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Abstract. This paper is focused on continuum-discrete models for supply
chains. In particular, we consider the model introduced in [10], where a sys-
tem of conservation laws describe the evolution of the supply chain status on
sub-chains, while at some nodes solutions are determined by Riemann solvers.
Fixing the rule of flux maximization, two new Riemann Solvers are defined. We
study the equilibria of the resulting dynamics, moreover some numerical exper-
iments on sample supply chains are reported. We provide also a comparison,
both of equilibria and experiments, with the model of [15].

1. Introduction. Different mathematical approaches have been used to analyse
supply chains dynamics. Many of them are based on discrete event simulations
and take into account individual parts processed by the supply chain. In the last
years continuous models using partial differential equations have been introduced
([1], [2], [10], [20], [15],[17],[18]). We follow the approach used in [10], where the
authors proposed a mixed continuum-discrete model and discussed possible choices
of solutions at nodes guaranteeing the conservation of fluxes. Starting from the
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model in [10], we define two new Riemann Solvers and we introduce discretization
algorithms to find approximate solutions to the problems.

A supply chain consists of sequential processors which are going to assemble and
construct parts. Each processor is characterized by a maximum processing rate µk,
its length Lk and the processing time Tk. The rate Lk/Tk represents the processing
velocity.

We define a mixed continuum-discrete model in the following way. The supply
chain is modelled by a real line seen as a sequence of sub-chains corresponding to
intervals Ik such that Ik ∩ Ik+1 = Pk: a vertex separating sub-chains. The dynamic
of each sub-chain is governed by a continuum system of type

ρt + fε(ρ, µ)x = 0, (1)

µt − µx = 0, (2)

where ρ(t, x) ∈ [0, ρmax] is the density of objects processed by the supply chain at
point x and time t and µ(t, x) ∈ [0, µmax] is the processing rate. For ε > 0, the flux
fε is given by:

fε(ρ, µ) =

{
m ρ, if ρ ≤ µ,
m µ + ε(ρ − µ), if ρ ≥ µ,

(3)

where m is the processing velocity.
We interpret the evolution at nodes Pk thinking to it as Riemann problems for

the density equation (1) with µ data as parameters.
Once introduced the model, we discuss possible choices of solutions at nodes Pk

guaranteeing the conservation of fluxes for (1). Keeping the analogy to Riemann
problems, we call the latter Riemann Solver at nodes. In [10] the authors analysed
possible Riemann Solvers fixing the rule:

SC1 The incoming density flux is equal to the outgoing density flux. Then, if a
solution with only waves in the density ρ exists, then such solution is taken,
otherwise the minimal µ wave is produced.

Rule SC1 corresponds to the case in which processing rate adjustments are done
only if necessary, while the density ρ can be regulated more freely. Thus, it is
justified in all situations in which processing rate adjustments require re-building of
the supply chain, while density adjustments are operated easily (e.g. by stocking).
Even if rule SC1 is the most natural also from a geometric point of view, in the space
of Riemann data, it produces waves only to lower the value of µ. As a consequence
in some cases the value of the processing rate does not increase and it is not possible
to maximize the flux.

In order to avoid this problem we analyse two different rules to solve dynamics
at a node:

SC2 The objects are processed in order to maximize the flux with the minimal
value of the processing rate.

SC3 The objects are processed in order to maximize the flux. Then, if a solution
with only waves in the density ρ exists, then such solution is taken, otherwise
the minimal µ wave is produced.

According to rule SC2 and SC3 two Riemann Solvers are defined and approximate
solutions can be constructed by a wave front tracking algorithm, see [5, 7, 8].

Then we address the problem of numerical simulations for all models. After
briefly recalling the Godunov scheme definitions (see also [14]), we use the explicit
expressions of the numerical fluxes to implement a fast Godunov scheme. The three
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different Riemann solvers are tested on examples used in the papers [15, 16]. The
latter papers deal with a model, based on a single conservation law, but with the
presence of queues in front of each sub-chain. We show how the third Riemann
solver SC3 is the more appropriate to reproduce such situation.

The numerical experiments are also useful for a comparison among the three
different choices. In particular SC1 appears to be very conservative (as expected),
while SC2 and SC3 are more elastic, thus allowing more rich dynamics. Then,
the main difference between SC2 and SC3 is the following. SC2 tends to make
adjustments of the processing rate more than SC3, even when it is not necessary for
purpose of flux maximization. Thus, when oscillating waves reach a sub-chain, then
SC2 reacts by cutting such oscillations. In conclusion, SC3 is more appropriate to
reproduce also the well known “bull-whip” effect, see [9].

The outline of the paper is the following. Section 2 gives the basic definitions of
supply chain and Riemann Solver. Then we study the dynamics inside a sub-chain
in Section 3, providing flux total variation estimates. In Section 4, general Riemann
Solvers at junctions are discussed, then new Riemann Solvers according to rule SC2
and SC3 are defined and explicit unique solutions are given. Section 5 provides
analysis of equilibria in a node for Riemann Solvers which respect rule SC1, SC2,
and SC3 . In Section 6 we describe Godunov numerical scheme for the system (1)-
(2), while in Section 6.1 we construct a simplified version of Godunov scheme for the
flux function given by (3). The Riemann Solvers are rewritten for the discretized
problems in Section 7. Numerical experiments on sample networks of supply chains
are reported and discussed in Section 8, where we establish a comparison with the
model proposed in two recent papers [15, 16] by Klar and coauthors and we provide
the CPU time used by the simulation algorithm.

2. Basic Definitions. In this Section we recall basic definitions of the model in-
troduced in [10].

Let us consider a supply chain consisting in a sequence of N + 1 sub-chains
I1, . . . , IN+1, and N vertexes (suppliers) P1, ..., PN . The supplier Pk connects the
sub-chain Ik to the sub-chain Ik+1. Each supplier processes a certain good, mea-
sured in units of parts, and passes it in the next sub-chain. Each sub-chain Ik is

P1 Pk-1 Pk Pk+1 PN

Figure 1. A supply chain.

modelled by an interval [ak, bk], with Pk corresponding to coordinate bk, on which
we consider the system

{
ρt + fk

ε (ρ, µ)x = 0,
µt − µx = 0.

(4)

Each sub-chain Ik is thus characterized by a maximum density, a maximum rate
and a flux fk

ε . The flux is defined as in (3), therefore:
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(F): fk
ε (ρ, µ) =

{
ρ, 0 ≤ ρ ≤ µ,
µ + ε(ρ − µ), µ ≤ ρ ≤ ρmax

k ,
or alternatively

fk
ε (ρ, µ) =

{
ερ + (1 − ε)µ, 0 ≤ µ ≤ ρ,
ρ, ρ ≤ µ ≤ µmax

k ,

where ρmax
k and µmax

k are the maximum density and processing rate. From now
on, we assume that ε is fixed and, for simplicity, we drop the indexes thus indicate
the flux by f(ρ, µ).

Remark 1. It is possible to generalize all following definitions and results to the
case of different fluxes fk

εk
for each line Ik (also choosing ε dependent on k). In fact,

all statements are in terms of values of fluxes at endpoints of the sub-chains, thus it
is sufficient that the ranges of fluxes intersect. Moreover, we can consider different
slopes mk for each line Ik, considering the following flux

fk
ε (ρ, µ) =

{
mkρ, 0 ≤ ρ ≤ µ,
mkµ + ε(ρ − µ), µ ≤ ρ ≤ ρmax

k ,
(5)

where mk ≥ 0 represents the velocity of each processor and is given by:

mk =
Lk

Tk
,

with Lk and Tk, respectively, fixed length and processing time of processor k.

The supply chain evolution is described by a finite set of functions ρk, µk defined
on [0, +∞[ × Ik. On each sub-chain Ik, we say that Uk := (ρk, µk) : [0, +∞[ × Ik

7→ R is a weak solution to (4) if, for every C∞-function ϕ : [0, +∞[× Ik 7→ R
2 with

compact support in ]0, +∞[ × ]ak, bk[ ,

+∞∫

0

bk∫

ak

(
Uk ·

∂ϕ

∂t
+ f(Uk) ·

∂ϕ

∂x

)
dx dt = 0,

where

f(Uk) =

(
f(ρk, µk)

−µk

)
,

is the flux function of the system (4). For the definition of entropy solution, we
refer to [5].

We call Riemann problem for a junction the Cauchy problem corresponding to
an initial data which is constant on each supply line.

Definition 2. A Riemann Solver for the supplier Pk consists in a map RS :
[0, ρmax

k ]× [0, µmax
k ]× [0, ρmax

k+1]× [0, µmax
k+1] 7→ [0, ρmax

k ]× [0, µmax
k ]× [0, ρmax

k+1]× [0, µmax
k+1]

that associates to a Riemann data (ρk,0, µk,0, ρk+1,0, µk+1,0) at Pk a vector (ρ̂k,
µ̂k, ρ̂k+1, µ̂k+1) so that the solution is given by the waves (ρk,0, ρ̂k) and (µk,0, µ̂k)
on the sub-chain Ik and by the waves (ρ̂k+1, ρk+1,0), and (µ̂k+1, µk+1,0) on the
sub-chain Ik+1. We require the consistency condition

(CC) RS(RS(ρk,0, µk,0, ρk+1,0, µk+1,0)) = RS((ρk,0, µk,0, ρk+1,0, µk+1,0)).

Once a Riemann Solver is assigned we can define admissible solutions at Pk.

Definition 3. Assume a Riemann Solver RS is assigned for the supplier Pk. Let
U = (Uk, Uk+1) be such that Uk(t, ·) and Uk+1(t, ·) are of bounded variation for
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Figure 2. First and second family curves

every t ≥ 0. Then U is an admissible weak solution of (4) related to RS at the
junction Pk if and only if the following property holds for almost every t. Setting

Ũk(t) = (Uk(·, bk−), Uk+1(·, ak+))

we have RS(Ũk(t)) = Ũk(t).

Our aim is to solve the Cauchy problem on [0, +∞[ for a given initial and bound-
ary data as in next definition.

Definition 4. Given Ūk : Ik 7→ [0, 1], k = 1, ..., N , measurable BV functions, a
collection of functions U = (U1, ..., UN ), with Uk : [0, +∞[ × Ik 7→ [0, 1] continuous
as functions from [0, +∞[ into L1

loc and Uk(t, ·) BV function for almost every t, is
an admissible solution to the Cauchy problem on the supply chain if Uk is a weak
entropy solution to (4) on Ik, Uk(0, x) = Ūk(x) a.e., and, at each supplier Pk, U is
an admissible weak solution.

3. Dynamics on sub-chains. Let us fix a sub-chain Ik and analyse system (4):
it is a system of conservation laws in the variables U = (ρ, µ):

Ut + F (U)x = 0, (6)

with flux function given by F (U) = (f(ρ, µ),−µ). The eigenvectors are given by:

r1(ρ, µ) =






(
0
1

)
, if ρ < µ,

(
− 1−ε

1+ε

1

)
, if ρ > µ,

r2(ρ, µ) =

(
1
0

)
.

Hence the Hugoniot curves for the first family are vertical lines above the secant
ρ = µ and lines with slope close to −1/2 below the same secant. The Hugoniot
curves for the second family are just horizontal lines. Since we consider positive
and bounded values for the variables, we fix the invariant region:

D = {(ρ, µ) : 0 ≤ ρ ≤ ρmax, 0 ≤ µ ≤ µmax,

0 ≤ (1 + ε)ρ + (1 − ε)µ ≤ (1 + ε)ρmax = 2(1 − ε)µmax}

see Figure 2.
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Observe that

ρmax = µmax
2

1 + ε
. (7)

Lemma 5. Given an initial datum (ρ0, µ0), the maximum value of the density of

the curve of the second family passing through (ρ0, µ0) and belonging to the invariant

region is given by

ρM (µ0) = ρmax − µ0
ρmax − µmax

µmax
. (8)

Proof. From Figure 2, the maximum value is obtained by the intersection of the
curve of the second family passing through (ρ0, µ0) and the line connecting the
points (ρmax, 0) and (µmax, µmax) :

ρM (µ0) = ρmax − µ0
ρmax − µmax

µmax
.

From (7) we get

ρM (µ0) =
2

1 + ε
µmax −

1 − ε

1 + ε
µ0. (9)

The following estimate holds, see [10]:

Proposition 6. Assume that a second family wave ((ρl, µl), (ρm, µm)) interacts

with a first family wave ((ρm, µm), (ρr, µr)). If µr < µm then the flux variation

decreases.

4. Riemann Solvers for suppliers for the model (F). Here, referring to [10],
we discuss possible definitions of a general Riemann Solver, which conserves the
flux at nodes. We fix a node Pk and a Riemann initial datum: constantly equal to
(ρk,0, µk,0) on Ik and constantly equal to (ρk+1,0, µk+1,0) on Ik+1.

Admissible solutions are obtained under the conditions established by the follow-
ing Lemmas:

Lemma 7. On the incoming sub-chain, only waves of the first family may be pro-

duced, while on the outgoing sub-chain only waves of the second family may be

produced.

Observing that in order to have a solution, the minimum value of incoming flux
for the node Pk must be less than the maximum value of the outgoing flux for the
node Pk, the following Lemma holds.

Lemma 8. The Riemann problem at node Pk admits a solution if the following

holds: if ρk,0 ≤ µk,0 then

µk+1,0(1 − ε) + ε(ρM
k+1 −

2

1 + ε
ρk,0) ≥ 0. (10)

If ρk,0 > µk,0 then

(1 − ε)

(
µk+1,0 −

ε

1 + ε
µk,0

)
+ ε(ρM

k+1 − ρk,0) ≥ 0. (11)

For the proof of Lemma 8 see [10].

Remark 9. Conditions (10) and (11) are fulfilled if ρM
k+1 ≥ 2ρk,0 and µk+1,0 ≥ µk,0,

which is a condition on the initial datum.
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From Lemma 7, given the initial datum (ρk,0, µk,0, ρk+1,0,, µk+1,0), for every Rie-
mann Solver it follows that

ρ̂k = ϕ(µ̂k),

µ̂k+1 = µk+1,0,

where the function ϕ(·) describes the first family curve through (ρk,0, µk,0) as func-
tion of µ̂k. The expression of such curve changes at a particular value µ̄k, given
by:

µ̄k =

{
ρk,0, if ρk,0 ≤ µk,0,
1+ε
2 ρk,0 + 1−ε

2 µk,0, if ρk,0 > µk,0.
(12)

Let us now discuss how ρ̂k+1 and µ̂k can be chosen. The conservation of flux at
the node can be written as

f(ϕ(µ̂k), µ̂k) = f(ρ̂k+1, µk+1,0). (13)

We have to distinguish two cases

Case α): µk+1,0 < µ̄k;
Case β): µ̄k ≤ µk+1,0.

In both cases µ̄k and µk+1,0 individuate in the plane (ρ̂k+1, µ̂k) four regions,
A, B, C, D, so defined:

A = {(ρ̂k+1, µ̂k) : 0 ≤ ρ̂k+1 ≤ µk+1,0, µ̄k ≤ µ̂k ≤ µmax
k };

B = {(ρ̂k+1, µ̂k) : µk+1,0 ≤ ρ̂k+1 ≤ ρM
k+1, µ̄k ≤ µ̂k ≤ µmax

k };

C = {(ρ̂k+1, µ̂k) : 0 ≤ ρ̂k+1 ≤ µk+1,0, 0 ≤ µ̂k ≤ µ̄k};

D = {(ρ̂k+1, µ̂k) : µk+1,0 ≤ ρ̂k+1 ≤ ρM
k+1, 0 ≤ µ̂k ≤ µ̄k}.
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Figure 3. Case β) : µ̄k ≤ µk+1,0 and Case α) : µk+1,0 < µ̄k.

The equation (13) is satisfied in case β) along the line depicted in Figure 3 and
in case α) there are solutions, only under some conditions, along the dashed line.
For details we refer the reader to [10].
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Figure 4. An example of Riemann Solver: case β) (on the left)
and α) (on the right).

4.1. A Riemann Solver according to rule SC1. A geometrically natural Rie-
mann Solver is the following. In case β) we can define a Riemann Solver mapping
every initial datum on the line µ̂k = c to the intersection of the same line with that
drawn in Figure 3.
In case α), it may happen that there is no admissible solution on a given line µ̂k = c.
Therefore, we can use the same procedure if the line µ̂k = c intersects the dashed
line of Figure 3, while mapping all other points to the admissible solution with the
highest value of µ̂k.

The obtained Riemann Solver is depicted in Figure 4 and satisfies the policy
SC1. On the left, there is case β) with all points mapped horizontally, while, on the
right, there is case α): all points of the white region are mapped horizontally and
all points of the dark region are mapped to the point indicated by the arrow.

Remark 10. If ρ̂k+1 ≤ µk+1,0, then the solution (ρ̂k+1, ρk+1,0) is a contact discon-
tinuity. The same happens if ρ̂k+1 ≥ µk+1,0 and ρk+1,0 > µk+1,0. If ρ̂k+1 > µk+1,0

and ρk+1,0 < µk+1,0, the solution consists of two contact discontinuities.

In the sequel we describe two Riemann Solvers which follow, respectively, rule
SC2 and SC3.

4.2. A Riemann Solver according to rule SC2. Rule SC2 individuates a spe-
cific Riemann Solver:

Theorem 11. Fix a node Pk. For every Riemann initial datum (ρk,0, µk,0, ρk+1,0,
µk+1,0) at Pk there exists a unique vector (ρ̂k, µ̂k, ρ̂k+1, µ̂k+1) solution of the Rie-

mann Problem according to rule SC2.

Proof. Given the initial datum (ρk,0, µk,0, ρk+1,0,, µk+1,0), it holds

ρ̂k = ϕ(µ̂k),

µ̂k+1 = µk+1,0,

where ϕ(µ̂k) has been defined in the previous section. We have to distinguish again
two cases: α) and β).
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Case α): µk+1,0 < µ̄k. We consider two subcases: α1) : ρ∗ ≤ ρM (µk+1,0) and
α2) : ρ∗ > ρM (µk+1,0) where

ρ∗ =
µ̄k − (1 − ε)µk+1,0

ε
. (14)

Notice that the two cases correspond to the situation in which solutions in
region B exist or do not exist.

: Case α1). Since µk+1,0 < µ̄k we get

ρ∗ =
1

ε
µ̄k − (

1

ε
− 1)µk+1,0 >

1

ε
µ̄k − (

1

ε
− 1)µ̄k = µ̄k.

Consider the lines of Figure 3 (right). To every µ it corresponds a value of
the flux. We claim the following:

Claim If ρ∗ ≤ ρM the flux increases with respect to µ along the dashed lines in
regions C, D and in B for µmax

k ≤ µ ≤ ρ∗ and, finally, it is constant along
the dashed line in region B for ρ∗ ≤ µ ≤ µmax

k .
It holds

f (ρ∗, µ) =

{
ερ∗ + (1 − ε)µ, 0 ≤ µ ≤ ρ∗,
ρ∗, ρ∗ ≤ µ ≤ µmax

k ,

whose derivative, with respect to µ, is given by

∂f

∂µ
(ρ∗, µ) =

{
(1 − ε), 0 ≤ µ ≤ ρ∗,
0, ρ∗ ≤ µ ≤ µmax

k .

It follows that for ρ∗ ≤ µ̂k ≤ µmax
k the flux is constant along the dashed line

in region B.
Let us now prove that the flux is increasing with respect to µ along the

dashed lines in regions C and D. The line connecting the points ( 2ε
1+ε µ̄k, 0)

and (µk+1,0, µ
∗) with µ∗ = 1+ε

1−ε(µ̂k+1 −
2ε

1+ε µ̄k) has equation

ρ −
1

µ∗

(
µk+1,0 −

2ε

1 + ε
µ̄k

)
µ −

2ε

1 + ε
µ̄k = 0,

and a directional vector is given by

rCα =

(
1

µ∗

(
µk+1,0 −

2ε
1+ε µ̄k

)

1

)
.

Therefore, the directional derivative of the flux is equal to

∇f(ρ, µ) · rCα =

(
ε

1 − ε

)
·

(
1

µ∗

(
µk+1,0 −

2ε
1+ε µ̄k

)

1

)

=
ε

µ∗

(
µk+1,0 −

2ε

1 + ε
µ̄k

)
+ (1 − ε) > 0.

The latter inequality is fulfilled if µk+1,0 > 2ε
1+ε µ̄k, which is true whenever we

have solutions in region C.
In region D a directional vector of the line connecting the points (µk+1,0, µ

∗)
and (ρ∗, µ̄k) is the following

rDα =

(
ρ∗−µk+1,0

µ̄k−µ∗

1

)
.
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It implies that

∇f(ρ, µ) · rDα = ([c]cε1 − ε) ·

(
[c]c

ρ∗ − µk+1,0

µ̄k − µ∗
1

)

= ε
ρ∗ − µk+1,0

µ̄k − µ∗
+ (1 − ε) > 0,

since ρ∗ > µ̄k > µk+1,0 and µ̄k − µ∗ > 0.
In order to respect rule SC2 we set

ρ̂k+1 = ρ∗,

µ̂k = min{µmax
k , ρ∗}.

: Case α2). If ρ∗ > ρM (µk+1,0), there are not solutions in region B and since
the flux increases with respect to µ in region D we set

ρ̂k+1 = ρM ,

µ̂k = µ̃,

where µ̃ is obtained from

(1 − ε)µk+1,0 + ερ̂k+1 = (1 − ε)µ̂k + ερ̂k,

setting ρ̂k+1 = ρM , i.e.

µ̃ =
ε(1 + ε)

1 − ε
ρM −

2ε

1 − ε
µ̄k + (1 + ε)µk+1,0 (15)

=
2ε

1 − ε
(µmax

k − µ̄k) + µk+1,0.

Case β): µ̄k ≤ µk+1,0. Consider the line of Figure 3 (left). In this case the flux
is constant with respect to µ along the line in the region A and is an increasing
function along the line in region C.

In fact, since the line in region A is given by ρ̂k+1 = µ̄k, it follows that

f (ρ̂k+1, µ) =

{
εµ̄k + (1 − ε)µ, 0 ≤ µ ≤ µ̄k,
ρ, µ̄k ≤ µ ≤ µmax

k ,

from which

∂f

∂µ
(ρ̂k+1, µ) =

{
(1 − ε), 0 ≤ µ ≤ µ̄k,
0, µ̄k ≤ µ ≤ µmax

k .

In region C the line connecting the points ( 2ε
1+ε µ̄k, 0) and (µ̄k, µ̄k) has equation

ρ −
1 − ε

1 + ε
µ −

2ε

1 + ε
µ̄k = 0,

and a directional vector is given by

rCβ
=

(
1−ε
1+ε

1

)
.

The directional derivative is the following

∇f(ρ, µ) · rCβ
=

(
ε

1 − ε

)
·

(
1−ε
1+ε

1

)
= ε

1 − ε

1 + ε
+ (1 − ε) > 0.

It follows that rule SC2 is satisfied if we define

ρ̂k+1 = µ̄k,

µ̂k = µ̄k.
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Figure 5. Case β) (on the left) and α) (on the right) for the
Riemann solver SC2.

Finally the Riemann Solver is the following:

Case α): µk+1,0 < µ̄k

Case α1): ρ∗ ≤ ρM (µk+1,0)

ρ̂k+1 = ρ∗,

µ̂k = min{µmax
k , ρ∗}.

Case α2): ρ∗ > ρM (µk+1,0)

ρ̂k+1 = ρM (µk+1,0),

µ̂k = µ̃.

Case β): µk+1,0 ≥ µ̄k

ρ̂k+1 = µ̄k,

µ̂k = µ̄k.

This Riemann Solver is depicted in Figure 5. In case β) we can define a Riemann
Solver mapping every initial datum to the point (µ̄k, µ̄k), indicated by the arrow.

In case α), we can define a Riemann Solver mapping every initial datum to the
circle or to the square point if ρ∗ ≤ ρM and to the filled point if ρ∗ > ρM .

4.3. A Riemann Solver according to rule SC3. Also rule SC3 permits the
determination of a precise Riemann Solver.

Theorem 12. Fix a node Pk. For every Riemann initial datum

(ρk,0, µk,0, ρk+1,0, µk+1,0) at Pk there exists a unique vector (ρ̂k, µ̂k, ρ̂k+1, µ̂k+1) so-

lution of the Riemann Problem according to rule SC3.

Proof. As for the Riemann Solver for rule SC2, given the initial datum (ρk,0, µk,0,
ρk+1,0,, µk+1,0), we have

ρ̂k = ϕ(µ̂k),

µ̂k+1 = µk+1,0,
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The two cases α) and β) are distinguished.

Case α): This case is further split in subcases. First in subcases α1) and α2),
depending on which among ρ∗ and ρM (µk+1,0) is greater.

: Case α1) : ρ∗ ≤ ρM (µk+1,0). In Theorem 11 it was proved that the flux
increases with respect to µ along the dashed lines in regions C, D and in B
for µmax

k ≤ µ ≤ ρ∗ and, finally, it is constant along the line in region B for
ρ∗ ≤ µ ≤ µmax

k . It follows that we have to consider two possible situations:
α1,1) : ρ∗ > µmax

k and α1,2) : ρ∗ ≤ µmax
k .

: Case α1.1) : ρ∗ > µmax
k . According to rule SC3 we set

ρ̂k+1 = ρ∗,

µ̂k = µmax
k .

: Case α1.2) : ρ∗ ≤ µmax
k . We set

ρ̂k+1 = ρ∗,

µ̂k = max{ρ∗, µk,0}.

: Case α2) : ρ∗ > ρM (µk+1,0). In this case, there are not solutions in region B
and since the flux increases with respect to µ in region D we set, as for the
Riemann Solver SC2,

ρ̂k+1 = ρM (µk+1,0),

µ̂k = µ̃.

Case β): The flux is constant with respect to µ along the line in the region A
and is an increasing function along the line in region C, then we set

ρ̂k+1 = µ̄k,

µ̂k =

{
µ̄k, if µk,0 < µ̄k,
µk,0, if µk,0 ≥ µ̄k.

The obtained Riemann Solver is depicted in Figure 6: all points of the white
region are mapped horizontally and all points of the dark regions are mapped to
the point indicated by the arrows.
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Figure 6. Case β) and α) (namely α1) and α2)) for the Riemann
Solver SC3.

In the following lemma we consider solvability of Riemann Problems according
to the Riemann Solvers presented.
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Lemma 13. Consider a supply chain on which the initial datum verifies µk,0 =
µmax

k , i.e. the production rate is at its maximum. A sufficient condition for the

solvability of all Riemann problems, according to rule SC2 or SC3, on the supply

chain at every time is

ρmax
k+2 ≥ ρmax

k , ∀k.

The proof is similar to the corresponding Lemma of [10].

5. Analysis of equilibria. In this section we discuss the equilibria at nodes. We
fix a node Pk and a Riemann initial datum ρ0 = (ρk,0, µk,0, ρk+1,0, µk+1,0).

Definition 14. Define ρ̂ = RS(ρ0). The datum ρ0 is an equilibrium if

ρ̂ = RS(ρ0) = ρ0.

The conservation of flux at the node can be written as

f(ρk,0, µk,0) = f(ρk+1,0, µk+1,0),

and it is satisfied in accordance to the Riemann Solvers. From now on, we suppose
that the sub-chains have the same maximum processing rate, i.e µmax

k = µmax
k+1 , ∀k.

5.1. Riemann Solver SC1. Let us analyse the case α) : µk+1,0 < µ̄k and β) :
µk+1,0 ≥ µ̄k.

Case α): We have to discuss the subcases α1) : ρ∗ ≤ ρM (µk+1,0) and α2) : ρ∗ >
ρM (µk+1,0).

Case α1): In this case µk,0, ρk,0 and µk+1,0 can assume all positive values, with
µk+1,0 subject to the constraint µk+1,0 < µ̄k = µ̄k(ρk,0, µk,0), while ρk+1,0 =
ρk+1,0(ρk,0, µk+1,0).

Case α2): We have µk,0 ≤ µ̃(ρk,0, µk+1,0). Since µk,0 < µ̄k, it follows that
ρk,0 ≥ µk,0 from which we obtain µ̄k = µk,0 + ε(ρk,0 − µk,0). Finally, we
have that ρk,0 µk,0 and µk+1,0 can assume all the positive values, with µk+1,0

subject to the conditions µk+1,0 ≤ µk,0 + ε(ρk,0 − µk,0), µk,0 ≤ µ̃(ρk,0, µk+1,0)
and ρk+1,0 = ρk+1,0(ρk,0, µk+1,0).

Case β): In this case ρk,0 µk,0 and µk+1,0 can assume all positive values, with
µk+1,0 subject to the constraint µk+1,0 ≥ µ̄k and ρk+1,0 = ρk+1,0(ρk,0, µk+1,0).

5.2. Riemann Solver SC2. Let us distinguish the case α) and β).

Case α): We have to consider the subcases α1) : ρ∗ < ρM (µk+1,0) and α2) :
ρ∗ ≥ ρM (µk+1,0). Let us start considering case α1).

Case α1): In this case, from the Riemann Solver we get

ρk+1,0 = ρ∗ > µ̄k,

µk,0 = min{µmax
k , ρ∗} ≤ ρk+1,0,

µk,0 ≥ µ̄k.

From the latter inequality, using (12), it follows that µ̄k = ρk,0. The hypoth-
esis µk+1,0 < µ̄k implies that

µk+1,0 < µ̄k = ρk,0 ≤ µk,0 ≤ ρk+1,0. (16)

Moreover, the relation ρ∗ < ρM (µk+1,0) leads to

ρk,0 <
2ε

1 + ε
µmax

k +
1 − ε

1 + ε
µk+1,0. (17)
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Remark 15. If ε = 0, from (17) we get ρk,0 < µk+1,0, relation that is in
contradiction with (16). In fact in this case ρ∗ is not defined. It follows that
there are not equilibria for ε = 0.

Since µk,0 = min{µmax
k , ρ∗}, consider now two cases α1.1) : µmax

k ≤ ρ∗ and
α1.2) : µmax

k > ρ∗.
Case α1.1): In this case we have

µk,0 = µmax
k , (18)

ρk+1,0 ≥ µmax
k .

Taking into account that ρk+1 = ρ∗ and using (14) and (17) we get

µmax
k ≤ ρk+1,0 <

2

1 + ε
µmax

k −
1 − ε

1 + ε
µk+1,0 = ρM (µk+1,0). (19)

Starting from a fixed value of ρk,0, we discuss the equilibria. Since (17) holds
supposing that ρk,0 assumes the maximum value

2ε

1 + ε
µmax

k +
1 − ε

1 + ε
µk+1,0,

we get the following value for µk+1,0

µ1(ρk,0) =
1 + ε

1 − ε
ρk,0 −

2ε

1 − ε
µmax

k . (20)

From (16) and (18) it follows that if ρk,0 ∈ [0, µmax
k ], then µk+1,0 ∈ [µ1, ρk,0].

The relation (19) implies that the maximum value ρk+1,0 can assume is given
by

ρk+1,0 = ρk+1,0(ρk,0, µk+1,0) =
2ε

1 + ε
µmax

k −
1 − ε

1 + ε
µk+1,0,

that is a decreasing function with respect to µk+1,0.
Using (20) we can express ρk+1,0 in function of ρk,0 and µmax

k

ρk+1,0 = ρ∗ = 2µmax
k − ρk,0,

therefore ρk+1,0 ∈ [µmax
k , 2µmax

k − ρk,0]. Since ρk+1,0 ≥ µmax
k , it follows that

µk+1,0 ∈ [µ1(ρk,0), µ2(ρk,0)] where

µ2(ρk,0) =
1

1 − ε
ρk,0 −

ε

1 − ε
µmax

k .

It remains to establish the conditions ensuring that µ2(ρk,0) ≥ 0 and µ2(ρk,0) ≤
µmax

k . The second relation is always fulfilled since ρk,0 ≤ µk,0. Instead, the
first holds if

ρk,0 ≥ εµk,0 = εµmax
k . (21)

Remark 16. Notice that if ρk,0 = εµk,0 we have µk+1,0 = 0 and ρk+1,0 =
µmax

k .

If (20) is satisfied the equilibria configurations depend on the value of
µ1(ρk,0). We have that µ1(ρk,0) R 0 if ρk,0 R 2ε

1+εµmax
k . In the case µ1(ρk,0) <

0, since µk+1,0 = 0 implies that ρk+1,0 =
ρk,0

ε , we obtain that ρk+1,0 ∈

[µmax
k ,

ρk,0

ε ].
Finally, the set of equilibria is defined in the following way: µk,0 = µmax

k ,
ρk,0 ∈ [εµmax

k , µmax
k ]. In particular, we have to consider two cases:

Case α1.1.1): If ρk,0 ∈ [εµmax
k , 2ε

1+εµmax
k ], then we have µk+1,0 ∈ [0, µ2(ρk,0)],

ρk+1,0 = ρ∗(ρk,0, µk+1,0) ∈ [µmax
k ,

ρk,0

ε ].
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Case α1.1.2): If ρk,0 ∈ [ 2ε
1+εµmax

k , µmax
k ], then we have µk+1,0 ∈ [µ1(ρk,0), µ2(ρk,0)],

ρk+1,0 = ρ∗(ρk,0, µk+1,0) ∈ [µmax
k , ρM (µk+1,0)].
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Figure 7. Equilibria configurations for the Case α1.1).

Equilibria configurations are depicted in Figure 7. Observe that fixed ρk,0

we have a segment on the outgoing sub-chain. If ρk,0 varies in the interval
[εµmax

k , µmax
k ], we get a region on the outgoing sub-chain, coloured in grey,

without the oblique side. Moreover, the processing rate is maximum on the
incoming sub-chain and assumes values in [µ1(ρk,0), µ2(ρk,0)] on the incoming
one, while the density on the outgoing sub-chain is greater than the density
on the incoming one.

Case α1.2): From µmax
k > ρ∗ it follows that ρk+1,0 = µk,0 = ρ∗. Finally we have

µk+1,0 < ρk,0 ≤ ρk+1,0 = ρ∗(ρk,0, µk+1,0) < µmax
k .

In this case ρ∗ = ρk+1,0 ∈ [ρk,0, µ
max
k ], in fact if µk+1,0 = ρk,0 we have

ρ∗ = ρk,0. From the Case α1.1) we get ρk,0 ∈ [εµmax
k , µmax

k ]. We have to
distinguish two cases:

Case α1.2.1): If ρk,0 ∈ [0, εµmax
k ], then we have µk+1,0 ∈ [0, ρk,0], ρk+1,0 =

ρ∗(ρk,0, µk+1,0) = µk,0 ∈ [ρk,0,
ρk,0

ε ].
Case α1.2.2): If ρk,0 ∈ [εµmax

k , µmax
k ], then we have µk+1,0 ∈ [µ2(ρk,0), ρk,0],

ρk+1,0 = ρ∗(ρk,0, µk+1,0) = µk,0 ∈ [ρk,0, µ
max
k ].
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Figure 8. Equilibria configurations for the Case α1.2).

Equilibria configurations are depicted in Figure 8. Observe that at a point
on the incoming sub-chain corresponds a point on the outgoing sub-chain.
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Moreover, the density on the outgoing sub-chain is equal to the processing
rate on the incoming sub-chain.

Case α2): In this case µk+1,0 < µ̄k. According to the Riemann Solver

µk,0 = µ̃ =
2ε

1 − ε
(µmax

k − µ̄k) + µk+1,0. (22)

Since µk,0 = µ̃ ≤ µ̄k, from the definition of µ̄k it follows that

µ̄k =
1 + ε

2
ρk,0 +

1 − ε

2
µk,0, (23)

and ρk,0 ≥ µk,0. Using (23), the relation (22) reads

µk,0 =
2ε

1 − ε2
µmax

k −
ε

1 − ε
ρk,0 +

1

1 + ε
µk+1,0. (24)

Finally, we have

ρk,0 ≥ µk,0 =
2ε

1 − ε2
µmax

k −
ε

1 − ε
ρk,0 +

1

1 + ε
µk+1,0,

µk+1,0 ≤
1 + ε

2
ρk,0 +

1 − ε

2
µk,0, (25)

ρk+1,0 = ρM (µk+1,0).

After straightforward computations, substituting (24) in (25) we have

µk+1,0 ≤
2ε

1 + 3ε
µmax

k +
1 + ε

1 + 3ε
ρk,0 = µ3(ρk,0). (26)

From ρ∗ ≥ ρM (µk+1,0) or µk,0 ≤ ρk,0, it follows that

µk+1,0 ≤ −
2ε

1 − ε
µmax

k +
1 + ε

1 − ε
ρk,0 = µ4(ρk,0). (27)

Notice that µ3(ρk,0) ≥ µ4(ρk,0) if ρk,0 ≤ µmax
k . Therefore if the latter holds,

(26) is fulfilled if (27) is true.
In order to have equilibria configurations, the following relations must hold

: µk,0 ≥ 0 and µk,0 ≤ µmax
k . From the condition µk,0 ≥ 0, we obtain

ρk,0 ≥ 2µmax
k +

1 − ε

ε(1 + ε)
µk+1,0

which is always true since ρmax
k = 2

1+εµmax
k .

Moreover, from µk,0 = µ̃ ≤ µmax
k , it follows that

µk+1,0 ≤
1 − 2ε − 3ε2

1 − ε
µmax

k +
ε(1 + ε)

1 − ε
ρk,0 = µ5(ρk,0). (28)

Let us analyse two subcases α2.1) : ρk,0 ≥ µmax
k and α2.2) : ρk,0 ≤ µmax

k .
Case α2.1): In this case µ4(ρk,0) ≥ µ3(ρk,0), therefore the relations (26) and

(27) lead to µk+1,0 ≤ µ3(ρk,0). Observe that µ3(ρk,0) ≥ µ5(ρk,0) if

(1 − ε − 5ε2 − 3ε3)ρk,0 ≥ (1 − ε − 7ε2 − 5ε3)µmax
k ,

that is always true since ρk,0 ≥ µmax
k . It follows that (26) and (28) are fulfilled

if µk+1,0 ≤ µ5(ρk,0). Since µ5(ρk,0) ≤ µmax
k if

1 + 3ε

1 + ε
µmax

k ≥ ρk,0,

it follows that if ρk,0 ∈ [µmax
k , 1+3ε

1+ε µmax
k ], then µk+1,0 ≤ µ5(ρk,0), and if ρk,0 ∈

[1+3ε
1+ε µmax

k , ρmax
k ], then µk+1,0 ≤ µmax

k .
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Case α2.2): In this case since µ4(ρk,0) ≤ µ3(ρk,0) the relations (26) and (27)
lead to µk+1,0 ≤ µ4(ρk,0). From µk,0 ≤ ρk,0 we get

µk+1,0 ≤
2ε(1 + ε)

1 − ε
µmax

k +
1 + ε

1 − ε
ρk,0 = µ6(ρk,0). (29)

Comparing µ4(ρk,0) and µ6(ρk,0), it follows that (27) and (29) hold if µk+1,0 ≤
µ6(ρk,0). The condition µ6(ρk,0) ≤ µmax

k is always true, therefore it follows
that if ρk,0 ∈ [0, µmax

k ] then µk+1,0 ≤ µ6(ρk,0).
The equilibria are determined if we fix ρk,0, as it is shown in Figure 9. We

notice that the processing rate on the outgoing chain is always less than the
value on the incoming one.
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Figure 9. Equilibria configurations for the Case α2).

Case β): In this case since µ̄k ≤ µk+1,0 we have

µk+1,0 ≥ µ̄k = ρk+1,0 = ρk,0 = µk,0.
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Figure 10. Equilibria configurations for the Case β).

Equilibria configurations are depicted in Figure 10. Notice that the two
sub-chains have the same density.

5.3. Riemann Solver SC3. Let us analyse the case α) and β), outlining only the
difference with the equilibria obtained using the Riemann Solver which respects rule
SC2.

Case α): We have to discuss the subcases α1) : ρ∗ ≤ ρM (µk+1,0) and α2) : ρ∗ >
ρM (µk+1,0). First we consider case α1).
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Case α1): We distinguish two cases: α1.1) : ρ∗ > µmax
k and α1.2) : ρ∗ ≤ µmax

k .
Case α1.1): The Riemann Solver SC2 and SC3 have the same kinds of equilibria.
Case α1.2): In this case, the equilibria are the same: fixed a value 0 ≤ ρk,0 ≤

µmax
k , µk+1,0, and ρk+1,0 = ρ∗(ρk,0, µk+1,0) assume values in the same interval

individuated for the Riemann Solver SC2. The only difference is that

µk,0 ≥ ρ∗(ρk,0, µk+1,0).

Case α2): We have the same kinds of equilibria.
Case β): The equilibria are of the same kind, the only difference is that

µk,0 ≥ ρk,0.

5.4. Equilibria for ε = 0. We compare the equilibria obtained using the rule SC1,
SC2 and SC3, in the case ε = 0. This permits to understand the typical feature of
the supply chain at equilibria in the three cases.

ε = 0 SC1 SC2 SC3
α1) No equilibria No equilibria No equilibria

α2)
µk,0= µk+1,0≤ρk,0,

ρk+1,0= 2µmax
k+1−µk+1,0,

Same as SC1 Same as SC1

β)

either
ρk,0 = ρk+1,0 ≤ µk,0, µk+1,0,

or
ρk+1,0 = µk,0 ≤ ρk,0,

µk+1,0 ≥ 1
2ρk,0 + 1

2µk,0

ρk,0 = ρk+1,0 =
= µk,0 ≤ µk+1,0,

First case of SC1

We first notice that the complicate equilibria of case α1) disappear from all
Riemann solvers.

Regarding case α2), all rules perform again in the same way. In particular, the
processing rates are the same in the entering and exiting lines, while the enter-
ing density is greater. To keep the flux equilibrium the exiting density is settled
accordingly (the precise value is obtained passing to the limit in ε → 0).

Let us compare such equilibria with the model of [15], which, for brevity we call
GHK model. This case would correspond to a queue which is increasing in size,
since the incoming density is bigger than the processing rate. Also to have this
situation, we would need µk+1,0 = µmax

k+1 . Then we would also have ρk+1,0 = µmax
k+1

and the two models well fit.
Finally, we reproduce the situation of an increasing queue, but we may have some

equilibria not possible for the GHK model.
Let us now analyse the case β). The first case of SC1 (and thus the only of

SC3) corresponds to equal densities, which are lower than the respective processing
rates. For the GHK model, this corresponds to an empty queue situation, where
the incoming and outgoing fluxes are less than the production rates.

For SC2, we have a quite special case. The incoming density equals the processing
rate, while the outgoing density is lower than the corresponding processing rate.
Thus again, for the GHK model we have an empty queue situation.

Finally, the second case of SC1 is quite different. In fact, we have the incoming
density bigger than the processing rate. While, in the outgoing sub-chain, the
density, equal to the incoming one, is definitely below the processing rate. Again,
this case corresponds to an empty queue.



A MODEL FOR SUPPLY CHAINS DYNAMICS 679

Concluding, the model proposed in this paper and that of GHK are comparable
for what concerns equilibria. As expected, the emptying queue situation does not
appear for the present model, while the choice SC3 seems the more appropriate to
reproduce the GHK model features.

6. Godunov scheme for 2x2 systems. In order to describe Godunov numerical
method as applied to the system (1)- (2), we rewrite it as the 2x2 hyperbolic system
(6).

The Godunov scheme is based on the construction of the Riemann problem for
(6). The Riemann problem, [UL, UR], is the initial value problem for initial data
given by a jump discontinuity

U(0, x) =

{
UL, x < 0,
UR, x > 0,

(30)

and it has a unique entropy solution

U(t, x) = UR

(x

t
; UL, UR

)
. (31)

We discretize [0,∞) × R by a time mesh length ∆t and a spatial mesh length ∆x
and we let tn = n∆t and xj = j∆x, so that (tn, xj) denotes the mesh points of the
approximate solution v∆(t, x) = vn

j . Starting by the approximation vn = (vn
j )j∈Z

of U(tn, ·), with v a column vector of R
2, an approximation vn+1

j , with j ∈ Z, of

U(tn+1, ·) can be defined as follows:

• extension of the sequence vn as a piecewise constant function v∆(tn, ·):

v∆(tn, ·) = vn
j , xj−1/2 < x < xj+1/2; (32)

• solution of the Cauchy problem
{

Ut + F (U)x = 0, x ∈ R, t > 0,
U(0, x) = v∆(tn, ·),

(33)

in the cell (tn, tn+1) × (xj−1, xj);
• computation of the solution as the average value of the preceding solution in

the interval (xj−1/2, xj+1/2) obtained projecting U(∆t, ·) onto the piecewise
constant functions:

vn+1
j =

1

∆x

∫ xj+1/2

xj−1/2

U(∆t, x)dx. (34)

To avoid the interaction of waves in two neighbouring cells before time ∆t, we
impose a CFL condition like:

∆t

∆x
max{|λ0|, |λ1|} ≤

1

2
, (35)

where λ0 and λ1 are the eigenvalues. Since in this case the eigenvalues are such
that |λ0| = 1, |λ1| ≤ 1, the CFL condition reads as:

∆t

∆x
≤

1

2
. (36)

The solution of (33) is obtained by solving a sequence of neighbouring Riemann
problems and we have

U(t, x) = UR

(
x − xj+ 1

2

∆t
; vn

j , vn
j+1

)
, xj < x < xj+1, j ∈ Z. (37)
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Then, integrating the equation (33) over the rectangle (0, ∆t)× (xj−1/2, xj+1/2) we
can obtain a more explicit expression of the scheme. Since the function is piecewise
smooth, we get:

∫ x
j+ 1

2

x
j− 1

2

(U(∆t, 0) − U(0, x))dx

+

∫ ∆t

0

(F (U(t, xj+ 1
2
− 0)) − F (U(t, xj− 1

2
+ 0)))dt = 0. (38)

Now, using (32) and projecting the solution on piecewise constant functions we
obtain:

∆x(vn+1
j − vn

j ) +

∫ ∆t

0

(F (U(t, xj+ 1
2
− 0)) − F (U(t, xj− 1

2
+ 0)))dt = 0, (39)

and, recalling (37), we derive:

vn+1
j = vn

j −
∆t

∆x
{F (UR(0−; vn

j , vn
j+1)) − F (UR(0+; vn

j−1, v
n
j ))}. (40)

Since the function ξ → F (UR(ξ; UL, UR)) is continuous at the origin due to the
Rankine-Hugoniot conditions (see [14]), Godunov scheme can be written in the
form:

vn+1
j = vn

j −
∆t

∆x
{F (UR(0; vn

j , vn
j+1)) − F (UR(0; vn

j−1, v
n
j ))}, (41)

and the numerical flux computed in V = (v1, v2) and W = (w1, w2), is

G(V, W ) = F (UR(0; V, W )). (42)

The numerical flux can be written in a general form as:

G(V, W ) =






minz1∈[v1,w1] F (Z) if v1 ≤ w1,

maxz1∈[w1,v1] F (Z) if w1 ≤ v1,

where the second variable z2 in Z = (z1, z2) is assumed to be fixed. The final
expression of Godunov scheme for the problem (33) is:

vn+1
j = vn

j −
∆t

∆x

(
G(vn

j , vn
j+1) − G(vn

j−1, v
n
j )
)
. (43)

More precisely, for the system (4), the scheme reads as:
{

ρn+1
j = ρn

j − ∆t
∆x(g(ρn

j , ρn
j+1) − g(ρn

j−1, ρ
n
j )),

µn+1
j = µn

j + ∆t
∆x (µn

j+1 − µn
j ),

(44)

where we indicate the approximate values of ρ(t, x) and µ(t, x) on the numerical
grid as, respectively, ρn

j and µn
j for j = 0, . . . , L and n = 0, . . . , M − 1. Notice that

Godunov scheme for the second equation reduces to forward upwind scheme.

6.1. Approximation algorithm: Fast Godunov for 2x2 systems. Consider
the numerical flux function F (U) with f(ρ, µ) defined in (4). Since we want to
determine a simplified expression for the numerical flux of Godunov scheme, we
solve Riemann problems between the two states: (ρ−, µ−) on the left and (ρ+, µ+)
on the right. In particular, referring to relation (42) we compute the value of the
flux function F in the separation point between waves of different speeds.
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Theorem 17. The numerical flux function G(V, W ) = F (UR(0; V, W )) is:

G(ρ−, µ−, ρ+, µ+) =






(ρ−,−µ+) if ρ− < µ− ∨ ρ− ≤ µ+,(
1−ε
1+εµ+ + 2ε

1+ερ−,−µ+

)
if ρ− < µ− ∨ ρ− > µ+,(

1+ε
2 ρ− + 1−ε

2 µ−,−µ+

)
if ρ− ≥ µ− ∨ µ+ > µ̃,(

1−ε
1+ε (µ+ + εµ−) + ερ−,−µ+

)
if ρ− ≥ µ− ∨ µ+ ≤ µ̃,

(45)
with

µ̃ = µ− +
1 + ε

2
(ρ− − µ−). (46)

Proof. Let P be the intersection point between the first family curve passing through

(ρ−, µ−) and the line ρ = µ, namely P =

(
ρ−
ρ−

)
. The second family curve

passing through P splits the invariant region into two regions A = {(ρ, µ) : µ > ρ−}
(in grey) and B = {(ρ, µ) : µ ≤ ρ−} as depicted in Figures 12 and 13.
Each RP solution presents waves travelling with two velocities, namely λ0 = −1 and
0 < ε ≤ λ1 ≤ 1. Let (ρ∗, µ∗) be the intermediate state, see Fig. 11. We compute
the numerical flux function G(ρ−, ρ+) given by (f(ρ∗, µ∗), µ∗).

ε ≤ λ1 ≤ 1
λ0

(ρ−, µ−) (ρ+, µ+)

(ρ∗, µ∗)

Figure 11. Intermediate state between the two waves.

We distinguish two cases

Case 1: ρ− < µ−;
Case 2: ρ− ≥ µ−.

In case 1, if (ρ+, µ+) ∈ A then (ρ∗, µ∗) = (ρ−, µ+). Since ρ− ≤ µ+ the flux (3)
results to be f(ρ−, µ+) = ρ−.
If (ρ+, µ+) ∈ B, the needed value of flux is that corresponding to (f(ρ∗, µ+),−µ+),
see Fig. 12.

We have:

(ρ∗, µ∗) = (ρ∗, µ+) =

(
ρ−
ρ−

)
+ t

(
− 1−ε

1+ε

1

)
, (47)

and ρ∗ is computed as:

ρ∗ = ρ− + (ρ− − µ+)
1 − ε

1 + ε
. (48)

Finally, since ρ∗ > ρ− > µ+ we get the expression in the second line of (45). In
case 2, if (ρ+, µ+) ∈ A then (ρ∗, µ∗) = (ρ̃, µ+), where

ρ̃ =
1 + ε

2
ρ− +

1 − ε

2
µ− (49)
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A

ρρ+ ρmaxρ∗

µ+

µ−

µ

ρ−

µmax

B

Figure 12. Case 1, with (ρ+, µ+) ∈ B.

is obtained as follows. The point (ρ̃, µ̃) is:

(ρ̃, µ̃) =

(
ρ−
µ−

)
+ t

(
− 1−ε

1+ε

1

)
,

and, using that ρ̃ = µ̃, one gets (49).

µ−

µ+

µmax

µ

µ̃

A

B

ρ̃ ρmax ρρ−

Figure 13. Case 2, with (ρ+, µ+) ∈ A.

Assuming (ρ+, µ+) ∈ B, the value of flux we need is f(ρ∗, µ+) with ρ∗ given by

(ρ∗, µ∗) = (ρ∗, µ+) =

(
ρ−
µ−

)
+ t

(
− 1−ε

1+ε

1

)
, (50)

and, making simple computations, one gets:

ρ∗ = ρ− + (µ− − µ+)
1 − ε

1 + ε
. (51)

Taking into account that ρ∗ > µ+, we obtain the expression of flux as in the last
line of (45).
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7. Numerics for Riemann solvers. In this Section we describe the numerical
framework for the solution of Riemann problems at junctions. In particular, we
refer to the general Riemann solver called SC1, already proposed in [10], and to the
Riemann solvers introduced here in Section 4, namely SC2 and SC3.
For simplicity, we focus on a single supplier Pk, and on two consecutive sub-chains,
namely Ik, Ik+1. Let us introduce the notations:

Ik Ik+1

Pk

Figure 14. Supply chain at a junction.

• ρn,k
L , µn,k

L are the approximate values, respectively, of density and processing
rate at time tn at the outgoing endpoint xL = L∆x of sub-chain Ik;

• ρn,k
0 , µn,k

0 are the approximate values, respectively, of density and processing
rate at time tn at the incoming endpoint x0 = 0 of sub-chain Ik+1.

Let us now describe the discretization of the Riemann solver SC1. If we set

• γ̂ = f(ρn,k
L , µn,k

L ),

• γmax
k+1 = f(ρmax

k+1 , µn,k+1
0 ),

we have two cases:

Case a) If γ̂ ≤ γmax
k+1 :

ρn,k
L+1 = ρn,k

L ,

µn,k
L+1 = µn,k

L ,

ρn,k+1
−1 =

{
f(ρn,k

L , µn,k
L ) if f(ρn,k

L , µn,k
L ) ≤ µn,k+1

0 ,
f(ρn,k

L ,µn,k
L )−µn,k+1

0

ε + µn,k+1
0 , otherwise,

µn,k+1
−1 = µn,k+1

0 .

Case b) If γ̂ > γmax
k+1 :

ρn,k
L+1 = ρn,k

L ,

µn,k
L+1 =

γmax
k+1 − ερn,k

L

1 − ε
,

ρn,k+1
−1 = ρmax

k+1 ,

µn,k+1
−1 = µn,k+1

0 .

The discretized version of the Riemann solver SC2 is given below.

Case α) We distinguish between the following subcases:
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α1) If ρ∗ < ρM , we set:

ρn,k
L+1 = ρn,k

L ,

µn,k
L+1 = min{ρ∗, µmax

k },

ρn,k+1
−1 = ρ∗,

µn,k+1
−1 = µn,k+1

0 ;

α2) if ρ∗ ≥ ρM , the new values are:

ρn,k
L+1 = ρn,k

L ,

µn,k
L+1 = ε

1 + ε

1 − ε
ρ̃ −

2ε

1 − ε
µ̄k + (1 + ε)µn,k+1

0 ,

ρn,k+1
−1 = ρ̃,

µn,k+1
−1 = µn,k+1

0 ;

Case β)

ρn,k
L+1 = ρn,k

L ,

µn,k
L+1 = µ̄k,

ρn,k+1
−1 = µ̄k,

µn,k+1
−1 = µn,k+1

0 .

The discretization of the Riemann solver SC3 is described in the sequel.

Case α) The following subcases can occur:
α1) if ρ∗ < ρM , we set:

ρn,k
L+1 = ρn,k

L ,

µn,k
L+1 = max{ρ∗, µn,k

L },

ρn,k+1
−1 = ρ∗,

µn,k+1
−1 = µn,k+1

0 ;

α2) if ρ∗ ≥ ρM , we compute the new values as in SC2:

ρn,k
L+1 = ρn,k

L ,

µn,k
L+1 = ε

1 + ε

1 − ε
ρ̃ −

2ε

1 − ε
µ̄k + (1 + ε)µn,k+1

0 ,

ρn,k+1
−1 = ρ̃,

µn,k+1
−1 = µn,k+1

0 ;

Case β)

ρn,k
L+1 = ρn,k

L ,



A MODEL FOR SUPPLY CHAINS DYNAMICS 685

β1) if µn,k
L+1 ≥ µ̄k, we set:

µn,k
L+1 = µn,k

L ,

β2) otherwise, we assign:

µn,k
L+1 = µ̄k,

ρn,k+1
−1 = µ̄k,

µn,k+1
−1 = µn,k+1

0 .

8. Numerical tests. As an application of the supply chain dynamics presented
in Sections 2-4 and the associated numerical algorithm described in Section 6, we
present some experiments on sample cases. The problem (4) is discretized using
Godunov and Upwind schemes, as indicated in (44), with the numerical flux (45).

We set space increment equal on each supplier, namely Nk = Lk

∆x , where Nk is the
number of space discretization points. The time steps ∆t are constants and are
obtained imposing the CFL condition on each arc.

In the following Tests 1 and 2 we refer to numerical examples presented in the
papers by Klar and coauthors, [15, 16], in such a way to establish a comparison
between their and our approach. To this aim we consider the flux function with
different slopes (5). The expression of numerical flux G(ρ−, µ−, ρ+, µ+) of Fast
Godunov scheme for supplier Ik is:

G =






(mkρ−,−µ+) if ρ− < µ− ∨ ρ− ≤ µ+,((
mk − 2ε

1+ε

)
µ+ + 2ε

1+ερ−,−µ+

)
if ρ− < µ− ∨ ρ− > µ+,(

mk

(
1+ε
2 ρ− + 1−ε

2 µ−

)
,−µ+

)
if ρ− ≥ µ− ∨ µ+ > µ̃,((

mk − 2ε
1+ε

)
µ+ + ε(1−ε)

1+ε µ− + ερ−,−µ+

)
if ρ− ≥ µ− ∨ µ+ ≤ µ̃,

(52)
with µ̃ as in (46).

8.0.1. Test 1. As in [15], we consider a supply chain network consisting of N = 4
suppliers and we use the data in Table 1.

Processor k µk mk Lk

1 25 1 1
2 15 0.2 0.2
3 10 0.2 0.6
4 15 0.2 0.2

Table 1. Parameters of the test problem 1.
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Let us assume the following initial and boundary data:

ρ1(0, x) = ρ2(0, x) = ρ3(0, x) = ρ4(0, x) = 0, (53)

ρ1(t, 0) =





18
35 t, if 0 ≤ t ≤ 35,
− 18

35 t + 36, if 35 < t ≤ 70,
0, if t > 70,

and the space and time intervals are, respectively, [0, 2] and [0, 140], with ∆x = 0.02
and ∆t = 0.01. On each processor k = 1, 2, 3, 4 we assume as the initial datum
µ(0, x) the value µk, which is also imposed at the incoming and outgoing boundaries.
Notice that the inflow profile ρ1(t, 0) is assigned on the first processor, which can
be considered as an artificial arc, and it exceeds the maximum capacity of the other
processors.

In Fig. 15 it is depicted the evolution in time on processors 2, 3, 4, of flux,
density and processing rate, obtained by the Riemann solver SC1 for ε = 0.1.

From the analysis of graphics in Fig. 15, we can deduce that the processing
rate, according to SC1, is minimized and, consequently, the flux and the density are
considerably lowered and are almost plateau shaped on processors 3 and 4. On the
other hand, SC2 determines the behaviour showed in Fig. 16, where the flux and
the density are correctly developed on processors 2, 3, 4, due to the behaviour of
the processing rate depicted in the graphics, which assumes the minimum possible
value in order to maximize the flux.
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Figure 15. Test 1: evolution on processors 2, 3, 4, of f (top left),
ρ (top right) and µ (bottom) using SC1, with data in Table 1 and
ε = 0.1.
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Figure 16. Test 1: evolution on processors 2, 3, 4, of f (top left),
ρ (top right) and µ (bottom) using SC2, with data in Table 1 and
ε = 0.1.

In the following Fig. 17, 18 and 19 it is depicted the evolution in time on pro-
cessors 2, 3, 4, of flux, density and processing rate, as obtained by the Riemann
solver SC3 with, respectively, ε = 0.1, ε = 0.5 and ε = 0.01. As showed by the
graphics obtained, ε varying determines a different evolution. In particular, for ε
tending to zero, the maximum values assumed by the flux and the density decrease.

From the analysis of graphics in Figg. 17, 18 and 19, obtained by applying Rie-
mann solver SC3, we can deduce that adjustments of processing rate determine the
expected behaviour of the density, also in accordance with results reported in [15].

8.0.2. Test 2. Referring to [16], we consider again a supply chain of N = 4 suppliers
and impose the following initial and boundary data:

ρ1(0, x) = ρ2(0, x) = ρ3(0, x) = ρ4(0, x) = 0, (54)

ρ1(t, 0) =
µ2

2
(1 + sin (3πt/Tmax)),

where the space interval is [0, 6] and the observation time is Tmax = 20, with
∆x = 0.1 and ∆t = 0.05. On each processor k = 1, 2, 3, 4 we assume µ(0, x) = µk

and incoming and outgoing boundary data are given by µk. Observe that even in
this case the inflow profile ρ1(t, 0) exceeds the maximum capacity of the processors.
Referring to [16] we make simulations setting parameters as in Table 2 and we
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Figure 17. Test 1: evolution on processors 2, 3, 4, of f (top left),
ρ (top right) and µ (bottom) using SC3, with data in Table 1 and
ε = 0.1.

assume to have default processing velocities on each processor, namely mk = 1, k =
1, 2, 3, 4.

Processor k µk Lk

1 99 1
2 15 1
3 10 3
4 8 1

Table 2. Parameters of the test problem 2.

In the next Fig. 20 it is depicted the evolution in time of density and processing
rate obtained by the Riemann solver SC1 for ε = 0.1, while in Figg. 21 and 22 we
show the behaviour of flux, density and processing rate obtained, respectively, by
the Riemann solver SC2 and SC3.

Let us make a comparison between graphics in Figg. 20 and 21. We observe
that with solver SC2 the productivity collapses, thus provoking a lowering in the
values of the flux and the density. On the other hand, SC1 maintains the level of
productivity. Using solver SC3, which maximizes the flux and adjusts the processing
rate if necessary, results are in accordance with those obtained in [16], see Fig. 22.
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Figure 18. Test 1: evolution on processors 2, 3, 4, of f (top left),
ρ (top right) and µ (bottom) using SC3, with data in Table 1 and
ε = 0.5.

8.1. CPU time. Now we are interested in the analysis of the CPU time. In par-
ticular, we want to compare the performances of programs based on the classical
Godunov scheme (G) and on the Fast Godunov scheme (FG) introduced in Section
6.1. To this aim, we report in the following Tables 3 and 4 the time of execution,
expressed in seconds (s), of the simulation algorithm using SC3 and applied, respec-
tively, to Test 1 and to Test 2, when ∆x (and consequently ∆t = ∆x/2), decreases.

In order to show the complexity, depending on the number of nodes as well as
the space-time discretizations, of the simulation algorithm characterized by the pro-
posed Riemann solvers, we consider networks composed large number of nodes. In
the following table 5 we display the CPU time expressed in seconds of the simulation
algorithm using SC3 applied to supply chains of N = 100, 1000, 10000 suppliers.

From the analysis of the previous tables we can observe that the Fast Godunov
scheme (FG) allows to save more than 40% of CPU time with respect to the classical
Godunov scheme G. Therefore we can conclude that FG performs better than G.
We point out that the growth in the CPU time due to the increasing dimension of
supply chain seems to be quadratic.
All the simulations have been performed by a personal computer, processor AMD
Athlon XP 2400 Mhz, RAM 512 Mb.

9. Conclusions. In this paper we extended the model for supply chain dynamics
of [10], based on a system of conservation laws, one for the part density and the
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Figure 19. Test 1: evolution on processors 2, 3, 4, of f (top left),
ρ (top right) and µ (bottom) using SC3, with data in Table 1 and
ε = 0.01.

CPU time
T = 140

∆x G FG
0.1 0.06 s 0.04 s
0.05 0.19 s 0.12 s
0.025 0.71 s 0.4 s
0.0125 2.81 s 1.57 s
0.00625 13.5 s 7.0 s

Table 3. CPU time for the schemes G and FG applied to Test 1,
T = 140.

other for the processing rate. We proposed some alternative definitions for solutions
at nodes: maximizing the flux with possible adjustments of the processing rate.

For the newly obtained dynamics, we compute the set of equilibria and compare
them with the model of [15], consisting of a single conservation law for densities
and odes for queues’ buffer occupancies.

Then we provide a fast Godunov scheme for solutions of numerical problems. The
obtained results show that the choice of maximizing the flux, while minimizing the
changes in the processing rate, gives rise to the most interesting dynamics, which



A MODEL FOR SUPPLY CHAINS DYNAMICS 691

flux

 0

 5

 10

 15

 20

t

 0
 1

 2
 3

 4
 5

 6

x

 0
 5

 10
 15
 20
 25
 30

density

 0

 5

 10

 15

 20

t

 0
 1

 2
 3

 4
 5

 6

x

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

processing rate

 0

 5

 10

 15

 20

t

 0  1  2  3  4  5  6

x

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Figure 20. Test 2: evolution of f (top left), ρ (top right), µ
(bottom) for the default velocities using SC1, with data in Table 2
and ε = 0.1.

CPU time
T = 20

∆x G FG
0.2 0.01 s 0.01 s
0.1 0.02 s 0.02 s
0.05 0.07 s 0.04 s
0.025 0.25 s 0.16 s
0.0125 1.0 s 0.6 s

Table 4. CPU time for the schemes G and FG applied to Test 2,
T = 20.

also fits better with the model of [15]. Such results are confirmed by numerical tests
taken from [15, 16].
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Figure 21. Test 2: evolution of f (top left), ρ (top right), µ
(bottom) using SC2, with data in Table 2 and ε = 0.1.

CPU time
T = 140

N = 100 N = 1000 N = 10000
∆x G FG G FG G FG
0.1 3.4 s 2.9 s 314.2 s 272.6 s 30981.9 s 26816.2 s
0.05 7.5 s 6.8 s 603.2 s 525.5 s 59629.1 s 51088 s
0.025 19 s 16.2 s 1422.9 s 1208.7 s 138310.7 s 117502.4 s
0.0125 57.2 s 44.1 s 3558 s 2900.6 s 365281.5 s 282005.8 s
0.00625 202.3 s 138.9 s 10010.9 s 7832.2 s 1059316.3 s 761415.7 s

Table 5. CPU time of the algorithm for the schemes G and FG,
for T = 140 and N = 100, 1000, 10000.
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Figure 22. Test 2: evolution of f (top left), ρ (top right), µ
(bottom) using SC3, with data in Table 2 and ε = 0.1.
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