such that

0<¢&(x) < for all z € [0, 1],
=1, € [0, (2a+ B)/3],
&(x) =0, x € [(a+28)/3,1].
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We define w(t, x) := &(z)v(t,x) where v € W. Then w satisfies
Wi + aWez + by = (alze + b82)v + 2080, =2 b, (t,x) € (0,T) x (0, 5),
w(t,0) =w(t,B) =0, te(0,7).

Setting w’ := ((20 + £)/3, (0 + 20)/3) and using Proposition 4, it results

623111 T .
/(;)hQ ~ dxdt :/ / ((afzz +b€z)v + 204511)1)2
0 w’
T
< O/ / ((agacac + bé.x)2v2 + 4a? ivi) eV dxdt
0 w’
T T (26)
<C / / v?dzdt + C / / v2e®Y dadt
0 w’ 0 W’
T T 1
C’/ /v%la:dtﬁC/ /v2—da:dt,
0 w 0 w o

for some positive constant C. Applying the previous inequality with ¥ = ¢; and
Theorem 3 with J, = (0, ), one has

T 1 62504p1 T B
/ /vQ—d:rdt > C’/ h2—— dadt > SOO/ / n@wi €201 dxdt
0 Jw O Q g o Jo

T B
/ nw? dxdt.
v Jo
By Lemma 2 it follows

T 1 T B 1 T p(2a+3)/3 1
/ / v?=dxdt > C / w?=dxdt > C / v2 = dadt. (27)
0 Jo O Ty Jo o o Jo o

Consider now z(t,z) := (1 —&(x))v(t, ). Then z satisfies
ZL+ Zgy + b2y = —h, (t,x) € (0,T) x (a, 1),
2(t,a) = z(t, 1) =0, te€(0,T),
and, as before, using (26) with ¢ = @2, Theorem 4 with J, = (a, 1) and Lemma 2,

it results
T 1 T 1 1
/ / v:—dxdt > C / v —dxdt. (28)
0 Jw O Ty J(at+28)/3 O

By (27) and (28), one has

T 1 Tl 1
/ / v22dzdt > C / v2—dacdt,
w g To we g

where w® := (0,1) \ w. Thus

251

dxdt

IN

T 1 T 1 T 1
2 /’U2— dxdt > / /v —dxdt—i—/ /v —dzxdt
0 w a w a
51
> ) —dxdt—i— v —dxdt
we w g
>

(1/\0)/ / vz—da:dt,
Ty J0 o
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for some positive constant C'. |

Lemma 7. Assume that Hypothesis 3.1 is satisfied. Let Ty, Th be such that 0 <
To <Ty <T. Then every solution v € W of (23) satisfies,

1
/02(0,:1:) dz < / /vz—da:dt.
0 Ty —To 0o O

Proof. Multiplying (23) by Y and integrating over (0,1), one has
g

1 1 1
O:/O vt(t,:v)v(t,x);dac—i—/o (nus(t, 2))zv(t, x)dx

1d [! 1 !
=5 ; v2(t,x);d:c —/0 2 (t, r)dz.
Then
d [t , 1
— [ V*(t,x)=dx =2 | ni(t,x)dr >0 VYtec0,T],
dt o
1
that is the function ¢ — / V2 (t, x)%dx is nondecreasing for all ¢ € [0, T1]. O
0

Proof of Proposition 3. As a direct consequence of the Lemmas 6 and 7 we have
that the observability inequality (24) hold for all v € W. Now, let vy € L3 (0,1)

and v the solution of (23) associated to vy. Since D(A?) is densely contained in
L3 (0,1), there exists a sequence (v3), C D(A?) which converges to vy in L3 (0,1).

Consider now the solution v,, associated to v%. Obviously, (v, ), converges %o v in
L*(0,T5 L2 (0,1)) N L2(0,T; H} (0,1)) (see, e.g.,[2]) and

! 1 r 1
/ vfl(O,x)—d:Z:SCT/ /vfl—d:rdt.
0 g 0 Ju O
! 1 ! 1
lim /Ui—dmdt:/ /02—dxdt
n—+oo Jg w o 0 w o

! 1 ! 1
lim v2(0,2)—dx = / v* (0, x) —du.
g 0 g

n—-+o0o 0

Clearly,

and

O

Assuming that Hypothesis 3.1 is satisfied, using the observability property proved
in Proposition 3 and a standard technique, one can prove a null controllability result
for the linear degenerate problem (6):

Theorem 5. Assume that Hypotheses 3.1 is satisfied. Then, given T > 0 and
up € L% (0,1), there exists f € L*(Q) such that the solution u of (6) satisfies

w(T,z) =0 for every z € [0,1].

1 ool
/ Yo f2=dzdt < C/ u%—dw,
Q g 0 a

for some positive constant C.

Moreover,
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5. A linear extension. In this section, we will extend the results established in
the previous sections to the following degenerate parabolic problem
Ut — a(x)umac - b(x)um + c(t,x)u = f(tu ‘T)Xw(w)v (tu ,T) €Q,
u(t,0) = u(t, 1) =0, t e (0,7), (29)
u(0,2) = up(x), x € (0,1),
where, as before, @ := (0,7) x (0,1), T > 0 is fixed, w := (o, f) CC (0,1) is a
non-empty assigned interval, (f,ug) € L*(Q) x L2 (0,1), a € C°[0,1] is such that

a(0) = a(l) = 0, @ > 0 on (0,1) and b € C°[0,1] is such that b/a € L'(0,1).
Furthermore we assume that the potential ¢ = ¢(¢, x) is essentially bounded on Q.

Using a perturbation argument, one can prove that Theorem 2 still hold for (29),
that is (29) is well-posed in the sense of semigroup theory:

Theorem 6. For all f € L*(Q) and up € L3 (0,1), there exists a unique weak
solution v € U := C° ([O,T];LQi (0, 1)) nL? (O,T;Hi (0, 1)) of (29). Moreover,
one has ’ ’
2 T 2 Tz
S Ol o) + / Iy oyt < € ol o1+ / 1 ot )
for a positive constant C'.
Now, we have to prove that the observability property and the null controllability

result obtained in Section 4 still hold for the adjoint problem of (29). To this purpose
first we have to establish for

%% + a(I)vxx + b(x)vz - C(Ia t)v = h’(ta I)a (tvx) € QZ = (Oa T) X Jia
(30)
v(t,dJ;) =0, te(0,7)
Carleman estimates similar to the ones proved in Theorems 3 and 4. Here, as in

Section 3, T' > 0 is fixed, J, := (0,7,) and J, := (j,,1) are proper subintervals of
(0,1) and h € L? (O, T; L7 (0, 1)) Then, one has the following:

Proposition 5. Assume that the potential ¢ € L*°(Q) and that Hypothesis 3.1 holds
for some ¢ € (0,1) such that € < j, and 1 —e > j, . Then, there exist two positive
constants C' and sqy, such that, for all s > sg, the following Carleman estimates hold

2
/ N (590926 + 5563 (E) v2> e**P1dxdt
Q, a

9 €291 T 2 9 .
<C h*—— dxdt + SC/ 0(t) [nxvxe S“"l] (t,7,)dt,
Q 7 0

for all solution v € V1 of (30) and
— 12
/ n (sﬁvi + 3393(30—1) ’U2) e?5P2 dydt
Q, “
2s¢p2 T
gc/ W2 qdt + sc/ o(t) [n(l —x)v§e2sw}(t,j2)dt,
Q, 7 0

for all solution v € Vs of (30).
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Proof. We will prove only the first estimate since the proof of the second one is
analogous. Rewrite the equation of (30) as v + avy, + bv, = h, where h := h + cv.
Then, as a consequence of Theorem 3, there exist two positive constants C' and
so > 0, such that, for all s > sq,

2
/ n <s€vi + 5363 (E) v2) %P1 dxdt
Q a

_ 2s¢p1 T (31)
gc/ IRf2 £ d:cdt+sO/ o(t )[nxvzezs“‘”}(t,jl)dt.
Q, 7 0

By the definition of A the term Jo |h|2~£22L dxdt can be estimated in the following
1
way

2 62 2 9 9y €21
/ |h|> —— L dadt < 2/ (|R)? + |c]*v®) —— dadt. (32)
Q, Q 7
But, as a consequence of Lemma 2,
2s5¢ 1
/ le|?v? < i < c||io/ (e*P10)2 —dadt < C n(e*?1v)2dxdt
o o
1 1 Ql
2
< C’/ n e*$Pr2drdt + 082/ no?e2se (E) vidadt.
1 Ql a

Using this last inequality in (32), it follows
9 ¢ g ¢ 2s 2
|h|* —— " dadt <2 |h)* —— " dedt +C ne“**ruldxdt
Q, Q Q
2
+CS2/ ng?e?se1 (f) vidzdt.
a

1

(33)

Substituting in (31), one can conclude

2 2s¢p
/77 (sﬁvg + 3393(5) v2) e P dydt < C’(/v|h|2€—1 dxdt + /neQS“"lvgdxdt
Q, a Q, 7 Q,
2 T
+ 52/1792625“’1 (E) v dxdt + 3/9(t nvaeQS“‘”}(t,jl)dt).
Q a 0

Hence, for all s > sg, where sg is assumed sufficiently large, the first estimate of
Proposition 5 is proved. O

As a consequence of the previous Carleman estimates, one can deduce an observ-
ability inequality for the adjoint problem

v + a(2)Vge + b(x)vy — c(t,x)v =0, (t,2) € Q,
o(t,0) = v(t, 1) = 0, te(0,7), (34)
o(T)=vr € LQ% (0,1)

of (29). Without loss of generality we can assume that ¢ > 0. (Otherwise one
can reduce the problem to this case introducing @ := e~*u for a suitable A\ > 0.)
Moreover, we observe that in a way analogous to the proof of Proposition 4, it is
possible to prove that the Caccioppoli’s inequality (25) is satisfies for all solution

of (34).
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Proposition 6. Assume that the potential ¢ € L>=(Q) and that Hypothesis 3.1 is
satisfied. Then, there exists a positive constant Cp such that every solution v € U

of (34) satisfies
! 1 ’ 1
/ v*(0, ) —dx < CT/ /v2—d:vdt. (35)
0 g 0 Ju T

Proof. As in the proof of Lemma 7 and using the fact that ¢ > 0, it results that
every v € W := {v solution of (34) : vp € D(A?)} satisfies

! 1 1 ot
/ v*(0,z)—dx < 7/ / v? —dxdt,
0 a Tn—=ToJr, Jo ©

for all 0 < Ty < T1 < T. Moreover, proceeding as in Lemma 6 and applying
Proposition 5, one has

T 1 1 T 1
/ / w2 2dzdt < C/ /vQ—d:vdt.
Ty JO o 0 Jw O

for some positive constant C' and for all v € W'.
Now, proceeding as in the proof of Proposition 3, one obtains the conclusion. [

Finally, using Proposition 6 and a standard technique, one can extend the null
controllability result established in Theorem 5:

Theorem 7. Assume that the potential ¢ € L*°(Q) and that Hypothesis 3.1 is
satisfied. Then, given T > 0 and ug € L% (0,1), there exists f € L*(Q) such that

the solution w in U of (29) satisfies
w(T,z) =0 for every z € [0,1].

Moreover,

1 ol
/ Yo f2=dzdt < C/ ud—dz,
Q g 0 a

for some positive constant C.
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