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Abstract. We study the flow through fibrous media using homogenization
techniques. The fibre network under study is the one already used by M. Briane
in the context of heat conduction of biological tissues. We derive and justify the
effective Darcy equation and the permeability tensor for such fibrous media.
The theoretical results on the permeability are illustrated by some numerical
simulations. Finally, the low solid fraction limit is considered. Applying results
by G. Allaire to our setting, we justify rigorously the leading order term in
the empirical formulas for the effective permeability used in engineering. The
results are also confirmed by a direct numerical calculation of the permeability,
in which the small diameter of the fibres requires high accuracy approximations.

1. Introduction. Filtration through fibrous porous media is of considerable in-
terest in various engineering systems. Common examples of fibrous media include
industrial filters, biological tissues, certain polymer membranes and many materials
produced in the paper industry.
In most applications, flow in porous media is modelled by using a generalized form
of Darcy’s law:

u = −K

ν
∇p, (1)

where u is the filtration velocity, p denotes the fluid pressure, ν is the fluid viscosity
and K stands for the permeability tensor of the porous material.
Darcy equations can be derived by means of homogenization techniques starting
from the Stokes flow through an array of particles.
Ene and Sanchez-Palencia seem to be first to give a derivation of it, from the Stokes
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system, using a formal multiscale expansion (see [15]). This derivation was made
rigorous in the case of a 2D periodic porous medium by L. Tartar in [43]. This result
was generalized in number of other papers. We mention the generalization to 3D by
G. Allaire [2] and to a random statistically homogeneous porous medium by Beliaev
and Kozlov [8]. Another approach, very much present in the engineering literature
is the spatial volume averaging. For computing effective parameters, averaging
is equivalent to the usual stochastic homogenization. For the introduction to the
method we refer to [28]. The derivation of Darcy’s law by volume averaging is in
[45]. For our setting, getting the “closure equation” is not clear and it is more
natural to use homogenization.

The knowledge of the permeability which expresses the flow resistance of a fi-
brous porous medium is an important matter in the design of industrial filters and
artificial porous media. Hence many works have been conducted to study the per-
meability of different fibre distributions in the medium. These works can be divided
into pure experimental ones, pure theoretical ones, and works based on an analytical
approach with elements of computational methods for the determination of perme-
ability. A comprehensive review of the literature on permeability of fibrous media
has been elaborated by Jackson and James [24]. These authors discuss a variety of
theoretical models and present a large collection of experimental data for both natu-
ral and synthetic fibrous media. Predominantly, these models use two-dimensional
representations of fibrous media, and consider both parallel and transverse flows
through spatially periodic arrays of cylinders (for a detailed discussion we refer for
example to [14, 19, 32, 33, 38, 41]).

For two-dimensional sparse media, Howells [22] developed a theory for dilute ran-
dom arrays of parallel cylinders using an averaged-equation approach. Sangani and
Yao [39, 40] conducted numerical simulations of random arrays of parallel cylinders,
finding good agreement with the predictions of Howells at low concentrations.
While there is a large literature on two-dimensional models, relatively few papers
have been written that address three-dimensional, fibrous porous media.
For three-dimensional media, there are two studies cited by Jackson and James (see
[23, 42]). In [20], Higdon and Ford use a rigorous numerical technique, the spectral
boundary element formulation, to calculate the hydraulic permeability of ordered,
three dimensional fibrous media. In [29], the tensor of permeability of the fibrous
porous media is determined based upon a generalized cell model proposed by Neale
et al. [36]. For three dimensional disordered fibrous media we cite for example
[13, 21].

In this work, we are concerned with studying the flow through a realistic class of
fibrous media using homogenization techniques. In section 2, we give a description
of the locally quasi-periodic fibrous medium, consisting in layers of parallel fibres.
This particular fibre geometry corresponds to a description of a biological tissue
and was first studied by M. Briane. We note that our approach applies to other
geometries studied in the papers of Briane from 1993-94. Next, we present our model
problem (Stokes problem) and we homogenize it, using a two-scale expansion. We
derive the effective Darcy equation and the permeability. The formal result, which
differs significantly from the standard derivation of the Darcy law for a filtration
through a periodic rigid porous medium, is rigorously justified in the Appendix.
For computing the effective permeability tensor, we identify and solve a variational
problem called the cell problem. For a practical calculation of the permeability
tensor, we introduce and solve two generic cell problems described by a 2D Stokes
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problem and a 2D Poisson problem respectively. Consequently, we obtain a new
formula of the permeability tensor which is function of the geometry of the above-
mentioned generic cells. For the sake of illustration, we present an example of
numerical results that show the influence of the orientation of the fibres in two
cases: parallel fibres and variable orientations.
Our goal in section 3 is to present a rigorous theoretical analysis consisting in
determining formulae of the permeability in the low solid fraction limit. We show
that the leading terms of our formulae are consistent with empirical formulae given
in the literature. Also, we compare the predictions of asymptotic formulae with the
results of numerical simulations.
As already said, we address in the Appendix the technical question of the error
made, when the physical velocity and the physical pressure are approximated by
the homogenized quantities introduced in section 2.

Our conclusion is that the homogenization approach allows to calculate the per-
meability of fibrous media in a very efficient way. It also allows to confirm the
validity, at the leading order of the low fraction limit, of the empirical formulas
used in engineering. Let us note that the generalization to the determination of the
dynamic permeability (see [1] and references therein for the definition) of fibrous
media is straightforward. Our computations generalize those performed for the
parallel fibres, with periodic or random distribution of the centers (see e.g. [16]).

2. Permeability of a fibrous medium.

2.1. Notations and geometry definition. One of the rare mathematical refer-
ences on fibrous porous media is the work by M. Briane. He considered homogeniza-
tion of an elliptic 2nd order operator with oscillatory coefficients in such setting.
More precisely, he studied the behavior of fibrous materials with respect to heat
conduction. The conductivity matrix took different values in the fibres and in the
intersticial medium.

The assumptions on the fibre geometry were motivated by biomechanical appli-
cations and Briane studied three cases. They all deal with tiny fibres, perpendicular
to the x1-axis and making locally an angle γ(x1) with the x2-axis.

His first model was a stratified periodic structure and its drawback was that
fibres were not cylindrical. The drawback was rectified by the sophisticated third
model, which is no more locally periodic. For more details we refer to Briane’s
papers [10, 11, 12]. The second model was, according to Briane (see his Ph. D.
thesis [10] , page 202) the closest to the biomechanical models used in applications.
In this case, the fibrous material was locally periodic and its particularity was that
the variations of the orientation function γ did not appear in the effective equation.

Motivated by its importance in the applications, we will deal with it.
To define the geometry of the porous medium, we follow the second case consid-

ered by M. Briane in [11] (see also [10, 12]). Let Ω be a domain in R
3 which consists

of Nε layers, denoted by Ωε,n, n = 1, . . . , Nε, perpendicular to the Ox1 axis. The
thickness along Ox1 of each layer is εr, with 0 < r < 1. Let xε,n be a given point in
Ωε,n, for n = 1, . . . , Nε, and γ a C1(R) function. In the layer Ωε,n, there are 1/ε1−r

rows of fibres of radius εR which constitute a periodic network of cylinders whose
axes are parallel, perpendicular to Ox1, and make an angle γε,n = γ(xε,n

1 ) with
Ox2. This angle is constant inside a layer, but changes from one layer to another.
It is shown on Figure 1 a geometry with a function γ which varies linearly with the
coordinate x1 of the layers. Figure 2 shows a magnified view of this configuration.
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Figure 1. Microscopic geometry of the fibres (the vertical is Ox1).

Figure 2. Microscopic geometry of the fibres (view along Ox1).

To be more precise, let R ∈ (0, 1), Y = [−1, 1] × [−1, 1] and let χ be the Y−
periodic function defined on Y by:

χ(y) = 1 if |y| ≤ R, and χ(y) = 0 if |y| > R.

We denote by YF the set {y ∈ Y, χ(y) = 0} and by ρ the function defined on R×R
3

with values in R
2:

ρ(ζ, x) = (x1, x3 cos γ(ζ) − x2 sin γ(ζ))

with x = (x1, x2, x3). In the layer n, the fibrous domain is defined by

Ωε,n
s =

{

x ∈ Ω, χ

(

ρ(xε,n
1 , x)

ε

)

= 1

}

,
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and the fluid domain Ωε,n by:

Ωε,n = Ω\Ωε,n
s .

We then defined Ωε (resp. Ωε
s) as the union of all the layers Ωε,n (resp. Ωε,n

s ).

2.2. Homogenization. The flow in Ωε is assumed to be governed by the Stokes
equations:

− ν△uε + ∇pε = f in Ωε, (2)

div uε = 0 in Ωε, (3)

uε = 0 on ∂Ωε. (4)

Each layer is homogenized independently, which is justified by the difference of
scales of the fibres (ε) and the layer (εr). In order to homogenize the Stokes system
(2)-(4) in Ωε,n, the functions u and p are supposed to have the following expansions
(see [9]):

uε(x) = ε2u0

(

x,
ρ(xε,n

1 , x)

ε

)

+ . . . (5)

pε(x) = p0

(

x,
ρ(xε,n

1 , x)

ε

)

+ εp1

(

x,
ρ(xε,n

1 , x)

ε

)

+ . . . (6)

To perform the formal two-scale analysis, it is convenient to introduce a mapping
ϕε,n from a reference configuration Ω̂ε,n onto Ωε,n. We define û in the reference
configuration by û(x̂1, x̂2, x̂3) = u(x1, x2, x3), with (x1, x2, x3) = ϕε,n(x̂1, x̂2, x̂3).

The functions p̂ and f̂ are defined accordingly. The deformation gradient is given
by

F =

[

∂xi

∂x̂j

]

i,j=1,2,3

.

The determinant of F is denoted by J and F−1 is denoted by G. Using the following
identities: ∇p = GT

∇x̂p̂, ∇u = ∇x̂ûG, div x̂(J∇x̂ûGGT ) = Jdiv (∇u) and

div x̂(JGT ) = 0, we obtain:

− νdiv x̂(J∇x̂û
ε
GGT ) + div x̂(Jp̂εGT ) = J f̂ in Ω̂ε,n, (7)

div x̂(JGû
ε) = 0 in Ω̂ε,n, (8)

û
ε = 0 on ∂Ω̂ε,n. (9)

We note that for a matrix valued function A, (div A)i =
∑

j

∂Aij

∂xj
. Thus, denoting

by gij the components of G and by hij the components of GGT , we have for
i = 1, 2, 3:

− ν

3
∑

j=1

∂

∂x̂j

[

J

3
∑

k=1

∂ûε
i

∂x̂k
hkj

]

+

3
∑

j=1

∂(Jgjip̂
ε)

∂x̂j
= Jf̂i in Ω̂ε,n, (10)

3
∑

i,j=1

∂(Jgjiû
ε
i )

∂x̂j
= 0 in Ω̂ε,n, (11)

ûε
i = 0 on ∂Ω̂ε,n. (12)
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In the reference configuration Ω̂ε,n, the functions û and p̂ have the following expan-
sions

û
ε(x̂) = ε2û

0

(

x̂,
x̂1

ε
,
x̂2

ε

)

+ . . . (13)

p̂ε(x̂) = p̂0(x̂,
x̂1

ε
,
x̂2

ε
) + εp̂1

(

x̂,
x̂1

ε
,
x̂2

ε

)

+ . . . (14)

with x̂ = (x̂1, x̂2, x̂3). We denote by ẑ = (ẑ1, ẑ2) = (x̂1/ε, x̂2/ε) the fine scale. First,
putting these expressions into (10), we obtain with the O(1/ε) terms:

∂

∂ẑ1
(g1ip̂

0) +
∂

∂ẑ2
(g2ip̂

0) = 0, i = 1, 2, 3.

The matrix G being regular, these relations yield ∂ẑ1
p̂0 = ∂ẑ2

p̂0 = 0, and thus

p̂0 = p̂0(x̂). (15)

Next, the O(1) terms in (10) and (11) give

−ν
∂

∂ẑ1
[Jh11

∂û0
i

∂ẑ1
+ Jh12

∂û0
i

∂ẑ2
]

−ν
∂

∂ẑ2
[Jh21

∂û0
i

∂ẑ1
+ Jh22

∂û0
i

∂ẑ2
]

+
2

∑

r=1

∂

∂ẑr
(Jgrip̂

1) = Jf̂i −
3

∑

r=1

∂

∂x̂r
(Jgrip̂

0)

(16)

in Ω̂ε,n × YF , for i = 1, 2, 3, and

∂

∂ẑ1

[

3
∑

i=1

Jg1iû
0
i

]

+
∂

∂ẑ2

[

3
∑

i=1

Jg2iû
0
i

]

= 0 (17)

in Ω̂ε,n × YF . We have moreover

û
0(x̂, ẑ1, ẑ2) = 0 on Ω̂ε × ∂YF \∂Y, (18)

(û0, p̂1) is Y-periodic in(ẑ1, ẑ2), (19)

3
∑

i,j=1

gji

∫

YF

∂û0
i

∂x̂j
(x̂, ẑ1, ẑ2) dẑ1dẑ2 = 0 in Ω̂ε,n, (20)

∫

∂YF

û
0(x̂, ẑ1, ẑ2) · n dẑ1 dẑ2 = 0 on ∂Ω̂ε,n. (21)

For the mapping ϕε,n, we choose a rotation that transforms fibres parallel to the
Ox̂3 axis on the fibres of the layer Ωε,n (see Fig. 3). More precisely:

(x̂1, x̂2, x̂3) = ϕ−1
ε,n(x1, x2, x3) =

∣

∣

∣

∣

∣

∣

x1

−x2 sin γε,n + x3 cos γε,n

−x2 cos γε,n − x3 sin γε,n

(22)

For this choice, we have

G =





1 0 0
0 − sinγε,n cos γε,n

0 − cos γε,n − sinγε,n



 , J = 1, GGT = Id
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Figure 3. The mapping ϕε,n

and equations (16) and (17) simply read:



















































−ν△ ẑ1,ẑ2
û0

1 +
∂p̂1

∂ẑ1
= f̂1 −

∂p̂0

∂x̂1

−ν△ ẑ1,ẑ2
û0

2 − sin γε,n
∂p̂1

∂ẑ2
= f̂2 + sinγε,n

∂p̂0

∂x̂2
+ cos γε,n

∂p̂0

∂x̂3

−ν△ z1,z2û
0
3 + cos γε,n

∂p̂1

∂ẑ2
= f̂3 − cos γε,n

∂p̂0

∂x̂2
+ sin γε,n

∂p̂0

∂x̂3

∂û0
1

∂ẑ1
+

∂

∂ẑ2

(

− û0
2 sin γε,n + û0

3 cos γε,n

)

= 0.

(23)
The scales cannot be separated in this system. Nevertheless, taking advantage of
the fact that the right-hand side does not depend on ẑ, we can obtain the solution by
solving the following “cell” problem: Let {ωj , πj}, j = 1, 2, 3 the functions defined
as the solutions to:



























































−△ ẑ1,ẑ2
ωj

1(x1, ẑ1, ẑ2) + ∂ẑ1
πj = δ1j in YF ,

−△ ẑ1,ẑ2
ωj

2(x1, ẑ1, ẑ2) − sin γ(x1)∂ẑ2
πj = δ2j in YF ,

−△ ẑ1,ẑ2
ωj

3(x1, ẑ1, ẑ2) + cos γ(x1)∂ẑ2
πj = δ3j in YF ,

∂ẑ1
ωj

1 + ∂ẑ2
(− sinγ(x1)ω

j
2 + cos γ(x1)ω

j
3) = 0 in YF ,

ωj(x1, ẑ1, ẑ2) = 0 on ∂YF \∂Y,

{ωj , πj} is Y-periodic in (ẑ1, ẑ2).

(24)

Proposition 1. 1. Problem (24) admits a unique solution (ωj , πj) ∈ H1(YF )3×
L2

0(YF ).
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2. The function u0 in (5) is given by

u0(x, z1, z2) =
1

ν

3
∑

j=1

(

fj(x) − ∂p0

∂xj
(x)

)

ωj(x1, z1, z2) (25)

3. The effective pressure p0 in (6) only depends on x and is solution to the Darcy
problem:



























uD(x) =
K(x1)

ν

(

f − ∇p0(x)
)

in Ω,

div uD = 0, in Ω,
uD · n = 0, on ∂Ω,

∫

Ω

p0 dx = 0,

(26)

where the permeability matrix K = [Ki,j ]i,j=1,2,3 is given by

Kij(x1) =
1

|Y|

∫

YF

ωj
i (x1, z1, z2)dz1dz2. (27)

Note that formula (27) is not convenient from the numerical viewpoint since it
depends on the macroscopic variable x1. A more practical formula involving cell
problems independent of x1 will be given in section 2.3.

Proof. 1. The analysis of (24) is rather straightforward. We postpone it until
section 2.3 where a constructive proof is given (see Remark 1).

2. The fact that p0 does not depend on the fine scale has been established

above (see (15)). Next, we multiply equations (24) by
1

ν

(

f̂j(x̂) − (GT
∇x̂p̂0)j

)

, for

j = 1, 2, 3. Then, summing these equations, we obtain that (û0
1, û

0
2, û

0
3, p̂

1) defined
by

û0
i =

3
∑

j=1

1

ν

(

f̂ j − (GT
∇x̂p̂0)j

)

ωj
i

and

p̂1 =

3
∑

j=1

(

f̂ j − (GT
∇x̂p̂0)j

)

πj

is solution to (23). Thus using the relation ∇p0 = GT
∇x̂p̂0, we obtain (25).

3. Defining the Darcy velocity by:

uD(x) =
1

|Y|

∫

YF

u0(x, z1, z2) dz1 dz2

we straightforwardly obtain (26) with the definition (27) of the permeability tensor.

The rigorous justification of the approximation is quite technical, but follows the
general ideas used in the homogenization of the Stokes system in a porous medium
and in the study of the interface conditions between two different porous media. We
address it in some details in the Appendix. In fact we will not only prove that our
filtration velocity and the effective pressure are the limits of the rescaled physical
velocities and pressures, but we will also give an error estimate in terms of ε.
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2.3. Cell problems. In order to address the effective computation of the perme-
ability, we introduce the following generic cell problems: let U j

1 (z1, z2), U j
2 (z1, z2),

P j(z1, z2), j = 1, 2 be the functions defined as the solutions to the 2D Stokes prob-
lems:






























−△ z1,z2
U j

1 + ∂z1
P j = δ1j in YF ,

−△ z1,z2
U j

2 + ∂z2
P j = δ2j in YF ,

∂z1
U j

1 + ∂z2
U j

2 = 0 in YF ,

U j
1 = U j

2 = 0 on ∂YF \∂Y,

{U j
1 , U j

2 , P j} is Y-periodic in z1, z2, and

∫

Ω

P j dx = 0

(28)
and let V (z1, z2) be the solution to the 2D Poisson problem:







−△V = 1 in YF ,
V = 0 on ∂YF \∂Y,

V is Y-periodic in z1, z2.
(29)

We introduce Ω̃(x1, z1, z2) = [ω̃j
i ]i,j=1,2,3 defined by

Ω̃(x1, z1, z2) = R−1(x1)Ω(x1, z1, z2),

with Ω(x1, z1, z2) = [ωj
i ]i,j=1,2,3 and

R(x1) =





1 0 0
0 cos γ(x1) − sinγ(x1)
0 sin γ(x1) cos γ(x1)



 .

Combining the equations of system (28) and (29) we obtain:

Ω̃(x1, z1, z2) =





U1
1 (z1, z2) 0 U2

1 (z1, z2)
0 V (z1, z2) 0

U1
2 (z1, z2) 0 U2

2 (z1, z2)



R−1(x1).

From which we finally deduce

K(x1) = R(x1)K0R
−1(x1) (30)

with

K0 =
1

|Y|

















∫

YF

U1
1 0

∫

YF

U2
1

0

∫

YF

V 0
∫

YF

U1
2 0

∫

YF

U2
2

















. (31)

The developed expression for the permeability is given by

K(x1) =





K11 −K12s K12c

−K21s K22s
2 + V c2 (V − K22)cs

K21c (V − K22)cs V s2 + K22c
2



 (32)

where the following notations have been used: c = cos γ(x1), s = sin γ(x1),

V =
1

|Y|

∫

YF

V and Kij =
1

|Y|

∫

YF

U i
j . (33)
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Consequently, once solved the three generic cell problems (28) with j=1,2 and
(29), the permeability is obtained at any macroscopic coordinate x1 by computing
two simple matrix-matrix products (30).

For example, Figure 4 shows the velocity and pressure fields for the generic cell
problem (28) with j = 1.

Figure 4. Velocity and pressure field for a cell problem

Remark 1. Note that, the existence and uniqueness of (U j , P j) and V being
obvious, the relations

[ωj
i (x1, z1, z2)] = R(x1)





U1
1 (z1, z2) 0 U2

1 (z1, z2)
0 V (z1, z2) 0

U1
2 (z1, z2) 0 U2

2 (z1, z2)



 R−1(x1)

and

π1 = P 1, π2 = − sinγ P 2, π3 = cos γ P 2

give a constructive proof of the existence and uniqueness of the solution to (24).

Remark 2. Multiplying the first two equations of (28) by U i
1 and U i

2 respectively
and integrating by parts, we obtain:

∫

YF

∇U i · ∇U j =

∫

YF

U i · ej .

Vectors U1 and U2 being independent, the matrix [
∫

YF
∇U i ·∇U j ]i,j=1,2 is invert-

ible. In view of the definition of K0 and relation (30), this implies that K(x1) is
regular.
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2.4. Numerical simulations. Due to the variable orientation of the fibres, the
cell problems (24) depends on the macroscopic variable. At a first glance, it seems
necessary to solve a huge number of cell problems just like in nonlinear models (see
for example [16] where a parallel strategy is considered). Nevertheless, the trick
that we have described in the previous section allows us to solve only two “generic”
cell problems. The generic solutions can then be combined to generate the solutions
of (24) for arbitrary macroscopic points. Compared to an approach where the “real”
cell problems (24) are actually solved, this procedure allows a substantial reduction
of the computational effort and makes unnecessary the use of parallel algorithms.

From a practical viewpoint, the procedure is therefore the following:

1. Microscopic resolution (independent of the fibres orientation).
1.1. Solve once and for all the generic cell problems (28) and (29) (see below

for the description of the discretization method).
1.2. Compute the generic permeability K0 with formula (31).

2. Macroscopic resolution (which depends on the function γ defining the fi-
bres orientation)

Solve the macroscopic problem (26) (see below for the description of the
discretization method). Whenever the value of the permeability K(x1) is
needed – typically at each integration point of the finite element – we use
formula (30) and the pre-computed values of the generic permeability K0.

The discretization methods that we used to solve the various problems are reliable
and standard, so we just sketch their description. The generic cell problems (28)
are solved using Q2 finite element for the velocity and discontinuous P1 for the
pressure. This pair of elements is known to satisfy the inf-sup condition ([17]), and
is elementwise mass preserving. The Darcy equations (26) are also solved by mixed
finite elements: the velocity is approximated in the lowest order 3D Raviart-Thomas
finite element space (see for example [37]), and the pressure is constant by element.
This choice ensures the continuity of the normal component of the velocity and an
exact elementwise mass balance. Moreover, we adopt a mixed-hybrid formulation:
a symmetric definite positive system is first solved by a preconditioned conjugate
gradient method to compute the trace of the pressure on the faces on the elements;
next the pressure and the velocity are recovered by a local procedure.

2.4.1. Parallel fibres: influence of the orientation. In this experiment, we impose a
pressure drop between two opposite faces of a unit cube. The fibres are parallel and
we investigate the influence of the angle between the fibres and the flow (which is
mainly directed along Ox2). We report on Figure 5 the curves of the flux through a
face of the cube versus the angle for three different sizes of the fibres. As expected,
the flux is maximal (resp. minimal) for a flow parallel (resp. orthogonal) to the
fibres, and is greater for smaller fibres.

2.4.2. An example with non-parallel fibres. In this experiment, we still impose a
pressure drop between two opposite faces of a unit cube, but now the angle between
the fibres and Ox2 is variable: γ(x1) = 2πx1. Figure 6 shows the influence of the
orientation of the fibres on the velocity vectors.

3. Low solid fraction limit. In the applied literature (see e.g. [24] or [29] and
references therein), the permeability in the low solid fraction limit is often assumed
to be scalar and is searched of the form k = a2f(ϕ), where a is the diameter of the
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Figure 5. Influence of the angle between the fibres and the flow,
and of the radius of the fibres.

x1

x2

x3

Figure 6. A uniform pressure drop is imposed between the top
and the bottom of the cube. The fibres make an angle γ(x1) = 2πx1

with Ox2. The arrows represent the velocity in an arbitrary plane
x3 = cst. As expected, the velocity is maximal when the flow is
parallel to the fibres (γ = 0, π or 2π) and minimal when the flow
is orthogonal to the fibre (γ = π/2 or 3π/2).

fibres and ϕ the volume fraction of the solid material. More sophisticated models
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provide a homogeneous permeability tensor of the form

K =





K⊥ 0 0
0 K‖ 0
0 0 K⊥



 (34)

where K‖ (resp. K⊥) corresponds to the permeability in the direction parallel (resp.
orthogonal) to the fibres. The following expressions are derived in [18] in the case
of fibres with circular section:

K‖ =
a2

4ϕ

(

log(1/ϕ) − 1.5 + 2ϕ − ϕ2

2

)

, (35)

K⊥ =
a2

8ϕ

(

log(1/ϕ) +
ϕ2 − 1

ϕ2 + 1

)

. (36)

Many other expressions have been proposed in the literature and compared to
experiments. Although they present slight differences, most of them share the same
leading order terms. We refer to [24] and the references therein for a review of the
most commonly used formulae and to [29, 44] for some recent developments. In [31],
these formulas were obtained by solving analytically approximated cell problems
where periodicity were replaced by convenient boundary conditions.

Our expression for the permeability (32) with γ(x1) = 0 is:

K =





K11 0 K12

0 V 0
K21 0 K22



 (37)

where Kij and V are defined in (33). The purpose of this section is to compare this

formula with (34). More precisely we shall compare K‖ with V and
(

K11 K12

K21 K22

)

with

(

K⊥ 0
0 K⊥

)

.

In section 3.1, it is shown that the leading terms of our formulae are consistant with
(35) and (36). In section 3.2, we compare the predictions of the asymptotic formulae
with the results of numerical simulations of the model proposed in section 2.

3.1. Rigorous determination of the leading order terms. It has been seen
in section 2, that the computation of the permeability tensor requires the solution
of the auxiliary 2D Stokes problems

−∆zU
j + ∇zP

j = ej in YF (38)

divzU
j = 0 in YF (39)

Uj = 0 on ∂YF \ ∂Y (40)

{Uj , P j} is Y − periodic and

∫

Ω

P j dx = 0 (41)

and the auxiliary 2D Poisson problem

−∆zV = 1 in YF (42)

V = 0 on ∂YF \ ∂Y (43)

V is Y − periodic (44)
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Let us now suppose that the size of B = Y \ YF is of order η, i.e. that B = ηB0

where the radius of B0 is of order 1. We would like to know what happens with
the averages of Uj and V when η → 0+. This is the low solid fraction limit. We
assume that η and ε go to zero in such a way that

η ≫ 1

ε
e−1/ε2

, (45)

so that at the limit the effective flow is described by the Darcy law. For smaller
obstacles, different limit regimes occur (Brinkman or Stokes equations).

Following [5], where this problem was studied rigorously, we set

−∆zw
k + ∇zq

k = 0 in R
2 \ B0 (46)

divzw
k = 0 in R

2 \ B0 (47)

wk = 0 on ∂B0 (48)

wk = (log r)ek at infinity, r = |z|. (49)

Then (46) -(49) has a unique solution being the sum of the special solution for
the case of the unit circle and of the solution for a “difference” problem, where the
velocity has a logarithmic asymptotic behavior at infinity. For details we refer to
[6], [3], [4] and [5]. The asymptotic behavior is given by the following result:

Proposition 2 ([5]). We have

{P j(ηy),Uj(ηy)} ⇀
1

π
{qj(y), wj(y)} (50)

weakly in L2
loc(R

2 \ B0)/R × H1
loc(R

2 \ B0)
2. Furthermore

lim
η→0

1

| log η||Y|

∫

YF

U j
k dy =

δjk

π
. (51)

This result shows that the 2 × 2 matrix (Kij) is asymptotically a scalar matrix,
confirming the observations from [18, 24, 29]. It also shows that

K11 = K22 ≈ 1

π
| log η|.

Formula (36) is therefore consistant with our result at the leading order with a = η
and ϕ = πη2/4 (πη2 is the solid surface in the cell and 4 is the cell surface [−1, 1]2).

We now discuss the low solid fraction limit for V . A detailed mathematical
article on the computation of dispersive media is [30]. It concentrates mainly on
the Neumann boundary conditions. In such a case, simple asymptotic formulas of
Rayleigh type have a high accuracy. In the case of Dirichlet boundary conditions,
this kind of asymptotic formulas is unfortunately much less accurate. The case
of low solid fraction for the Dirichlet problem in a perforated domain has been
addressed in [27] but only in 3D. In 2D we establish the following result.

Proposition 3. We have

V (ηy) ⇀
2v

π
weakly in H1

loc(R
2 \ B0) (52)
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where v is the unique solution for the problem

−∆v = 0 in R
2 \ B0 (53)

v = 0 on ∂B0 (54)

v = log r at infinity, r = |y|. (55)

Furthermore

lim
η→0

1

| log η||Y|

∫

YF

V (y) dy =
2

π
. (56)

Proof. It is a simplified version of the corresponding result for the Stokes system in
[5] and we give only an outline.

First we introduce the sequence V 0,η defined by






































V 0,η = 0 in B1

V 0,η =
2

π
log r in B1/η \ B1

V 0,η = − 2

π
log η in R

2 \ B1/η

(57)

where B1/η is the ball of radius 1/η and V 1,η(x) = V (ηx) − V 0,η(x). Then it is

easy to see that ∇V 1,η is uniformly bounded in L2(η−1Y \ B0) and pass to the
limit η → 0. As in [5] , we establish the a priori estimate in L2 with the weight
(r + 1) log(r + 2) for V 1,η. It leads to the conclusion that (52) holds true.

Next we have

1

|Y|

∫

YF

V (y) dy =
2

π
log

1

η
+ O(| log

1

η
|1/2) (58)

where V η(x) = V (ηx) and the proposition is proved.

The above result shows that the leading term in V is 2
π | log η| which shows that

our result is asymptotically consistent with formula (35) (taking as before a = η
and ϕ = η2π/4).

3.2. Numerical results. In order to assess the previous results, the cell problems
(38)-(41) and (42)-(44) have been numerically solved for fibres with circular sections,
with a solid fraction ranging from 0.2 to 0.002. To this purpose, for each solid
fraction, a specific mesh has been generated to achieve the resolution of the cell
problems. The procedure described in section 2.4 has then been applied to obtain
the permeability tensor. Equations (35) and (36) have been plotted with a = η (the
radius of the inclusion) and ϕ = πη2/4. The agreement of Kii with formula (36) is
reasonable and both curves have the same asymptotic behavior (Fig. 7, left). The
agreement of V with formula (35) is excellent on the whole range of solid fraction
(Fig. 7, right).

All the previous computations have been done with circular section fibres. An
interesting property given by Propositions 2 and 3 is that the leading term of the
asymptotic behavior is independent of the shape of the solid inclusion. To illustrate
this fact, we present on Fig. 8 the results given by (56) and (51) compared to
numerical simulations with square section fibres. The good agreement is striking.
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Figure 7. Fibres with a circular section. Left: comparison be-
tween Kii and Formula (36). Right: comparison between V and
Formula (35).

ϕ V Kii

0.196299 0.167123 0.079633
0.125631 0.267833 0.131824
0.070667 0.417707 0.208051
0.031407 0.651478 0.325558
0.007851 1.077900 0.538937
0.001962 1.515430 0.757714

Table 1. Numerical values corresponding to Figure 7.
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Figure 8. Fibres with a square section. Left: comparison between
Kii and Formula (51). Right: comparison between V and For-
mula (56).

η V Kii

0.5 0.427491 0.208525
0.4 0.554049 0.270007
0.3 0.724945 0.353740
0.2 0.974281 0.477150
0.1 1.409805 0.693221
0.05 1.848851 0.911036

Table 2. Numerical values corresponding to Figure 8.
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4. Appendix. In this appendix we discuss the error made, when the physical ve-
locity and the physical pressure are approximated by the homogenized quantities,
introduced in section 2.

In the case of a periodic porous medium, the Darcy law was justified by L. Tartar
in the late seventies. The proof that the Darcy velocity is the weak limit of uε/ε2 is
in [43] . For more details and generalizations to 3D geometries, one can consult the
review chapter by G. Allaire in [7] . In fact, in the absence of external boundaries,
it is possible to prove that uε/ε2 −u0 and pε − p0 have L2−norms of order ε. This
confirms the formal asymptotic expansions. Nevertheless, the rigorous mathemati-
cal proof, which can be found in [35] , requires also to correct the compressibility
effects, coming from uε. In fact, it is optimal to work in the Hilbert space, having
finite L2-norms of both the velocity field and its divergence.

Presence of outer boundaries complicates seriously the estimates. It was estab-
lished in [34] that in the presence of an outer boundary, where physical velocity is
zero, u0(x, x/ε) is a L2-approximation of order ε1/(3m), where m = 2 in the 2D case
and m = 3 in 3D. For Laplace operator, such an approximation is known to be of
order

√
ε.

In our particular situation, we have also the interfaces. Namely, u0 is constructed
using (25) and it reads

u0(x,
ρ(xε,n

1 , x)

ε
) =

1

ν

3
∑

j=1

(

fj(x) − ∂p0

∂xj
(x)

)

ωj(x1, z1, z2),

z1 =
x1

ε
, z2 =

x3

ε
cos γ(xε,n) − x2

ε
sin γ(xε,n) (59)

p1(x,
ρ(xε,n

1 , x)

ε
) =

3
∑

j=1

(

fj(x) − ∂p0

∂xj
(x)

)

πj(x1, z1, z2) (60)

where {ωj , πj} are defined by (24). Clearly, it depends on the parameter xε,n,
saying in which layer we are.

Thus, inside every layer the differences

wε
i = uε

i/ε2 − u0
i (x,

ρ(xε,n
1 , x)

ε
);

qε = pε − p0(x) − εp1(x,
ρ(xε,n

1 , x)

ε
) (61)

satisfy the system

−νε2∆wε
i +

∂

∂xi
qε = −Ψε

i in Ωε,n, i = 1, 2, 3, (62)

div wε = −divxu0(x,
ρ(xε,n

1 , x)

ε
) in Ωε,n (63)

with

Ψε
i =ε2J−1

3
∑

j=1

∂

∂x̂j

[

J

3
∑

k=1

∂û0
i

∂x̂k
hkj

]

+ εJ−1

{ 3
∑

j=1

∂

∂x̂j

[

J

2
∑

k=1

∂û0
i

∂ẑk
hkj

]

+
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2
∑

j=1

∂

∂ẑj

[

J
3

∑

k=1

∂û0
i

∂x̂k
hkj

]}

− εJ−1
3

∑

j=1

∂

∂x̂j

[

Jgjip
1

]

. (64)

After [35], we have

|
∫

Ωε,n

Ψεϕ dx| ≤ Cε2‖∇ϕ‖L2(Ωε,n) (65)

for every ϕ ∈ H1(Ωε,n), being zero at the fibres boundaries.
Then one corrects the compressibility effects, by introducing the auxiliary prob-

lem

LdivQ ≡ ∂Q1

∂z1
+

∂

∂z2

(

− sin γ(x1)Q2 + cos γ(x1)Q3

)

= divx̂ (JGû
0) in YF (66)

Q is Y − periodic in (z1, z2). (67)

Using the decomposition from section 2, we see that

div x

∫

YF

u0(x, z1, z2)dz1dz2 = div xuD = 0

is the necessary and sufficient condition for existence of at least one solution for
(66)-(67). Clearly, there is no uniqueness and we can choose a smooth solution Q

for (66)-(67).
Now, as in [35], we have

−νε2∆(wε
i +

ε

ν
Qi(x,

ρ(xε,n
1 , x)

ε
)) +

∂

∂xi
qε = −Ψε

i

−ε3∆Qi(x,
ρ(xε,n

1 , x)

ε
) in Ωε,n, i = 1, 2, 3, (68)

div (wε +
ε

ν
Q(x,

ρ(xε,n
1 , x)

ε
)) =

ε

ν
divx Q(x,

ρ(xε,n
1 , x)

ε
)

in Ωε,n. (69)

This means that {wε + ε
ν Q(x,

ρ(xε,n

1
,x)

ε ), qε} satisfies the Stokes system (68)-(69)
with the force terms

−Ψε
i − ε3∆Qi(x,

ρ(xε,n
1 , x)

ε
)

and the source term
ε

ν
divx Q(x,

ρ(xε,n
1 , x)

ε
)

of order ε2 in the sense of (65) (i.e. in the H−1-norm).
In the situation without external boundary one could proceed as in [35] and

conclude that the L2-norms of {wε + ε
ν Q(x,

ρ(xε,n

1
,x)

ε )} and qε are of order ε.
We are in presence of many layers Ωε,n and the geometry differs from one layer

to another. Consequently, the coefficients in problem (24) change with n and they
depend on xε,n. Thus, there is a jump of u0 at the interface between different
layers. Furthermore, the layers are of size εr and this fact could also influence the
estimates. By “gluing together” the layers, this difficulty will be avoided.

Homogenization of problems containing several different subdomains, is closely
linked with the determination of the effective flow conditions at the interface be-
tween two different porous media. At mathematically rigorous level, these problems
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were considered by W. Jäger and A. Mikelić in a number of papers. The general the-
ory of the corresponding boundary layers is in [25]. Our particular situation, with
layers of fibres which should be glued together, has a lot of similarities with the
determination of the transmission conditions at the interface between two porous
media with different pore structures. The transmission conditions, involving con-
tinuity of the pressure and of the normal velocities, were rigorously established in
the article [26]. We will follow the approach from [26].

Let us suppose that the interface between the layers Ωε,n and Ωε,n+1 is at x1 = c.
Because of (22), the interface is stable under the mapping ϕε,n and, following [26],
we introduce the boundary layer problem which corrects the jump of u0. We denote
by LS the Stokes operator corresponding to system (24). We denote the operator
L+

S when the parameter in the coefficients is xε,n+1, and by L−
S otherwise (i.e.

when the parameter is xε,n). Analogously, {ωj,+, πj,+} (resp. {ωj,−, πj,−}) is the
solution for (24) for x = xε,n+1 (resp. for x = xε,n). Then the boundary layer
problem reads

L+
S ({ωj,bl, πj,bl}) = 0 in Z+ = ∪k∈IN∪{0}

(

YF + 2k~e1

)

(70)

L−
S ({ωj,bl, πj,bl}) = 0 in Z− = ∪k∈IN

(

YF − 2k~e1

)

(71)

[

ωj,bl
]

= ωj,+ − K1j(x
ε,n+1)~e1 − (ωj,− − K1j(x

ε,n)~e1)

at z1 = −1 (72)

[∂ω
j,bl
i

∂z1
− πj,blδ1i

]

=
∂ω

j,+
i

∂z1
− πj,+δ1i − (

∂ω
j,−
i

∂z1
− πj,−δ1i)

at z1 = −1 (73)

{ωj,bl, πj,bl} is periodic in z2. (74)

We note that the normal component of the jump
[

ωj,bl
]

at the interface x1 = c has
a zero mean.

Then by slightly generalizing the theory from [26], we get the solvability of prob-
lem (70)-(74) and the Saint-Venant principle saying that

|∇ωj,bl| + |ωj,bl| ≤ c0e
−c1|y1|,

for some positive constants c0 and c1 (75)

|∇πj,bl| + |πj,bl − H(z1)C
j
1 − H(−z1)C

j
2 | ≤ c0e

−c1|y1|, (76)

where H is Heaviside’s function.
Consequently, in the neighborhoods of the separating planes x1 = c between two

adjacent layers, our asymptotic expansion reads

uε

ε2
= u0(x,

ρ(xε,n
1 , x)

ε
)H(c − x1)+

u0(x,
ρ(xε,n+1

1 , x)

ε
)H(x1 − c) +

3
∑

j=1

ε

ν
(fj −

∂p0

∂xj
)(x)ωj,bl

+ ( compressibility corrections + higher order terms) (77)
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pε = p0(x) + εp1(x,
ρ(xε,n

1 , x)

ε
)H(c − x1)+

εp1(x,
ρ(xε,n+1

1 , x)

ε
)H(x1 − c)+

3
∑

j=1

ε2

ν
(fj −

∂p0

∂xj
)(x)πj,bl + ( higher order terms) (78)

Let us check that the jump of
uε

ε2
at x1 = c is zero.

First, in the tangential direction we have continuity of traces, by construction.
Next, in the normal direction we have

uε
1

ε2
=

3
∑

j=1

(K1j(x
ε,n+1) − K1j(x

ε,n))fj −
∂p0

∂xj
)|x1=c = 0, (79)

since we imposed at the interfaces the continuity of K(f −∇p0)~e1, as the transmis-
sion condition. We note that it follows from those considerations that the continuity
of the normal components of the filtration velocity is one of the necessary and suf-
ficient conditions for having the correct order of approximation.

For this new approximation, we write an analogue of the system (68)-(69). Then,
it is used for obtaining the estimate for the L2-norm of the difference between

{uε

ε2
, pε} and the correction. Calculations are analogous to the ones from [26] and

we have the following conclusions:

• a) The pressure is continuous at the layer interfaces. We note that the absolute
value of the pressure jump is one of the leading terms in the error estimate
and it should be set to zero in order to get an approximation. It is the second
(and last) necessary and sufficient condition for obtaining the correct order of
approximation. For detailed calculations we refer to [26] .

• b) ωj,bl is of order c0 exp{−c1ε
r−1} at the other interfaces and we can simply

ignore it there.
• c) Using that ρ ∈ C1, we get that the boundary layer terms are of order

εr+3/2. Since we have ε−r boundary layers, this means a contribution of order
ε3/2.

• d) Keeping K(xε,n) and K(xε,n+1) deteriorates significantly the regularity of
p0. For this reason, K(x1) should be used. This introduces an approximation
error of order εr. For small r, a possible solution is to take several intermediate
values of xε,n. Attempts to work with less regular K lead to weaker error
estimates and give raise to a global error of order ε1/8 (see [26]).

To conclude, in analogy with the results from [26] , we have

Theorem 4.1. Let Bn be the nth layer, containing fibres. Then we have

‖uε

ε2
−

∑

over layers

χBn
(x)

1

ν

3
∑

j=1

(

fj(x) − ∂p0

∂xj
(x)

)

ωj(x1,
x1

ε
,
x3

ε
cos γ(xε,n)

−x2

ε
sin γ(xε,n))‖L2(Ω) ≤ Cεmin{1/6,r}, (80)

‖pε − p0‖L2

0
(Ω) ≤ Cεmin{1/6,r}. (81)

With an appropriate choice of layers, the estimates (80)-(81) imply an interior
estimate of order

√
ε.
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