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Abstract. In this paper, we discuss a Markov chain approximation method

to price European options, American options and barrier options in a Markov-
ian regime-switching environment. The model parameters are modulated by a

continuous-time, finite-state, observable Markov chain, whose states represent
the states of an economy. After selecting an equivalent martingale measure by

the regime-switching Esscher transform, we construct a discrete-time, inhomo-

geneous Markov chain to approximate the dynamics of the logarithmic stock
price process. Numerical examples and empirical analysis are used to illustrate

the practical implementation of the method.

1. Introduction. To extend the classical Black-Scholes-Merton pricing formula
and incorporate some stylized features exhibited in financial time series, many mod-
els have been proposed in the literature and have been used in practice. Regime-
switching models are one of the most popular and practically useful extensions. The
history of the regime-switching models may be traced back to the early works of
Quandt [17], Goldfeld and Quandt [12] and Tong [24, 25]. This class of models was
then popularized into economics and finance by Hamilton [13]. A key feature of
these models is that the impacts of changing economic conditions, which may be
attributed to changes in economic fundamentals or financial crises, may be incorpo-
rated. Specifically, the model dynamics are allowed to change over time according
to the states of an underlying Markov chain, which represent the states of an econ-
omy. Regime-switching models have been applied to discuss a number of important
research problems in finance, including the option valuation problem.
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There has been a considerable interest to develop and investigate various numer-
ical methods to price and hedge options under regime-switching models. Several
methods have been proposed, including the numerical partial differential equation
(PDE) approach (see, for example, Boyle and Draviam [1]), the fast Fourier trans-
form approach (see, for example, Liu et al. [14], Shen and Siu [18], Shen et al. [19],
Fan et al. [10, 11]), the trinomial tree method (Yuen and Yang [28]) and amongst
others. It seems that there is a relatively little attention, if none at all, to apply
a Markov chain approximation approach to price options under regime-switching
diffusion models. Compared with the methods mentioned above, the Markov chain
approximation method has several advantages. Firstly, it provides the flexibility
that the discretization number of asset prices and the number of time steps can be
chosen independently. In other words, the grids used in the computation can be ad-
justed so that they are tailor-made to a particular practical situation. Secondly, it
seems intuitive, easy to implement and understand, which may be attractive to mar-
ket practitioners. Furthermore, it converges fast and provides accurate numerical
results. More specifically, compared with the fast Fourier transform method and the
Monte Carlo method, the Markov chain approximation method seems more flexible
to deal with the early-exercise feature of American options and the path-dependent
feature of barrier options. Furthermore, the Markov chain approximation method
is more computationally efficient than the Monte Carlo method since the former
may require considerably less computational time than the latter. The trinomial
tree method with regime switches in Yuen and Yang [28] also has similar advan-
tages over the fast Fourier transform method and the Monte Carlo method when
pricing American options and barrier options under regime-switching models. How-
ever, the number of nodes of the underlying asset price will not increase when the
time steps increase in the Markov chain approximation method, while that in the
trinomial tree method will increase when the time steps increase. Duan and Si-
monato [4] proposed a Markov chain approximation method to compute European
option prices and American option prices under GARCH models and gave a proof
for the convergence of this method. Duan et al. [3] considered the valuation of dis-
cretely monitored barrier options using the Markov chain approximation method.
Simonato [20] investigated the valuation of American options under a lognormal
jump-diffusion model with a Markov chain approximation. Instead of considering
the Markov chain approximation method to approximate diffusion-type processes
and their variants, option valuation in a continuous-time Markov chain market,
where the price process of the underlying asset is modeled directly by a continuous-
time Markov chain, has been studied in the literature. Some examples along this
line are Pliska [16], Norberg [15], Elliott et al. [8], van der Hoek and Elliott [26, 27],
Siu [22], Elliott and Siu [9], amongst others. In Song et al. [23], a multivariate
Markov chain model was used for pricing options. For an introduction to Markov
chain and its applications, one may refer to Ching et al. [2].

In this paper, we discuss a Markov chain approximation method to price Eu-
ropean options, American options and barrier options under a Markovian regime-
switching model. More specifically, the model parameters, including the risk-free
interest rate, the appreciation rate and the volatility, are modulated by a continuous-
time, finite-state, observable Markov chain. It is also called the modulating Markov
chain (MMC). We first apply the regime-switching Esscher transform in Elliott et
al. [6] to select an equivalent martingale measure. Then we use the Markov chain
approximation method to compute the option prices, based on the approximations
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of the logarithmic stock price process by another discrete-time, finite-state, inhomo-
geneous Markov chain. It is called the approximating Markov chain (AMC) and the
nodes of the underlying stock price are regarded as the states of the approximating
Markov chain. We provide numerical examples and empirical studies to illustrate
the practical usefulness of the Markov chain approximation method. Through these
numerical examples, we also discuss numerically an important issue regarding the
pricing of regime-switching risk, which has been considered in some previous works,
for example, Elliott et al. [7] and Siu [21].

The rest of the paper is organized as follows. The next section presents the
model dynamics. Section 3 discusses the construction and implementation of the
Markov chain approximation method. In section 4, we give numerical examples
and empirical studies to illustrate the valuation of European options, American
options and barrier options via the Markov chain approximation method. Section
5 concludes the paper.

2. The model dynamics. The model setting is based on the work of Elliott et
al. [6]. A brief introduction will be given in this section. Consider a complete
probability space (Ω,F ,P), under which all sources of randomness are defined. We
equip the probability space (Ω,F ,P) with a filtration F := {F(t)|t ∈ T } satisfying
the usual conditions of right-continuity and P-completeness. Suppose that P is the
real-world probability measure. Let T denote the time parameter set [0, T ] of the
model, where T < ∞. Let X := {X(t)|t ∈ T } be a continuous-time, finite-state,
observable Markov chain on (Ω,F ,P) with the canonical state space representation
EX := {e1, e2, . . . , eN} ⊂ RN , where the jth component of ei is the Kronecker
delta δij for each i, j = 1, 2, . . . , N . The canonical state space representation of the
Markov chain was used, for example, in Elliott et al. [5]. The chain X is the MMC.

Let A := [aij ]i,j=1,2,...,N be the generator matrix of the MMC X under P, where
aij is a constant transition intensity of the chain X from state ej to state ei. In
the later discussions, y′ denotes the transpose of a vector or a matrix y and 〈·, ·〉
represents the inner product in RN .

A continuous-time financial market with two investment securities, namely, a
bond B and a stock S, is considered. The instantaneous market interest rate is
given by

r(t) := 〈r,X(t)〉 ,
where r := (r1, r2, . . . , rN )′ ∈ RN with rj > 0 for each j = 1, 2, . . . , N . Then the
dynamics of the bond price process B := {B(t)|t ∈ T } is given by

dB(t) = r(t)B(t)dt, B(0) = 1 .

Similarly, the appreciation rate µ(t) and the volatility σ(t) of the stock are also
modulated by the Markov chain X as follows:

µ(t) := 〈µ,X(t)〉 , σ(t) := 〈σ,X(t)〉 , t ∈ T ,

where µ := (µ1, µ2, . . . , µN )′ ∈ RN and σ := (σ1, σ2, . . . , σN )′ ∈ RN with σj > 0
for each j = 1, 2, . . . , N .

Let W := {W (t)|t ∈ T } be a standard Brownian motion on (Ω,F ,P). To
simplify our discussion, W and X are supposed to be stochastically independent
under P. The dynamics of the stock price under the real-world probability measure
P is given by

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t) , S(0) = S0 > 0 .
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Let Z(t) denote the logarithmic return of the underlying stock over the time
interval [0, t], i.e., Z(t) := ln(S(t)/S0), for t ∈ T . Then, the dynamics of the stock
price can be written as

S(t) = S(u) exp(Z(t)− Z(u)) ,

where

Z(t) =

∫ t

0

(
µ(s)− 1

2
σ2(s)

)
ds+

∫ t

0

σ(s)dW (s) .

Write Z := {Z(t)|t ∈ T }. Let FS = {FS(t)|t ∈ T } , FZ = {FZ(t)|t ∈ T } and FX =
{FX(t)|t ∈ T } be the right-continuous, P-complete, natural filtrations generated
by the processes S, Z and X, respectively. Define the filtration G = {G(t)|t ∈ T }
by letting G(t) := FZ(t)∨FX(t), the minimal σ-field containing FZ(t) and FX(t).

As in Elliott et al. [6], the regime-switching Esscher transform is adopted to select
an equivalent martingale measure. Define the regime-switching Esscher parameter
θ(t) := θ(t,X(t)) as follows:

θ(t,X(t)) = 〈θ,X(t)〉 ,
where θ := (θ1, θ2, . . . , θN )′ ∈ RN .

Then, the regime-switching Esscher transform Qθ ∼ P on G(t) with a family of
parameters {θ(s)}s∈[0,t] is given by

dQθ
dP

∣∣∣∣
G(t)

:=

exp

(∫ t
0
θ(s)dZ(s)

)
E

[
exp

(∫ t
0
θ(s)dZ(s)

)∣∣∣∣FX(t)

]
= exp

(∫ t

0

θ(s)σ(s)dW (s)− 1

2

∫ t

0

θ2(s)σ2(s)ds

)
, t ∈ T .

By the martingale condition, an equivalent martingale measure Qθ∗ is deter-

mined, where θ∗(t) = r(t)−µ(t)
σ2(t) for each t ∈ T . The Radon-Nikodym derivative of

Qθ∗ with respect to P on G(t) is given by:

dQθ∗
dP

∣∣∣∣
G(t)

= exp

(∫ t

0

(
r(s)− µ(s)

σ(s)

)
dW (s)− 1

2

∫ t

0

(
r(s)− µ(s)

σ(s)

)2

ds

)
.

Then, the dynamics of the stock price and the logarithmic return under Qθ∗ are
as follows:

dS(t) = r(t)S(t)dt+ σ(t)S(t)dW̃ (t) ,

dZ(t) =

(
r(t)− 1

2
σ2(t)

)
dt+ σ(t)dW̃ (t) ,

where W̃ (t) = W (t)+
∫ t

0

(
r(s)−µ(s)
σ(s)

)
ds is a standard Brownian motion with respect

to the enlarged filtration G under Qθ∗ .

3. A Markov chain approach. In this section, we apply the Markov chain ap-
proximation method to investigate the option valuation problem in the financial
market defined in the earlier section. We first present the construction of the pro-
posed Markov chain approximation method. Following Duan and Simonato [4] and
Simonato [20], a discrete-time Markov chain is adopted to approximate the option
prices, which is also called the approximating Markov chain (AMC). However, unlike
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Duan and Simonato [4] and Simonato [20], the AMC is time-inhomogeneous (i.e.,
the transition matrix of the AMC is modulated by the MMC), since the original
dynamics of the stock price follows a Markovian regime-switching diffusion model.

To construct the AMC, let [lnS0− Ip, lnS0 + Ip] be the interval covering the log-
arithmic stock prices and p := (p1, p2, . . . , pM )′ be the M distinct cells determined
by discretizing the interval. The way to calculate Ip is crucial. A typical way is to
multiply the standard deviation of the return process with a scaling factor. How-
ever, in a multi-state regime-switching model, the risk free interest rate r and the
volatility σ are modulated by the Markov chain X, i.e., the risk free interest rate
and the volatility of the underlying stock price can take values r1, r2, . . . , rN and
σ1, σ2, . . . , σN , respectively. To find an interval for all regimes, the standard devia-
tion of the return process used to calculate Ip has to be larger than the maximum
standard deviation over all regimes, i.e., σ > max

1≤i≤N
σi. For the ease of comparison,

we use the following value adopted by Yuen and Yang [28]:

σ = max
1≤i≤N

σi + (
√

1.5− 1)σ̄ ,

where σ̄ is the arithmetic mean of σi. Then, Ip can be calculated as:

Ip = δ(M)× σ ×
√
T .

As in Duan and Simonato [4] and Simonato [20], the scaling factor δ(M) needs to be
an increasing function of M , while the increasing rate of δ(M) is smaller than that
of M . Consequently, the following M values for possible logarithmic stock prices
are obtained:

pk = lnS0 +
2k −M − 1

M − 1
Ip, k = 1, 2, . . . ,M .

Here M is an odd integer to ensure that lnS0 falls in the middle of the nodes, i.e.,
pM+1

2
= lnS0.

Let Y := {Yt|t ∈ T } be a discrete-time, finite-state Markov chain on (Ω,F ,Qθ∗)
with the canonical state space representation EY := {ε1, ε2, . . . , εM} ⊂ RM , where
the lth component of εk is the Kronecker delta δkl for each k, l = 1, 2, . . . ,M .
The chain Y is the AMC. Indeed, the Markov chain approximation method is to
approximate the time-t logarithmic stock prices as follows:

lnS(t) ≈ 〈p,Yt〉 ,

which means that pk is used to approximate the logarithmic stock price when the
AMC Y is in the kth state, for each k = 1, 2, . . . ,M .

The probability transition matrix is modulated by the Markov chain X, where

Π(t) :=
N∑
i=1

〈X(t), ei〉Πi. Here, Πi := [πikl]k,l=1,2,...,M represents the probability

transition matrix of the Markov chain Y under Qθ∗ when the economic state is ei,
where πikl is the transition probability of the chain Y from state εk to state εl when

the economy state is ei. To compute Πi, for each i = 1, 2, . . . , N , the following M
cells are defined:

Ck = [ck, ck+1), k = 1, 2, . . . ,M ,



534 KUN FAN, YANG SHEN, TAK KUEN SIU AND RONGMING WANG

on [0,∞) such that

ck =


−∞ , k = 1 ,

pk + pk−1

2
, k = 2, . . . ,M ,

+∞ , k = M + 1 .

The probability of the chain Y from state εk to state εl in the ith economic state
equals the probability of the logarithmic stock price landing in the cell Cl given a
current price pk and an economic state ei. Let m be the number of steps in the
time discretization and T be the maturity time. If the stock price is in the kth node
at time d∆ and changes to the lth node at time (d+ 1)∆, the AMC jumps from the
kth state to the lth state during the time interval [d∆, (d + 1)∆], where ∆ := T

m
and d = 0, 1, . . . ,m. Sd∆,k represents the stock price of the kth node at time d∆,
for d = 0, 1, . . . ,m. Then under Qθ∗ , πikl is calculated as follows:

πikl := Qθ∗ [lnS0 + Z((d+ 1)∆) ∈ Cl| lnS0 + Z(d∆) = pk,X(d∆) = ei]

= Qθ∗ [cl ≤ lnS0 + Z((d+ 1)∆) < cl+1| lnS0 + Z(d∆) = pk,X(d∆) = ei]

= Φ

(
cl+1 − pk − ri∆ + 1

2σ
2
i∆

σi
√

∆

)
− Φ

(
cl − pk − ri∆ + 1

2σ
2
i∆

σi
√

∆

)
,

where Φ(·) is the cumulative distribution function of a standard normal distribution.
The value of the European option at the kth node at time d∆ in the ith economy

state is denoted as Vd∆,k,i, while the value of the American option at the kth node
at time d∆ in the ith economic state is denoted as V Amed∆,k,i. Also, the transition

probability of the Markov chain X over [d∆, (d + 1)∆] can be calculated from the
transition rate matrix A by

O = eA∆ = I +

∞∑
i=1

Ai(∆)i

i!
,

where O := [oij ]i,j=1,2,...,N with oij representing the transition probability of the
MMC X from state ei to state ej over the time interval [d∆, (d+ 1)∆].

Since the Markov chain X is independent of the Brownian motion, the probability
matrix O remains the same after the measure change. Then, the price of a T -
maturity European option can be computed with the following recursion:

Vd∆,k,i = e−ri∆
[ N∑
j=1

M∑
l=1

oijπ
i
klV(d+1)∆,l,j

]
.

For American options, we need to consider their early exercise privileges. Conse-
quently, during the time interval [d∆, (d+ 1)∆], the time-d∆ value of the American
option equals the larger value of its intrinsic value at time t and the discounted
expected time-(d+ 1)∆ value of the American option. Let f be a random variable
having the following binomial distribution:

f =

{
1 , The option is a call option ,

− 1 , The option is a put option .

In our analysis, the following recursion is used:

V Amed∆,k,i = max

(
max(f(Sd∆,k −K), 0), e−ri∆

[ N∑
j=1

M∑
l=1

oijπ
i
klV(d+1)∆,l,j

])
.
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Both iterations start from the maturity time T with the terminal payoff:

VT,k,i = (f(ST,k −K))+ , for all states ,

where ST,k = epk .
To price barrier options under regime-switching models, following Duan et al.

[3], we consider an index variable bt, which follows a Bernoulli distribution, i.e.,

bt =

{
1 , The barrier is triggered before or at time t ,

0 , otherwise .

Define a knock-out set U , which means that the barrier option will knock out if the
state of the logarithmic stock price falls into this set. Let h and H be the lower
barrier and upper barrier, respectively. Mathematically, U is defined as follows:

U =


{k ∈ {1, . . . ,M} : epk ≤ h} , for a down-and-out option ,

{k ∈ {1, . . . ,M} : epk ≥ H} , for a up-and-out option ,

{k ∈ {1, . . . ,M} : epk ≤ h or epk ≥ H} , for a double-barrier-out option .

Considering the impacts of the barrier, the probability of transiting from pk to pl
given a current price pk and an economic state ei can be calculated as:

πiokl := Qθ∗ [lnS0 + Z((d+ 1)∆) ∈ Cl, b(d+1)∆ = 0| lnS0 + Z(d∆) = pk,

X(d∆) = ei, bd∆ = 0]

=

{
πikl , if k, l /∈ U ,
0 , otherwise .

Let V Bard∆,k,i;bd∆=0 denote the conditional value of the barrier option at the kth node
at time d∆ in the ith economic state given that the barrier is not triggered before
or at time d∆. If the barrier is triggered before or at time d∆, the value of the
barrier option equals zero. Then, the following recursive pricing formula for the
corresponding barrier option is obtained:

V Bard∆,k,i;bd∆=0 = e−ri∆
[ N∑
j=1

M∑
l=1

oijπ
io
klV(d+1)∆,l,j;b(d+1)∆=0

]
.

4. Numerical results and analysis. In this section, we perform a numerical
analysis for option valuation based on the Markov chain approximation method
presented earlier. For the ease of comparison, we also provide the numerical results
of the valuation of options under the regime-switching trinomial tree method given
in Yuen and Yang [28]. To simplify our computation, we consider a two-state
modulating Markov chain X, where State 1 and State 2 of the chain represent a
‘Good’ economy and a ‘Bad’ economy, respectively. We write X(t) = (1, 0)′ and
X(t) = (0, 1)′ for State 1 and State 2, respectively.

In what follows, configurations of the parameters values are presented. The rate
matrix of the chain X under Qθ∗ is given by

A =

(
−a a
a −a

)
.

The larger a is, the more volatile the economy is. That is, the probability of the
transition of the economy from one state to another increases with a. Note that
when a = 0, the regime-switching effect is degenerate. Generally speaking, the
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main features of the financial market in a ‘Bad’ (‘Good’) economy are low (high)
appreciation rate, low (high) interest rate and high (low) volatility.

In the following, we use the valuation of put options as an example, i.e., f = −1.
The prices of the options in different economic states are computed by Matlab
programs. We compute the option prices using the trinomial tree method in Yuen
and Yang [28], the Monte Carlo method, the Markov chain approximation with
regime-switching and the Markov chain approximation without regime switches in
Duan and Simonato [4]. For notational simplicity, we denote the three methods by
Y&Y , MC, RSMCA and D&S, respectively.

Table 1. European put option prices using different methods

European put option I
State 1

S0 Y&Y MC RSMCA D&S
94 4.8074 4.8107 4.8149 3.8553
96 3.8978 3.8870 3.8989 2.9622
98 3.1308 3.1429 3.1288 2.2301
100 2.4853 2.4812 2.4895 1.6448
102 1.9714 1.9420 1.9674 1.1889
104 1.5520 1.5509 1.5466 0.8421

State 2
94 7.8567 7.8001 7.7903 8.5570
96 6.9006 6.8894 6.8310 7.5888
98 6.0372 6.0042 5.9641 6.7035
100 5.2557 5.2089 5.1857 5.8979
102 4.5679 4.4892 4.4909 5.1689
104 3.9531 3.8607 3.8741 4.5121

European put option II
State 1

S0 Y&Y MC RSMCA D&S
94 5.3588 5.3359 5.3555 3.8553
96 4.4362 4.4326 4.4308 2.9622
98 3.6452 3.6379 3.6370 2.2301
100 2.9673 2.9530 2.9650 1.6448
102 2.4135 2.4083 2.4036 1.1889
104 1.9505 1.9274 1.9395 0.8421

State 2
94 7.4447 7.3826 7.3962 8.5570
96 6.4906 6.4466 6.4392 7.5888
98 5.6344 5.5823 5.5797 6.7035
100 4.8642 4.8380 4.8133 5.8979
102 4.1924 4.1171 4.1346 5.1689
104 3.5966 3.5197 3.5370 4.5121

Table 1 shows European put option prices corresponding to different values of
the initial stock price S0, computed using the above procedure with maturity time
T = 1, strike price K = 100 and the discretization number of the underlying stock
price M = 501. Note that a ((M − 1)/2)-step trinomial tree with recombination
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also yields M different stock prices. Let m denote the number of time steps. For
ease of comparison, we assume m = (M −1)/2 in Table 1. The function δ(M) is set

to be ln(ln(M)). The transition rate matrices used in Table 1 are

(
−0.5 0.5
0.5 −0.5

)
and

(
−1 1
1 −1

)
.

The prices of the European put option I are calculated under the assumption that

the transition rate matrix is

(
−0.5 0.5
0.5 −0.5

)
, while the prices of the European

put option II are calculated under the assumption that the transition rate matrix

is

(
−1 1
1 −1

)
. We consider the following vectors for the values of the risk-free

interest rate and the volatility, respectively:

r = (0.06, 0.04)′ , σ = (0.1, 0.2)′ .

As indicated in Table 1, the option prices calculated by applying the Markov chain
approximation method are close to those obtained from the trinomial tree method
in Yuen and Yang [28] and the Monte Carlo method. For the same level of the
initial stock price, the option prices in State 1 are systematically lower than those
in State 2 using all three methods. This makes intuitive sense. In State 1 (‘Good’
economy), the interest rate is higher and the volatility is lower, when comparing
with State 2 (‘Bad’ economy). Consequently, it is not unreasonable that the op-
tion prices in State 1 are lower than the corresponding prices in State 2 since an
additional amount of risk premium is required to compensate for a ‘Bad’ economic
condition. On the other hand, using the Markov chain approximation method, the
option prices calculated under the RSMCA model are higher than the correspond-
ing prices obtained under the D&S model in State 1, but are lower than the prices
obtained using the D&S model in State 2. Under the D&S model, the option prices
obtained in State 1 are lower than those in State 2 with the same initial stock price.
Consequently, in the RSMCA model, when the impact of the transition between
the two states is incorporated, the option prices obtained under the RSMCA model
are higher than those under the D&S model in State 1, while are lower in State
2. For the above two hypothetical data sets, the option prices of the European put
option I are smaller than those of the European put option II in State 1, while the
prices of European put option I are higher than those of the European put option II
in State 2. This is consistent with the results in Yuen and Yang [28] and the Monte
Carlo method. One possible explanation for the results is that the larger a is, the
more volatile the economy is. In other words, the probability of the transition of
the economy from one state to another increases with a, leading to the results in
Table 1.

From Table 2 and Table 3, we see that the convergence rate of the European put
options is fast across different initial stock prices and maturities. The convergence
analysis of European call options, American put options and American call options
can be done similarly. Here, the number of time steps is assumed equal to the
number of days to maturity. To investigate the convergence rate of the Markov chain
approximation method, we assumed a pair of larger volatilities as σ = (0.25, 0.35)′

in Table 2 and Table 3, while the transition rate matrix is

(
−0.5 0.5
0.5 −0.5

)
. As

indicated in Table 2 and Table 3, the convergence rates are fast and the computation
times sound reasonable.
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Table 2. European put option prices with different S0 and M

S0 80 90 100 110 120
State 1
M = 501 18.3466 12.3093 7.9112 4.9131 2.9729
M = 1001 18.3490 12.3088 7.9100 4.9135 2.9754
M = 2001 18.3517 12.3110 7.9124 4.9160 2.9793
M = 3001 18.3531 12.3123 7.9138 4.9177 2.9812
M = 4001 18.3539 12.3132 7.9147 4.9187 2.9824

State 2
M = 501 21.0190 15.2373 10.7887 7.4922 5.1180
M = 1001 21.0511 15.2715 10.8261 7.5383 5.1642
M = 2001 21.0722 15.2947 10.8518 7.5620 5.1954
M = 3001 21.0810 15.3046 10.8627 7.5740 5.2086
M = 4001 21.0861 15.3103 10.8690 7.5810 5.2162

Table 3. European put option prices with different T and M

T 10/365 30/365 60/365 90/365 270/365
State 1
M = 501 1.4952 2.5943 3.5909 4.3176 6.9768
M = 601 1.4953 2.5945 3.5912 4.3180 6.9765
M = 701 1.4954 2.5947 3.5915 4.3183 6.9765
M = 801 1.4954 2.5949 3.5918 4.3186 6.9766
M = 901 1.4955 2.5950 3.5920 4.3189 6.9769
M = 1001 1.4955 2.5951 3.5921 4.3191 6.9772

State 2
M = 501 2.1162 3.6942 5.1303 6.1660 9.6946
M = 601 2.1186 3.6998 5.1384 6.1756 9.7064
M = 701 2.1204 3.7040 5.1446 6.1828 9.7154
M = 801 2.1218 3.7073 5.1494 6.1886 9.7226
M = 901 2.1230 3.7100 5.1534 6.1932 9.7285
M = 1001 2.1239 3.7123 5.1567 6.1971 9.7334

Table 4 gives the prices of American put options, assuming the transition rate

matrix is

(
−0.5 0.5
0.5 −0.5

)
. When compared with the prices of European put option

I in Table 1, the prices of the American put option are higher than the corresponding
prices of the European put option. A possible explanation is that there exist possible
scenarios leading to an early exercise of the American put option.

Table 5 illustrates the valuation of an up-and-out barrier put option. Here, Diff
represents the difference between the option prices computed with various discretiza-
tion numbers of the underlying stock prices. Seen from Table 1 and Table 5, under
the assumption that the barrier level is set as 120, the prices of the up-and-out
barrier put option are lower than those of the corresponding European put option
in both states when S0 = 100. On the other hand, the differences of the up-and-out
put option prices between the two states are smaller than those of the European
put option prices. These make intuitive sense. When compared with the European
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Table 4. American put option prices calculated using different methods

State 1 State 2
S0 Y&Y RSMCA D&S Y&Y RSMCA D&S
94 6.5096 6.5151 6.0105 8.5086 8.5068 9.3308
96 5.2366 5.2439 4.3827 7.3667 7.3647 8.2550
98 4.2070 4.2112 3.1553 6.3519 6.3488 7.2788
100 3.3670 3.3738 2.2403 5.4520 5.4517 6.3970
102 2.6947 2.6972 1.5674 4.6677 4.6648 5.6040
104 2.1517 2.1527 1.0798 3.9818 3.9785 4.8937

put option, the price of a barrier option should be lower due to the presence of
the up-and-out barrier. For state 2, although the higher volatility may lead to a
potential higher payoff at expiration, the higher volatility may also lead to higher
probability to hit the up-and-out barrier. Consequently, the difference between the
prices of the up-and-out barrier put option in the two states will be smaller. It is
worth noting that the convergence rate is reasonably fast. This may be desirable
from the practical perspective.

Table 5. Prices of the up-and-out barrier put option

State 1 State 2
M Price Diff Price Diff
101 2.4683 -0.0026 4.9941 0.0566
501 2.4657 -0.0014 5.0507 0.0113
1001 2.4643 -0.0009 5.0620 0.0079
2001 2.4634 -0.0004 5.0699 0.0033
3001 2.4630 -0.0002 5.0732 0.0018
4001 2.4628 -0.0002 5.0750 0.0012
5001 2.4626 5.0762

Finally, we provide an empirical study based on market prices of S&P 500 index
options. For simplicity, we use the European-style option prices to illustrate the
implementation of the method. The dataset includes European-style option prices
written on the S&P 500 index for seven consecutive trading days from 1 October
2012 to 9 October 2012, obtained from the Datastream Database of Reuters. For
each trading day, there are 13 strikes ranging from 1300 to 1600. The in-sample
dataset consists of the option prices from 1 October 2012 to 5 October 2012 and the
out-of-sample dataset consists of the rest option prices on 8 October 2012 to 9 Oc-
tober 2012. To calibrate model parameters, we adopt the method of nonlinear least
squares using the in-sample dataset. We denote the regime-switching model and
the model without regime-switching as the RSMCA model and the D&S model,
respectively. Then, we illustrate how the RSMCA model might improve the per-
formance of the D&S model based on the market data. Table 6 reports the the root
mean square error (RMSE) for in-sample fitting errors and out-of-sample prediction
errors of both the RSMCA model and the D&S model. As indicated in Table 6,
the RSMCA model has lower RMSEs for both fitting and prediction errors than the
D&S model. This provides some evidence that the RSMCA model may improve
the performance of the D&S model.
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Table 6. In-sample fitting errors and out-of-sample prediction errors

Errors RSMCA model D&S model
In-sample 0.3594% 0.3789%

Out-of-sample 0.6194% 0.6685%

5. Conclusion. We investigated option valuation under the regime-switching
model using the Markov chain approximation method. This method is intuitive
and easy to implement. It may be applied to various pricing problems. We con-
sidered here two Markov chains, namely the modulating Markov chain and the
approximating Markov chain. The states of the former one represent the states of
an economy. When the economic condition changes, the state of the modulating
Markov chain also changes. Consequently, the model can incorporate the impacts
of economic conditions. Using the Markov chain approximation method, we numer-
ically implemented the valuation of European put options, American put options
and up-and-out barrier put options. Numerical examples and empirical analysis
illustrated the impacts of regime-switching on option prices.
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