
NETWORKS AND HETEROGENEOUS MEDIA Website: http://aimSciences.org
c©American Institute of Mathematical Sciences
Volume 1, Number 4, December 2006 pp. 675–688

OPTIMAL CONTROL FOR CONTINUOUS
SUPPLY NETWORK MODELS

Claus Kirchner
Technische Universität Kaiserslautern
Fachbereich Mathematik, Postfach 3049

D-67653 Kaiserslautern, Germany

Michael Herty
Technische Universität Kaiserslautern
Fachbereich Mathematik, Postfach 3049

D-67653 Kaiserslautern, Germany

Simone Göttlich
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Abstract. We consider a supply network where the flow of parts can be con-
trolled at the vertices of the network. Based on a coarse grid discretization
provided in [6] we derive discrete adjoint equations which are subsequently
validated by the continuous adjoint calculus. Moreover, we present numerical
results concerning the quality of approximations and computing times of the
presented approaches.

1. Introduction. Different approaches for the simulation of continuous supply
chain models using partial differential equations have been introduced during the
last years; see for example [2, 3, 4, 5]. For the purpose of this paper, we are in-
terested in supply chain models for networks which are mainly derived in [2] and
extended in [7, 8]. The latter include the formulation of coupling conditions at
intersections by introducing time-dependent queues governed by the mass-flux in
the network.

An important aspect in supply chain decision making are optimization prob-
lems, for example maximizing output of a production process or minimizing used
buffers. These optimization problems can be formulated on a continuous level with
constraints consisting of partial or ordinary differential equations. Then, usually
an adjoint calculus is used for efficient computation of the optimal control. This
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approach has been successfully applied in different areas. Among the variety of
literature we only mention some examples, like optimal control of fluid flows [10],
optimal semiconductor design [11] or general initial value control of hyperbolic equa-
tions [16, 17]. For optimal control in the context of networks we refer to [9] for an
adjoint calculus in the context of traffic flow networks. To compute the optimal con-
trol, the continuous optimality system is discretized and usually solved by a descent
type method, see [15, 13, 14]. This approach can therefore be seen as optimize–then–
discretize. Alternatively, we can proceed by first discretizing the constraints and
cost functional and then optimize the finite–dimensional optimization problem; this
strategy is known as discretize–then–optimize. For our supply network model the
discretization can be chosen, such that the optimization problem is in fact a mixed–
integer programming problem, see [6] and section 4, below. This is mainly due to
the fact that the governing dynamics in the supply network are linear in the state
(but not in the control) variables. In [6] further extensions to the mixed–integer
problem have been investigated, e.g., finite size buffers, inflow profile optimization
or processor shut–down due to maintenance. In this work, we derive the continu-
ous optimality system and show that the mixed–integer formulation is also a valid
discretization of the discretized continuous optimality system, i.e., both approaches
discretize–then–optimize and optimize–then–discretize lead to the same continuous
optimal control if the discretization width tends to zero. Furthermore, we investi-
gate the numerical properties of the two approaches by comparing computing times
for the solution to the mixed–integer model with a steepest descent method based
on the adjoint equations.

The paper is organized as follows. In section 2 we review the supply chain model
and introduce the continuous optimal control problem that is to be investigated.
In section 3 we recall the discretization leading to the mixed–integer model, see
[6]. Then we derive both the optimality system for the discrete and continuous
model. The numerical results are presented in section 4 and contain a validation
of our adjoint calculus by comparison with finite–difference approximations and
optimization results of the adjoint–based method and the mixed–integer problem.

2. Modeling supply networks. In the following we consider a directed graph
(V,A) consisting of a set of arcs A and a set of vertices V. Each arc correponds
to one processor (or supplier). The length of the processor corresponding to arc
e ∈ A is given by the interval Le = [ae, be]. The maximal processing capacity
µe and the processing velocity ve of each processor are constant parameters on
each arc. According to the assumption that each processor possesses a queue, we
locate a queue at the vertex v in front of the processor. For a fixed vertex v, the
set of ingoing arcs is denoted by δ−v and the set of outgoing arcs by δ+

v . In the
case of more than one outgoing arc, we introduce distribution rates Av,e(t), v ∈ Vd

where Vd ⊂ V denotes the set of dispersing junctions. Those rates describe the
distribution of incoming parts among the outgoing processors and are later subject
to optimization. The functions Av,e are required to satisfy 0 ≤ Av,e(t) ≤ 1 and∑

e∈δ+
v

Av,e(t) = 1 for all times t > 0.
As a next step, we briefly recall the continuous supply network model and its

corresponding optimal control problem. For more details we refer to [7, 8]. The
continuous supply network model consists of a coupled system of partial and ordi-
nary differential equations. Here, the transport inside each processor e is governed
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by a simple advection equation:

∂tρ
e + ∂xfe(ρe) = 0, (1)

where
fe(ρe) = veρe (2)

for some given velocity ve and where the density of the parts is given by ρe on
each arc e. Whenever a processor is connected to another processor of possibly
different maximal capacity µe, we introduce a buffering zone for the incoming but
not yet processed parts. To describe the buffering we introduce the time–dependent
function qe(t) describing the load of the buffer or queue. The dynamics of the
buffering is governed by the difference of all incoming and outgoing parts at the
connection point: If the queue is empty, the outgoing flux is either a percentage of
the sum of all incoming fluxes given by Av,e(t) or the maximal processing capacity.
In the first case the queue remains empty, in the second case the queue increases.
Last, if the queue is full, the queue is always reduced with a capacity determined by
the distribution rates Av,e and the capacities of the connected arcs, see below for
the mathematical statement. Finally, we introduce a measure for the performance
of the supply chain network. A general cost functional is given for example by
(3a). This particular choice of the cost functional aims at the minimization of the
size of queues and the number of parts in the network. However, other choices are
possible; in subsection 4.2 we present an example in which we just want to maximize
the output of a particular supply network.

Summarizing, (3) constitutes a constrained optimal control problem where the
constraints are given by linear transport and ordinary differential equations. The
controls are the distribution rates Av,e and the dependent states are the vectors
~ρe := (ρe)e∈A and ~Av := (Av,e)e∈ δ+

v
.

min
Av,e(t),v∈Vd

∑

e∈A

∫ T

0

∫ be

ae

fe(ρe(x, t)) dx dt +
∫ T

0

qe(t) dt (3a)

subject to e ∈ A, v ∈ V, t ∈ (0, T ), x ∈ [ae, be] (3b)
∂tρ

e(x, t) + ∂xfe(ρe(x, t)) = 0 (3c)

∂tq
e(t) = Av,e(t)

∑

ē∈δ−v

f ē(ρē(xē
v, t))− fe(ρe(xe

v, t)) (3d)

fe(ρe(xe
v, t)) =

{
min{Av,e(t)

( ∑
ē∈δ−v f ē(ρē(xē

v, t))
)
, µe}; qe(t) = 0

µe; qe(t) > 0
(3e)

We are concerned with the numerical solution to the previous optimal control prob-
lem. For further investigation we apply the following modifications and simplifica-
tions: First, in order to avoid the the discontinuous dependence on the queue-length
in (3e), we make use of the reformulation presented in [1]. There, equation (3e) has
been replaced

fe(ρe(xe
v, t)) = min{µe,

qe(t)
ε
} with ε ¿ 1. (4)

See [1] for further remarks. Since adjoint calculus requires the constraints to be
differentiable, we replace the function y → min(y/ε, µe) in (4) by any smooth ap-
proximation ψe,δ(y) for the computations following. To be more precise, we assume
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there are families of smooth functions {ψe,δ} such that

lim
δ→0

ψe,δ(y) = min(y/ε, µe) ∀y, ∀e. (5)

For notational convenience we drop the superindex δ in the following, since the
calculations remain true for all δ > 0. Third, we simplify the notation by introducing
functions he(~ρ, ~Av,e) for each edge e (resp. ẽ) and fixed v ∈ V such that e ∈ δ+

v

(resp. ẽ ∈ δ+
v ). We define

he(~ρe, ~Av) = Av,e(t)
∑

ē∈δ−v

f ē(ρē), ∀e ∈ δ+
v \{ẽ}, (6a)

hẽ(~ρe, ~Av) =


1−

∑

e 6=ẽ

Av,e(t)


 ∑

ē∈δ−v

f ē(ρē). (6b)

Note that with this definition the assumption
∑

e∈δ+
v

Av,e = 1 can be omitted. For
example, for an intersection with δ−v = {1} and δ+

v = {2, 3} we have the more
explicit form

h2(~ρe, ~Av) = Av,2(t)f1(ρ1), h2(~ρe, ~Av) = (1−Av,2(t))f1(ρ1). (7)

Finally, we summarize the previous modifications and restate the optimal control
problem for all e ∈ A, v ∈ V, t ∈ (0, T ), x ∈ [ae, be] :

min
Av,e(t),v∈Vd

∑

e∈A

∫ T

0

∫ be

ae

veρe(x, t) dx dt +
∫ T

0

qe(t) dt (8a)

subject to
∂tρ

e(x, t) + ve∂xρe(x, t) = 0, ρe(x, 0) = 0, veρe(a, t) = ψe(qe) (8b)

∂tq
e(t) = he(~ρe, ~Av)− ψe(qe), qe(0) = 0. (8c)

As technical detail we need to introduce boundary data for those arcs e ∈ A which
are incoming to the network, i.e., such that δ−v = ∅. Here, we assume inflow data
ρ0(t) to be given and set ρe(a, t) = ρ0(t) for all v ∈ V and e ∈ δ+

v and δ−v = ∅. From
now on we neglect this technical point.

3. Derivation of Optimality Systems for the Optimal Control Problem.
In this section we focus on the issue of numerically solving the optimal control
problem. Different approaches are possible. In [6] the optimal control problem has
been solved by reformulating it as mixed–integer model. This is possible, if one
introduces a coarse grid discretization of (8). In the next subsection we will derive
a discrete optimality system for this discretization and – contrary to [6] – solve the
latter directly by nonlinear optimization methods. This approach is known as “first
discretize then optimize”. For numerical comparison between this approach and the
one taken in [6] we refer to section 4. Formally, one can also derive the continuous
optimality system and discretize the latter. This method is referred to as “first
optimize then discretize”; we present the corresponding results in Subsection 3.2.
Furthermore, the relation between the approaches “first discretize then optimze”
and “first optimize then discretize” will be given in subsection 3.2 for the optimal
control problem (8).
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3.1. Optimality System of the Discrete Optimal Control Problem. First,
we consider the discrete optimality system. A coarse grid discretization in space of
(8b) is obtained by just a two-point Upwind discretization and (8c) is discretized
usind the explicit Euler method. Each arc has length Le and we introduce a step
size ∆t such that the CFL condition for each arc and the stiffness restriction of
the ordinary differential equation are met. The time steps tj are numbered by
j = 0, . . . , T . We use the following abbreviations for all e, j :

ρe,b
j := ρe(be, tj), ρe,a

j := ρe(ae, tj), qe
j := qe(tj), A

v,e
j := Av,e(tj) (9)

he
j := he(~ρe(x, tj), ~Av(tj)). (10)

Due to the boundary condition veρe(a, t) = ψe(qe(t)) we replace the discrete variable
ρe,a

j by ψe(qe
j ) and therefore, ρe,a

j does not appear explicitly in the discrete optimal
control problem below. For the initial data we have

ρe,b
0 = ρe,a

0 = qe
0 = 0, ∀e. (11)

Finally, the discretization of problem (8) reads for j ≥ 1, e ∈ A, v ∈ V :

min
~Av, v∈Vd

∑

e∈A

T−1∑

j=1

∆t

(
Le

2
(ψe(qe

j ) + veρe,b
j ) + qe

j

)
(12a)

subject to

ρe,b
j+1 = ρe,b

j +
∆t

Le
(ψ(qe

j )− veρe,b
j ) (12b)

qe
j+1 = qe

j + ∆t(he
j − ψe(qe

j )) (12c)

For deriving the discrete optimality system we state the precise definition of he in
the case of the following intersections, see Figure 1. In case A h2 is independent of
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Figure 1. Sample intersections labeled as type A,B and C (from
left to right)

~Av and we have h2(~ρe, ~Av) = v1ρ1(b, t). Similarly, in case B we obtain h3(~ρe, ~Av) =
v1ρ1(b, t) + v2ρ2(b, t). Finally, as already stated, we have in the controlled case C :
h2(~ρe, ~Av) = Av,2(t)v1ρ1(b, t), h3(~ρe, ~Av) = (1−Av,2(t))v1ρ1(b, t).

Remark 3.1. The previous system for δ = 0 can be reformulated as mixed–integer
problem [6] by adding binary variables to reformulate the relation veρe(xe

v, t) =
min{µe, qe(t)/ε}: let ζe

j be a binary variable, i.e., ζe
j ∈ {0; 1}. Then,

veρe,a
j = min{µe, qe(t)/ε}
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is equivalent to

µeζe
j ≤ veρe,a

j ≤ µe

qe
j

ε
−Mζe

j ≤ veρe,a
j ≤ qe

j

ε

µeζe
j ≤

qe
j

ε ≤ µe(1− ζe
j ) + Mζe

j

for M > 0 sufficiently large. Indeed, the value ζe
j is determined by the relation of

µe and qe
j/ε. E.g., if µe > qe

j/ε, then we obtain ζe
j = 1. Since both formulations are

equivalent, we derive the discrete optimality system by considering system (12).

Now it is straightforward to derive the discrete optimality system for (12). We
denote the Lagrange multipliers for the discretized partial differential equation by λe

j

and for the discretized ordinary differential equation by pe
j . The discrete Lagrangian

is given by

L(~ρe
j , ~q

e
j , ~Av

j , ~λe
j , ~p

e
j) =

∑

e∈A

T−1∑

j=1

∆t

(
Le

2
(ψe(qe

j ) + veρe,b
j ) + qe

j

)
− (13a)

∑

e∈A

T∑

j=1

∆tLeλe
j

(
ρe,b

j+1 − ρe,b
j

∆t
− ψ(qe

j )− veρe,b
j

Le

)
− (13b)

∑

e∈A

T∑

j=1

∆t pe
j

(
qe
j+1 − qe

j

∆t
− (he

j − ψ(qe
j ))

)
, (13c)

if we set λe
T = pe

T = 0. Assuming sufficient constraint qualifications the first–order
optimality system is given by equations (12c) and (12b) and the following additional
equations for j ≤ T, e ∈ A and v ∈ V :

λe
j−1 = ∆t

ve

2
+ λe

j −
∆t

Le

(
φe

j − veλe
j

)
, (14a)

φe
j :=

∑

ē∈δ+
v s.t. e∈δ−v

pē
j

∂

∂ρe
hē

j , (14b)

pe
j−1 = ∆t(1 +

Le

2
(ψe)′(qe

j )) + pe
j −∆t

(
pe

j − λe
j

)
(ψe)′(qe

j ), (14c)

0 =
∑

e∈δ+
v

pe
j

∂

∂Av,ē
he

j (14d)

The summation in the definition of the function φe is understood in the following
way: For a fixed intersection v ∈ V such that e ∈ δ−v we sum over all ē ∈ δ+

v . Hence,
the function φe depends on the type of intersection and for clearity we state its
explicit form for the cases A− C introduced above: In case A we have φ2

j = 0 and
φ1

j = p1
jv

1. In case B we obtain φ1
j = p3

jv
3 and φ2

j = p3
jv

3. Finally, for the interesting
case C we find e = 1 which implies φ1

j = Av,2p2
jv

2 + (1 − Av,2)p3
jv

3. Furthermore,
we obtain with the previous definitions for ē 6= ẽ:∑

e∈δ+
v

pe
j ∂Av,ēhe

j =
(
pē

j − pẽ
j

) ∑

e∈δ−v

veρe
j . (15)

Summarizing, the optimality system to (12) is given by (12c,12b) and (14). Chang-
ing the objective functions only affects the first term on the right hand side in
formulas (14a) and (14c). In section 4 we will present results on the solution to the



OPTIMAL CONTROL FOR SUPPLY NETWORKS 681

optimality system of (discretized) mixed partial and ordinary differential equations
for different objective functions.

3.2. Optimality system of the continuous optimal control problem. In this
subsection, we turn our attention to the continuous optimality system for (8); we
will show that the optimality system (12c), (12b) and (14) from subsection 3.1 is a
valid discretization of the former. For the derivation of the continuous optimality
system to (8) the Lagrangian reads

L(~ρe, ~Av, ~qe, ~Λe, ~P e) =
∑

e∈A

∫ T

0

∫ be

ae

veρedxdt +
∫ T

0

qedt− (16a)

∑

e∈A

∫ T

0

∫ be

ae

Λe∂tρ
e + Λeve∂xρedxdt− (16b)

∑

e∈A

∫ T

0

P e
(
∂tq

e − he(~ρe, ~Av) + ψe(qe)
)

dt (16c)

In this setup the adjoint variables are denoted as Λe(x, t) and P e(x, t); we use captial
letters to highlight their difference from the previously introduced quantities λe

j and
pe

j . The relation between these variables is discussed below. We formally obtain the
continuous optimality system for all t, x ∈ [ae, be], e ∈ A as

∂tρ
e + ve∂xρe = 0, ρe(x, 0) = 0, veρe(a, t) = ψe(qe), (17a)

∂tq
e = he(~ρe, ~Av)− ψe(qe), qe(0) = 0, (17b)

−∂tΛe − ve∂xΛe = ve, Λe(x, T ) = 0, (17c)

veΛe(b, t) =
∑

ē∈δ+
v s.t. e∈δ−v

P ē(t)
∂

∂ρē
hē(~ρe, ~Av), (17d)

−∂tP
e = 1− (P e − Λe(a, t)) (ψe)′(qe), P e(T ) = 0, (17e)

∑

e∈δ+
v

P e ∂

∂Av,ē
he(~ρe, ~Av) = 0. (17f)

Recall that in the limit case δ = 0, we have by definition ψe(y) → min{y/ε, µe}.
Therefore, we obtain

(ψe)′(qe) → 1
ε
H(µe − qe/ε), δ → 0, (18)

where H(x) is the Heaviside function. Hence, in the limit the dynamics of the
adjoint queue P e is governed by a discontinuous right–hand side.

Finally, we show that in fact (14), (12b), (12c) is a suitable discretization of (17).
We proceed by reformulating the discrete optimal control problem in the introduced
variables defined by

Λe,a
j := λe

j −
Le

2
, P e

j := pe
j , (19)
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Then, (14),(12c),(12b) read

ρe,b
j+1 − ρe,b

j

∆t
= − ve

Le
(ρe,b

j − ρe,a
j ), ρe

0 = 0, veρe,a
j = ψe(qe

j ), (20a)

qe
j+1 − qe

j

∆t
= he

j − ψe(qe
j ), qe

0 = 0 (20b)

Λe,a
j−1 − Λe,a

j

∆t
= ve − ve

Le

(
Λe,b

j − Λe,a
j

)
, Λe,a

T = 0, (20c)

veΛe,b
j =

∑

ē∈δ+
v s.t. e∈δ−v

pē
j

∂

∂ρe
hē

j , (20d)

P e
j−1 − P e

j

∆t
= 1− (

P e
j − Λe,a

j

)
(ψe)′(qe

j ), (20e)

0 =
∑

e∈δ+
v

P e
j

∂

∂Av,ē
he

j (20f)

Obviously, (20) is an Upwind and explicit Euler discretization of (17). Note that
the discrete Lagrangian multiplier λe

j and the discretized Lagrange multiplier Λe,a
j

satisfy
Λe,a

j = λe
j + O(Le) (21)

and Le is in fact the discretization stepwidth in space. Therefore, if we formally
let Le, ∆t → 0 for Le/∆t fixed, we see that λe → Λe and furthermore, the discrete
Lagrangian tends to the continuous Lagrangian.

4. Numerical results. In fact, there are two different approaches for solving the
optimal control problem given in (12b), (12c) and (14). On the one hand, we use a
steepest descent method for a suitable cost functional. We consecutively solve the
equations of state (12b) and (12c) for a given initial control ~Av

0 ≡ 0 and the adjoint
equations (14a)–(14c) which in turn are needed to evaluate the gradient (15). Using
the Armijo–Goldstein rule for the choice of the stepsizes we update the controls ~Av

0

and iterate the described procedure.
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Figure 2. Sample network with controls A1,2
j and A2,6

j

On the other hand, we reformulate (12b), (12c) and (14) as a mixed-integer pro-
gramming (MIP) model. The continuous optimal control probelm (3) is discretized
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using a two point Upwind scheme for the PDE and a explicit Euler method for the
ODE (see [6] for some details). The proposed MIP model is stated as follows:

min
∑

e∈A

T−1∑

j=1

∆t

(
Le

2
(veρe,a

j + veρe,b
j ) + qe

j

)
(22a)

subject to

ρe,b
j+1 = ρe,b

j +
∆t

Le
(veρe,a

j − veρe,b
j ) (22b)

∑

e∈δ−v

veρe,b
j =

∑

e∈δ+
v

he
j (22c)

qe
j+1 = qe

j + ∆t(he
j − veρe,a

j ) (22d)

µeζe
j ≤ veρe,a

j ≤ µe (22e)
qe
j

ε
−Mζe

j ≤ veρe,a
j ≤ qe

j

ε
(22f)

ρe,a
j , ρe,b

j , he
j , q

e
j ≥ 0, (22g)

ζe
j ∈ {0, 1}, (22h)

with e ∈ A, j = 1, . . . , T , and M a sufficiently large constant. The essential differ-
ence to (12b) is to rewrite the nonlinearity in (4) by introducing binary variables
ζe
j . This leads finally to a mixed-integer problem and not just a linear program-

ming (LP) model. For solving the mixed–integer problem the standard optimization
software solver ILOG CPLEX [12] is used.

4.1. Gradient computations. At first we compare the gradient of the cost func-
tional obtained by finite differences to the gradient obtained by the adjoint equations
for a suitable network. We use the network depicted in Figure 2 for this test since
it has only two variable controls A1,2

j and A2,6
j at time j (recall that A1,3

j = 1−A1,2
j

and A2,5
j = 1−A2,6

j due to the coupling conditions). We discretize the control–space
[0, 1]× [0, 1] using 16 points in both the A1,2

j and A2,6
j component.

We set the time–horizon T = 4, use NT = 200 time–intervals and set ε = 1. We
use a one–sided forward difference scheme to compare the gradient at time–interval
j, j = 1, . . . , NT :

∂Av,e
j

J( ~Av) :=
J( ~Av + δ)− J( ~Av)

δ
(23)

where δ = 0.001. For the cost–functional we chose the nonlinear function

J( ~Av) :=


∑

e∈A

∑

j

∆t

(
Le

2
(ψ(qe

j ) + veρe,b
j ) + qe

j

)


2

. (24)

Further, we set L3 = L6 = 10 and Le = 1 for e ∈ A\{e3, e6}. The processing rates
are µe = 1, ∀e. This implies that the lowest functional value should be attained for
A1,2

j = 1 and A2,6
j = 0 for all j as confirmed in Figure 3. The inflow–profile on e1

is chosen as

f in(t) =
{

0.852 t ≤ 2
0 t > 2
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0 0.2 0.4 0.6 0.8 1
0

0.5

1

40

60

80

100

120

140

160

α
1

α
2

Figure 3. Plot of
the cost functional
(24) corresponding
to Figure 2.
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by the adjoint
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Figure 7. Sample network

With this inflow profile the gradient w.r.t. A1,2
50 is nonzero and is depicted in

Figure 4. The controls A1,2
j with j > 2 can be chosen arbitrarily since the inflow is

zero and hence the gradient w.r.t. these controls needs to vanish. However, since
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Figure 8. Optimal output for processor 12.

in this particular setup queue 2 is nonempty at time j = 200, the gradient w.r.t.
A2,6

200 does not vanish, cf. Figure 5. The relative error in the second component is
of order 1e−8 and can be found in Figure 6.
Finally, we mention that we have conducted extensive test with different objective–
functionals and varying the parameters ε ∈ [0.01, 1], δ ∈ {1e−2, 1e−3, 1e−4, 1e−5}
and NT ∈ [20, 400]; we never encountered a relative error in the gradient larger
than 1e−6.

4.2. Quality of solutions of discrete adjoint calculus compared with the
mixed-integer model. As a next step, we compare results computed by the ad-
joint approach and the mixed-integer programming (MIP) model presented in (22).
We show that this kind of discretization induces same results for the cost functional
as the discrete adjoint approach by focussing on the optimal control problem of
routing of goods through a network.

e 1 2 3 4 5 6 7 8 9 10 11 12
µe 100 8 10 0.5 0.5 10 0.5 2 20 3.5 2.5 8

Table 1. Processing rates µe

NT Adjoint MIP
200 7.31 5.52
400 26.10 17.06
800 45.10 68.09

2000 124.58 592.61
Table 2. CPU times in sec for sample network Figure 7

In the following, we consider the network in Figure 7. It consists of 11 processors
and queues and we have the six free controls A2,3(t), A2,4(t), A2,5(t), A2,6(t), A2,7(t)
and A9,10(t).
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queue length q10
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puted by the adjoint
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The artificial arc 1 is used to prescribe an inflow profile which is given by

f(t) =





0.5 0 ≤ t ≤ T
4

0.1 T
4 < t ≤ T

2

0.3 T
2 < t ≤ 3

4T

0 3
4T < t ≤ T

(25)

Our goal is to maximize the output of processor 12 on a given time–interval [0, T ].
We use an equidistant time–discretization with NT time–intervals and choose the
following reduced cost functional

J( ~Av) =
NT+1∑

j=2

−v12ρ12,b
j

j
. (26)
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In the example below we define T = 200, NT = 400, ε = 1 and set Le = ve = 1
for all edges except for e = 2; here we use L2 = 1 and v2 = 2. The corresponding
processing rates are given in Table 1.

In Figures 8 – 12 we present results for the optimal routing problem by pointing
out similarities and differences between the adjoint and discrete approach. The
computation of the adjoint approach takes 37.781s using 32 iterations and for the
MIP 16.60s using 16 iterations. In the adjoint approach, we terminate the iteration
if the relative error of two consecutive iterates is less than tol := 1e−6 - consistent
with the default accuracy in ILOG CPLEX [12]. Both approaches yield an optimal
functional value of J∗( ~Av) = −6.49 .

In Figure 8 we plot the optimal outflow profile computed by the two approaches.
We observe that for this particular example the curves coincide. However, the com-
puted optimal controls and time evolution of the queues differ considerably. In
Figures 9 and 10 we plot the optimal control feeding parts into queue 10. Further-
more, we present the evolution over time for the queue 10 in Figures 11 and 12 for
the MIP and the adjoint approach, respectively, and the maximum queue–length in
Figures 11 and 12.

Since the optimal functional values coincide we see that we do not have a unique
minimizer to our optimal control problem.

4.3. Computational times. The numerical results conclude with a comparison
of computational times of the adjoint–based approach and the mixed-integer for-
mulation. Our computations are performed on the network given in Figure 7 with
default parameters ve = Le = 1, e = 2, . . . , 12, ε = 1 and time horizon T = 200. To
obtain a stable discretization both models have to satisfy the following restriction:

∆t ≤ min{ε; Le

ve
: e ∈ A}. (27)

Resulting from (27) the parameter NT describes the number of time intervals. We
increase NT by varying the ratio of L1/v1. The MIP is solved using the interior
point method implemented in ILOG CPLEX [12].

As Table 2 indicates the MIP is superior if one wants to use up to approximately
600 time-steps (corresponding to ∆t ∈ [0.3, 1]). As NT increases the adjoint ap-
proach becomes more attractive. For values of ∆t < 0.3 it computes an optimal
solution faster than the MIP. At present the MIP fails to compute a solution for
∆t ≤ 0.05 since the system becomes too large and the preprocessing procedure
produces infeasible solutions.

5. Summary. In this work we have extended certain optimization techniques to
supply networks. We derive a continuous and discrete optimality system and show
that the latter can be interpreted as an upwind and explicit Euler discretization
of the former. The results are compared to the ones obtained by a mixed–integer
formulation. For the testcases under consideration the optimal solutions (i.e., the
optimal values of the objective function) of the adjoint approach and the MIP formu-
lation introduced in [6] coincide. However, the optimal controls differ qualitatively
since they are not unique. The usage of the adjoint method as presented here is
limited. With the MIP more complex and praxis–relevant questions can be modeled
and solved quite easily; processor shutdown due to maintenance or min–up/min–
down times are just two examples. It is desirable to develop an adjoint–based
approach capable of treating these aspects.
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