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Abstract. The movement of flocks with a single leader (and a directed path
from it to every agent) can be stabilized over time as has been shown before
(for details see [3] and prior references therein, shorter descriptions are given
in [1, 4]). But for large flocks perturbations in the movement of the leader may
nonetheless grow to a considerable size as they propagate throughout the flock
and before they die out over time. We calculate the effect of this “finite size
resonance” in two simple cases, and indicate two applications of these ideas.
The first is that if perturbations grow as the size of the flock gets larger, then
the size of the flock will have a natural limitation. Our examples suggest that
for flocks with a symmetric communication graph perturbations tend to grow
much slower than in the asymmetric case. The second application concerns a
simple traffic-like problem. Suppose the leader accelerates from standstill to a
given velocity and a large flock is supposed to follow it. The acceleration of
the leader is the ‘perturbation’.

1. Introduction. Over the past decade, systems of coupled linear differential equa-
tions have been receiving increased attention in the context of modeling collective
behavior of groups of agents with limited interaction range, such as flocks, herds
(see references in [3]), urban traffic. Typically, it is assumed that a single agent
“sees” the other agents only up to a limited range, and while individual equations
of motion are rather trivial, collective behavior of large groups is capable of repro-
ducing a wide spectrum of diverse, realistic phenomena, such as stop and go traffic,
one dimension lattices and density wave propagation.

The movement of flocks with a leader can be stabilized over time as has been
shown before (for details see [3] and prior references therein, shorter descriptions
are given in [1, 4]). But for large flocks perturbations in the movement of the
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leader may nonetheless grow to a considerable size as they propagate throughout
the flock and before they die out over time. If this happens, the size of the flock
will have a natural limitation. This limitation depends of course on the size of
common perturbations, the maximum allowable distance between members of flock
— especially between those farthest removed from the leader — and the spatial
rate with which the perturbation gets amplified. The first two depend largely on
biological input. We study the latter by means of modeling the situation with
ordinary differential equations, theoretically as well as numerically.

These equations are coupled, because each agent adjusts its acceleration accord-
ing to the position and velocity of certain neighbors it is allowed to sense. Thus
the behavior of the system as a whole will depend to a large extent on the directed
graph (the communication graph, see [3] for a detailed description) that encodes the
information as to which agent senses which others. To gain a deeper conceptual
understanding of the phenomena involved we limit ourselves to flocks moving on the
real line with linear equations of motion. Of course our study applies equally well
to any physical system satisfying a linear equation of motion that involves many
fewer neighbors than the size of the system (such as particles on a one dimensional
lattice connected by springs, or traffic in a single lane).

Mathematically these ideas are of interest, because it turns out that global be-
havior is crucially dependent on the communication graph. As we show below, there
are some cases in which the amplitude grows exponentially in the size of the flock,
whereas in others the growth is only linear. In the former case a large eigenvalue
causes the system to be spatially unstable at an exponential rate. In the latter, a
curious small divisor problem occurs for large but finite flocks. (We use the term
“finite size resonance” for this effect.) Since this is nonetheless a much more stable
situation — the amplitude of the perturbation grows only linearly in the size of the
flock — it seems a good reason for flocking animals to prefer this kind of commu-
nication graph over the other (not to mention possible applications in traffic-like
situations).

This small divisor problem is (surprisingly) present already in an extremely sim-
ple setup, and this may help in shedding light on collective agent behavior in a
number of more complex situations (similar phenomena occur in more complicated
models, as is evidenced by numerical experiments.) More precisely, we study a sys-
tem of coupled linear differential equations, where each agent reacts only to agents
in the immediate neighborhood, while movement of the first agent (the ‘leader’)
is independent of the rest of the group (flock). For a given size of the flock, and
the equilibrium (or ‘desired’) distances between the agents, it is found that there is
a resonance frequency at which oscillatory movement of the leader produces large
oscillations in the movement of all the other agents. In a more realistic situation,
a sudden change in the movement of the leader produces an oscillatory effect on
the rest of the flock, which dies out over time. We concentrate on finite size flocks,
and derive second order approximation expressions for the resonance amplitude
and frequency, which turn out to be quite precise for realistic flock sizes. We also
perform extensive numerical simulations which illustrate the effect of the observed
phenomenon on collective flock behavior for different choices for the leader motion.

We emphasize that here we study linearized equations without delay built in.
While this is not likely to be the case in any natural (or technological) environment,
these equations can nonetheless be considered as first order approximations of the
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‘real’ equations. Thus to an extent, the phenomena here described do occur in
Nature.

2. Independent Leaders and Stability. In this Section we introduce the nota-
tion and set up the equations for the two models we study analytically. Further
details can be found in [3].

Let us suppose that the flock is traveling along the line and that the agents
have positions xi in the real line where i ∈ {0, · · ·N + 1}. We will take the point
of view that these positions represent cars on a one-lane road. Driver i adjusts
his acceleration according to a pre-programmed algorithm considering the positions
and velocities of his ‘neighbors’, that is: the cars he keeps track off. Who exactly
these neighbors are depends on the example. Clearly, we wish to insure that for
all i ∈ {1, · · ·N}, xi−1 < xi < xi+1 (the cars will collide if this condition is not
satisfied). The zeroth car (or ‘leader’), however, does not pay attention to the cars
behind it (no-one is in front) and simply accelerates or decelerates according, for
example, to the traffic lights the lead car encounters.

To get a feel for this kind of scenario we simplify even further. We assume that
car number zero is executing a sine wave a0 · cosωt, imposed on it from outside.
This is referred to in [3] as “independent leader”. The constant a0 won’t matter
since after all we are dealing with linear equations, so we drop it. In the following
the constant position and zero velocity vector h ≡ (hx,0, 0, hx,1, 0, · · ·hx,N+1, 0)T

encodes the desired position of the agents, and f and g are constants.
Let us first suppose that every car keeps track only of the car in front of it. With

these considerations, the complexified linear equations of motion (together with the
initial conditions) become:

∀i ∈ {1, · · · , N + 1} : ẋi = ui

u̇i = f
{

(xi − hx,i) − (xi−1 − hx,i−1)
}

+ g
{

ui − ui−1

}

and x0 − hx,0 = eiωt (1)

where f and g are real constant. Our goal is to determine the real solutions of
this system of differential equations (which represent the positions of the agents in
the real line), however, in order to understand the dynamics of these equations, in
what follows we consider their generalization to the complex plane, and treat xi’s
as complex variables.

As a second example we shall consider the case where every car ‘sees’ the car
in front and the one directly behind. This leaves us with one more “terminal”
condition: car number N +1 sees only its predecessor, since there is no one following
it. Such a situation may be of interest e.g. for automated vehicle design, or biological
studies involving stability of large flocks, herds or schools. Under these assumptions,
the complexified equations of motions (together with the initial conditions) become:

∀i ∈ {1, · · ·N} : ẋi = ui

u̇i = f

{

(xi − hx,i) −
1

2
(xi−1 − hx,i−1 + xi+1 − hx,i+1)

}

+ g

{

ui −
1

2
(ui−1 + ui+1)

}

ẋN+1 = uN+1

u̇N+1 = f
{

(xN+1 − hx,N+1) − (xN − hx,N )
}

+ g
{

uN+1 − uN

}

and x0 − hx,0 = eiωt (2)
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Following [3], Section 6, we introduce x ≡ (x1, u1, x2, u2, · · · , xN+1, uN+1)
T .

Now let ζ ≡ (ζ1, 0, ζ2, 0, · · · , ζN+1, 0)T be the vector encoding the desired rela-
tive positions of each agent with respect to the other. We can then write these
equations of motion ((1) and (2)) with a single independent leader (denoted by the
subscript ‘ℓ’) more succinctly in vector form as:

ẋ = IN+1 ⊗ Ax + Pi ⊗ K(x − ζ) + Lℓ ⊗ (K(xℓ(t) − ζℓ)) ,

where IN+1, Li and Pi are the (N + 1)-dimensional identity, Directed Laplacian,
and Reduced Directed Laplacian, respectively (i equals 1 for in the first example
and 2 in the second). Explicitly, in the first example

L1 =











0 0 0 0 · · ·
−1 1 0 0 · · ·
0 −1 1 0 · · ·
...











and P1 =











1 0 0 0 · · ·
−1 1 0 0 · · ·
0 −1 1 0 · · ·
...











,

and in the second example

L2 =















0 0 0 0 · · · · · ·
−1/2 1 −1/2 0 · · · · · ·

0 −1/2 1 −1/2 · · · · · ·
...

· · · · · · · · · 0 −1 1















and

P2 =















1 −1/2 0 0 · · · · · ·
−1/2 1 −1/2 0 · · · · · ·

0 −1/2 1 −1/2 · · · · · ·
...

· · · · · · · · · 0 −1 1















;

In both cases we have the constant matrices:

A ≡
(

0 1
0 0

)

and K ≡
(

0 0
f g

)

.

Thus I ⊗A encodes the ‘geodesic’ part of the equations, K contains control param-
eters, P ⊗K encodes the interaction of the cars with the appropriate neighbors and
Lℓ takes care of their interaction with the independent leader. The N + 1-vector
Lℓ is given by the entries 1 through N + 1 of the first column of Li in each of the
two examples. For the details of the notation and for the vector Lℓ, see the cited
paper. It turns out that z = x − h we obtain the simple linear equation:

ż = (IN+1 ⊗ A + Pi ⊗ K)z + Γ(t) := Miz + Γ(t) , (3)

where Γ(t) represents the non-autonomous part of linear equations (1) and (2).
Since z = 0 is an in formation solution, the eigenvalues of Mi determine whether in
formation motion is stable.

We first want to insure that the formation is stable, so that the cars effectively
have a tendency to travel together. This means that the eigenvalues of M must
have negative real part. According to [1, 3, 4]:
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spec (M)\{0} =
⋃

λ∈ spec (Li)\{0}

{ spec (A + λK)}

=
⋃

λ∈ spec (Li)\{0}

{

spec

(

0 1
λf λg

)}

.

Now the spectrum of Li\{0} equals that of Pi. The spectrum of P1 equals {1} with
multiplicity N + 1. One can also verify that the spectrum of the matrix P2 is given
by

⋃

k∈{1,···N+1}

{

1 − cos

(

2k − 1

2(N + 1)
π

)}

all simple real eigenvalues (the spectrum of this kind of matrices can be solved using
the Rayleigh-Ritz method [5]). In turn, the eigenvalues of the matrix A + λK are
given by the solutions of:

x2 − λgx − λf = 0 =⇒ x± =
1

2

(

λg ±
√

(λg)2 + 4λf
)

.

Putting together these facts, one easily concludes that:

Lemma 1. Both systems are uniformly (in N) stabilized if and only if both f and
g are strictly smaller than zero.

Remark: Here as well as in the cited papers we assume that f and g are real
parameters. The possibility that they may be complex parameters is to the best of
our knowledge unexplored at the date of this writing.

Thus choosing both f and g constant and negative, the eigenvalues of Mi all
have negative real part (the zero eigenvalue has effectively been removed from the
system which does not contain a differential equation for the ‘leader’). Thus the
system will tend to its particular solution. The full details of the graph theoretical
aspect of this discussion can be found in [2].

3. Tracking only the agent in front. In this Section we shall demonstrate that
it is a rather bad idea to keep track only of the agent immediately in front. To this
end, we explore the behavior of the last agent when the position the leader performs
harmonic oscillations.

The current problem is a represented by system of first order linear differential
equations with periodic forcing. The general solution of such a system is the sum of
the homogeneous solutions plus the particular solution. We know (Lemma 1) that
the homogeneous solutions decay to zero because the real part of the spectrum is
negative, therefore we focus on finding the particular solution of equation (1). In
this case there is a particular solution of the form xk = akeiωt, where the real part
of xk represents solutions that have physical or biological sense.

Remark: For completeness it should be mentioned here that if each agent keeps
track of only the one directly behind, things will definitely go very wrong, since in
that case no-one sees the leader.
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Corollary 1. If we only track the agent in front, then ak = γ−k where γ ≡
f + iωg + ω2

f + iωg
. In particular, if we set ω2 = |f |, then the particular solution is

determined by xk = akeiωt where ak =

(

1 + i

√
|f |

g

)k

.

Proof: All we have to do to complete the calculations is to analyze the particular
solution of the system. We do this by substituting xk = akeiωt and uk = iωeiωt in
Equation (1). We immediately obtain

−ω2ak = f(ak − ak−1) + iωg(ak − ak−1) .

This leads to the following recurrence equation

ak =
f + iωg

f + iωg + ω2
ak−1 .

We will use the shorthand γ−1 for the fraction in the last expression. It follows that
the particular solution is given by:

ak = γ−ka0 .

It is easy to see that |γ−1| is greater than one if and only if ω2 < 2|f | (recall that
f and g are less than zero). The spatial instability is strongest when

ω2 = |f | =⇒ ak =

(

1 + i

√

|f |
g

)k

a0 .

Remark: If we assume that hk+1 − hk = 1, the separation between two successive
agents is given by

a0Re
(

γ−k−1eiωt
)

− a0Re
(

γ−keiωt + 1
)

Proposition 1. If the amplitude of the oscillation of the leader at frequency |f | is
a0, and the maximum oscillation allowed is D, then of course, the size of the flock
is limited by:

N . 2
ln(D/a0)

ln(1 + |f |/g2)
.

Note that not only is there a spatial instability, but there is also a constant phase
lag between two successive agents given by the angle of γ.

4. Tracking the two agents in the immediate front and back. This case
has more potential for real applications, but is somewhat harder to analyze. We
use the notation of the previous section, and in addition the square root with angle
in (−π/2, π/2] of a complex number z is indicated with

√
z, γ is as defined in the

previous section, and C ≡
(

0 1
−1 2γ

)

.

Lemma 2. In the case where only the agents immediately preceding and the trailing
each agent are tracked, we have

aN+1(f, g, ω) =
2

Tr CN+1
=

2

µN+1
− + µN+1

+

.
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Proof: We follow the same strategy as before (finding the particular solution) and
substitute xk = akeiωt and uk = iωakeiωt in Equation (2). We immediately obtain

−ω2ak = f

(

ak − 1

2
(ak+1 + ak−1)

)

+ iωg

(

ak − 1

2
(ak+1 + ak−1)

)

.

This system is equivalent to:
(

ak

ak+1

)

=

(

0 1
−1 2γ

)(

ak−1

ak

)

.

Recall that γ was defined is Section 3. The matrix will be denoted by C. This is a
second order system, and is subject to two ‘boundary’ conditions, namely:

a0 = 1 and aN+1 = γ−1aN .

The second equation comes about because the last agent can only see the car in
front of it.

Define

µ± ≡ γ ±
√

γ2 − 1 , (4)

then C has the following eigenvectors:

v− =

(

1
µ−

)

with eigenvalue µ− and v+ =

(

1
µ+

)

with eigenvalue µ+.

Thus, in view of the first boundary condition:
(

a0

a1

)

= c+

(

1
µ+

)

+ (1 − c+)

(

1
µ−

)

.

The constant c+ can be determined by requiring that CN

(

a0

a1

)

satisfy the second

boundary condition.

CN

(

a0

a1

)

=

(

c+µN
+ + (1 − c+)µN

−

c+µN+1
+ + (1 − c+)µN+1

−

)

=

(

γaN+1

aN+1

)

Using that (1 − γµ±) = (
√

γ2 − 1)µ±, we solve for c+ to get:

c+ =
(1 − γµ−)µN

−

(1 − γµ−)µN
− − (1 − γ µ+)µN

+

=
µN+1
−

µN+1
− + µN+1

+

.

Substituting this back into the second component of CN

(

a0

a1

)

and using that

µ−µ+ = 1 gives the desired relation.

Corollary 2. For ω 6= 0, we have that |µ+| 6= |µ−| and thus for fixed ω, aN decays
exponentially (as function of the size N of the flock). (For low frequencies this decay
may be slow.)

Proof: The product of the eigenvalues µ± equals 1. So it suffices to show that the
modulus of µ+ is not equal to 1 if ω 6= 0. In view of Equation (4) we need to solve:

µ+ = γ +
√

γ2 − 1 = eiφ ,

where φ is a real number. This implies that γ = cosφ. However, it is also easy to
check from the definition of γ that γ is real-valued if and only if ω = 0. In turn this
is equivalent with µ+ = µ−.



654 J. J. P. VEERMAN, B. D. STOŠIĆ AND A. OLVERA

We illustrate these ideas by picturing ln |aN (f, g, ω)| for N = 100 and N = 1000
in Figures 1. In these pictures both f and g are held fixed at −1. As stated before,
we are really interested in finite size effects, and much less in the limit as N → ∞.
It is natural to study aN for fixed N as function of ω. These pictures predict that
the response for a flock of 100 individuals peaks at about ω = 0.011 and those of
1000 individuals at a frequency 10 times less. The height of the maximum peak
determines the amplitude of the response. In order to understand this we need to
analyze the expression given in the Lemma.

2

1

0

4

3

omega

0.10.06 0.080.040.020

6

4

0

5

3

omega

0.010.0020 0.004

1

2

0.0080.006

Figure 1. Picture of ln |a100(f = −1, g = −1, ω)| and of
ln |a1000(f = −1, g = −1, ω)| (varying ω).

5. The Finite Size Resonance. We derive the location and size of the resonance
up to two orders (in N−1) of approximation (Theorem 1).

As observed in the previous section, this resonance is due to the fact that the
flock is finite and large. It is caused by small divisor issues in the expression for aN

given in Lemma 2. As is clear from that Lemma and the fact that the product of µ+

and µ− equals 1, the only aN gets big is if cancellation in the denominator occurs.
For this to happen µ+ and µ− must both tend to 1, and this of course happens if
and only if ω tends to zero. Thus we have:

Lemma 3. A necessary condition (if ω is real) for a resonance in the system of
Section 4 is that |ω| is small.

Theorem 1. For large flocks the main resonance is located at

ω =

√

|f |π
(N + 1)2

√
2

+ O(N−3) ,

and its peak size is given by

A =
8
√

2|f |
π2|g| (N + 1) + O(N−1) .
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Proof: From Lemma 2 one concludes that the only way a resonance can occur is
when the divisor of the formula for aN becomes small, which may happen when
both eigenvalues are close to 1 (or equivalently γ is close to 1, or |ω| is small), so in
what follows this condition will be assumed.

We go back to Lemma 2. For a resonance we need that µN+1
+ + µN+1

− is close to

zero. Denoting
√

γ2 − 1 by ǫ and assuming that ω is positive, we see that

γ − 1 =
ǫ2

2 + (γ − 1)
.

Thus γ − 1 = O(ǫ2) and we obtain

µ± = γ ± ǫ = 1 ± ǫ +
ǫ2

2
+ O(ǫ4) .

We first calculate ǫ in terms of ω.

ǫ =

√

(

1 +
ω2

f2 + ω2g2
(f − iωg)

)2

− 1

=

√

2ω2

f2
(f − iωg)

(

1 +
ω2g2

f2

)−1

+
ω4

f4
(f − iωg)2

(

1 +
ω2g2

f2

)−2

,

thus, taking into account that f and g must be negative (by Lemma 1), we find

ǫ = i
√

2
ω
√

|f |

√

(

1 − iω|g|
|f |

)(

1 +
ω2g2

f2

)−1

− ω2

2|f |

(

1 − iω|g|
|f |

)2(

1 +
ω2g2

f2

)−2

= i
√

2
ω
√

|f |

((

1 − iω|g|
2|f |

)

+
ω2

2

(

− g2

f2
− 1

2|f |

))

+ O(ω4) .

From this it follows that for small ω, O(ǫn) can be replaced by O(ωn). Next we
substitute the above expression into the one for µ±, and after some manipulation
we obtain

µ± = 1 − ω2

|f | ±
ω2|g|√
2|f |3/2

+ i

(

±
√

2ω

|f |1/2
±O(ω3)

)

+ O(ω4) .

From this we calculate

tan(∠µ±) =

±
√

2ω

|f |1/2
+ O(ω3)

1 − ω2

|f | ∓
ω2|g|√
2|f |3/2

+ O(ω4)

or ∠µ± = ±
√

2
ω
√

|f |
+ O(ω3) ,

and

|µ±|2 =

(

1 +
ω2

|f |

(

−1 ± |g|√
2|f |1/2

))2

+
2ω2

|f | + O(ω4) = 1 ±
√

2ω2 |g|
|f | + O(ω4) .

This puts us finally in a position where we can prove both statements of the
theorem. When the system is in resonance, the angles of µN+1

± must be equal and
opposite in sign and their moduli must be approximately equal. The smallest value
of ω for which this can happen is when µN+1

± is approximately equal to ±i. The
smallest value for ω means that |µ±| are close to one, and thus the denominator in
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Lemma 2 is smallest, making this resonance the principal one. We thus have that
when the system is in (principal) resonance

∠µN+1
± = (N + 1)

( √
2ω

|f |1/2
+ O(ω3)

)

=
π

2
.

This clearly implies that (when the system is in resonance at some small omega)
we may replace O(ωn) by O(N−n). By using that and solving for ω we obtain the
first statement.

Next we need to calculate |µN+1
− + µN+1

+ | when the system is in principal reso-
nance (that is: using the first statement of the theorem). At resonance this is equal
to |µ+|N+1 − |µ−|N+1.

|µ±|N+1 =

[

1 ±
√

2ω2|g|
|f | 32

+ O(ω4)

]
N+1

2

=

[

1 ±
√

2ω2|g|
|f | 32

]
N+1

2

+ O(N−3)

=

[

1 ± π2|g|
4
√

2|f |(N + 1)2

]
N+1

2

+ O(N−3) .

To simplify notation a bit, let x ≡ π2|g|

8
√

2|f |
. We now use the series expansions of

√
1 ± 2x and of ex.

|µ±|N+1 =

(

1 +
±2x

(N + 1)2

)
N+1

2

+ O(N−3) =

(

1 +
±x

(N + 1)2

)N+1

+ O(N−3)

=

N+1
∑

k=0

(

N + 1

k

)( ±x

(N + 1)2

)k

+ O(N−3)

=

N+1
∑

k=0

1

k!

( ±x

N + 1

)k

+ O(N−3) = e
±x

N+1 + O(N−3) .

And thus we finally obtain:

|µ+|N+1−|µ+|N+1 =
2x

N + 1
+O(N−3) =⇒ A ≡ |aN+1| =

N + 1

x
+O(N−1) .

Substituting the expression for x into this, gives the second estimate.
From these calculations, we can in fact deduce something slightly more.

Corollary 3. There are lesser resonances located roughly at the odd multiples of
the main resonance.

Proof: Left to the reader. It follows from the considerations in the previous proof.

Proposition 2. If the amplitude of the oscillation at the frequency of the principal
resonance of the leader is a0, and the maximum oscillation allowed is D, then the
size of the flock is limited by:

N .
π2|g|

8
√

2
√

|f |
D

a0
.

Remark: Note the difference with Proposition 1. Here the maximum size is linear
in D/a0.



SPATIAL INSTABILITIES OF FLOCKS 657

6. Stop and Go Traffic Led by a Single agent. We apply these ideas to a
thought experiment, where we imagine a sequence of 1-dimensional agents. They are
all on ‘automatic pilot’ according to the algorithm given by Equation (2). The leader
accelerates abruptly with non-zero, constant acceleration when the traffic light in
front of it turns green. As soon as it reaches the target velocity, its acceleration
abruptly drops to zero. The agents trailing it are supposed to follow safely (without
collisions and with a minimum in fluctuations of their velocities).

It is clear that we will see some oscillatory behavior near, or at, the resonance
frequency (see Figure 5), and this is born out by numerical tests. While naively one
would expect that the amplitude of the oscillation will be easily predicted as well,
this turns out not to be the case. In particular the dependence on the parameter
g seems weak at best. The calculation of the maximum amplitude of this ‘traffic-
like’ oscillation appears a slightly more subtle problem than simply calculating the
resonant amplitude and we will discuss this in a separate work.

Figure 2. Flock behavior for periodic leader movement at reso-
nance frequency, starting from equidistant positions and zero ve-
locities a) at an early stage and b) close to equilibrium.

There are several reasons for this problem. First the position x0(t) of the leader
is not an integrable function. So any naive Fourier analysis of that signal runs
afoul of the fact that the integrals involved do not converge. The second reason
can be guessed from the first two figures in this section. By linearity all modes are
independent. In physical terms, the oscillatory behavior of the leader at the resonant
frequency can inject its energy only very slowly into the system (because the flock
members acquire much larger amplitude than the leader). Thus it takes some
time for the last members of the system to get close to achieving their equilibrium
resonance. In Figures 2 a) and b), we display the flock behavior for periodic leader
movement at resonance frequency at the very beginning of the process (starting from
equidistant flock member positions and zero velocities), and close to equilibrium
(maximum amplitudes), respectively. However, in the mean time the global stability
of the system has been driving the system back to coherent movement. Thus the
amplitude of the oscillation never reaches its full ‘resonant’ size.

Several remarks are in order. If each agent keeps track of only the n-th agent in
front and behind it, the communication graph is not connected and therefore some
agents will stay behind.
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Figure 3. Flock behavior for discontinuous leader acceleration.

More interesting is the question for which kind of connected communication
graphs this finite resonance plays a role and for which kind of graphs the spatial
amplification of a perturbation is exponential. Numerous experiments that we have
performed with more complicated communication graphs of agents on a line, indi-
cate that these are the only two possibilities. However, how to distinguish these
graphs from one another is not clear yet. It appears that to be able to sense to the
same numbers of agents in front as behind is an important (though not decisive)
factor. Again this is the subject of future study.

7. Numerical Methods and Experiments. In this section we compare the as-
ymptotic estimate of the main resonance for large flocks with numerical experiments.
The experiments reported on in detail in this section all concern the system given
by Equation (1). The behavior of the system given by Equation (2) is relatively
simple and is discussed in Section 3.

The differential equations given in (1) were computed for a set of values of N ,
the initial conditions were fixed such that every agent started from its equilibrium
position. The numerical integration was done until the solution reached its stable
state. The peak size of the oscillation of the last agent is compared with the asymp-
totic estimation obtained in Theorem 1, this results are shown in the accompanying
table.

Numerical integration of the system of coupled equations given in (2) is com-
plicated by the fact that acceleration of a given flock member depends on position
and velocity of the neighboring members, so that integrators that require ability to
calculate the derivatives, such as Runge-Kutta and Bulirsch-Stoer method, cannot
be applied in their usual form: one cannot calculate the derivatives at arbitrary
moments of time. We succeeded in implementing both fourth order Runge-Kutta
and a simplified version of the Bulirsch-Stoer algorithm with polynomial extrapo-
lation by implementing virtual steps of varying size. Nonetheless it turns out that
the precision gain, obtained by making “better” steps, is countered by the task of
calculating the virtual steps, in particular when the system is still far from equi-
librium. We find that the best precision/time ratio is obtained by combining the



SPATIAL INSTABILITIES OF FLOCKS 659

N NFREQ NAMP TFREQ TAMP
4 0.2776801836 4.58527335 0.2727291 4.49064609
8 0.1388400918 9.17054669 0.1382221 9.11739657
16 0.0694200459 18.34109338 0.06934994 18.3135253
32 0.0347100229 36.68218677 0.03470038 36.6683866
64 0.0173550115 73.36437354 0.017353935 73.3562112
128 0.0086775057 146.72874707 0.008677381 146.7227220

Table 1: Values of resonance amplitude and frequency of the last member of the
flock of size N + 2 (including leader), obtained through numerical simulations
(columns NFREQ and NAMP) , together with the corresponding second order

approximation values (columns TFREQ and TAMP).

elementary Euler method for flock configurations far from equilibrium, with a higher
order method close to equilibrium. To achieve better performance, we also apply
adaptive step size and adaptive error requirements (decreasing steps and increasing
precision as equilibrium is approached). With this technique we obtained results for
flock sizes up to N = 128, in several hours CPU time, on a 3GHz Pentium machine
with a dedicated C program.
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Figure 4. Values of resonance a) amplitude and b) frequency of
the last flock member as a function of flock size, obtained through
numerical simulations, together with the corresponding second or-
der approximation values.

Simulations were performed with f = g = −1, starting from equilibrium position
xi = −i, where i = 1, · · ·N + 1, with the leader (at x = 0) oscillating at different
frequencies (this includes the simulations in the previous section), with the leader’s
amplitude a0 = 1. For each system size, we begin simulations at the second order
approximation for the resonant frequency ω0 = π

√
2/4(N + 1), given by Theorem

1, and iterate the system until amplitude stabilizes with relative precision of ǫ =
10−8. Next, we repeat the same procedure below and above the second order
approximation (given by the same Theorem) in order to bracket the amplitude
maximum, and then we proceed to find the maximum implementing the golden
section search.

Results of our numerical simulations are summarized in Table 1, where we display
the numerical values of frequency and amplitude (where we show only the relevant



660 J. J. P. VEERMAN, B. D. STOŠIĆ AND A. OLVERA
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Figure 5. Difference between the resonance a) amplitude and b)
frequency obtained through numerical simulations and the corre-
sponding second order approximation, as a function of flock size.

digits), and the corresponding second order approximation values. In Figure 4 we
display the comparison of numerical results and the second order approximation for
amplitude and frequency, where it is seen that the agreement is excellent. Further-
more, in Figure 5 we show the difference between the numerical and second order
approximation frequency values as a function of flock size, on the logarithmic scale,
together with the regression line (least squares). The slope of the regression line
close to −3 indicates that second order prediction is indeed correct.
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