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Abstract. We consider gas flow in pipeline networks governed by the isother-
mal Euler equations and introduce a new modeling of compressors in gas net-
works. Compressor units are modeled as pipe–to–pipe intersections with ad-
ditional algebraic coupling conditions for the compressor behavior. We prove
existence and uniqueness of solutions with respect to these conditions and use
the results for numerical simulation and optimization of gas networks.

1. Introduction. Recently, there has been intense research in physical phenomena
posed on networks with applications for example in traffic, gas and water flow
[6, 17, 15, 20, 21, 2, 13, 12]. This publication is concerned with the modeling,
simulation and optimization of gas networks. In particular the optimization of
gas transport in networks is an important industrial problem and has been under
investigation for several years, see [30, 4, 16, 37, 34, 31] and the publications of
the Pipeline Simulation Interest Group [29]. Models for transient flow of different
mathematical complexity have been proposed and numerical methods for simulation
and optimization have been applied, see [16, 27]. Our starting point for describing
transient gas flow is the isothermal Euler equations as e.g. in [2, 3, 31, 16, 9].
Using the properties of solutions to Riemann problems for those equations, coupling
conditions for intersections of multiple pipes have been derived and simulated [3,
28, 10, 16].

The contribution of this publication will be in the modeling, simulation and
optimization of additional compressors units: in realistic gas networks we usually
face a pressure drop along the pipes due to friction effects. To satisfy the demand
of consumers, it is necessary to compensate these losses, which is usually done by
compressors. The main objective is to drive the gas through the network and to run
compressors cost efficiently. Several approaches to this problem are already known:
most approaches deal with simplifications of the isothermal Euler equations before
modeling and optimizing the compressor run–times, e.g., see [27, 40, 14, 38] for
linear and mixed–integer models based on steady–state optimization or linearization
approaches and [16, 34] for a simplified, nonlinear approach. On the contrary,
we propose a modeling of compressors (later its optimization) based on the full
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isothermal Euler equations without linearization or steady–state assumptions. The
idea is to discuss a compressor as a special kind of pipe–to–pipe intersections. This
allows us to use the notion of 1

2
-Riemann problems [21] to define solutions for

a network problem including compressors stations. Additional conditions have to
be imposed to obtain unique solutions, as also seen in other network problems
[17, 21, 3]. For gas dynamics we obtain these conditions by applying a similar
reasoning as in the engineering community [28, 10, 37, 31, 29].

The outline of the paper is as follows: we recall the isothermal Euler equations
and its known coupling conditions for gas networks in Section 2. Next, we present
the modeling of compressors and show existence of solutions to a simple network
configuration including a controlled compressor. Finally, we present numerical re-
sults on simulation and optimization of a sample network.

2. The isothermal Euler equations as model for transient network flow.

The isothermal Euler equations are derived as simplification of the isentropic equa-
tions which in turn are derived from the Euler equations under the assumption that
the energy equation is redundant. In the isothermal Euler equations the tempera-
ture is constant and we have the pressure law

p =
zRT

Mg

ρ, (1)

where p is the pressure, z is the natural gas compressibility factor, R the universal
gas constant, T the absolute gas temperature, Mg is the gas molecular weight and
ρ the density. To keep the presentation simple but still valid for real–world gas
networks [16, 29] we additionally impose the following: there is negligible wall ex-
pansion or contraction under pressure loads; i.e. pipes have constant cross-sectional
area. All pipes have the same diameter D and the constant a2 = ZRT/Mg, i.e., the
sound speed, is the same for all pipes in the network. In all pipes we assume steady
state friction [27, 39]. The friction factor fg is calculated using Chen’s equation [5]:

1
√

fg

:= −2 log
( ε/D

3.7065
− 5.0452

NRe

log
( 1

2.8257

( ε

D

)1.1098
+

5.8506

0.8981NRe

)

)

(2)

where NRe is the Reynolds number NRe = ρuD/µ, µ the gas dynamic viscosity
and ǫ the pipeline roughness, which are again assumed to be the same for all pipes.
Finally, the equations which govern the flow inside a pipe j of the network read

∂tρj + ∂x(ρjuj) = 0, (3a)

∂t(ρjuj) + ∂x(ρju
2
j + a2ρj) = −fg

ρjuj|ρjuj |
2Dρj

. (3b)

Here, uj denotes the velocity of a gas and ρjuj is the flux in pipe j. The first equation
is the conservation of mass and the second states the conservation of moment. We
use the following notation

q := ρu, U :=

(

ρ
q

)

, F (U) :=

(

q
q2/ρ + a2ρ

)

, p(ρj) := a2ρj . (4)

Before we turn to the modeling of compressors we recall the major results of the
discussion of pipe–to–pipe intersections presented in [2, 3], see also the approaches
in the engineering community [28, 10, 16].
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As in [2] we introduce three assumptions (A1)-(A3) on possible solutions to a
network problem to be defined below.

A1 There are no vacuum states present, i.e., ρj > 0. (5)

A2 The direction of flow does not change, i.e., uj = qj/ρj ≥ 0. (6)

A3 The pressure at a pipe–to–pipe intersection is a constant. (7)

Remark 1. The condition (A3) is frequently used in the engineering literature [28]
as well as in the simplified models mentioned before [16, 27, 38]. It relies mostly on
the assumption that the velocity of the gas under consideration is small compared
with the applied pressure which is the case for most commercial gas pipelines, see
[31]. However, a realistic modeling of a pipe intersection would also have to include
further physical effects. Among them, the geometry of the fitting is believed to
have the strongest effects on the physical behavior near the fitting, see [8] for a
possible mathematical model including geometry effects. Additionally, the material
properties as well as possibly cross–section areas of connected pipes influence the
coupling conditions. Such effects have been taken into account in the engineering
literature by introducing ’minor losses’ at fittings. These losses are modeled as
pressure losses at the pipe intersection and have been listed in tables depending on
the geometry, type of gas and material properties in [10] for example.

A more mathematical discussion of different coupling conditions can be found in
[2] and in [9, 7]. In the latter references the authors replace (A3) by the following
assumption: the dynamic pressure is equal among all connected pipes, i.e., ρju

2
j +

p(ρj) = const at pipe fittings. We refer to [9] for more details and a mathematical
comparison with the assumption (A3).

Finally, a more detailed picture of the dynamics including the geometry and
properties of the pipe walls can be obtained by introducing a 2d model of the pipe
intersection.

Due to assumption (6) we model a network of pipes as a directed, finite graph
(J ,V) where in addition we may connect edges tending to infinity. Each edge j ∈ J
corresponds to a pipe. Each pipe j is modeled by an interval [xa

j , xb
j ]. For edges

ingoing or outgoing to the network we have xa
j = −∞ or xb

j = +∞, respectively.
Each vertex v ∈ V corresponds to an intersection of pipes. For a fixed vertex v ∈ V
we denote by δ−v (δ+

v ) the set of all indices of edges j ∈ J ingoing (outgoing) to
the vertex v. On each edge j ∈ J we assume that the dynamics is governed by the
isothermal Euler equations (3) for all x ∈ [xa

j , xb
j ] and t ∈ [0, T ] and supplemented

with initial data U0
j .

We give a brief summary of the coupling conditions and existence results at a
vertex v ∈ V which are already known.

First, at pipe–to–pipe intersections we couple systems of the type (3) by boundary
conditions. To this end we introduce ”intermediate” states at the vertex, similar to
[17, 21, 22, 2]. We have one intermediate state for each connecting pipe and those
states have to satisfy the coupling conditions at the vertex. To be more precise:

Definition 1. Consider a single vertex v with ingoing pipes j ∈ δ−v and outgoing
pipes j ∈ δ+

v . Assume constant initial data U0
j given on each pipe. A family of

functions (Uj)j∈δ
−

v ∪δ
+
v

is called a solution at the vertex, provided that Uj is a weak

entropic solution on the pipe j and Uj satisfies (A1)–(A2) and (for Uj sufficiently
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regular)
∑

j∈δ
−

v

qj(x
b
j−, t) =

∑

j∈δ
+
v

qj(x
a
j +, t) ∀t > 0, (8a)

p(ρj(x
b
j , t)) = p(ρj(x

a
j , t)) ∀j ∈ δ+

v , i ∈ δ−v , t > 0. (8b)

The first condition resembles Kirchoff’s law and is referred to as Rankine-Hugoniot
condition at the vertex. It imposes the conservation of mass at the intersection. The
second condition resembles the assumption (A3), i.e., (7), and has been extensively
discussed in [2, 28, 10]. For results on existence and uniqueness for pipe–to–pipe
intersections in the sense of Definition 1 we refer to [2, 3], in particular to Section 3
of [2], where the existence in the case of vertices with degree less than four has been
proven.

Second, we introduce 1
2
-Riemann problems which are the key to construct solu-

tions at pipe intersections and at compressors later on: a 1
2
-Riemann problem at

a fixed junction v ∈ V is a Riemann problem for a single pipe j as if the pipe is
extended to (−∞,∞) with initial data U0

j , Ūj ordered depending whether the pipe
is incoming or outgoing to the junction, i.e.,

∂tUj + ∂xF (Uj) = 0, (9a)

Uj(x, 0) =

{

U0
j x < xb

j

Ūj x ≥ xb
j

j ∈ δ−v , (9b)

Uj(x, 0) =

{

Ūj x > xa
j

U0
j x ≤ xa

j

j ∈ δ+
v , (9c)

Last, we recall some mathematical properties of Riemann problems for the isother-
mal Euler equations. Both characteristic families are genuine nonlinear for ρj > 0.
The eigenvalues are λ1,2

j (U) = q/ρ∓a. In a Riemann problem for piecewise constant

initial data U0
j (x) with discontinuity at x = 0 we refer to U0

j (0−) and U0
j (0+) as

left and right states, respectively. We follow the standard theory [11] and notation:
we consider the wave curves in the (ρ, q)−plane. They are connected smoothly in

Ũ up to the second derivative and sketched in Figure 1. A parametrization of the
i-shock and i-rarefaction wave curve [26] are given as follows: a point U can be
connected to Ul by a 1-(Lax-)shock, (resp. 2-(Lax-)shock) if and only if there exists
ξ such that

U = U(ξ) = Ul + ξρl

(

1
s1(ξ; Ul)

)

and ξ ≥ 0, (10a)

U = U(ξ) = Ul + ξρl

(

1
s2(ξ; Ul)

)

and ξ ∈ [−1, 0], (10b)

with shock speeds given by

s1,2(ξ; Ul) = ql/ρl ∓ a
√

1 + ξ. (11)

A parametrization of the 1-rarefaction (resp. 2-rarefaction) curve is given by

U(ξ) = ρl exp(−(ξ − ξ1)/a)

(

1
ξ + a

)

, ξ ≥ ξ1 := λ1(Ul), (12a)

U(ξ) = ρl exp((ξ − ξ2)/a)

(

1
ξ − a

)

, ξ ≥ ξ2 := λ2(Ul). (12b)
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We refer to the composition of the i-(Lax-)shock curve and the i-rarefaction wave

curve through a given (left) state Ũ shortly as i−wave curve. The 1−wave curve is
concave and intersects {(ρ, 0) : ρ > 0} exactly once. The 2−wave curve is convex
and also intersects {(ρ, 0) : ρ > 0} exactly once.

For a given state Ũ we consider the 1–wave curve through the left state Ũ in
the first quadrant of the (ρ, q)−plane. The demand function ρ → d(ρ; Ũ) is then
defined as follows: starting at (ρ, q) = (0, 0) we follow the 1–wave curve as long as

it is increasing and until we either reach the state Ũ or the turning point of the
1–wave curve. Once we reached one of these points (ρ∗, q∗) we extend the function
to ρ > ρ∗ by the constant q∗, c.f. [21, 25] in the case of scalar conservation laws.

A state U = (ρ, q) is called subsonic, iff |q/ρ| < a and supersonic iff |q/ρ| > a.
The line q = aρ in the (ρ, q)−plane is the sonic line.

1 2 3 4 5 6 7

−2

0

2

4

6

8

10

12

14

16

18

U
l

ρ

q

1−s
1−r
2−r
2−s

Figure 1. 1- and 2-wave curves through the left given state Ul.

Using the notion of supply and demand functions we obtain the following results.

Lemma 1 (Proposition 3 [2]). We consider an ingoing pipe j ∈ δ−v and a fixed and
given state U0

j =: Ul which satisfies (A1) and (A2), i.e., U0
j is such that ρ0

j > 0 and

q0
j ≥ 0. Further, we consider an arbitrary real non–negative number q∗ with

0 ≤ q∗ ≤ d(ρl; Ul). (13)

Then, there exists a unique state Ūj =: Ur satisfying (A1), (A2) and qr = q∗

such that the 1
2
-Riemann problem (9a,9b) admits a solution which is either constant

or consists of waves with negative speed only.

Lemma 2. We consider an outgoing pipe j ∈ δ+
v and a fixed given state U0

j =:
Ur satisfying (A1) and (A2). Further, we consider a arbitrary real non–negative
number q∗.

Then, there exists at least one state Ūj =: Ul satisfying (A1), (A2) and ql = q∗

and such that the 1
2
-Riemann problem (9a, 9c) admits either the constant solution

Ul ≡ Ur or consists of waves of positive speed.
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The assertion of the lemma is a consequence of the following facts: For a fixed
state Ur with qr ≥ 0 the part of the reversed 2–wave curve through Ur which belongs
to the first quadrant of the (ρ, q)−plane is monotone increasing. Furthermore, if we
connect any state Ul with ql ≥ 0 to the given state Ur (with qr ≥ 0) by a wave of
the second family only, then this wave has non–negative speed.

3. Modeling of compressors in gas networks. In real–world gas networks the
pressure along a pipe decreases due to strong friction effects [28, 37]. The purpose
of a compressor station is to increase the pressure of a gas flow q from pin to pout.
We consider centrifugal compressors which require under adiabatic conditions the
theoretical power of

P := c1qzTin

γ

γ − 1

(

(

pout

pin

)

γ−1

γ

− 1

)

, (14)

to fulfill the desired pressure increase. Here, c1 is a compressor dependent constant,
γ is the isentropic coefficient of the gas, Tin is the temperature and z = z(p, T ) is
again the compressibility factor (see American Gas Association or [37]). Usually,
the compressor is consuming fuel directly from the gas flow when operating and
hereby reducing the flow q. Moreover, a typical compressor station consists of sev-
eral compressor units accompanied by bypass valves. For a concise mathematical
treatment we simplify this situation as follows: we model the compressor station
by a single, idealized compressor with characteristic (14). Further, since the fuel
consumption is usually less than 0.5% of the gas throughput, we neglect flow re-
duction due to operating compressors. Last, we consider a constant compressibility
factor z(ρ, T ). These assumptions are as in [34, 27]. Finally, we obtain the idealized
compressor power necessary to increase the pressure from pin to pout and a flow q
as

P (pout, pin, q) := c0q

(

(

pout

pin

)

γ−1

γ

− 1

)

, (15)

for some constant c0 > 0.
In the context of our network model we treat an idealized compressor as a node

in the network and therefore as a particular case of a 1–to–1 pipe intersections.
Hence, we split the set of all vertices as V = VN ∪ VC , where VN are pipe–to–pipe
intersections and VC are nodes having degree two and representing the compressor
stations. We assume Definition (1) holds for all v ∈ VN and define for v ∈ VC :

Definition 2. Consider a single vertex v ∈ VC representing a compressor with
incoming δ−v = {1} and outgoing pipe δ+

v = {2}. Given a constant P ≥ 0 and
constant states U0

i , i = 1, 2. The functions {Ui}i=1,2 are called a solution at vertex
v ∈ VC , provided that Ui satisfies (A1)–(A2) and Ui is a weak entropic solution on
the pipe and (for Ui sufficiently regular)

q1(x
b
1, t) = q2(x

a
2 , t), (16a)

P (p(ρ2(x
a
2 , t)), p(ρ1(x

b
1, t)), q1(x

b
1, t)) = P, (16b)

holds for all t > 0.

Some remarks are in order.

Remark 2. In the case P = 0 we recover solutions in the sense of Definition (1)
and in particular hypothesis (A3): p(ρ1(x

b
v, t)) = p(ρ2(x

a
v , t)). The definition easily
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extends to the case of time–dependent power changes by replacing P by a function
t → P(t).

If we want to include flux reduction due to fuel consumption we have to modify
(16a) as follows:

q1(x
b
1, t)(1 − c3) = q2(x

a
2 , t), (17)

where c3 describes the percentage of flux used by the compressor.

Next, we prove existence and uniqueness under restrictions on the initial data.
By the same reasoning as in [17, 2] we only expect solutions in the case of a single
pipe intersection.

Recall the following properties of the 1–wave curve in the first quadrant of the
(ρ, q)−plane. Given a left state Ul with ql ≥ 0. Then, for any U on the 1–rarefaction
wave curve through Ul, the slope of the 1–rarefaction wave curve at U is equal to
λ1(U). Hence, if and only if Ul is subsonic, then we have λ1(Ul) = ql/ρl − a <
0. Therefore, for any subsonic state Ul, the demand d(ρl; Ul) exceeds ql. This is
summarized in the following lemma.

Lemma 3. Consider the 1–wave curve in the (ρ, q)−plane through a left state Ul

satisfying (A1) and (A2). Then, if and only if the state Ul is subsonic, it belongs
to the decreasing part of the 1–wave curve. In particular, d(ρl; Ul) > ql.

As a consequence of the previous lemma and Lemma 1 we obtain: given a sub-
sonic left state Ul. Then, all subsonic states Ur belonging to the 1–wave curve
through Ul can be connected to Ul by a wave of negative speed. Using Proposi-
tion 3 [2] and Lemma 2 we conclude: given a subsonic right state Ur, then all left
states which can be connected to Ur by a wave of positive speed belongs to the
reversed 2–wave curve through the right state Ur.

Now, consider a vertex v ∈ VC and subsonic initial data U0
1 ≡ U0

2 . Obviously, the
constant solution Ui(x, t) = U0

1 for i = 1, 2 is a solution in the sense of definition
(2), if P = 0. The next result is a perturbation result of this (uncontrolled) situation
and yields existence in the case P ≥ 0 but sufficiently small.

Theorem 1. Consider a vertex v ∈ VC and subsonic initial data U0
1 ≡ U0

2 satisfying
(A1) and (A2) and q0

1 6= 0. Then, for any P ≥ 0 sufficiently small, there exists a
solution Ui(x, t) i = 1, 2 in the sense of Definition 2 which is subsonic for all t > 0.
The solution is unique in this class.

Proof. In the case P = 0 the assertion is obvious. Let P > 0, set Ul := U0
1 ,

Ur := U0
2 and define κ := (γ−1)/γ. Consider the 1

2
-Riemann problems (9a,9b) and

(9a),(9c) introduced in the Section 2. Due to the previous discussion, Ū1 belongs to
the 1–wave curve through the left state U0

1 and Ū2 belongs to the reversed 2–wave
curve through the right state Ur. Since P > 0 we conclude that Ū1 belongs to the
1–rarefaction part of the 1–wave curve and Ū2 belongs to the reversed 2–shock curve
through Ur. Hence, we define for (ξ, τ) ∈ N (λ1(Ul), 0) :

ρ1(ξ) := ρl exp(−(ξ − λ1(Ul))/a), (18a)

q1(ξ) := ρl exp(−(ξ − λ1(Ul))/a)(ξ + a), (18b)

ρ2(τ) := ρr + τρr = ρl + τρl, (18c)

q2(τ) := qr + τρr(qr/ρr + a
√

1 + τ ), (18d)

F (ξ, τ) :=

[

c0q1(ξ)
((

a2ρ2(τ)
a2ρ1(ξ)

)κ

− 1
)

q1(ξ) − q2(τ)

]

(18e)
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Obviously, F (λ1(Ul), 0) = 0. For ξ ≥ λ1(Ul), τ ≥ 0, the points (ρ1(ξ), q1(ξ))
and (ρ2(τ), q2(τ)) in the ρ − q−plane belong to the 1–rarefaction and reversed
2–shock curve, respectively. Moreover, since Ul ≡ Ur satisfies (A1) we can choose
N (λ1(Ul), 0) such that F is continuously differentiable on N . Eventually, we obtain

det DF (λ1(Ul), 0) = det

(

c0κql

a
c0qlκ

ρl − ql

a
−ql − aρl

)

= −2c0κqlρl 6= 0.

Therefore, the inverse function theorem applies and F is bijective as function F :
U∗ ⊂ N (λ1(Ul), 0) → W∗ ⊂ N (0, 0). Let P be sufficiently small and set

F−1(P, 0) = (ξ∗, τ∗). (19)

It remains to verify that ξ∗ ≥ λ1(Ul) and τ∗ ≥ 0: the local Taylor expansion of F−1

yields
(

ξ∗

τ∗

)

= F−1(P, 0) =

(

λ1(Ul)
0

)

+
P

2c0κρlql

(

ql + aρl

ρl − ql/a

)

+ O(‖P‖2)

≥
(

λ1(Ul)
0

)

.

This proves, that for P sufficiently small, the preimage F−1(P, 0) corresponds to
points in the ρ − q−plane which are part of the 1–wave and 2–wave curve. We
conclude as follows: for all P sufficiently small we obtain a unique ξ∗ and τ∗ by
(19) and Ū1 = (ρ1(ξ

∗), q1(ξ
∗)) and Ū2 = (ρ2(τ

∗), q2(τ)) by (18). Then, by con-
struction the solution U1 of (9a),(9b) consists of a 1–rarefaction wave of negative
speed connecting the constant states U0

1 and Ū1. The solution U2(x, t) to (9a),(9c)
consists of a 2–shock wave of positive speed connecting Ū2 and U0

2 . Moreover, Ui is
a solution in the sense of Definition 2 since U1(x

b
1, t) = Ū1 and U2(x

a
2 , t) = Ū2 for

t > 0. �

We give an example of the states Ū1 and Ū2 in the phase space (ρ, q) in Figure 2:
the initial state is U0

1 = U0
2 = (1, 1) and we continuously increase P starting from

P = 0. The further parameters are γ = 5/3 (monoatomic gas), c0 = 1 and a = 5.
We observe that a working compressor influences the states before and after the
compressor unit. Figure 2 shows the different states Ū1 and Ū2 in the left part and
the dependence of ρ̄1, ρ̄2 and q̄ on the compressor power P in the right part of the
figure.
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Figure 2. States Ū1 (cross) and Ū2 (circle) (left) and ρ̄1, ρ̄2 and
q̄1 (right) for different values of P.
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Finally, we discuss the general case U0
1 6= U0

2 . Here, we proceed as follows: given
subsonic states U0

1 and U0
2 which satisfy (A1) and with u0

1 > 0 and u0
2 > 0. Let

P ≥ 0. Then for ‖U0
1 − U0

2 ‖ sufficiently small, there exists an intermediate state
Um = (ρm, qm) as intersection of the 1–wave curve through the left state U0

1 and the
reversed 2–wave curve through the right state U0

2 , due to general existence theory
for Riemann problems of genuine nonlinear conservation laws [11]. If Um is subsonic
and satisfies um > 0, then, we proceed similar as in the proof of Theorem 1: we
consider the function

F (ξ, τ) =

[

c0q1(ξ)
((

a2ρ2(τ)
a2ρ1(ξ)

)κ

− 1
)

q1(ξ) − q2(τ)

]

, (20)

where the functions (ρ1(ξ), q1(ξ)) and (ρ2(τ), q2(τ)) the parametrization of the 1–
wave curve through left state U0

1 , respectively the reversed 2–wave curve through
the right state U0

2 is. Due to the existence of Um, there is a unique ξm and a unique
τm, such that

(

ρm

qm

)

=

(

ρ1(ξm)
q1(ξm)

)

=

(

ρ2(τm)
q2(τm)

)

. (21)

The specific form of the functions ρ1(ξ) and q1(ξ) depend on whether Um is con-
nected to U0

1 by a 1–rarefaction wave or by a 1–shock wave. Similarly, this holds
true for ρ2(τ) and q2(τ). As in the proof of the previous theorem, we compute the
determinant of DF at the point (ξm, τm) to apply the inverse function theorem:

detDF (ξm, τm) = c0κ
qm

ρm

(

d

dτ
q2(τm)

d

dξ
ρ1(ξm) − d

dτ
ρ2(τm)

d

dξ
q1(ξm)

)

= c0κ
qm

ρm

det

(

d
dξ

ρ1(ξm) d
dτ

ρ2(τm)
d
dξ

q1(ξm) d
dτ

q2(τm)

)

Hence, detDF (ξm, τm) only vanishes, if the vectors

(

d
dξ

ρ1(ξm)
d
dξ

q1(ξm)

)

and

(

d
dτ

ρ2(τm)
d
dτ

q2(τm)

)

are linearly dependent. But this is impossible, due to the shape of the wave curves
in the ρ− q−plane and since the system (3) is strictly hyperbolic in Um. Therefore,
detDF (ξm, τm) 6= 0. We conclude now exactly as in the previous proof: there exists a
neighborhood N (τm, ξm) such that F is bijective and this yields states Ū1 and Ū2 on
the 1–wave curve through U0

1 and reversed 2–wave curve through U0
2 , respectively,

and such that (16) is satisfied. Due Lemma 1 and 2 we obtain: the solutions to the
1
2
-Riemann problems (9a,9b) (resp. (9a,9c) ) consists of waves of non–positive (resp.

non–negative) speed and satisfy U1(x
b
1, t) = Ū1 (resp. U2(x

a
2 , t) = Ū2). Hence, we

obtain a solution in the sense of Definition 2. We summarize this findings in the
following theorem.

Theorem 2. Given subsonic states U0
1 and U0

2 satisfying (A1) and u0
1, u

0
2 > 0. Let

‖U0
1 −U0

2‖ be sufficiently small, such that the point of intersection Um of the 1–wave
curve through the left state U0

1 and the reversed 2–wave curve through the right state
additionally satisfies 0 < qm/ρm < a.

Then, for any P ≥ 0 sufficiently small, there exists a solution {Ui}i=1,2 in the
sense of Definition 2.

Some remarks are in order.

Remark 3. In Lemma 2 and in the case P = 0 we obtain Ū1 = Ū2 = Um.
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The condition 0 < um ≡ qm/ρm is necessary in the case P 6= 0. Otherwise the
proof of Theorem 1 fails, since the inverse function theorem does not apply.

As simplification, the compressor has been treated as a node in the network and
therefore no friction effects apply at the compressor station.

Even so the assumption on Ui to be subsonic for all times t > 0 restricts the set of
possible solutions, it is satisfied for realistic gas network simulations, see [16, 37, 36].
Usual flow rates are of order q ≈ 105 [m3/h], the pressure in realistic networks is
p(ρ) ∈ [50, 70] [bar] and the sound speed is a = 377 [m/s]. Compressors are able
to generate pressure differences between pout − pin ∈ [0, 20] [bar]. A typical pipe
diameter is D = 1 [m]. The isentropic factor for monoatomic gas is γ = 5/3. After
normalization we obtain the usual range of values for ρj to be [0.35, 0.5] and qj ≈ 25.
The Mach number u/a is in the range of [0.132, 0.2] and hence clearly subsonic. The
normalized compressor power P/(Tinc1) ≈ O(1). Hence, the assumptions made in
Theorem 1 and Lemma 2 are not far from being realistic and satisfied in typical
applications.

4. Optimization problems and numerical results. Typically, gas suppliers
have to guarantee specific pressures at particular nodes in the network, e.g., cus-
tomers:

p(ρj(x
b
j , t)) ≥ φv(t) for v ∈ VD ⊂ VN , (22)

for some given functions φv(t) and a set of demand nodes VD. Therefore, the task is
to minimize the compressor power such that still certain pressures are delivered at
demand nodes in the network. Usually, the fuel consumption of compressor stations
is used as an objective function for the optimization problem for the compressor
power P, see [27, 16]. The fuel consumption per unit time for a single idealized
compressor can be modeled in a simplified situation by [34]

c2P, (23)

with a positive constant c2.
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Figure 3. Evolution of initial data U0
1 = [1, 1] and U0

2 = [1, 2] for
a compressor controlled pipe–to–pipe intersection with compressor
power P = 0.

Finally, we can pose the optimization problem for compressor control in a network
(J ,VN ∪ VC). Assume that each compressor v ∈ VC can be controlled individually
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Figure 4. Evolution of initial data U0
1 = [1, 1] and U0

2 = [1, 2] for
a compressor controlled pipe–to–pipe intersection with compressor
power P = 3/4.

by prescribing its power at any time t > 0 : P = Pv(t). Then, the optimization
problem reads

min
Pv(t)

∑

v∈VC

c2Pv(t) subject to (3), (8), (16) and (22). (24)

Next, we present numerical results for some sample networks and for the opti-
mization problem (24). As in Remark (3) we use the a diameter of D = 1 [m] for
each pipe in the network. For the numerical results we use a higher–order finite
volume scheme [23, 26, 33, 18]. The source term is integrated exactly after splitting
the system. In all computations we use a space discretization of 400 gridpoints in
space and a time–discretization according to the CFL condition.

Example 1. We show the influence of a compressor on the dynamic on the pipes.
Consider two connected pipes with a compressor located at x = 1 with constant
initial data U0

1 = [1, 1] and U0
2 = [1, 2] and sound speed a = 5. We neglect friction

effects in this example and set c0 = 1 and γ = 5/3. We simulation solutions in the
sense of Definition 2. We present results on the evolution of the densities ρ1,2 and
the fluxes q1,2 in the case P = 0 in Figure 3 and in the case P = 3/4 in Figure 4.
In both figures the area {(t, x) : x < 1} belongs to pipe one and {(t, x) : x > 1} to
pipe two. We observe the different shapes of the solution depending on the state
of the compressor: the additional discontinuity in the density in Figure 4 due to
the working compressor as well the additional kink in the evolution of the flux.
As expected, the flux is in all cases continuous at x = 1, due to (8) and (16),
respectively. The solution in the uncontrolled case in Figure 3 coincides with the
solution to classical Riemann problem for the isothermal Euler equations with initial
data Ul := U0

1 and Ur := U0
2 .

Example 2. We treat a simple optimization problem under realistic gas flow con-
ditions. We assume a network of two connected pipes with a compressor located
at x0 = 200[cm]. The sound speed is a = 377 [m/s]. We present results including
friction inside the pipes where the friction factor is given by equation (2). The other
parameters are γ = 5/3 and c0 = 1. We consider a steady state as an initial condition
and use the following boundary conditions. We fix a pressure of p(x, t) = 65 [bar]
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Figure 6. Iteration history for the situation of Example 2. The
pressure distribution among the pipe at time t = 1.5 s is shown for
different values of compressor powers P arising in the optimization.

at the inlet x = 0, an inflow of q(x, t) = 4 · 105 [m3/h] and the same flow rate
at x = 300[cm]. In the uncontrolled case (P = 0), we observe a constant pressure
decrease due to friction and a final pressure of about p(x = 300, t) = 35 [bar], see
Figure 5. Then, we optimize for a constant compressor power P(t) = P, such that
we deliver a pressure of p̄ = 42 [bar] at T = 1.5[s] at x = 300[cm], i.e., we solve a
problem (24) with φ(t) = χT (t) 65 [bar] and c2 = c0 = 1. We present the optimized
pressure evolution in Figure 5. We observe the discontinuity in the pressure at
x = 200[cm] due to the running compressor unit. Moreover, the compressor effects
both, the incoming and the outgoing pressure. The increase at x = 200[cm] needs
approximately 0.5[s] to influence the pressure at the boundary. In Figure 6 we
present parts of the history of the optimization: we depict the pressure evolution
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p(x, T ) at the desired time T for several choices of P occurring during the optimiza-
tion. In this case, a bisection method yields a final compressor power of P = 3.7125
within 12 iterations such that ‖p(x = 300, T )− p̄‖ ≤ 10−3.

Figure 7. Sample network with two inlets, two compressors indi-
cated as crossed circle.
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Figure 8. Uncontrolled and controlled pressure evolution at the
outlet of the last pipe.

Example 3. In the last example we investigate the network of Figure 7 with two
compressors. Initially, we assume a constant state in the network. Then, we consider
a situation of a sinodial pressure change on both inlet pipes. If both compressors are
turned off, this results in a pressure drop at the outlet (B) as depicted in Figure 8.
We reformulate the optimization problem to determine the compressor load:

min
Pv

α1

∑

v∈VC

c2P − α2

∑

v∈VD

min
t∈[0,T ]

(p(ρ(x = B, t)) − φv(t)) , (25)
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Figure 9. Contour lines of the pressure in the top row of pipes
in the non controlled (top) and optimized situation (bottom). The
pipe–to–pipe and pipe–to–compressors nodes are at x = 1/3 and
x = 2/3, respectively.

with positive weights α1,2. Depending on the objective other approaches should be
used to treat the inequality constraints, for example, log-barrier methods or SQP
approaches. For our sample problem the previous formulation combined with a
direct–search method is sufficient. The further parameters of the model problem
are α1 = 100, α2 = 1000, a = 5, c2 = c0 = 1, γ = 5/3 and φv(t) = 25. The direct–
search method terminated after 30 evaluations of the objective function with an
optimal compressor energy of P

opt
1 = 0.3 and P

opt
2 = 5 · 10−4 for the compressor

in the top and bottom row, respectively. The corresponding pressure evolution at
the demand node is also shown in Figure 8 and we observe that the constraint
(22) is satisfied. The evolution of the pressure inside the pipes in the top row is
depicted in Figure 8 for the two situations P = (0, 0) (uncontrolled) and P = Popt.
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The pipe–to–pipe and pipe–to–compressor nodes are located at x = 1/3 and x =
2/3. In the uncontrolled case we see that the sinodial pressure of the top inlet is
transported through the pipe system together with the pressure change arriving at
time t ≈ 7 from the bottom inlet. The pressure is continuous through x = 2/3
since the compressor is not working, c.f. (16). On the other hand, we observe a
discontinuous pressure in the controlled case and a far more complex wave pattern
due to the generated and interacting waves arising from both compressor stations
in the controlled case. The effects are a superposition of waves generated by the
compressors (e.g. x = 2/3, t = 0) and the inflow profiles.

We conclude with a remark on the optimization methods applied here.

Remark 4. In both examples a gradient–free method has been used to determine
the optimal compressor powers. In the first case, the optimization problem has only
one (time–independent) unknown and therefore the bisection method can be used
to efficiently solve the problem. The method can be found in standard textbooks,
e.g. [35]. In the other example we used the nonlinear, gradient free Nelder–Mead
simplex method, see [24]. This method extends the simplex algorithm to nonlinear
minimization problems. The used algorithms are limited to low–dimensional opti-
mization problems and they are in general very inefficient when applied to higher
dimensional problems. If, for example, we are interested a time–dependent com-
pressor control, then a more efficient treatment of the optimization problems using
gradient information on the cost functional is necessary. This can be achieved for
example by deriving an adjoint and sensitivity calculus for (24). Having gradient
information at hand quasi–Newton method can be used to efficiently compute the
optimal compressor loads, see again [35] for a variety of such methods. The deriva-
tion and the properties of the adjoint equations will be subject to a forthcoming
publication.

5. Conclusion. We presented a model for compressors in gas networks governed
by the isothermal Euler equations. We prove existence of solutions to compressor
controlled gas networks and implemented the derived conditions in a numerical
scheme for optimizing the compressor fuel consumption subject to pressure demands
at terminal nodes of the network. In the numerical examples, we showed, how the
compressor influences the pressure and flow dynamics in the pipe. Future work will
concentrate on the efficient treatment of the derived optimal control problem.

Acknowledgements. This work by the DFG Schwerpunktprogramm 1253 ’Op-
timization with partial differential equations’ and the Kaiserslautern Cluster of
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