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Abstract. We consider a scalar conservation law with a discontinuous flux
function. The fluxes are non-convex, have multiple points of extrema and can
have arbitrary intersections. We propose an entropy formulation based on in-

terface connections and associated jump conditions at the interface. We show
that the entropy solutions with respect to each choice of interface connection
exist and form a contractive semi-group in L

1. Existence is shown by proving
convergence of a Godunov type scheme by a suitable modification of the sin-
gular mapping approach. This extends the results of [3] to the general case of
non-convex flux geometries.

1. Introduction. We are interested in the following single conservation law in one
space dimension,

ut + (f(k(x), u))x = 0

u(0, x) = u0(x) (1)

where the flux f depends on the space variable through a coefficient k which may
be discontinuous. The simplest case of (1) is the so called “two flux” case given by

ut + (H(x)f(u) + (1 −H(x))g(u))x = 0

u(0, x) = u0(x) (2)

where f and g are Lipschitz continuous functions and H is the Heaviside function.
The analysis of (2) serves as a building block in the analysis of (1). See [5] for
details. For the rest of this paper, we consider (2).
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The conservation law (1) occurs in several models in Physics and Engineering.
In particular, it arises in two phase flow in a heterogeneous porous medium used
in petroleum reservoir simulation (See [13]), in the modeling of the ideal Clarifier
thickener unit used in waste water treatment plants and in the paper industry (See
[7, 6]), in modeling traffic flow on highways with changing surface conditions (See
[22]) and in ion etching used in the Semiconductor industry (see [23]). For detailed
account of various applications of (1), see [25].

As is standard for conservation laws, we have to look for a suitable form of weak
solutions and augment them with extra admissibility criteria or entropy conditions
for uniqueness and stability. The development of a proper entropy framework for
equations of the type (1) is a major challenge. The equations of the type (1)
have been studied extensively over the last decade from both the analytical as well
numerical point of view.

Different entropy theories have been proposed by Gimse and Risebro in [9, 10],
Diehl in [7, 8], Karlsen, Risebro and Towers in [19] and Adimurthi and Gowda in
[1] among others. Concurrently, several existence results for the entropy solutions
have been obtained in a series of papers. They use regularization of coefficients
as in [17], by explicit formulas for the corresponding Hamilton-Jacobi equations in
[1], some are based on front tracking as in [10, 15, 16] while others used numerical
schemes of the Godunov or Enquist-Osher type as in [2, 27, 28, 18, 6, 24] and of
the Lax-Friedrichs type as in [20].

More recently, the authors have embarked on a systematic study of (1), (2) in a
series of papers namely [3, 4, 5]. In these papers, a new entropy framework for (1)
is developed. This framework is based on a two-step approach. In the first step, an
interface connection is defined and is used to characterize infinite classes of entropy
solutions. Each of these classes of solutions is shown to form a stable semi-group in
L1. The existence of solutions is shown by designing Godunov type finite volume
schemes based on exact Riemann solvers and showing that they converge to the
entropy solution. In the second step, an optimization problem is defined on the set
of connections and the optimizer is defined as the optimal entropy solution.

It is now widely accepted that there is more than one valid concept of entropy
solutions for (1) depending on the Physics of the problem. These entropy solutions
correspond to different semigroups that can be characterized by different connec-
tions. The optimal entropy solutions of [3] correspond to the physically meaningful
solutions for two-phase flows in heterogeneous porous media whereas a different
semigroup (see [6]) is valid for the clarifier-thickener unit. The physical relevance
of other semigroups is not encountered so far. Thus, the above solution concept
provides flexibility in terms of incorporating different semigroups of solutions for
different physical models. The choice of the optimal entropy solution should be
based on the physics of the problem modeling higher order small scale effects.

The analysis of [3, 4] was restricted to the case where both the fluxes have at
most one extremum in the domain of definition. It is natural to ask whether the
same program as above of showing the existence and uniqueness of infinitely many
classes of stable solutions can be carried out for more general fluxes with finitely
many points of extrema in the domain of definition. Since the analysis in [3] and
[4] relied heavily on the flux geometry, it is not a priori clear whether this can
be done. The aim of this paper is to address the above question. In this paper,
we deal with fluxes f and g where both of them can have finitely many extrema
in the domain of the definition (see section 2 for detailed hypothesis). The above
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hypothesis considered is very general as regards the shape of the fluxes and their
intersection but we will concentrate on a slightly simpler class of fluxes satisfying the
hypothesis that both of them can have at most two points of extrema in the domain
of the definition. This case of fluxes is termed as the infinity flux case (see detailed
definition in section 2) and is representative of the more general flux geometries.
The reason for concentrating on this case are twofold. First, this case is a prototype
of the difficulties that have to be faced while dealing with the case of general fluxes
while at the same time, the proofs are simpler and the notation is much neater
while dealing with this case as compared to the general case. Second, in most
practical models where these equations arise, the fluxes have at most two extrema.
For example, in the water flooding model from petroleum reservoir simulation, the
fluxes f and g both have at most one maximum and in the clarifier thickener model,
the flux g can have at most one maximum and no minima whereas f can have at
most one maximum and one minimum. The only exception to our notice is while
considering ion etching (see [23]) where the fluxes can have many extrema. Due to
the above reasons, we will describe the analysis for the infinity flux case in detail
and only present the results for the general case.

f:

g:

Figure 1. possible flux shapes with arbitrary intersections

In this paper, we extend the results of [3] to the more general case and show the
wellposedness of infinite classes of entropy solutions. We show uniqueness of the
entropy solutions under general assumptions on the fluxes including fluxes violating
the “crossing condition” of [19] (see section 2). Another important feature of this
paper is the development of Godunov type schemes for the general case based on
exact solutions of the Riemann problem. We provide a convergence proof based on
a intricate modification of the singular mapping technique (it is well known that
the singular mapping approach is hard to implement on non-convex fluxes). We
organize this paper as follows - In section 2, we describe the entropy framework for
the infinity flux case and show uniqueness of entropy solutions. In section 3, we
give the Godunov type scheme for the infinity flux case. The convergence proof for
the scheme is described in Section 4. In section 5, we present the corresponding
results for a model general case.

2. Entropy framework. We start with the precise assumptions on the fluxes con-
sidered in this paper.
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Definition 1. Admissible Class of fluxes: Let I = [s, S] where −∞ < s < S < ∞
and denote the admissible class of fluxes as
F(I) = {h ∈ Lip(I) : h has finitely many points of extrema }.

For h ∈ F(I), let s = θ0h < θ1h < . . . < θkh = S be the points of extrema of h.
Define the following,

E(h) = I \ {θ0h, θ1h, . . . , θkh}
E+(h) = { closure of components of E(h) on which h is increasing }
E−(h) = { closure of components of E(h) on which h is decreasing }

N(h) = number of components of E(h)
N+(h) = number of components of E+(h)
N−(h) = number of components of E−(h)

Clearly N(h) = N+(h) +N−(h). For k ≥ 0, let

Fk(I) = {h ∈ F(I) : N(h) = k}

In [2],[3],[4], we have dealt with the case of fluxes being in F2(I). In this paper,
we will consider fluxes with more number of extrema.

Define the following,

Definition 2. Infinity Flux pair: For f, g ∈ F(I), the pair of fluxes (f, g) forms an
infinity flux pair if they satisfy the following hypothesis,

(H1): f(s) = g(s), f(S) = g(S).
(H2): f, g ∈ F3(I)

We call the above class of fluxes as the “infinity”-fluxes because in general, the
two fluxes can intersect in the interior of the domain and the graph of both fluxes
superposed on each other (see figures 2 and 3), resembles the figure of infinity. We
subdivide the infinity flux class of fluxes into the following cases,
1. under-compressive Class: In this case, (f, g) satisfies the relation the

N+(f) +N−(g) = 2

A prototypical example of this case is shown in figure 2. In this case, it is clear
that g is decreasing and f is increasing at the point of intersection in the interior.
As a result, the characteristics at the interface divege on both sides of the line
x = 0 and hence the name undercompressive is used for this class of fluxes. 2.
over-compressive Class: In this case, (f, g) satisfies the relation that

N+(f) +N−(g) ≥ 3

One example of these class of fluxes is shown in figure 3. In this case, the flux
f is decreasing and the flux g is increasing at the interior point of intersection
and the characteristics flow into the line x = 0 on both sides, hence the name
over-compressive for this class of fluxes.

The shape of fluxes which constitute infinity flux pairs is shown in figures 2 and
3. We define the weak solution of the (2) as

Definition 3. Weak Solution: - u ∈ L∞
loc(R × R+) is said to be a weak solution of

(2) if for all ϕ ∈ C∞
c (R ×R+), the following integral identity is satisfied,

∞
∫

−∞

∞
∫

0

(

u
∂ϕ

∂t
+ (H(x)f(u) + (1 −H(x))g(u))

∂ϕ

∂x

)

dxdt +

∞
∫

−∞

u0(x)ϕ(x, 0)dx = 0

(3)
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It is easy to see that u satisfies (3) if and only if in the weak sense u satisfies

ut + g(u)x = 0 x < 0, t > 0
ut + f(u)x = 0 x > 0, t > 0

(4)

and at x = 0, u satisfies Rankine-. (RH) condition, namely for almost all t

f(u+(t)) = g(u−(t)) (5)

where u+(t) = lim
x→0+

u(x, t), u−(t) = lim
x→0−

u(x, t).

Connection

Under Compressive Case
N (f) = N (g) = 1 + −

s SA A Bα1 B 1

Figure 2. Shape of fluxes in the Infinity Flux (Under-
Compressive) case.

Definition 4. Entropy-Entropy flux pair: For i = 1, 2, (ϕi, ψi) are said to be en-
tropy pairs if ϕi is a convex function on [s, S] and (ψ′

1(θ), ψ
′
2(θ)) = (ϕ′

1(θ)f
′(θ), ϕ′

2(θ)g
′(θ))

for θ ∈ [s, S].

Definition 5. Interior Entropy Condition: A function u ∈ L∞(R × R+) is said to
satisfy the interior entropy condition if it satisfies in the sense of distributions,

∂ϕ1(u)
∂t + ∂ψ1(u)

∂x ≤ 0 in x > 0, t > 0,

∂ϕ2(u)
∂t + ∂ψ2(u)

∂x ≤ 0 in x < 0, t > 0.
(6)

As in [3], we need to define a suitable concept of interface connection. This is
done below,

Definition 6. Interface connection: Let (f, g) satisfies (H1) and (H2). A pair of
vectors (A0, B0) with A0 = (A1, A2) ∈ I × I and B0 = (B1, B2) ∈ I × I is called an
interface connection vector if they satisfy the following,
1. A1, A2 ∈ E−(g), B1, B2 ∈ E+(f) and if N+(f) = 2, then B1, B2 lie in disjoint
components of E+(f) and if N−(g) = 2, then A1, A2 lie in disjoint components of
E−(g).
2. Let N+(f) + N−(g) = 2, then A1 = A2, B1 = B2 and f(B1) = g(A1). Denote
(A1, B1) = (A,B).
3. Let N+(f) +N−(g) ≥ 3, then we have to consider several sub cases,
i. N+(f) = N−(g) = 2.
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N (f) = 2, N (g) = 1+ − An
Over Compressive

Case

s SB1 A 2 2B A 1

Figure 3. Shape of fluxes in the Infinity Flux (Over-Compressive) case.

In this case, we assume that A1 ≥ θ2g, A2 ≤ θ1g and B1 ≤ θ1f , B2 ≥ θ2f and
they satisfy

|f(B1) − g(A1)| = min{|f(θ) − g(ψ)|; θ ≤ θ1f , ψ ≥ θ2g}
|f(B2) − g(A2)| = min{|f(θ) − g(ψ)|; θ ≥ θ2f , ψ ≤ θ1g}

ii. N+(f) = 1, N−(g) = 2.
In this case, we assume that A1 ≥ θ2g, A2 ≤ θ1g and B1, B2 ∈ [θ1f , θ2f ] with

B2 ≤ B1 such that the following holds,

|f(B1) − g(A1)| = min{|f(θ) − g(ψ)|;B2 ≤ θ ≤ θ2f , ψ ≥ θ2g}
|f(B2) − g(A2)| = min{|f(θ) − g(ψ)|; θ ∈ [θ1f , θ2f ],≥, ψ ≤ θ2g}

iii. N+(f) = 2, N−(g) = 1
In this case, we assume that B1 ≤ θ1f , B2 ≥ θ2f and A1, A2 ∈ [θ1g, θ2g] with

A1 ≤ A2 such that the following holds,

|f(B1) − g(A1)| = min{|f(θ) − g(ψ)|; θ ≤ θ1f , ψ ∈ [θ2g, A2]}
|f(B2) − g(A2)| = min{|f(θ) − g(ψ)|; θ ≥ θ2f , ψ ∈ [θ1g, θ2g]}

For the sake of simplicity, we make the following hypothesis on the connection
(A0, B0)
(H3): Whenever N+(f) +N−(g) ≥ 3, then for i = 1, 2

g(Ai) = f(Bi)

The hypothesisH3 is always satisfied if f([s, θ1f ])∩g([θ2g, S]) 6= Φ and g([s, θ1g])∩
f([θ2f , S]) 6= Φ. It may not be satisfied in some cases where this may not hold.

This concept of connection appears too complicated at first sight but is better
illustrated in the figures 2 and 3 where a connection in each case is given. The
interface connection is now a vector pair as compared to a scalar pair that was
used in [3]. This is on account of the number of points of extrema in the flux
geometry. The under-compressive case is special as the vector pair is reduced to
a scalar pair. Next, in order to define the interface entropy condition, we need to
define the following,
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Let f, g ∈ Lip(I) and let α, β,A,B ∈ I, then define

I(α, β,A,B) = sign(α−A)(g(α) − g(A)) − sign(β −B)(f(β) − f(B))

Definition 7. Interface Entropy condition: Let (f, g) satisfy H1 and H2. Let
(A0, B0) : A0 = (A1, A2), B0 = (B1, B2) be an interface connection vector. Let
u ∈ L∞

loc(R × R+) be such that the traces u+(t) = u(0+, t) and u−(t) = u(0−, t)
exist for a.e t > 0, then u is said to satisfy the interface entropy condition if for a.e
t > 0, i = 1, 2 , the following holds,

I(u−(t), u+(t), Ai, Bi) ≥ 0 (7)

We define the framework of entropy solutions with respect to each fixed interface
connection as follows,

Definition 8. A0B0 entropy solution: For a given interface connection vector
(A0, B0) defined as before, a function u ∈ L∞(R × R+) is defined to be an A0B0

entropy solution if the following holds,
1. u is a weak solution of (2) i.e u satisfies (3).
2. u satisfies the interior entropy solution (6) .
3. u satisfies the interface entropy condition (7) relative to the connection (A0, B0).

Hence a A0B0 entropy solution is defined for each choice of connection (A0, B0)
and we show that each of these classes of solutions are well posed. Hence, we show
the well-posedness of infinitely many stable A0B0 entropy solutions of (2) in the
infinity-flux case. We start with the stability result,

Theorem 1. For a given interface connection vector (A0, B0), Let u, v ∈ L∞(R ×
R+) be two A0B0 entropy solutions for (2) with initial data u0, v0 respectively, then
for any M ≥M = max{Lip(f), Lip(g)}, a < 0, b > 0, b− a ≥ 2Mt the function,

t 7→

b−Mt
∫

a+Mt

|u(x, t) − v(x, t)|dx

is non increasing and if u0 = v0 a.e ,then it follows that u = v a.e

Proof. The proof of this stability theorem follows like the proof of theorem (2.1) of
[3]. We need some lemmas below in the proof. The first step is to characterize the
interface entropy condition (7) which is done in the following lemma.

Lemma 1. Let (f, g) satisfy H1, H2 and the connection (A0, B0) be such that H3 is
satisfied. Let u± be such that f(u+) = g(u−) and I(u−, u+, Ai, Bi) ≥ 0 for i = 1, 2.
Then (u−, u+) satisfy the following conditions,
1. Let N+(f) = N−(g) = 1.

Let A1 ≤ θ1g, A2 ≥ θ2g and B1 ≤ θ1f , B2 ≥ θ2f be such that

g(A1) = g(A)
g(A2) = min(g(S), g(A)) if g(s) ≤ g(A)
f(B1) = f(B)
f(B2) = max(f(B), f(S)) if g(s) ≥ g(A)

let g(s) ≤ g(A), then the following holds,
(i). if u− ≤ A, then either u− = A or u− = A1

(ii). if u− > A then either g(u−) ≥ g(A) or u+ ≥ θ2f
let g(s) ≥ g(A), then
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(iii). if u+ ≤ B, then either u+ = B or u+ < B1

(iv). if u+ > B, then either f(u+) ≤ f(B) or u− ≥ θ2g.

2. Let N+(f) = N−(g) = 2
For i = 1, 2, let Ai, sg, Sg ∈ [θ1g, θ2g], Bi ∈ [θ1f , θ2f ] be such that f(Bi) = f(Bi),

g(Ai) = g(Ai), g(s) = g(sg), g(S) = g(Sg), then we have that

(i). If u+ ∈ [s,B1] either f(u+) = f(B1) or u+ < B1 and u− ∈ [sg, A1]

(ii). If u+ ∈ [B2, S], then either f(u+) = f(B2) or u+ > B2 and u− ∈ [A2, Sg].

3. Let N+(f) = 1, N−(g) = 2.
Let A1, A2 ∈ [θ1g, θ2g], B ≥ θ2f , B2 ≤ θ1f be such that for i = 1, 2, we have that

g(Ai) = g(Ai), f(Bi) = f(Bi) then the following holds,
(i). If u+ ≥ B1, then either f(u+) = f(B1) or u+ ≥ B1. Furthermore, if u+ ≥ B1,

then u− ≥ A2.
(ii). Let u+ ∈ (B2, B1) then u− ∈ (A2, A1)
(iii). Let u+ ≥ B2, then either f(u+) = f(B2) or u+ ≤ B2. Furthermore if
u+ ≤ B2 and f(u+) ≤ f(B1) then u− ≤ A1.

4.Let N+(f) = 2, N−(g) = 1.
Let B1, B2 ∈ [θ1f , θ2f ], A1 ≤ θ1g, A2 ≥ θ2g be such that for i = 1, 2, we have that

g(Ai) = g(Ai), f(Bi) = f(Bi) then the following holds,
(i). If u− ≤ A1, then either g(u−) = g(A1) or u− ≤ A1. Furthermore, if u− ≤ A1,

then u+ ≤ B2.
(ii). Let u− ∈ (A1, A2) then u+ ∈ (B1, B2)
(iii). Let u− ≥ A2, then either g(u−) = g(A2) or u− ≥ A2. Furthermore if u− ≥ A2

and g(u−) ≤ g(A1) then u+ ≥ B1

Proof. For i = 1, 2, let Ii = I(u−, u+, Ai, Bi) then from the Rankine-Hugoniot
condition (5) and the interface entropy condition (7), we have that

0 ≤ Ii = (g(u−) − g(Ai))(sign(u− −Ai) − sign(u+ −Bi))
= (f(u+) − f(Bi))(sign(u− −Ai) − sign(u+ −Bi))

We have to consider the following cases,
1. N+(f) = N−(g) = 1

Let g(s) ≤ g(A) and u− < A. If u− ≥ A1, then g(u−) > g(A) and hence I1 < 0
unless u+ < B. If u+ < B, then f(u+) ≤ f(B) = g(A) < g(u−) = f(u+) which is
a contradiction. Hence u− ≤ A1.

Let u− > A, if g(u−) < g(A), then u+ > B. By the Rankine-Hugoniot condition
(5), we have that u+ ≥ θ2f . Similarly, if g(s) ≥ g(A). This proves (1).
2. Let N+(f) = N−(g) = 2

Let u+ ≤ B1. Then if f(u+) > f(B1), we have that u+ > B1 and hence u− ≥ A1.
Therefore, f(B1) < f(u+) = g(u−) ≤ g(A1) = f(B1) which is a contradiction.
Hence f(u+) ≤ f(B) and this in turn implies that u+ ≤ B1. Let u+ > B2, then
if f(u+) < f(B2) = g(A2) ≤ g(u−) = f(u+) which is a contradiction. Hence
u+ ≥ B2 and u− ≥ A2. Again from the Rankine-Hugoniot condition (5), we have
that u− ∈ [A2, Sg] and this proves (2).
3. Let N+(f) = 1, N−(g) = 2

Let u+ > B1. Suppose f(u+) > f(B1), then from I1 > 0, we have that u− >

A1. This implies that g(u−) < g(A1) = f(B1) < f(u+) = g(u−) which is a
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contradiction. Hence u+ ≥ B1. Suppose that f(u+) ≥ f(B2), then from I2 ≥ 0, we
get that u− ≥ A2. If f(u+) < f(B2), then by the Rankine-Hugoniot condition (5)
we get that u− ≥ A2. This proves (i) of (3).

Let u+ ∈ (B2, B1). Then I1 ≥ 0 implies that u− < A1 and I2 ≥ 0 implies that
u− ≥ A2. Now from the Rankine-Hugoniot condition, we get that u− ∈ [A2, A1].
This proves (ii) of (3.).

Let u+ < B2. Suppose f(u+) < f(B2), then from I2 ≥ 0, we have that u− < A2.
Hence g(u−) > g(A2) = f(B2) > f(u+) = g(u−) which is a contradiction. Hence
u+ ≤ B2. Suppose f(u+) ≤ f(B1). Then from I1 ≥ 0, we have u− ≥ A2. This
proves (iii) thus completing the proof of 3. The proof of 4 follows in a similar way
thus completing the proof of the lemma.

The above lemma helped us to characterize the interface entropy condition. Next
we prove the crucial comparison lemma below,

Lemma 2. Let (f, g), (A0, B0) as in lemma (1). Let u±, v± ∈ I satisfy the Rank-
ine Hugoniot condition (g(u−), g(v−)) = (f(u+), f(v+)) and the interface entropy
condition (7) relative to the connection (A0, B0). Then

I(u−, u+, v−, v+) ≥ 0

Proof. From the Rankine-Hugoniot condition, we have

I0 = (g(u−) − g(v−))(sign(u− − v−) − sign(u+ − v+))
= (f(u+) − f(v+))(sign(u− − v−) − sign(u+ − v+))

From the symmetry of u±, v± in I0, without loss of generality we can assume that
g(u−) > g(v−) and hence f(u+) > f(v+). This implies that I0 ≥ 0 whenever
u− ≥ v− or u+ ≤ v+. Therefore we assume that u− < v− and u+ > v+ and show
that this case is never possible. We have to consider different cases given below,
1. Let N+(f) = N−(g) = 1

Let g(s) ≤ g(A). If u− < A, then by lemma (1), we get that u− ≤ A1. If v− ≤ A,
then g(u−) ≤ g(v−) < g(u−) which is a contradiction. Since g(v−) < g(u−) ≤ g(A)
and hence if v− ≥ A, then v+ ≥ θ2f . Since v+ < u+, therefore by the monotonicity
of f in [θ2f , S], g(v−) = f(v+) > f(u+) = g(u−) which is a contradiction.

Let u− ≥ A, hence we have that v− > A. By lemma (1), if g(v−) ≥ g(A), then
g(u−) > g(v−) ≥ g(A) and hence u− > θ2g. Since u− < v− and by monotonicity of
g in [θ2g, S], we get that g(u−) < g(v−) which is a contradiction. If g(v−) < g(A),
then v+ ≥ θ2f and hence u+ ≥ v+ ≥ θ2f . This implies that f(u+) ≤ f(v+) < f(u+)
which is a contradiction. Similar argument follows if we assume that g(s) ≥ g(A).
This proves that I0 ≥ 0 in this case.
2. Let N+(f) = N−(g) = 2

From Rankine-Hugoniot condition, f(u+) = g(u−) > g(v−) = f(v+). Let u+ ∈
[s,B1]. Since v+ < u+ and hence from (i of 2) of lemma (1), we have that v+ ≤ B1

and u−, v− ∈ [sg, A1]. By monotonicity of g in [sg, A1], it follows that g(u−) ≤
g(v−) < g(u−) which is a contradiction.

Let u+ ∈ [B1, B2), then u+ ∈ [B1, B2]. By the monotonicity of f in [B1, B2], we
get that f(v+) > f(u+) > f(v+) which is a contradiction.

If v+ < B1, then v− ∈ [sg, A1] and u− < v−. Hence g(u−) < g(v−) < g(u−)
which is a contradiction.

Let u+ ≥ B2, then u− ∈ [A2, Sg]. Hence g(v−) ≥ g(u−) > g(v−) which is a
contradiction. This proves that I0 ≥ 0 in this case.
3. Let N+(f) = 1, N−(g) = 2
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Let u+ ∈ [s,B2], then v+ < B2 and hence f(v+) > f(u+) > f(v+) which is a
contradiction. Let u+ ∈ (B2, B1], suppose that v+ ≤ B2, then f(v+) ≤ f(u+) ≤
f(B1) and hence from lemma (1) we get that v− < A1, u

− ∈ (A2, A2). If v+ > B2,
then v+ ∈ (B1, B2) and hence v− ∈ (A2, A2). Therefore by the monotonicity of g
in this region, we get that g(u−) < g(v−) < g(u−) which is a contradiction.

Let u+ > B1, then from lemma (1), we have that u+ ≥ B1 and A2 ≤ u− ≤
A1. Since v+ < u+, f(v+) < f(u+) and hence from lemma (1), we have that
A2 ≤ u− < v− < A1. Since f(u−) > f(v−) and hence A2 ≤ u− < v− < A2.
Therefore from the Rankine-Hugoniot condition, we get that v+ ∈ (B2, B2). Hence
I(v−, v+, A2, B2) < 0 which is a contradiction. This proves I0 ≥ 0. A similar proof
works in the case where N+(f) = 2, N−(g) = 1. This completes the proof of the
lemma (2).

The proof of theorem (1) follows exactly in the same way as the proof of theorem
(2.1) of [3] and is based on the comparison lemma (2). We omit the details of the
the proof. Thus, we have shown that for each choice of connection (A0, B0), the
corresponding A0B0-entropy solutions are stable and and are in fact L1 contractive.

Remark 1. (1). Let N+(f) = 2, N−(g) = 1, then the compatibility condition A1 ≤
A2 follows from the fact that (A1, B1) and (A2, B2) are A0B0-entropy solutions.
(2) Similarly if N+(f) = 1, N−(g) = 2, then B1 ≤ B2

Proof: As (A1, B1) and (A2, B2) are entropy solutions, this implies that 0 ≤
I(A1, B1, A2, B2) = (sign(A1 −A2)− sign(B1 −B2))(g(A1)− g(A2). Suppose that
A2 < A1, then by the flux geometry in this case, we have that I(A1, B1, A2, B2) < 0
which is a contradiction.

In this section, we have formulated the concept of interface connection and the
corresponding entropy solutions and showed that they are stable and hence unique.
Next, we will show in the remaining part of this paper that the entropy solutions
exist.

3. Godunov type numerical scheme. For a fixed interface connection vector
(A0, B0), we have shown the uniqueness and stability of the A0B0-entropy solutions.
Next, we will show that the solutions exist. We propose a Godunov type finite
volume scheme based on exact solutions of the Riemann problem associated with
(2) and show that the approximate solutions computed by the scheme converge to
an A0B0-entropy solution.

Definition 9. Godunov Numerical flux: Let h ∈ Liploc(I), then the Godunov
numerical flux (see [11]) denoted by H(a, b) is given by

H(a, b) =







min
θ∈[a,b]

h(θ) if a ≤ b

max
θ∈[b,a]

h(θ) if a ≥ b
(8)

As in [2],[3], we define an interface flux based on exact solutions of the Riemann
problem for (2). The detailed solution of the Riemann problem is similar to those
constructed in [9, 7] and is modified to take into account the new interface entropy
condition. The detailed solutions of the Riemann problem are provided in [25]. We
use them to give explicit formulas for the interface flux below,
i. Let N+(f) +N−(g) = 1
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In this case we have that A1 = A2 = A and B1 = B2 = B. the interface flux is
given by,

FA0B0(α, β) = min(G(α,A), F (S, β)) if g(s) ≤ g(A)
= max(G(α, S), F (B, β)) if g(s) ≥ g(A)

(9)

ii. N+(f) = N−(g) = 2
Let Ai, Bi, sg be as defined before. Further define,

f̃(θ) = f(B1) if θ ∈ [B1, B1]
= f(B2) if θ ∈ [B2, B2]
= f(θ) otherwise

g̃(θ) = g(A1) if θ ∈ [A1, A1]
= g(A2) if θ ∈ [A2, A2]
= g(θ) otherwise

then the interface flux is given by,

FA0B0(α, β) = max(F̃ (s, β), G̃(α, S)) if α ≤ sg
= min(F̃ (S, β), G̃(α, s)) if α ≥ sg

(10)

where G̃, F̃ are the standard Godunov fluxes corresponding to the functions g̃ and
f̃ respectively.

iii. N+(f) = 1, N−(g) = 2
Let A1, A2 ∈ [θ1g, θ2g] be such that g(Ai) = g(Ai) for i = 1, 2 and define,

g̃(θ) = g(θ) if θ ∈ [A2, A1]
= g(A1) if θ ≥ A1

= g(A2) if θ ≤ A2

then the interface flux is given by,

FA0B0(α, β) = max(min(F (B1, β), G̃(α,A1)), F (B2, β)) (11)

where G̃ is the standard Godunov flux corresponding to the function g̃.
iv. N+(f) = 2, N−(g) = 1

Let B1, B2 ∈ [θ1f , θ2f ] be such that f(Bi) = f(Bi) for i = 1, 2 and define,

f̃(θ) = f(B1) if θ ∈ [B1, B1]
= f(B2) if θ ∈ [B2, B2]
= f(θ) otherwise

then the interface flux is given by,

FA0B0(α, β) = min(max(F̃ (B1, β), G(α,A1)), G(α,A2)) (12)

where F̃ is the standard Godunov flux corresponding to the function f̃ .

Next, we describe the discretization in space and time and of the initial data as
follows,

Let h > 0 and define the space grid points xj as follows.

xj =

(

2j − 1

2

)

h for j ≥ 1, xj =

(

2j + 1

2

)

h for j ≤ −1.

For time discretization, the time step ∆t > 0 and let tn = n∆t. We also introduce
λ = ∆t

h .
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For a function u0 ∈ L∞(R) we define

u0
j+1 = 1

h

xj+3/2
∫

xj+1/2

u0(x)dx if j ≥ 0, u0
j−1 = 1

h

xj−1/2
∫

xj−3/2

u0(x)dx if j ≤ 0

Nh
A0B0

(f, g, {u0
i }) =

∑

i≤−2

|G(u0
i , u

0
i+1) −G(u0

i−1, u
0
i )|

+
∑

i≥1

|F (u0
i , u

0
i+1) − F (u0

i−1, u
0
i )|

+|FA0B0(u
0
−1, u

0
1) −G(u0

−2, u
0
−1)|

+|F (u0
1, u

0
2) − FA0B0(u

0
−1, u

0
1)|

NA0B0(f, g, u0) = sup
h>0

Nh
A0B0

(f, g, u0
i ) (13)

It is easy to see that if u0 ∈ BV (R), then NA0B0(f, g, u0) ≤ C‖u0‖BV (R) where
C > 0 is a constant depending only on the Lipschitz constant of f and g. Now we
can define the Godunov type finite difference (finite volume) scheme as,

un+1
i = uni − λ(F (uni , u

n
i+1) − F (uni−1, u

n
i )) if i ≥ 2

un+1
1 = un1 − λ(F (un1 , u

n
2 ) − FA0B0(u

n
−1, u

n
1 ))

un+1
−1 = un−1 − λ(FA0B0(u

n
−1, u

n
1 ) −G(un−2, u

n
−1)),

un+1
i = uni − λ(G(uni , u

n
i+1) −G(uni−1, u

n
i )) if i ≤ −2

(14)

Observe that this is a Godunov scheme for i 6= ±1 and that for i = ±1, the
scheme is not consistent, that is in general FA0B0(u, u) need not be equal to f(u)
or g(u). Define the following approximating functions,

uh(x, t) = uni for (x, t) ∈ [xi−/2, xi+1/2) × [n∆t, (n+ 1)∆t), i 6= 0 (15)

Our aim will be to show that for each choice of interface connection vector (A,B),
the approximations uh converge to weak solution of (2) and satisfy the interior
entropy condition (6). Furthermore, for each choice of the connection, we will show
that the limit will satisfy the corresponding interface entropy condition (7).

4. Convergence analysis. The convergence analysis for the scheme (14) is very
similar to the convergence analysis of [2, 3]. We start with the following easy to
check proposition (without proof).
Proposition 4.1. Let FA0B0 be as given above and a, b ∈ [s, S], then the following
holds.
(a): FA0B0 is Lipschitz in each variable with a Lipschitz constant M which is given
by M = max( lip f, lip g).
(b) : FA0B0 is non decreasing in a and non increasing in b.
(c): FA0B0(s, s) = f(s) = g(s), FA0B0(S, S) = f(S) = g(S).
(d): FA0B0 is not consistent, i.e FA0B0(a, a) is not necessarily equal to either f(a)
or g(a)

Next, we have the following lemma

Lemma 3. Let 2λM ≤ 1 and a ∈ [s, S], we have:
1. The scheme (14) is monotone.
2. The scheme is discrete L1 contractive, i.e it satisfies,

∑

j 6=0

|un+1
j − unj | ≤

∑

j 6=0

|unj − un−1
j | (16)

3. Let u0 ∈ L∞(R, [s, S]) be the initial data and {unj } be solutions, calculated by the
scheme (14) then

s ≤ unj ≤ S ∀ j and∀n (17)
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Proof. Follows exactly as in the proof of Lemma (4.3) of [2] by using the CFL
condition and the hypothesis that the fluxes intersect at end-points.

The next step as in [2] and [3] is to obtain TV bounds in terms of a singular
mapping. It is well acknowledged in literature that the singular mapping is dif-
ficult to implement with sign changing coefficients and non-convex fluxes. Some
results in this direction were obtained by Towers in [28] for a staggered version of
the Enquist-Osher scheme by the use of discrete entropy inequalities. In [24], the
problem of sign-changing coefficients was tackled by using a combination of singu-
lar mappings instead of one singular mapping. The key point of this section is a
suitable modification of the singular mapping approach to handle the non convex
fluxes considered in this paper and for the Godunov type scheme (14). In order
to obtain bounds in terms of the flux variation, we cannot directly work with the
singular mapping defined in terms of the fluxes f and g (see [27],[2], [3]) but we need
to split the fluxes into their concave-type and convex-type parts. Then, we show
that the total variation of these modified singular mappings can be bounded by the
discrete L1 contractivity estimates. But as we are constrained to have monotone
singular mappings, we need to consider separately a residual or defect term whose
variation is then shown to be bounded by a “chain” estimate. We start by defining
the splitting of the fluxes. Note that we present the analysis in the case where the
fluxes are of the under-compressive type (see section 2 and figure 2 for definitions
and notation). We fix the interface connection vector (A0, B0) for the subsequent
presentation. We start with the splitting of the fluxes,

Definition 10. For h ∈ F3(I), let θ1h < θ2h be the interior points of extrema.
Then define,

F
+
3 (I) = {h ∈ F3(I) : θ1h is a local maximum}

F
−
3 (I) = {h ∈ F3(I) : θ1h is a local minimum}

Let h ∈ F3 and H be the standard Godunov flux corresponding to h. Split h
into three parts (h1, h2, h3) as follows,
Case 1: Let h ∈ F

+
3 (I).

Then define s, S ∈ [θ1h, θ2h] such that

h(s) = max(h(s), h(θ2h))
h(S) = min(h(S), h(θ1h))

Then define,

h1(θ) = min(H(θ, s), H(S, θ))
h2(θ) = max(H(s, θ), H(θ, S))

And h3 is given by,
(a.) Let h(s) ≥ h(S)

h3(θ) =
h(s) + h(S)

2
∀θ ∈ I

(b.) Let h(s) ≤ h(S)

h3(θ) = h(S) if θ ≤ S

= h(θ) if s ∈ [S, s]
= h(s) if θ ≥ s

Case 2: Let h ∈ F
−
3 (I).
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Then define s, S ∈ [θ1h, θ2h] such that

h(s) = min(h(s), h(θ2h))
h(S) = max(h(S), h(θ1h))

Then define,
h1(θ) = max(H(s, θ), H(θ, S))
h2(θ) = max(H(θ, s), H(S, θ))

And h3 is given by,
(a.) Let h(s) ≤ h(S)

h3(θ) =
h(s) + h(S)

2
∀θ ∈ I

(b.) Let h(s) ≥ h(S)

h3(θ) = h(S) if θ ≤ S

= h(θ) if s ∈ [S, s]
= h(s) if θ ≥ s

Observe that the split fluxes g1, f1 are of the concave type (i.e have at most one
maximum and no minima) and g2 and f2 are of the convex type (i.e have at most
one minimum and no maxima). In this case where g(s) < g(S), we end up with a
non-constant defect term g3 in g.
TV bounds: For a, b ∈ R and k ∈ Lip(I) be such that k has at most one strict
interior minimum or maximum θk. Then define a+ = max(a, 0), a− = min(a, 0), a =
a+ + a−, |a| = a+ − a− and

χ(a, b) =

{

1 ifa ≤ b,

0 ifa > b,
(18)

(i). Let θk be the strict local maximum, then

χ+(k′(θ)) =

{

1 ifθ < θk

0 ifθ ≥ θk
χ−(k′(θ)) =

{

0 ifθ < θk

1 ifθ ≥ θk
(19)

(ii.) Let θk be the strict local minimum, then

χ+(k′(θ)) =

{

1 ifθ > θk

0 ifθ ≤ θk
χ−(k′(θ)) =

{

1 ifθ < θk

0 ifθ ≥ θk
(20)

We also recall the following lemma from ([3], lemma (5.4)) below,

Lemma 4. Let {u1, u2, u3} ∈ I, k ∈ Lip(I) having at most one interior extremum
θk. Let K be the Godunov flux corresponding to k. Then we have that
Case 1. Let θk be a maximum. then,

χ(u2, u1)

∫ u1

u2

k′+(θ)dθ ≤ χ(u2, u1)(χ+(k′(u2))(K(u1, u2) − k(u2)) (21)

and if u2 ≤ θk, then k(u2) ≥ K(u2, u3).

− χ(u2, u1)

∫ u1

u2

k′−(θ)dθ ≤ χ(u2, u1)(χ−(k′(u2))(K(u1, u2) − k(u1)) (22)

and if u1 ≥ θk, then k(u1) ≥ K(u, u3) for all u ∈ I.
Case 2. Let θk be a point of minimum, then

χ(u2, u3)

∫ u3

u2

k′+(θ)dθ ≤ χ(u2, u3)(χ+(k′(u3))(k(u3) −K(u2, u3)) (23)
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and if u3 ≥ θk, then k(u3) ≤ K(u3, u) ∀ u ∈ I.

− χ(u2, u3)

∫ u3

u2

k′−(θ)dθ ≤ χ(u2, u3)(χ−(k′(u2))(k(u2) −K(u2, u3)) (24)

and if u2 ≤ θk, then k(u1) ≤ K(u1, u2).

Next, we define the singular mappings in this case. Let h ∈ F3 and (h1, h2, h3)
be the above defined splitting of the fluxes. For α ∈ I fixed, k = 1, 2, 3, define the
singular mappings ψk by

ψk(h, α, u) =

∫ u

α

|h′k(θ)|dθ

Let {vi}i∈Z ⊂ I be a sequence and define the new sequences {zk,i}i∈Z with
k = 1, 2, 3 as

zk,i = ψk(h, α, vi)

then we have the following,

Lemma 5. Let h ∈ F3(I), {vi} ⊂ I be a sequence and {zk,i} be defined as above,
then
Case 1. If h ∈ F

+
3 (I), then the following holds

1

2

−2
∑

−∞

|z1,i − z1,i+1| ≤
1

2
(z1,−1 − lim inf

l→−∞
z1,l) +

−2
∑

−∞

|H(vi, vi+1) −H(vi−1, vi)|

+ χ(v−1, v−2)χ+(h′1(v−1))(H1(v−2, v−1) − h1(v−1)) (25)

1

2

∞
∑

1

|z1,i − z1,i+1| ≤
1

2
(lim sup
l→∞

z1,l − z1,1) +

∞
∑

2

|H(vi, vi+1) −H(vi−1, vi)|

+ χ(v2, v1)χ−(h′1(v1))(H1(v1, v2) − h1(v1)) (26)

1

2

−2
∑

−∞

|z2,i − z2,i+1| ≤
1

2
(lim sup
l→−∞

z2,l − z2,−1) +

−2
∑

−∞

|H(vi, vi+1) −H(vi−1, vi)|

+ χ(v−2, v−1)χ+(h′2(v−1))(h2(v−1) −H2(v−2, v−1)) (27)

1

2

∞
∑

1

|z2,i − z2,i+1| ≤
1

2
(z2,1 − lim inf

l→∞
z2,l) +

∞
∑

2

|H(vi, vi+1) −H(vi−1, vi)|

+ χ(v−2, v−1)χ+(h′2(v1))(h2(v1) −H2(v1, v2)) (28)
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Case 2. Let h ∈ F
−
3 (I), then the following holds

1

2

−2
∑

−∞

|z1,i − z1,i+1| ≤
1

2
(lim sup
l→−∞

z1,l − z1,−1) +

−2
∑

−∞

|H(vi, vi+1) −H(vi−1, vi)|

+ χ(v−2, v−1)χ+(h′1(v−1))(h1(v−1) −H1(v−2, v−1)) (29)

1

2

∞
∑

1

|z1,i − z1,i+1| ≤
1

2
(z1,1 − lim inf

l→∞
z1,l) +

∞
∑

2

|H(vi, vi+1) −H(vi−1, vi)|

+ χ(v1, v2)χ−(h′1(v1))(h1(v1) −H1(v2, v2)) (30)

1

2

−2
∑

−∞

|z2,i − z2,i+1| ≤
1

2
(z2,−1 − lim inf

l→−∞
z2,l) +

−2
∑

−∞

|H(vi, vi+1) −H(vi−1, vi)|

+ χ(v−1, v−2)χ+(h′2(v−1))(H2(v−2, v−1) − h2(v−1)) (31)

1

2

∞
∑

1

|z2,i − z2,i+1| ≤
1

2
(lim sup
l→∞

z2,l − z2,1)) +

∞
∑

−2

|H(vi, vi+1) −H(vi−1, vi)|

+ χ(v−2, v−1)χ+(h′2(v1))(H2(v1, v2) − h2(v1)) (32)

Proof. We will prove (25) and (28) and the rest of the estimates can be proved in
a similar way. Let h ∈ F

+
3 (I), then

−2
∑

i=l

(z1,i − z1,i+1)+ +
−2
∑

i=l

(z1,i − z1,i+1)− =
−2
∑

i=l

(z1,i − z1,i+1)

= z1,l − z1,−1

hence,

−

−2
∑

i=l

(z1,i − z1,i+1)− = z1,−1 − z1,l +

−2
∑

i=l

(z1,i − z1,i+1)+

Therefore,

−2
∑

i=l

|z1,i − z1,i+1| =
−2
∑

i=l

(z1,i − z1,i+1)+ −
−2
∑

i=l

(z1,i − z1,i+1)−

= z1,−1 − z1,l + 2
−2
∑

i=l

(z1,i − z1,i+1)+

Hence

−2
∑

i=−∞

|z1,i − z1,i+1| ≤ z1,−1 − lim inf
l→−∞

z1,l + 2

−2
∑

i=l

(z1,i − z1,i+1)+

Since ψ’s are non-decreasing functions and hence (z1,i−z1,i+1)+ 6= 0 implies that
vi+1 < vi and from (21) and (22), we get that

(z1,i − z1,i+1)+ = χ(vi+1, vi)(z1,i − z1,i+1)

= χ(vi+1, vi)

∫ vi

vi+1

|h′1(θ)|dθ

= χ(vi+1, vi)

∫ vi

vi+1

h′1,+(θ)dθ −

∫ vi

vi+1

h′1,−(θ)dθ

≤ χ(vi+1, vi)(χ+(h′1(vi+1)(H1(vi, vi+1) − h1(vi+1))

+ χ−(h′1(vi)(H1(vi, vi+1) − h1(vi)) (33)
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Let S ∈ [θ1h, θ2h] be such that h(S) = min(h(θ1h), h(S)). If vi+1 ≤ θ1h, then by
the definition of h1, we get that

H1(vi, vi+1) = H(vi, vi+1)
h1(vi+1) = h(vi+1) ≥ H(vi+1, vi+2)

Therefore, we have that H1(vi, vi+1) − h1(vi+1) ≤ |H(vi, vi+1) −H(vi+1, vi+2)|.
If vi ∈ [θ1h, θ2h] and vi+1 ≥ S, then H(vi, vi+1) − h1(vi+1) = 0. Therefore let
vi+1 < S, then

H1(vi, vi+1) = h1(max(θ1h, vi+1)) = h(max(θ1h, vi+1)) = H(vi, vi+1)
h1(vi) ≥ H(vi−1, vi) if vi ≤ S

h1(vi) = h1(S) ≥ H(vi−1, vi) if vi ≥ S

Hence

H1(vi, vi+1) − h1(vi+1) ≤ |H(vi, vi+1) −H(vi−1, vi)|

and we have the following,

−2
∑

i=l

(z1,i − z1,i+1)+ ≤ χ(v−1, v−2)χ+(h′1(v−1))(H1(v−2, v−1) − h1(v−1)

+

−3
∑

−∞

χ+(h′1(vi+1))|H(vi, vi+1) −H(vi+1, vi+2)|

+

−2
∑

−∞

χ−(h′1(vi))|H(vi, vi+1) −H(vi−1, vi)|

= χ(v−1, v−2)χ+(h′1(v−1))(H1(v−2, v−1) − h1(v−1)

+

−2
∑

−∞

|H(vi, vi+1) −H(vi−1, vi)|

Combining the above with (33) leads to a proof of (25). Next we will prove (28).
We have that

l−1
∑

i=1

(z2,i − z2,i+1)+ +
i−1
∑

i=1

(z2,i − z2,i+1)− =
l−1
∑

i=1

(z2,i − z2,i+1)

= z2,1 − z2,l

hence,
l−1
∑

i=1

(z2,i − z2,i+1)+ = z2,1 − z2,l−1 −
l−1
∑

i=1

(z2,i − z2,i+1)−

Therefore,

l−1
∑

i=1

|z2,i − z2,i+1| =
l−1
∑

i=1

(z2,i − z2,i+1)+ −
l−1
∑

i=1

(z2,i − z2,i+1)−

= z2,1 − z2,l − 2
l−1
∑

i=1

(z2,i − z2,i+1)−

Hence
∞
∑

i=1

|z2,i − z2,i+1| ≤ z2,1 − lim inf
l→∞

z2,l − 2

∞
∑

i=1

(z1,i − z1,i+1)−
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Now (z2,i − z2,i+1)+ 6= 0 implies that vi+1 > vi and from (23) and (24), we get
that

− (z2,i − z2,i+1)− = χ(vi, vi+1)(z2,i − z2,i+1)

= χ(vi, vi+1)

∫ vi+1

vi

|h′2(θ)|dθ

≤ χ(vi+1, vi)(χ+(h′2(vi+1)(h2(vi+1 −H2(vi, vi+1))

+ χ−(h′2(vi)(h2(vi) −H2(vi, vi+1)) (34)

Let s ∈ [θ1h, θ2h] be such that h(s) = max(h(θ2h), h(s)). If vi+1 ≥ θ2h, then by
the definition of h2, we get that

H2(vi, vi+1) = H(vi, vi+1) if h(s) ≥ h(θ2h)
≥ H(vi, vi+1) if h(s) ≤ h(θ2h)

h2(vi+1) ≤ H(vi+1, vi+2)

Therefore, we have that h2(vi+1) −H2(vi, vi+1) ≤ |H(vi, vi+1) −H(vi+1, vi+2)|.
Let vi ≤ θ2h. If vi+1 ≤ s, then h2(vi) −H2(vi, vi+1) = 0. Therefore let vi+1 > s,
then

H2(vi, vi+1) = min
[vi,vi+1]

h2 = min
[vi,vi+1]

h = H(vi, vi+1)

h2(vi) = H(vi−1, vi) if vi−1 ≤ s

h2(vi) = h2(s) ≤ H(vi−1, vi) if vi−1 ≤ s

Hence

h2(vi) −H2(vi, vi+1) ≤ |H(vi, vi+1) −H(vi−1, vi)|

This above estimate together with (34) implies that

−
∞
∑

i=1

(z2,i − z2,i+1)− ≤ χ(v1, v2)χ−(h′2(v1))(h2(v1) −H2(v1, v2))

+
∞
∑

i=2

|H(vi, vi+1) −H(vi−1, vi)|

This together with (34) proves (28) thus completing the proof of this crucial
variation lemma.

Next we estimate the variation of the defect terms below,

Lemma 6. Let h ∈ F3(I) and {vi}i∈Z ⊂ I be a sequence then the following holds,

1

2

−2
∑

i=−∞

|z3,i − z3,i+1| ≤

−2
∑

−∞

|H(vi, vi+1) −H(vi−1, vi)| + |h(s) − h(S)| (35)

1

2

∞
∑

1

|z3,i − z3,i+1| ≤
∞
∑

2

|H(vi, vi+1) −H(vi−1, vi)| + |h(s) − h(S)| (36)

Proof. Let h ∈ F
+
3 (I) and let s, S ∈ [θ1h, θ2h] and S̃ ≤ θ1h, s̃ ≥ θ2h be such that,

h(s) = h(s̃) = max(h(s), h(θ2h))

h(S) = h(S̃) = min(h(S), h(θ1h))
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If h(s) ≥ h(S), then h3 is constant and hence the estimates (35),(36) hold trivially
in this case. Hence we assume that h(s) < h(S) and hence S < s and h3 is a non-
increasing function. Define the following sequences,

wj =

{

vj ifj ≤ −1

v−1 ifj ≥ −1
w̃j =

{

vj ifj ≥ 1

v1 ifj ≤ 1

zj = ψ3(h, α,wj) z̃j = ψ3(h, α, w̃j)

(37)

then the following holds,

−2
∑

j=−∞

|z3,j − z3,j+1| =

+∞
∑

j=−∞

(zj − zj+1)+ −

+∞
∑

j=−∞

(zj − zj+1)− (38)

∞
∑

j=1

|z3,j − z3,j+1| =
+∞
∑

j=−∞

(z̃j − z̃j+1)+ −
+∞
∑

j=−∞

(z̃j − z̃j+1)− (39)

Let wj+1 < wj and associated with this, define a non-increasing chain as follows.

Let k ≤ j + 1, k ≥ j such that c = {wj}k≤j≤k satisfies,

(i). wk ≤ wk−1 . . . ≤ wk−11 ≤ S ≤ wk−l1−1 ≤ . . . ≤ wk−l2 ≤ s̃ ≤ wk−l2+1.

(ii). wk−l2−2, . . . , wk ∈ (s̃, S].
(iii). wk < wk+1, . . . , wk−1 ≤ s̃

By construction, we have for any two chains c1 and c2 defined by k1, k1 and
k2, k2 respectively with either [k1, k1] = [k2, k2] or [k1, k1] ∩ [k2, k2] = φ. Since h3

is constant on [s, S] and [s, S] and hence if vk ≤ S or vk ≥ s, we have that

k−1
∑

j=k

|zj − zj+1| = 0

Hence we define a chain to be non-trivial if we have that
k−1
∑

j=k

|zj − zj+1| 6= 0.

Let c = {wj}
k
j=k

be a non-trivial chain. Then we have

k−1
∑

j=k

(zj − zj+1)+ =

k−l1−1
∑

j=k−l2−1

(zj − zj+1)+

= zk−l2−1 − zk−l1

= h3(wk−l1) − h3(wk−l2−1) (40)

= h3(wk−l1) − h3(wk) (41)

Since h3(wk−l2−1) = h3(wk) = h(s). As the chain is non-trivial, if wk−l1 ≥ S or

wk−l1 ≤ S ≤ wk−l1+1, from (iii) and (i), we have

h3(wk−l1 ) = max
[wk−l1

,wk−l1+1]
h3

≤ max
[wk−l1

,wk−l1+1]
h

= H(wk−l1 , wk−l1+1)

=

k−l1
∑

j=k

(H(wj , wj+1) −H(wj−1, wj)) +H(wk−1, wk) (42)
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Let k > −∞. If wk ≤ s̃, since wk−1 < wk and hence we have

h3(wk) ≥ min
[wk−1,wk]

h3 ≥ min
[wk−1,wk]

h = H(wk−1, wk)

If wk > s̃, then since wk−1 ≤ s,

h3(wk) = h(s) ≥ min
[wk−1,wk]

h ≥ H(wk−1, wk)

Let k = −∞, since the chain is non-trivial and hence ∃ wj0 in the chain such

that wj0 ≥ S. Now suppose wl ≤ s̃ for l large implies that S ≤ wj0 ≤ wj0−1 ≤
. . . ≤ wl ≤ s̃, ∀l ≥ j0. Hence for l ≥ j0 + 1, we have

H(wl−1, wl) ≤ h3(wl) (43)

If wl > s̃ for l large, then H(wl−1, wl) ≤ h(S) and

0 ≤ H(wl−1, wl) − h3(wl) ≤ h(S) − h(s) (44)

Hence from the above estimates, we have that

k−1
∑

k

(zj − zj+1)+ ≤

k−l1
∑

j=k

|H(wj , wj+1) −H(wj−1, wj)| +H(wk−1, wk) − h(wk)

≤

k−l1
∑

j=k

|H(wj , wj+1) −H(wj−1, wj)| if k > −∞

k−l1
∑

j=k

|H(wj , wj+1) −H(wj−1, wj)|

+H(S) − h(s) if k = −∞ (45)

Therefore, we have that
∞
∑

−∞

(zj − zj+1)+ =

∞
∑

i=1

∑

j∈[ki,ki−1]

(zj − zj+1)+

≤

+∞
∑

j=−∞

|H(wj , wj+1) −H(wj−1, wj)| + |h(S) − h(s)| (46)

Similarly by looking at decreasing chains we get the estimate,

−

∞
∑

−∞

(zj − zj+1)− ≤

+∞
∑

j=−∞

|H(wj , wj+1) −H(wj−1, wj)| + |h(S) − h(s)|(47)

Hence from (46) and (47), we have that

−2
∑

j=−∞

|z3,j − z3,j+1| =
+∞
∑

j=−∞

|zj − zj+1|

=
+∞
∑

j=−∞

(zj − zj+1)+ −
+∞
∑

j=−∞

(zj − zj+1)−

≤ 2
+∞
∑

j=−∞

|H(wj , wj+1) −H(wj−1, wj)| + |h(S) − h(s)|

= 2
+∞
∑

j=−∞

|H(vj , vj+1) −H(vj−1, vj)| + |h(S) − h(s)|
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This proves (35). Similar arguments for z̃ gives (36) and completes the proof of
the lemma.

Next ,we will combine the above inequalities in lemma 5 and lemma 6 to obtain
a single estimate on the left and the right. Let h ∈ F3(I),{vi}i∈Z be a sequence in
I and let {zk,i}i∈Z, k = 1, 2, 3 be as defined above, define

L1(h, v−1) =

{

1
2 (z1,−1 − z2,−1) ifh ∈ F

+
3 (I)

1
2 (z2,−1 − z1,−1) ifh ∈ F

−
3 (I)

(48)

L1(h, v−2, v−1) =



















χ(v−1, v−2)χ+(h′1(v−1)(H1(v−2, v−1) − h1(v−1))

+χ(v−2, v−1)χ+(h′2)(v−1)(h2(v−1) −H2(v−2, v−1)) ifh ∈ F
+
3 (I)

χ(v−2, v−1)χ+(h′1(v−1)(h1(v−1) −H1(v−2, v−1))

+χ(v−1, v−2)χ+(h′2(v−1)(H2(v−2, v−1) − h2(v−1)) ifh ∈ F
−
3 (I)

(49)

P−(h, {vi}) =
1

2
(max(lim sup

l→−∞

z1,l, lim sup
l→−∞

z2,l) − min(lim inf
l→−∞

z1,l, lim inf
l→−∞

z2,l)) (50)

R1(h, v1) =

{

1
2 (z2,1 − z1,1) ifh ∈ F

+
3 (I)

1
2 (z1,1 − z2,1) ifh ∈ F

−
3 (I)

(51)

R2(h, v1, v2) =



















χ(v2, v1)χ−(h′1(v1))(H1(v1, v2) − h1(v1))

+χ(v1, v2)χ−(h′2(v1))(h2(v1) −H2(v1, v2)) ifh ∈ F
+
3 (I)

χ(v1, v2)χ−(h′1(v1)(h1(v1) −H1(v1, v2))

+χ(v2, v1)χ−(h′2(v1))(H2(v1, v2) − h2(v1)) ifh ∈ F
−
3 (I)

(52)

P+(h, {vi}) =
1

2
(max(lim sup

l→∞

z1,l, lim sup
l→∞

z2,l) − min(lim inf
l→∞

z1,l, lim inf
l→∞

z2,l)) (53)

Then by adding (25),(27) and (35) if h ∈ F
+
3 (I) and (29),(31) and (35) if h ∈

F−
3 (I) to obtain

1
2 (

−2
∑

i=−∞

|z1,i − z1,i+1| +
−2
∑

i=−∞

|z2,i − z2,i+1| +
−2
∑

i=−∞

|z3,i − z3,i+1|)

= L1(h, v−1) + L2(h, v−2, v−1) + P−(h, {vi})

+|h(s) − h(S)| + 3
−2
∑

i=−∞

|H(vi−1, vi) −H(vi, vi+1)|

(54)

Similarly, adding (26),(32) and (35) if h ∈ F
+
3 (I) and (30),(32) and (5.3.19) if

h ∈ F−
3 (I) to obtain

1
2 (

∞
∑

i=1

|z1,i − z1,i+1| +
∞
∑

i=1

|z2,i − z2,i+1| +
∞
∑

i=1

|z3,i − z3,i+1|

= R1(h, v−1) +R2(h, v−2, v−1) + P+(h, {vi})

+|h(s) − h(S) + 3
∞
∑

i=2

|H(vi−1, vi) −H(vi, vi+1)|

(55)

Now we will use these estimates in order to obtain the TV bounds for a pair
of fluxes. Let (f, g) be an infinity flux pair and (A0, B0) be a interface connection
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vector. Let f = (f1, f2, f3), g = (g1, g2, g3) be the associated flux splittings. For
α, β ∈ I, j = {1, 2, 3}, define the singular mappings by

ψj(u) = ψj(g, α, u) (56)

φj(u) = ψj(f, β, u) (57)

For a sequence {ui}i6=0 ⊂ I, j ∈ {1, 2, 3}, define the sequence {zij}i6=0 by

zij = ψj(ui) if i ≤ −1
= φj(ui) if i ≥ 1

zi = zi1 + zi2 + z13

(58)

Then we have the following,

Lemma 7. Let FA0B0 be the interface flux associated with the connection (A0, B0),
then we have

1

2
TV (zi) ≤ 3NAB(f, g, {ui}) + EAB(α, β, u−2, u−1, u1, u2) + C0 (59)

where EAB = |z−1 − z1| + L1(g, u−1) + L2(g, u−2, u−1) +R1(f, u1) +R2(f, u1, u2)

− 3|G(u−2, u−1) − FA0B0(u−1, u1)| − 3|F (u1, u2)

− FA0B0(u−1, u1)| (60)

C0 = |f(s) − f(S)| + |g(s) − g(S)| + P−(g, {ui}) + P+(f, {ui}) (61)

Proof. The proof follows immediately by adding (53) and (54).

We will also need the functions defined below,

zh(x, t) = zi ∀(x, t) ∈ [xi−1/2, xi+1/2) × [tn, tn+1)

We have the following lemma giving a TV bound for zh

Lemma 8. Let zh be defined as above, then for all t > 0, we have that

1

2
TV (zh(., t)) ≤ 3NAB(f, g, u0) + C (62)

Proof. The proof follows in a straightforward way from lemma (7) and by observing
that EAB and C0 are bounded in terms of M, s, S and we express the bound as a
single constant C.

We also state another lemma

Lemma 9. let u0, v0 ∈ L∞(R, [s, S]) be such that NA0B0(f, g, u0) < ∞ be the
initial data for (2) and let uh, vh be the corresponding approximate solutions, then
the following holds

s ≤ uh(x, t) ≤ S, ∀ (x, t) ∈ R × R+ (63)
∫

R

|uh(x, t) − vh(x, t))dx ≤ NAB(f, g, u0)(2∆t+ |t− τ |). (64)

∀ a ≤ b and τ ≤ t, we

b
∫

a

|uh(x, t) − vh(x, t)|dx ≤

b+ 1
λ (t−τ)
∫

a− 1
λ
(t−τ)

|uh(x, τ) − vh(x, τ)|dx + 4(S − s)h (65)
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Proof: Follows exactly as in [2] (lemma 4.7). As in [2], we need to construct a test
function for showing consistency with the interface entropy condition which we do
in the following lemma,

Let v0 be defined as

v0(x, α, β) = α if x < 0
= β if x > 0

Lemma 10. Fix a connection (A0, B0) Let f, g be of the under-compressive type
(i.e N+(f) = N−(g) = 1) and let (α, β) ∈ [s, S], be such that the following holds,

1) A < α, β < B or
2) A1 < α < A B < β < B1.

(for notation refer to section 1). Let vh(x, t, α, β) be the solution of (2) given by
the scheme (14) when the initial data is v0(x, α, β). Assume that for a subsequence
(again denoted by h). As h→ 0, vh(x, t, α, β) → v(x, t, α, β) in L∞

loc(R+, L
1
loc(R)).

Then
lim
x→0−

v(x, t, α, β) = A

lim
x→0+

v(x, t, α, β) = B

where (A0, B0) = (A,B) is the interface connection vector.

Proof. The proof is similar to one presented in Lemma 4.8 of [2]. For simplicity,
we also assume that g(s) < g(A) (see figure (2))). Fix h > 0. First we make the
following claim regarding the behavior of the approximations V h at the first time
level i.e n = 1.
Claim. We have assumed that case (1) holds, then

A ≤ v1
−1 < α and β < v1

1 ≤ B (66)

Proof. By the scheme (14), we have that

v1
−1 = α− λ((FA0B0(α, β) −G(α, α))

= α− λ(FA0B0(α, β) − g(α))

now by the definition of the interface Godunov flux, it follows that FA0B0(α, β) =
g(A) = f(B)) (as data is under-compressive).

v1
−1 = α− λ(g(A) − g(α)) (67)

It is easy to see that g(A) > g(α) therefore it follows from the above relation that
v1
−1 < α. Now by using the Lipschitz continuity of the flux, and the CFL condition,

we have that

|g(A) − g(α)| ≤ λM |A− α| ≤ |A− α|
v1
−1 ≥ α− |A− α| ≥ α− α+A = A

thus proving the first part of the claim. For second part, from the definition of
flux, we have F (β, β) = f(β), therefore

v1
1 = β − α(f(β) − f(B)) (68)

As β ≤ B, therefore f(B) > f(β), v1
1 > β. Again by using the Lipschitz continuity

and the CFL condition, we get that v1
1 = β + λ(f(B) − f(β)) ≤ β + λM |B − β| ≤

β+ |B−β| ≤ B. thus proving the claim. At the nth time level, we have the following
claim:
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Claim. ∀n, {vnj } satisfies,

A ≤ vn−n ≤ . . . ≤ vn−1 < α (69)

β < vn1 ≤ vn2 . . . ≤ vnn ≤ B (70)

Proof. We prove the above estimates by induction. We have shown that they are
true for n = 1 . Assume that above is true is for n− 1.

We have that A ≤ vn−1
−1 ≤ α, β ≤ vn−1

1 ≤ B Therefore by the arguments in
the first claim, we get A ≤ vn−1 ≤ α, β ≤ vn1 ≤ B Use the fact that the scheme is
monotone and consistent for (j) ≥ 2 to prove the claim.

Letting h → 0, along a subsequence which we still denote by h, we can use the
point wise convergence to get that as h→ 0, vh(x, t, α, β) satisfies

A ≤ v−(t, α, β) = lim
x→0−

vh(x, t, α, β)) ≤ α

β ≤ v+(t, α, β) = lim
x→0+

vh(x, t, α, β) ≤ B.

from the shape of f and g, we get that, ∀ β such that θ1f ≤ β ≤ θ2f , v
h(x, t, α, β) =

vh(x, t, α, θ2f ) = vh(x, t, α, θ1f ) by the above claim, we have that,

A ≤ v−(t, α, β) ≤ α, and B ≤ v+(t, α, β) ≤ θ2f .

therefore by Rankine Hugoniot condition and the monotonicity of the fluxes, we get
that V −(t, α, β) = A0 and V +(t, α, β) = B0 and thus prove the lemma.

In the other over-compressive cases, a similar comparison function can be con-
structed. Now we state and prove the main convergence theorem of this paper,

Theorem 2. Assume that the fluxes (f, g) are an infinity - flux pair and fix an inter-
face connection vector (A0, B0). Assume that λ,M = max{Lipf, Lipg} satisfies the
CFL condition 2λM ≤ 1. Let u0 ∈ L∞(R) such that s ≤ u0(x) ≤ S for all x ∈ R

and NA0B)
(f, g, u0) <∞. For h > 0, let uh be the corresponding calculated solution

given by (14), Then there exists a subsequence hk → 0 such that uhk
converges a.e.

to a weak solution u of (2) satisfying interior entropy condition (6). Suppose the
discontinuities of every limit function u of {uh} is a discrete set of Lipschitz curves;
then uh → u in L∞

loc(R+, L
1
loc(R)) as h → 0, and u satisfies the interface entropy

condition (7) relative to the connection (A0, B0).

Proof. Follows exactly as in [2] (proof of theorem 3.1).

Thus we have shown that if the fluxes (f, g) are a infinity flux pair, then for every
choice of the interface connection vector (A0, B0), the corresponding A0B0-entropy
solutions exist and are unique. We remark that the above stability result is only
valid under the assumptions that the the discontinuities of the limit function form
a discrete set of Lipshitz curves. In general, we may not expect such regularity of
the solution but we still expect the above result to be true.

5. The general case. So far, we have considered the infinity flux case, i.e. fluxes
satisfying the hypothesis (H1, H2), as most practical applications involve fluxes
with at most two extrema as well as the expressions and proofs are much simpler.
Also the difficulties encountered in this case are prototypical of the more general
case. In this section, we consider fluxes f and g having more than two points of
extrema. The configurations of the fluxes can be extremely complicated and their
intersections arbitrary. Most of the concepts developed in the infinity flux case
can be extended to this case but at the expense of more complicated notation and
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lengthier arguments. Hence, we consider this case without giving much detail and
emphasizing the points where the analysis is different from that of the infinity flux
case.

For simplicity in the presentation, we will consider the following model fluxes f
and g (with intersections, the non-intersecting case is much easier) such that they
satisfy the following simplifying hypothesis,
H1: f(s) = g(s), f(S) = g(S)
H2: Both f and g have exactly N (N > 2) extrema denoted by θ1f , θ2f , . . . , θNf
and θ1g, θ2g, . . . , θNg respectively.
H3: f and g intersect at exactly N + 1 points given by s = α0, α1, . . . , αN + 1 = S

and the following hold, ∀ αi, i = 1, . . . , N ,

max(θig, θif ) < αi < min(θ(i+1)g, θ(i+1)f )

H4:f is increasing (decreasing) and g is decreasing (increasing) at s and at S. Thus
implying that the fluxes have opposite behavior at the endpoints.

The above hypotheses imply that the interior points of intersection are between
the extrema of the fluxes. This is a model example for the general case. Note
that the flux geometry is quite complicated and furthermore, the flux crossings
strongly violate the crossing condition of [19] with the points of intersection being
of both the under-compressive as well as over-compressive type and hence we expect
a combination of effects of both the cases of section 2. We can further classify the
fluxes with the above hypotheses into the following types,
Case 5.1: f is increasing and g is decreasing at s and f is decreasing and g is
increasing at S.
Case 5.2: f is decreasing and g is increasing at s and f is increasing and g is
decreasing at S.
Case 5.3: f is increasing and g is decreasing at both s and S.
Case 5.4: f is decreasing and g is increasing at both s and S.

The shape of the fluxes is given in figure (4). Observe that the above hypotheses
imply that we have odd number of extrema N = 2k + 1 in Cases (5.1) and (5.2)
and even number of intersections 2k + 2 and we have even number of extrema
N = 2k in Cases (5.3) and (5.4) with odd number of intersections 2k + 1. We will
present most of the analysis for this model case. First, we need some definitions-
let {αi}, i = 0, . . . , N + 1 be the set of points of intersection of the fluxes, then we
define

Definition 11. A point of intersection αi is said to be of an over-compressive type
if f is decreasing and g is increasing at αi.

Definition 12. A point of intersection αi is said to be of an under-compressive
type if f is increasing and g is decreasing at αi.

Note that points of intersection of the over-compressive and undercompressive
types alternate in case of fluxes satisfying the above hypotheses. Check that there
are k+1 points of intersection each of the undercompressive as well as the overcom-
pressive type in cases (5.1) and (5.2), k overcompressive and k+1 undercompressive
points of intersection in case (5.3) and k+1 overcompressive and k undercompressive
points of intersection in case (5.4). We remark that for each αi overcompressive, in
the region [αi, αi+2], the flux geometry is of the infinity flux type with undercom-
pressive flux crossings and these intervals divide the domain [s, S] into undercom-
pressive pieces that are connected by overcompressive points of intersection. This
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observation will play an important role in the analysis of this section. We start with
the entropy framework for fluxes of the general case and as in section 1, we have to
define a proper concept of interface connection vector which we define below as,

Definition 13. Interface connection Vector:- The vector pair (A0, B0) with
A0 = (A1, A2, . . . , Aj), B0 = (B1, B2, . . . , Bj),(j to be specified later) is said to be
an interface connection vector provided that the following holds
1. g(Ai) = f(Bi), ∀ i = 1, . . . j.
2. Let αi be a overcompressive point of intersection, then

Ai, Bi ∈ (αi, αi+2)

3. f is increasing at Bi and g is decreasing at Ai.

The number of components varies in each case - for example in cases 5.1 and 5.2,
the connection vector has k components and in cases 5.3, the connection vector has
k−1 components and it has k+1 components in case 5.4. The interface connection
vector is the basis for the definition of the interface entropy condition as in the
infinity flux case but in this case, it is not enough to obtain stability and we need
another concept - the interface comparison vector

f:

g:

s

S

CASE 4.1

f:

g:

       Case 4.2    

Figure 4. Some examples of flux shapes in the general case

which is defined below,

Definition 14. Interface comparison vector: The vector pair (C,D) with C =
(C1, C2, . . . , Cl), D = (D1, D2, . . . , Dj),(l to be specified later) is said to be an
interface comparison vector provided that the following holds
∀αi such that αi is overcompressive and αi 6= {s, S}, then

Ci = θig Di = θif
Ci+1 = θ(i+1)g Di+1 = θ(i+1)f

We have different number of components in different cases i.e l = 2k in cases
5.1 and 5.2, l = 2(k + 1) components in case 5.3 and l = 2(k − 1) components in
case 5.4. The interface comparison vector is necessary in order to patch up the
different undercompressive components. First we need some more notations- let
a, b, c, d ∈ R., then let

Iab(c, d) = sign(c− a)(g(c) − g(a)) − sign(d− b)(g(d) − g(b))

Also denote for given vectors, a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ R
n,

Iab(c, d) = (Ia1b1(c, d), Ia2b2(c, d), . . . , Ianbn(c, d))

We propose the following interface entropy entropy condition,
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Definition 15. Interface entropy condition: Let u ∈ L∞
loc(R×R+) is said to satisfy

the interface entropy condition if the following holds,
1. u(0−, t) = u−(t) and u(0+, t) = u+(t) exists for all t.
2. For any interface connection connection vector A0B0 and for the fixed interface
comparison vector CD (defined above), we have that

IA0B0(u
−(t), u+(t)) ≥ 0 a.e t

ICD(u−(t), u+(t)) ≥ 0 a.e t (71)

As in the infinity flux case, we allow the interface connection vector to be arbi-
trary. The main differences lie in the definition of the interface connection vector
that is now more complicated as well as in the fact that we force the solution to
be compared with the interface comparison vector which is new to this case and is
essential in the proof of stability. The concept of A0B0-entropy solution is similar
to one defined in section 2.

Next, we show that for every admissible choice of the interface connection vector
A0B0, the corresponding A0B0 entropy solutions are stable, we have the following
theorem,

Theorem 3. For a given interface connection vector A0B0, Let u, v ∈ L∞(R×R+)
be two A0B0 entropy solutions for (2) with initial data u0, v0 respectively, then for
any M ≥M = max{Lip(f), Lip(g)}, a < 0, b > 0, b− a ≥ 2Mt the function,

t 7→

b−Mt
∫

a+Mt

|u(x, t) − v(x, t)|dx

is non increasing and if u0 = v0 a.e ,then it follows that u = v a.e

Sketch of the proof: Just as in section 2 (proof of theorem (1)), we have to prove
the crucial comparison lemma (lemma (2)). In order to do so, we have to show that

I(u, v)(t) ≥ 0 (72)

where

I(u, v)(t) = sign (u−(t) − v−(t))(g(u−(t)) − g(v−(t)))

− sign (u+(t) − v+(t))(f(u+(t) − f(v+(t)))

We drop t for notational convenience. Observe that there are two possible ways in
which I < 0 i.e,

either u− < v− and u+ > v+ with f(u+) > f(v+)

or u− > v− and u+ < v+ with f(u+) < f(v+)

We have to show that both cases don’t occur and by symmetry, it is enough to
rule out the first case. As in the proof of lemma (2), we proceed by contradiction.
We provide a sketch of the proof. First, it is easy to check that the above case
can occur only when g is decreasing at both u− and v+ and f is increasing at u+

and v+. Thus, u− ∈ (θig, θ(i+1)g) with g decreasing in this interval. Consequently,

u+ ∈ (θjg, θ(j+1)g) with f increasing. There are the following possible cases given
by,
Case 1: j = i

In this case, we compare the solution (u−, u+) with the interface connection
components (Ai, Bi). Therefore by (71), we get that in this case if u− > Ai, then
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u+ < Bi and since g is decreasing and f is increasing at these points, we will get a
contradiction to the interface entropy condition. The same holds if u− < Ai,u

+ >

Bi leading to a violation of (71). Therefore, u− ≡ Ai and u+ ≡ Bi.
Case 2: j > i

In this case, there θjf < u+ < θ(j+1)f with f increasing in this interval. Now we

can compare the traces of the solution u−, u+ with the interface comparison vector
component (θjg, θ(j+1)g). As u− < θjg and u+ > θjf , we get that Iθjg,θjf

(u−, u+) <
0 thus leading to a violation of the interface entropy condition (71) and ruling out
this case.
Case 3: j < i

As in this case 2, we can rule this case out by using the interface entropy con-
dition (71) and comparing with the component (θ(j+1)g,, θ(j+1)f ) of the interface
comparison vector where Bi ∈ (θjf , θ(j+1)f ).

In view of the above, we have shown that if u− is such that g is decreasing at
u− and u+ such that f is increasing at u+, then u− ≡ Ai and u+ ≡ Bi for some i.
Same also holds for v−, v+ and by arguments similar to that of lemma(2), it can be
shown that I ≥ 0 and we can use that to prove the theorem. We skip the remaining
details.

Next ,we can solve the Riemann problem associated with (2) with the fluxes
satisfying the above hypotheses and use them to define the interface numerical flux
and the Godunov scheme (14). As in section 4, we perform the convergence analysis
of our scheme (14). The only difference from the analysis in the infinity flux case is
in the definition of the singular mappings. As in the infinity flux case, we need to
split the fluxes in this case as follows

Let g1, g2 : [s, S] 7→ R be such that for

g1(θ) = min(G(θ, s), G(S, θ)), ∀ θ ∈ [s, S].
g2(θ) = max(G(s, θ), G(θ, S)), ∀ θ ∈ [s, S].

similarly we split f as follows, let f1, f2 : [s, S] 7→ R be such that

f1(θ) = min(F (θ, s)), F (S, θ))), ∀ θ ∈ [s, S]
f2(θ) = max(F (s, θ), F (θ, S)), ∀ θ ∈ [s, S].

where G and F are Godunov fluxes corresponding to the fluxes g and f respec-
tively. Note that g1, f1 represent the “concave-type” parts of the fluxes and g2, f2
represent the “convex-type” part of the fluxes. The expressions are exactly the same
as in the infinity-flux case. Naturally, we define the singular mappings in terms of
these split fluxes as in section 4 . We define

ψ1(u) =
u
∫

α

|g′1(θ)|dθ φ1(u) =
u
∫

α

|g′2(θ)dθ

ψ2(u) =
u
∫

β

|f ′
1(θ)|dθ φ2(u) =

u
∫

β

|f ′
2(θ)|dθ

Clearly, neither ψ1 +ψ2 nor φ1 are not invertible and we need to consider defect
terms like in section 4. In general, we may require up to N − 1 defect terms for N
extrema. Each defect term consists of a monotone part of the fluxes with constants
in other parts (as in h3 term of section 4) and its variation can be estimated by chain
estimates of section 4 (6). We can show that the total variation of the transformed
scheme can be controlled in terms of the flux variations (see section 4). This is the
key estimate for showing convergence and we just give one part of it below
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Lemma 11. Let znj = ψ1(u
n
j ), ∀ j ≤ −3, then we have

(znj − znj+1)+ ≤ |G(unj , u
n
j+1) −G(unj+1, u

n
j+2)| + |G(unj−1, u

n
j ) −G(unj , u

n
j+1)| (73)

Proof. This estimate (73) is the equivalent of (25) in this case. We drop n for nota-
tional convenience and consider 4 points of extrema. First we need some notation
- from the flux geometry in this case, denote sg ∈ [θ1g, θ2g] such that g(s) = g(sg).

Similarly we have θ ∈ [θ3g, θ4g] such that g(θ2g) = g(θ). It is easy to check that in
this case g1 is defined as follows,

g1(θ) =



















g(s) ifs < θ ≤ sg

g(θ) ifsg ≤ θ ≤ θ2g

g(θ2g) ifθ2g ≤ θ ≤ θ

g(θ) ifθ ≤ θ ≤ S

(74)

As in the proof of (25), check that (zj − zj+1)+ > 0 iff uj > uj + 1. We have to
consider the following cases,
Case 1: uj+1 ≤ θ4g.

In this case, we have the following sub cases,
Case 1.1: uj ≤ θ2g

In this case, it is easy to check that uj > sg for (zj − zj+1)+ > 0 and then
G(uj , uj+1) = g(uj). Similarly we have that,

(zj − zj+1) = g(uj) − max(g(uj+1), g(s))

for any uj+2 ∈ [s, S], the properties of the Godunov flux and the location of uj+1

gives us that G(uj+1, uj+2) ≤ max(g(uj+1), g(s)) and combining the above, we get
(73) in this case.
Case 1.2: θ2g < uj ≤ θ4g

We have to consider a few sub cases given by,
Case 1.2.1: uj+1 ≤ θ2g

In this case, we get that

(zj − zj+1) = max(g(uj), g(θ2g) − max(g(uj+1), g(s))

Similarly, we get that G(uj , uj+1) = max(g(uj), g(θ2g)) and arguing as in case 1.1,
we get that ∀uj+2, G(uj+1, uj+2) ≤ max(g(uj+1), g(s)) and combining the above
gives us the required estimate (73).
Case 1.2.2: θ2g ≤ uj+1 ≤ θ4g

In this case, we have that

(zj − zj+1) = max(g(uj), g(θ2g) − max(g(uj+1), g(θ2g)

and G(uj , uj+1) = max(g(uj), g(θ2g). Similarly, we can check that uj+2 ∈ [s, S],
G(uj+1, uj+2) ≤ max(g(uj+1), g(θ2g) and combine the above to get the desired
estimate.
Case 1.3: uj > θ4g

In this case, we have to again consider some sub cases given by,
Case 1.3.1: uj+1 ≤ θ2g

In this case, we get that

(zj − zj+1) = g(θ4g) − max(g(uj+1), g(s)) + g(θ4g) − g(uj)

Similarly, we get that G(uj , uj+1) = θ4g and arguing as in case 1.1, we get that
∀uj+2, G(uj+1, uj+2) ≤ max(g(uj+1), g(s)). Similarly, we get that ∀uj−1 ∈ [s, S],
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G(uj−1, uj) ≤ g(u−1) and combining the above gives us the required estimate (73).
Case 1.3.2: θ2g ≤ uj+1 ≤ θ4g

In this case, we have that

(zj − zj+1) = g(θ4g) − max(g(uj+1), g(θ2g) + g(θ4g) − g(uj)

and G(uj , uj+1) = θ4g. Similarly, we can check that uj+2 ∈ [s, S], G(uj+1, uj+2) ≤
max(g(uj+1), g(θ2g) and as in the previous case, we get that ∀uj−1 ∈ [s, S], G(uj−1, uj)
≤ g(u−1) and combining the above gives us the required estimate (73).
Case 2: uj+1 > θ4g

In this case, we get that,

(zj − zj+1) = g(uj+1) − g(uj)

We can check that G(uj , uj+1) = g(uj+1). By repeating the arguments of case 1.3,
we get that ∀uj−1 ∈ [s, S], G(uj−1, uj) ≤ g(u−1) and combining the above gives us
the required estimate (73) in all cases and we prove the lemma.

Similarly we can get estimates on the Total variation of the singular mappings
in terms of the flux variation as in lemma (7). This enables us to repeat the steps
in section 4 and prove the key convergence theorem,

As we had stated in the beginning of this section, we just provided a sketch of
the analysis in this more general case. The aim was to illustrate the fact that the
results for the infinity flux case can be extended to the more general case and we
have indicated the points where the analysis has differed.

Hence, we have established under very general assumptions about the shape of
the fluxes f and g that we can extend the notion of AB-entropy solutions of [3] to
this case and characterize infinitely many L1-stable solutions in terms of interface
connections. The second step of choosing a particular interface connection and its
corresponding semi-group has to be based on the physics of the problem.
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