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Abstract. The classical analysis of asymptotical and exponential stability of

neural networks needs assumptions on the existence of a positive Lyapunov
function V and on the strict negativity of the function dV/dt, which often

come as a result of boundedness or uniformly almost periodicity of the activa-

tion functions. In this paper, we investigate the asymptotical stability prob-
lem of Hopfield neural networks with time delays under weaker conditions. By

constructing a suitable Lyapunov function, sufficient conditions are derived to

guarantee global asymptotical stability and exponential stability of the equi-
librium of the system. These conditions do not require the strict negativity
of dV/dt, nor do they require that the activation functions to be bounded or

uniformly almost periodic.

1. Introduction. Hopfield neural networks were introduced in 1984 [11], they have
been successfully applied to many disciplines such as combinatorial optimization
[1, 24, 26], image processing [21, 22], pattern recognition [23], signal processing [15],
and communication [3]. Much research has been attracted to this area in the past
decades [18, 28, 29, 9, 33, 20, 32, 4, 30, 5, 6, 7, 8, 10, 13, 14, 17, 19, 25, 27, 34, 12, 31].
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Generally, a Hopfield neural network can be described by the following differential
equation

ẋ(t) = −Dx(t) +Ag(x(t)) + I, (1)

where x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ Rn is the state vector associated with
the neurons. g(x) = (g1(x1), g2(x2), · · · , gn(xn))T denotes the neuron activation, in
which gi(xi) are continuous on [0,+∞). D = diag{d1, · · · , dn}, with di > 0. The
n × n connection matrix A = (aij)n×n tells how the neurons are connected in the
network. I = (I1, · · · , In)T is the vector of constant neuron inputs.

We are concerned with the stability properties of system (1). Usually, the ap-
proaches used in the existing investigation for stability of neural networks are those
based on the Lyapunov direct method. This method requires constructing a Lya-
punov functions V (t), taking the derivative of the function, and keeping negativity
of the derivative according to the given conditions. The main difficulty for stability
analysis of neural networks comes from the nonlinearity of the activation functions
gi(i = 1, 2, · · · , n). Almost all stability analysis results are made under some special
assumptions on gi, including differentiability, boundedness, and others

In [33], Zhang obtained a weaker condition for global asymptotical stability and
exponential stability of system (1). He assumed that the activation functions gj
satisfy 0 < D+gj(s) < D+gj(0), ∀s 6= 0, j = 1, · · · , n, where D+ stands for the
upper right Dini derivative defined in Section 2.1. These activation functions may
be neither bounded nor differentiable, and it is proved that (1) is globally asymp-

totically stable and exponentially stable under V̇ (t) ≤ 0 rather than V̇ (t) < 0. In
[12], Ignatyev discussed the general form of system (1), that is ẋ(t) = f(t, x), under

the weaker condition that V̇ (t) ≤ 0, but f(t, x) and V (t) are all assumed to be
uniformly almost periodic in t.

In practice, due to finite switching speed of amplifiers and communication speed
between the neurons, time delays are inevitably encountered in the electronic imple-
mentations of neural networks. Time delays can change the dynamics of a network,
such as inducing a network to exhibit oscillations or other unstable behaviours [2].
Since the existence of time delays is often a source of instability of neural networks,
considerable efforts have been focused on the stability analysis of neural networks
with time delays. A variety of results on global asymptotical stability and global
exponential stability have been proposed in [20, 32, 4, 30, 5, 6, 7, 8, 10, 13, 14, 34].
One of the most common models of the neural networks with time delays can be
presented below in (2).

Motivated by the above considerations, in this paper, we will further investigate
the global asymptotical stability and exponential stability for the following Hopfield
neural networks with time delays

ẋ(t) = −Dx(t) +Ag(x(t)) +Bg(x(t− τ(t))) + I, (2)

under a weak condition, where B = (bij)n×n with the constants bij denoting the
delayed connection weights, g(x(t−τ(t))) = (g1(x1(t−τ1(t))), · · · , gn(xn(t−τn(t)))),
τi(t) is the discrete time delay of ith neuron at time t, and satisfies 0 ≤ τi(t) ≤ τi,
τ̇i(t) ≤ τ∗i ≤ 1, i = 1, · · · , n, and the other parameters are the same as those in (1).

In [16], Lao et al investigated the exponential stability and estimated the ex-
ponential convergence rates for (2) with constant or time-varying delays. Their
conditions require that the activation functions must be bounded. In this paper,
we remove the restriction and do not require that the activation functions to be
bounded or uniformly almost periodic.
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2. Preliminaries.

2.1. Definitions and assumptions. We need to make some definitions and as-
sumptions. We define the upper right Dini derivative as follows.

For any continuous function f : R→ R, the upper right Dini derivative is defined
as

D+f(t) = lim
∆t→0+

sup
f(t+ ∆t)− f(t)

∆t
.

We assume that the continuous activation functions gi in (2) satisfy the following
conditions for all j = 1, · · · , n,

0 <
gi(z2)− gi(z1)

z2 − z1
≤ D+gj(0) (z1 6= z2, j = 1, · · · , n). (3)

Thus,
0 < D+gj(s) < D+gj(0) (∀s 6= 0, j = 1, · · · , n). (4)

Since the activation function of (2) satisfies the Lipschitz conditions (3), by using
the Brouwer’s fixed-point theorem, it can be easily proven that there exists one
equilibrium point for (2), this result can be seen in many literature [20, 32, 4, 30,
5, 6]. Assume that x∗ = (x∗1, · · · , x∗n)T is an equilibrium point of (2) and use the
transformation y(t) = x(t)− x∗, (2) can be rewritten as the following system:

ẏ(t) = −Dy(t) +Af(y(t)) +Bf(y(t− τ(t))), (5)

where f(y) = g(y+x∗)− g(x∗). Obviously, f(0) = 0, and each component fj of the
vector function f(y) = (f1(y1), · · · , fn(yn))T satisfies (3) and (4), that is

0 <
fi(z2)− fi(z1)

z2 − z1
≤ D+gj(0) (j = 1, · · · , n), (6)

0 < D+fj(s) < D+gj(0) (j = 1, · · · , n). (7)

2.2. Notations. For the sake of convenience, we make use of the following nota-
tions:

(I) η1 = y(t), η2 = f(y(t)), η3 = f(y(t− τ(t)));
(II) Gi = D+gi(0), G = Diag{Gi}, G∗ = max{Gi}, where i = 1, · · · , n; τ∗ =

max{τ∗1 , · · · , τ∗n};
(III) ‖y(t)‖ =

√
y2

1(t) + y2
2(t) + · · ·+ y2

n(t);
(IV) The superscript T denotes the matrix transpose and the notation X ≥ Y

(respectively, X > Y ), where X and Y are symmetric matrices, means that
X − Y is positive semi-definite (respectively, positive definite). Diag{· · · }
denotes the block diagonal matrix. E denotes the identity matrix.

By using (I), system (5) can be rewritten as

ẏ(t) = −Dη1 +Aη2 +Bη3. (8)

2.3. Necessary lemmas. A very useful tool is the so-called Schur complementary
lemma as follows.

Lemma 2.1 (Schur complement [34]). Let S be a symmetric matrix given by

S =

[
A B
BT C

]
,

where both A, and C are symmetric. Assume that C is positive definite. Then the
following properties are equivalent:
(a) S is positive semi-definite.
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(b) The Schur complement of C in S, defined as the matrix A−BC−1BT , is positive
semi-definite.

3. Main results. In this section, we will establish some sufficient conditions of
global asymptotical stability and exponential stability for system (2) under a weak
condition.

Theorem 3.1. Suppose that the activation function f(y) of system (5) satisfies (6).
If 2DG−1−A−AT −E− (1− τ∗)−1BBT is positive semi-definite, then system (5)
is globally asymptotically stable and exponentially stable.

Proof. We define the following Lyapunov functional candidate for system (5)

V (t) = 2

n∑
i=1

∫ yi(t)

0

fi(s)ds+

n∑
i=1

∫ t

t−τi(t)
f2
i (yi(s))ds, (9)

Obviously, V (t) is radially unbounded. By (7), we see that V (t) ≥ 0 for all t, and
V (t) = 0 for a certain t if and only if y(t) = 0.

Using (6), we obtain

0 <
fi(yi(t))

yi(t)
≤ Gi,

⇒0 < fi(yi(t))fi(yi(t)) ≤ Giyi(t)fi(yi(t)),

⇒fi(yi(t))yi(t) ≥
1

Gi
fi(yi(t))fi(yi(t)).

Noting that di > 0 (i = 1, 2, · · · , n), and G = Diag{Gi} (i = 1, 2, · · · , n), we have

−fT (y(t))Dy(t) =−
n∑
i=1

fi(yi(t))diyi(t)

≤−
n∑
i=1

fi(yi(t))
di
Gi
fi(yi(t))

=− fT (y(t))DG−1f(y(t)).

(10)

It follows from (I) that (10) can be rewritten in the form of

−ηT2 Dη1 ≤ −ηT2 DG−1η2.

Then, differentiating both sides of (9), and using notation (I), we can get

V̇ (t) =2fT (y(t))ẏ(t) + fT (y(t))f(y(t))−
n∑
i=1

(1− τ̇i(t))f2
i (yi(t− τi(t)))

≤2ηT2 (−Dη1 +Aη2 +Bη3) + ηT2 η2 + (τ∗ − 1)ηT3 η3

=− 2ηT2 Dη1 + 2ηT2 Aη2 + 2ηT2 Bη3 + ηT2 η2 + (τ∗ − 1)ηT3 η3

≤− 2ηT2 DG
−1η2 + 2ηT2 Aη2 + 2ηT2 Bη3 + ηT2 η2 + (τ∗ − 1)ηT3 η3

=ηT2 (−2DG−1)η2 + (ηT2 Aη2 + ηT2 A
T η2)

+ (ηT2 Bη3 + ηT3 B
T η2) + ηT2 η2 + (τ∗ − 1)ηT3 η3

=ηT2 (−2DG−1 +A+AT + E)η2 + ηT2 Bη3 + ηT3 B
T η2 + (τ∗ − 1)ηT3 η3

=
(
ηT2 ηT3

) [−2DG−1 +A+AT + E B
BT (τ∗ − 1)E

](
η2

η3

)
≤ 0.

(11)
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The last inequality above is due to the facts that (τ∗ − 1)E is positive definite,
2DG−1 − A− AT − E − (1− τ∗)−1BBT is positive semidefinite, and according to
the Schur complementary lemma (Lemma 2.1), we have[

2DG−1 −A−AT − E −B
−BT (1− τ∗)E

]
≥ 0 (12)

that is [
−2DG−1 +A+AT + E B

BT (τ∗ − 1)E

]
≤ 0.

Therefore, V̇ (t) ≤ 0, and V (t) is a decreasing function. In addition, V (t) ≥ 0, so
V ∗ = lim

t→0
V (t) exist and V ∗ ≥ 0.

Next, we prove that V ∗ = 0 by contradiction. If V ∗ 6= 0, we assume that V ∗ > 0.
Then there must be a t1 > 0 such that V (t) ≥ V ∗/2 for all t ≥ t1. According
to the definition of V (t), there is a constant δ1 > 0, such that ‖y(t)‖ ≥ δ1, i.e.,√
y2

1(t) + y2
2(t) + · · ·+ y2

n(t) ≥ δ1, for t ≥ t1; Let N = δ1/
√
n, then, for each fixed

t ≥ t1, there must be a yq(t) ∈ {y1(t), y2(t), · · · , yn(t)} such that yq(t) ≥ N , all this
”q” compose a new sequence {n1, n2, · · · , nr}. On the other hand, because lim

t→0
V (t)

exists, we get that each of yj(t) in {y1(t), y2(t), · · · , yn(t)} is bounded, that is

|yj(t)| ≤M, ∀t ≥ t1, j = 1, · · · , n, (13)

in which the constant M > δ1. On the other hand, if (13) is not true, without loss
of generality, we assume that there exists an increasing sequence {αi}, with αi ≥ t1,
and αi → +∞, such that y1(αi) → +∞. Then, there exists an integer p > 0, such
that y1(αi) > 0 for i > p. Because f1(y1(αp)) > 0, we see that

V (y(αi)) ≥
∫ y1(αi)

y1(αp)

f1(y1(αp)) ≥ f1(y1(αp))(y1(αi)− y1(αp))→ +∞, as i→ +∞.

Thus, lim
t→0

V (t) exists, which causes a contradiction. Hence (13) is true.

From (11), for each fixed t ≥ t1, we have

V̇ (t) =fT (y(t))D(−2y(t) + 2G−1f(y(t)))

−
(
ηT2 ηT3

) [2DG−1 −A−AT − E −B
−BT −(τ∗ − 1)E

](
η2

η3

)
=− 2

n∑
i=1

fi(yi(t))di

[
1− 1

Gi

fi(yi(t))

yi(t)

]
yi(t)

−
(
ηT2 ηT3

) [2DG−1 −A−AT − E −B
−BT −(τ∗ − 1)E

](
η2

η3

)
≤− 2fq(yq(t))dq

[
1− 1

Gq

fq(yq(t))

yq(t)

]
yq(t)

≤− 2dq

[
1− 1

Gq

fq(yq(t))

yq(t)

]
(fq(yq(t)))

2

Gq

=− 2dq

[
1− 1

Gq

fq(yq(t))

yq(t)

]
(fq(yq(t)))

2

Gq

According to (7) and the conditions of theorem, we note that fi(yi)yi ≥ 0, 1 −
G−1
j fj(yi)/yj ≥ 0, and 2DG−1 −A−AT −E − (1− τ∗)−1BBT ≥ 0. Since fq is an

increasing and continuous function and satisfies fq(0) = 0, consider |yq(t)| ≥ N , we
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can see that |fq(yq(t))| ≥ min{fq(N),−fq(−N)}. Let bq = min{fq(N),−fq(−N)},
and b = min{bj : j = 1, · · · , n}. Obviously bq > 0 and b > 0. Therefore |fq(yq(t))| ≥
b. Using (7), we have

Bj = max{fj(s)/s : N ≤ |s| ≤M} < Gj , j = 1, · · · , n.

Then consider |yj(t)| ≤ M, ∀t ≥ t1, j = 1, · · · , n, and |yq(t)| ≥ N , for each fixed

t ≥ t1, we have fq(yq(t))/yq(t) ≤ Bq. Let Λq = 2dq

[
1− Bq

Gq

]
b2

Gq
, obviously Λq > 0,

therefore

V̇ (t) ≤ −2dq

[
1− 1

Gq

fq(yq(t))

yq(t)

]
(fq(yq(t)))

2

Gq
≤ −2dq

[
1− Bq

Gq

]
b2

Gq
= −Λq.

Let Λ = min{Λq : q = n1, n2, · · · , nr}, then we have

V̇ (t) ≤ −Λ. (14)

By taking the indefinite integral of both sides of (14) from t1 to t, we have: V (t) ≤
V (t1) − Λ ∗ (t − t1). When t is sufficiently large, we see that V (t) < 0. This is a
contradiction to V (t) > 0. Therefore, this further implies that y(t)→ 0 as t→ +∞.
Hence, system (5) is asymptotically stable, and this also implies that the system
(2) is asymptotically stable at x∗.

Next, we will show the exponential stability of system (5).
According to the above analysis, (2) is globally asymptotically stable at x∗ =

(x∗1, x
∗
2, · · · , x∗n), we suppose that x∗j 6= 0.

By (7), 0 < fj(s)/s < Gi, for s 6= 0, j = 1, · · · , n, where Gi = D+gj(0), and
continuity of fj , we see that there is a constant 0 < εj < 1, such that fj(s)/s ≤ G∗j <
Gi, in which G∗j = εjGi. Let ξ = max{ε1, ε2, · · · , εn}, we can see that 0 < ξ < 1,
and G∗j ≤ ξGi. Therefore, 0 ≤ |fj(yj(t))| ≤ ξGi|yj(t)|, 0 < |fj(yj(t))fj(yj(t))| ≤
ξGi|yj(t)fj(yj(t))|.

From (7), it is easy to know that the signs of fj(yj(t)) and yj(t) are the same
(both positive, or both negative). So we have

fj(yj(t))djyj(t) ≥
dj
ξGi

fj(yj(t))fj(yj(t))

By (12), we see that

[
2DG−1 −A−AT − E −B

−BT −(τ∗ − 1)E

]
≥ 0, therefore

V̇ (t) =fT (y(t))D(−2y(t) + 2G−1f(y(t)))

−
(
However, ηT2 ηT3

) [2DG−1 −A−AT − E −B
−BT −(τ∗ − 1)E

](
η2

η3

)
≤− 2

n∑
i=1

difi(yi(t))yi(t) + 2f(y(t))TDG−1f(y(t))

≤− 2

n∑
i=1

di
ξGi

fi(yi(t))fi(yi(t)) + 2f(y(t))TDG−1f(y(t))

=− 2ξ−1f(y(t))TDG−1f(y(t)) + 2f(y(t))TDG−1f(y(t))

=− 2(ξ−1 − 1)f(y(t))TDG−1f(y(t))

≤− 2(ξ−1 − 1) min
j=1,··· ,n

{djG−1
j }f(y(t))T f(y(t))

=− αf(y(t))T f(y(t)),

(15)
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where α = 2(ξ−1 − 1) min
j=1,··· ,n

{djG−1
j }.

Figure 1. Schematic diagram of global asymptotical stability of
a one-dimensional system

Because of global asymptotical stability of system (2) (a one-dimensional diagram
shown in Figure 1), for a given σ1j > 0, there is a constant t1j > 0, such that
|yj(t)| ≤ σ1j , i.e. −σ1j ≤ yj(t) ≤ σ1j , for t ≥ t1j , where yj(t) = xj(t) − x∗j . Since
fj is increasing, j = 1, · · · , n, we can see that fj(−σ1j) ≤ fj(yj(t)) ≤ fj(σ1j),
for t ≥ t1j . Let Mj = max{|fj(−σ1j)|, fj(σ1j)}, we have 0 < |fj(yj(t))| ≤ Mj or
0 < (fj(yj(t)))

2 ≤M2
j . Let t1 = max{t1j}, M∗ = max{Mj}, j = 1, · · · , n, we have

0 < (fj(yj(t)))
2 ≤M∗, as t > t1.

On the other hand, according to the definition of V (t), there is a σ2j > 0,
corresponds to a t2j > 0, such that yj(t) ≥ σ2j > 0, as t ≥ t2j . Because fj is
increasing, we have fj(yj(t)) ≥ fj(σ2j) > 0, (fj(yj(t)))

2 ≥ (fj(σ2j))
2 > 0, for all

t ≥ t2j . Let t2 = max{t2j}, m∗ = min{(fj(σ2j))
2}, j = 1, · · · , n, t0 = max{t1, t2},

we see that 0 < m∗ ≤ (fj(yj(t)))
2 ≤M∗, for all t > t0.

Since fi(yi(t)) are continuous on closed interval [t−τ, t], according to the definite
integral mean value theorem, there must be a T ∈ [t− τ, t], such that∫ t

t−τ(t)

f2
j (yj(s))ds = f2

j (yj(T ))τ(t) ≤ M∗

m∗
f2
j (yj(t))τ(t) ≤ βf2

j (yj(t))τ,

where β = M∗

m∗ , and t > t0. Therefore

V (t) ≤2

n∑
j=1

fj(yj(t))yj(t) +

n∑
i=1

∫ t

t−τ(t)

f2
i (yi(s))ds

≤2ξ−1fT (y(t))f(y(t)) +

n∑
i=1

βf2
i (yi(t))τ(t)

≤2ξ−1fT (y(t))f(y(t)) + βfT (y(t))f(y(t))τ

=(2ξ−1 + βτ)fT (y(t))f(y(t)), for ∀t ≥ t0.

(16)

Since 2ξ−1 + βτ > 0, by (15) and (16), we see that

V (t) ≤ − α

2ξ−1 + βτ
V (t),

lnV (t)− lnV (t0) ≤ −λ(t− t0),

V (t) ≤ e−λ(t−t0)V (t0)
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where λ = α
2ξ−1+βτ . Applying the definition of V (t) and (15) again, we have

V (t) ≥ 2

n∑
j=1

∫ yi(t))

0

fi(s)ds ≥ 2

n∑
i=1

∫ yi(t)

0

ξsds = ξ

n∑
i=1

(yi(t))
2, ∀t ≥ t0.

Therefore

‖y(t)‖2 ≤ (ξ−1V (t0))e−λ(t−t0), ∀t ≥ t0.
This proves that system (5) is exponentially stable. This completes the proof.

4. Numerical examples. In this section, we use an example to test the validity
of our results. We consider the following two-dimensional neural network model,(

ẋ1(t)
ẋ2(t)

)
= −D

(
x1(t)
x2(t)

)
+A

(
f1(x1(t))
f2(x2(t))

)
+B

(
f1(x1(t− τ1(t)))
f2(x2(t− τ2(t)))

)
(17)

where fi(xi) = ln(1 + xi)(i = 1, 2, the same as below), and τi(t) =
1

e−t + 1
. Obvi-

ously, fi is unbounded, and satisfies (3) and (4), furthermore Gi = 1, τ∗ = 0.5. Let

Γ = 2DG−1 −A−AT −E −BBT . If we consider D =

[
1 0
0 1

]
, A =

[
0.01 0.03
0.04 0.02

]
,

B =

[
0 0.3

0.1 0

]
, then eig (Γ) =

(
0.7710
0.9690

)
, we get 2DG−1−A−AT −E−BBT > 0.

According to Theorem 3.1, the trivial solution of system (17) is globally asymp-
totically stable and exponentially stable. The system state trajectory and phase
diagram can be shown in Figure 2.

Figure 2. System (17) state trajectory and phase diagram (Γ > 0)

If we consider D =

[
5.5 0
0 5.5

]
, A =

[
1 0
0 1

]
, B =

[
2 0
0 2

]
, then Γ = 2DG−1−A−

AT − E − BBT = 0, According to the Theorem 3.1, the trivial solution of system
(17) is also globally asymptotically stable and exponentially stable. The system
state and trajectory phase diagram can be seen in Figure 3.
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Figure 3. System (17) state trajectory and phase diagram (Γ = 0)
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