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EXOGENOUS CONTROL OF VASCULAR NETWORK
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Abstract. The reconstitution of a proper and functional vascular network is
a major issue in tissue engineering and regeneration. The limited success of
current technologies may be related to the difficulties to build a vascular tree
with correct geometric ratios for nutrient delivery. The present paper develops
a mathematical model suggesting how an anisotropic vascular network can be
built in vitro by using exogenous chemoattractant and chemorepellent. The
formation of the network is strongly related to the nonlinear characteristics of
the model.

1. Introduction. Tissue engineering and regeneration is considered one of the
hottest medical frontiers of the new millennium. However a relevant difficulty,
which hampers the current efforts to gain robust results, is to provide bulk tissues
with a vascular network characterized by an architecture suitable for delivering
nutrients and eliminating wastes [20]. Actually, to achieve these results, vertebrates
have evolved a hierarchical branching blood vascular system that terminates in
a network of size-invariant units, namely capillaries. The capillary networks are
characterized by typical intercapillary distances ranging from 50 to 300 µm which
is instrumental for optimal metabolic exchange [11, 17, 3]. Depending on the tissue,
in vivo vasculature can show no preferential direction and therefore a substantial
isotropy, as in the liver, or a strong anisotropic structure, as in the skin. The
anisotropy is either related to the non isotropic characteristics of the substratum or
controlled by the presence of chemoattractants, e.g. Vascular Endothelial Growth
Factor-A (VEGF), and chemorepellents, e.g. semaphorines, which are well known
to drive the path of the axons [10]. It is therefore important to understand how to
reproduce such characteristics in vivo.

As reviewed in [1], an approach to build small-diameter vessels in vitro is to
use endothelial cells (EC), smooth muscle cells or endothelial progenitors seeded on
scaffolds based on either a biodegradable or decellularized matrix [12, 13, 20, 25].
In fact, single randomly dispersed endothelial cells self-organize to form networks
like those shown in Figure 1. After 12–16 hours the geometric tubular network
eventually formed is very similar to isotropic vascular beds produced in vivo by
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vasculogenesis [18, 9]. This phenomenon has been called in vitro angiogenesis [6].
A partial movie of an experiment can be viewed at the EMBO web site as supple-
mentary material to the paper by Serini et al. [22].

Gamba et al. [8], Serini et al. [22] and Ambrosi et al. [2] worked on a math-
ematical model based on the main hypothesis that endogenous chemotaxis and
persistence in cell motion are the key mechanisms in the initial stages of the pro-
cess. The model is able to reproduce the formation of capillary networks in vitro
starting from a moderate number of cells. They related the characteristic size of the
network with the range of activity of a specific chemoattractant (Vascular Endothe-
lial Growth Factor-A) acting by autocrine/paracrine mechanisms (more precisely,
the typical cord length is the square root of the product of the diffusion coefficient
and the half life of vascular endothelial growth factor-A, in good agreement with
phenomenological observations in vivo and measurements in vitro).

The model also reproduced the experimental observation that a strictly con-
strained density of endothelial cells (ranging from 100 to 400 cells/mm2) is a crit-
ical parameter allowing the formation of a capillary network with an architecture
similar to that found in vitro. In fact, below such a range groups of disconnected
structures form. Coniglio et al. [4] studied this abrupt transition showing that it is
a percolative transition. Above such a range thicker chords of the same lenght form.
Eventually, for very high cell densities the experiments give rise to the formation
of a continuous carpet of cells with holes or lacunae. This transition was studied
by Kowalczyk et al. [16] who focused on the stability of the uniform solution (the
“continuous carpet”).

Filbet et al. [5] and Merks et al. [19] studied the same problem using different
modeling approaches, namely kinetic models and Potts models, respectively. In
particular, Filbet et al. [5] derived the model using a Chapman-Eskog expansion
of a kinetic velocity-jump process. The individual based model used in [19] allowed
instead to consider sub-cellular phenomena such as adhesion and receptor dynamics.

Recently, Tosin et al. [24] modified the original model including the mechanical
interaction between the cells and the substratum thanks adhesion forces. The reader
is referred to the review article [1] for more details on the relevant experimental
details and on the related mathematical models.

In this paper, we generalize the model in [8, 22, 2] to include anisotropic ef-
fects induced by exogenous chemoattractants and chemorepellents in view of the
simulation of experimental set-ups aimed at the formation of anisotropic vascular
networks controlled from the outside. It is in fact thought that the application of
this model to tissue engineering may be helpful in designing devices to generate a
functional vascular bed in synthetic or decellularized natural matrix scaffolds. Ac-
tually, the use of scaffolds containing different combinations of angiogenic inducers
has been demonstrated to be promising in the establishment of a mature vasculature
in ischemic tissue [21]. Here it is found that a key role is played by the nonlinear
term describing cell persistence and by the range of action of the chemical fac-
tors. Chemoattractants promote the formation of capillaries which depart from the
source of chemoattractants. On the contrary, chemorepellents induce the formation
of capillaries which tend to run around the source of chemorepellent, where the
range of influence is fading away. Outside the range of influence of the exogenous
chemical factors, the capillaries connect to a more or less isotropic network which
forms spontaneously under the action of endogenous chemoattractants.
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Figure 1. Vascular network on a Matrigel surface. The box-side is 2 mm.

The paper develops as follows. Section 1 is devoted to the deduction of the
model. In Section 2 are described the effects of exogenous chemoattractans, e.g.
VEGF, while the role of exogenous chemorepellents, e.g. semaphorines, is discussed
in Section 3. Finally, Section 4 gives some analytical results on the boundness and
positivity of the solution.

2. The mathematical model. In recent years Gamba et al. [8], Serini et al.
[22] and Ambrosi et al. [2] have proposed a mathematical model able to describe
vascular network formation assuming that persistence and chemotaxis are the key
features determining the pattern. Their model predicts the formation of isotropic
structures.

Having in mind possible applications to tissue engineering, here we focus on the
external control of the characteristics of the network through the use of exogenous
chemical factors. From the experimental viewpoint this can be achieved adding to
the substratum gelly sponges or “spaghetti–shape” sources of chemical substances
able to attract or repel endothelial cells (e.g., VEGF and semaphorines, respec-
tively).

The model proposed in the literature mentioned above can then be modified as
follows

∂n

∂t
+∇ · (nv) = 0 , (1)

∂v
∂t

+ v · ∇v = β∇c + βa∇ca − βr∇cr − γv −∇ϕ(n) , (2)

∂c

∂t
= D∆c− c

τ
+ αn , (3)

∂ca

∂t
= Da∆ca − ca

τa
+ sa(t)Ha(x) , (4)

∂cr

∂t
= Dr∆cr − cr

τr
+ sr(t)Hr(x) , (5)
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where n(x, t) and v(x, t) are the density and velocity of the endothelial cells (EC),
respectively, c(x, t) is the concentration of vascular endothelial growth factor (VEGF-
A) produced by endothelial cells (hereafter denoted as endogenous chemoattrac-
tant), ca(x, t) is the concentration of exogenous chemoattractant, and cr(x, t) is
the density of exogenous chemorepellent. The chemotactic forces may include a
saturation term β/(1 + c/cM ), βi/(1 + ci/ciM ), i = a, r.

Equation (1) is a mass conservation equation for the cell matter, corresponding
to the observation that cells do not undergo mitosis or apoptosis on the pattern-
ing time scale. Equations (3)-(5) are diffusion equations for the chemical factors
involved. According to (3) the endogenous chemoattractant is produced by the en-
dothelial cells at rate α and degrades with half life τ . In (4) and (5) the chemical
factors are released at a rate sa(t) and sr(t) in some domains identified by the indi-
cator functions Ha and Hr, which vanish outside the domain where the exogenous
chemical factor has a constant concentration equal to 1.

Although Eq.(2) is reminiscent of the momentum balance equation for the cellular
matter, the nonlinear term does not actually account for inertia, but it rather models
the delayed response of the cell due to the time needed to re-organize the internal
cytoskeleton to change the direction of motion. Therefore cells do not immediately
detect and respond to chemotactic signals by modifying in real time their trajectory
but show what biologists call persistence in keeping their direction [27, 28, 7] or,
in physical terms, an “inertia” in changing cell direction. Neglecting the nonlinear
convective term on the left hand side would lead to cell clustering around the points
of maximum concentration of chemoattractant, as in many classical chemotactic
models. Instead, by a non linear dynamical mechanism similar to that encountered
in fluid dynamics, this term is responsible for the formation of shock-like structures:
cells climb along the saddle lines of the concentration field thus forming chords,
eventually producing a network structure.

It is an intriguing paradox that the behavior of living matter as cells is so well
reproduced by equations that are deduced for inert matter (inertia in Latin means
”without ability”). However it is not a surprise that nonlinear convective terms
are able to generate patterns: when removing the right hand side in equation (2)
one gets the multidimensional inviscid Burgers equation. Burgers equation is a
well established paradigm in the theory of self-organized aggregation and pattern
formation, which has been utilized to describe the emergency of structured patterns
in many different settings (see, for instance, [23, 26]). The present setting is rather
different because trajectories are here essentially dictated by the chemical field and
not by the initial velocities. However the mechanism of placement of matter between
nodes, that is the tendency to preserve the trajectory (or momentum conservation)
is analogous.

The right hand side of the persistence equation (2) should then be understood as
a phenomenological way to describe the drivers of the direction of motion. They are
(from right to left) the pressure force inhibiting cell overcrowding, the drag force
between cells and the substratum, and, most important, the chemotactic forces.
The positive and negative sign of the chemotactic action accounts for attraction or
repulsion, respectively. Regarding the pressure term, we will assume the following
characterization: it vanishes below a density n0 corresponding to the beginning of
cell confluence and is a convex function for larger n.
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It can be noticed that if VEGF-A itself is used as an exogenous chemoattractant
then Eq.(4) can be merged into Eq.(3) giving

∂c

∂t
= D∆c− c

τ
+ αn + s(t)Ha(x) , (6)

with only one chemotactic term β∇c in Eq.(2).
As diffusion is a much faster process than cell aggregation, the time derivative

in the diffusion equations can be dropped. Scaling distances with the size L of the
visual field, times with

√
D/αβn0, the density with the cell density at confluency

n0, concentration of endogenous chemical factor with αn0L
2/D and of exogenous

chemical factors with siL
2/Di, (i = a, r, if si is constant), the system of equations

(1)-(5) can be written in dimensionless form as

∂n∗

∂t∗
+∇ · (n∗v∗) = 0 , (7)

∂v∗

∂t∗
+ v∗ · ∇v∗ = ∇c∗ + β∗a∇c∗a − β∗r∇c∗r − γ∗v∗ −∇ϕ∗(n∗) , (8)

∆c∗ − c∗

ξ2
+ n∗ = 0 , (9)

∆c∗a −
c∗a
ξ2
a

+ Ha(x∗) = 0 , (10)

∆c∗r −
c∗r
ξ2
r

+ Hr(x∗) = 0 , (11)

where

ξ =
√

Dτ

L
, γ∗ = γ

√
D

αβn0
, ϕ∗(n∗) =

D

αβn0L2
ϕ(n0n

∗) ,

ξi =
√

Diτi

L
, β∗i =

βisi

Di

βαn0
D

, i = a, r .

The equations will be solved starting from the following initial conditions



n∗(x∗, t∗ = 0) =
1

2πr2

M∑

j=1

exp

(
−

∣∣x∗ − x∗j (ω)
∣∣2

2r2

)

v(x∗, t∗ = 0) = 0,

where r is the dimensionless radius of a cell. The initial conditions above simulate
the experimental ones where cells are random dispersed on the Matrigel, a surface
which favors cell motility and has biochemical characteristics similar to living tis-
sues. In addition, unless when differently specified, periodic boundary conditions
are used.

It is known [8, 22, 2] that the diffusion equation (9) introduces a characteristic
length ` =

√
Dτ determining the size of the chords in the network structure in

absence of other external influences. We will see that in a similar way the other
two diffusion equations (4) and (5) are characterized by the natural lengths `a =√

Daτa and `r =
√

Drτr, related to the range of action of the chemoattractant
and chemorepellent, respectively. In the next section it is shown that cells located
at a distance smaller than these ranges, are strongly influenced by the exogenous
chemical factors; at longer distance endogenous chemotaxis governs the formation
of a more isotropic network.
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Figure 2. Formation of the network structure without any exoge-
nous action. The result can be compared with Figure 1. The bar
indicates the value of ξ = 0.1, i.e. the order of magnitude of the
range of action of VEGF, the endogenous chemoattractant.

3. The effect of exogenous chemoattractant. The system of equations (7)-
(11) has been discretized on the unit square using 2n equispaced nodes with peri-
odic boundary conditions. A finite volume numerical scheme of Godunov type has
been adopted for the hyperbolic part in Equations (7) and (8) (i.e., transport and
pressure) and a simple centered discretization has been used for the chemotactic
term. Equations (9)–(11) have been discretized by a spectral approach and solved
by Fast Fourier Transform.

Figure 2 reports the result of a numerical simulation in absence of any exogenous
action. The value of γ∗ used in this and all the results that follow is equal to 1.
The results well compare with the experiments shown in Fig. 1 as quantitatively
described in [22].

In all simulations a density field corresponding to 800 cells seeded is initially set
up, with a cell radius of 45 µm, on a 2 mm× 2 mm square. The initial cell density is
therefore equal to 200 cells/mm2, above the critical density nc ≈ 100 cells/mm2 that
gives rise to the percolative transition studied in [4]. The experimentally measured
value of the diffusion coefficients and the decay time were D ≈ 10−7 cm2/s and
τ = 3840 s, so that the dimensionless distance is

ξ =

√
10−7cm2/s · 3840s

0.2cm
= 0.0978 cm,

respectively (see [22]). In absence of experimental evidence the chemotactic param-
eters are set β∗a = β∗r = 1.

As a first example of external action we consider the case in which the source
of exogenous chemoattractant is located on the boundary on two opposite sides
of the domain, experimental setting which can be obtained putting some sponges
impregnated with chemoattractant on the border of the Petri-dish. In this case
Eq.(10) slightly modifies since there is no source term and the concentration of
chemoattractant in the sponges (assumed constant in time) rewrites in the boundary
conditions

ca(x = 0, y, t) = ca(x = L, y, t) = c̃b , ∀ y ∈ [0, L] , (12)
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Figure 3. Network formation influenced by an exogenous
chemoattractant. In (a) the chemical factor is placed on the right
and on the left of the domain, and in (b) it is placed in the center
of the domain. Bars indicate the value of ξa = 0.1, i.e. the order
of magnitude of the range of action of the exogenous chemoattrac-
tant.

together with periodic boundary conditions on the remaining sides y = 0, L. Actu-
ally, in this simple geometry Eq.(10) can be readily solved so that the concentration

ca = c̃b
ex/`a + e(L−x)/`a

1 + eL/`a
,

can be directly substituted in (8).
In the simulation presented in Figure 3a the exogenous and endogenous chemoat-

tractant were the same, so that `a = `. Figure 3a then shows that in a range ` from
the sides x = 0 and x = L capillaries organize themselves perpendicularly to the
sides. At a distance of order ` they branch off giving rise to a capillary network
very similar to the one obtained in the isotropic case.

In Figure 3b the chemoattractant is placed in the center of the domain, i.e.
Ha(x) = δ(x − x0). This source placement gives rise to a circular zone influenced
by the chemical factors characterized by the formation of capillaries arranged in
radial direction.

4. The effect of exogenous chemorepellent. The use of chemorepellent factors
originates the patterns shown in Fig. 4. In particular, the chemorepellent factor is
placed in the center of the domain. Cells then move away from the central region
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Figure 4. Network formation influenced by an exogenous
chemorepellent. In (a) the chemical factor is placed in the cen-
ter, while in (b) it is placed on the central axis of the domain. Bars
indicate the value of ξr = 0.158, i.e. the order of magnitude of the
range of action of the exogenous chemorepellent.

(moving more or less radially) accumulating in a growing circumference with faster
cells catching up slower ones according to the nonlinear dynamics explained in
Section 2. In fact, cells nearer the center move faster.

A circular capillary loop forms, connected with the more isotropic external struc-
ture. The final size of the circular capillary loop corresponds to the range of action
of the chemorepellent. In fact, in the simulation the values of the parameters give
`r = 0.31 mm, which in dimensionless form corresponds to the theoretical value
ξr = 0.158. This value closely corresponds to that in Figure 4a.

In a second simulation (Figure 4b) the chemorepellent source is placed along
a line parallel to the y-axis. Also in this case cells move away from the central
axis, along x accumulating along two lines parallel to the y-axis at a distance close
to the range of the chemorepellent. This way a capillary parallel to the stripe of
chemorepellent is formed and connects with the outer network structure.

As in the previous example, the distance between the two capillaries which run
parallel to the stripe of chemorepellent is nearly twice the range of action of the
chemorepellent (0.27 compared with the theoretical value 0.316).

The mechanisms illustrated above can be used to design a vascular network. For
instance, assuming that we want to reproduce a network structure characterized by



EXOGENOUS CONTROL OF VASCULAR NETWORKS 629

Figure 5. Results of the simulation in presence of three stripes of
chemorepellent placed at a reciprocal distance d = L

4 . The length
of the stripes is L

2 .

a region where capillaries run in parallel at a distance d (as it occurs, for instance,
in the skin) one can theoretically use, if possible, chemorepellents characterized by a
range of action of the order of d/2 and place the stripes at a distance ≈ d. Figure 5
shows the final result obtained using this virtual distribution. In fact, in this case
cells are repelled from the stripes moving perpendicularly to the stripes. They align
in the middle of the stripe forming the capillaries.

Similarly to what happens in the other cases shown in Figure 4, outside the
region influenced by the chemorepellent, the capillary coalesce and connect to the
external network.

5. Blow-up control by the pressure term. In this section it is discussed how
the pressure term ϕ(n) affects the boundness of the solution, following the approach
in [14]. We concentrate on the case in which only an exogenous chemorepellent is
present, because considering the exogenous chemoattractant only involves a non
essential extra term in the model and the generalization of the theorems below is
trivial.

As in [14], we neglect the effect of persistence and consider the following problem




∂n

∂t
= ∇ · (f(n)∇n− χn∇c + χrn∇cr) ,

∆c− µc + an = 0 ,

∆cr − µrcr + Hr(x)
Dr

= 0 ,

∇n ·N = ∇c ·N = ∇cr ·N = 0 in [0, Tmax)× ∂Ω ,

n(0,x) = n0(x) in Ω ,

(13)

where f(n) = n
γ ϕ′(n), a = α

D , µ = (τD)−1, µr = (τrDr)−1, χ = β
γ , χr = βr

γ .
In addition, Tmax is such that, for every t ∈ (0, Tmax) the solution n(t,x) belongs
to the space L∞(Ω) ∩H1(Ω) with ∂n

∂t ∈ L1(Ω). The function n0 is a nonnegative
function depending on x, such that n0(x) ∈ L∞(Ω), where Ω is a domain with a
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C1,1 boundary∗. We assume here that the Lebesgue measure of Ω, |Ω|, is equal to
1, without loss of generality. The vector N finally denotes the outward normal to
the boundary ∂Ω.

It can be noticed that the equation for the chemorepellent is independent from
the others, so it will be useful to recall that, for instance, since Hr(x) ∈ Lp, cr ∈
W 2,∞(Ω) ∩ H3(Ω) = {v ∈ L∞(Ω)|Dαv ∈ L∞(Ω), Dβv ∈ L2(Ω), ∀α ∈ Nd, |α| ≤
2,∀β ∈ Nd, |β| = 3}.

Notice that neglecting the persistence term, we obtain an aggregation model very
close to the Keller-Siegel one with nonlinear diffusion. In particular, its possibility
of blow up of solutions in a finite time and local existence of solutions have been
studied in great detail in the literature.

To prove the nonnegativity of the solution we use the same technique used in
[14] and consider the following auxiliary problem:





∂n

∂t
= ∇ · (ñ(h′(n)∇n− χ∇c + χr∇cr)) ,

∆c− µc + an = 0 ,

∆cr − µrcr + Hr(x)
Dr

= 0 ,

∇n ·N = ∇c ·N = ∇cr ·N = 0 in [0, Tmax)× ∂Ω ,

n(0,x) = n0(x) in Ω ,

(14)

where nh′(n) = f(n), ñ = n+ and n+ denotes the positive part of n. Multiply now
the first equation in (14) by the negative part of n, n− and integrate over Ω. Taking
into account that n = n+ − n−, we obtain

∫

Ω

∂n

∂t
n−dx− d

dt

(
1
2

∫

Ω

(n−)2dx
)

,

and ∫

Ω

n−∇ · (ñ(h′(n)∇n−χ∇c + χr∇cr))dx =
∫

Ω

ñh′(n)|∇n−|2dx

+ χ

∫

Ω

ñ∇n− · ∇cdx− χr

∫

Ω

ñ∇n− · ∇crdx ,

(15)

where we used the no-flux boundary condition and the fact that n+n− = 0. The
three integrals on the right-hand side of (15) vanish because ñ = n+, and so ñ∇n− =
0 and ñ|∇n−|2 = 0. Thus we obtain

∫

Ω

(n−)2dx =
∫

Ω

(n−0 )2dx , (16)

where n−0 is the negative part of the function n0. Since we have assumed that n0 is
nonnegative, the right-hand side of (16) vanishes. It follows that n− = 0 a.e. and
therefore n is a nonnegative function. Since system (14) is equivalent to system
(13), hence the solution of (13) is nonnegative too. The non-negativity of c can be

∗Here with C1,1 we denote the vector space of the functions Ω → R that are C1 and whose
derivatives are Lipschitz-continuous.
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proved as in [14] while the non-negativity of cr is well known and due to the fact
that Hr(x) is a source term.

In addition, it is important to notice that the model preserves mass, i.e. ||n(t)||L1

is constant, provided that no-flux boundary conditions are imposed.
The following theorem will prove the boundness of the solution provided that the

pressure term possesses physically sound properties, e.g. convexity.

Theorem 1. Let Ω be an open, bounded domain in R2 with C1,1 boundary. Assume
that there exists n̄ > 0, such that

f(n) ≥ 9π

2
CΩaχθ + δ ∀n ≥ n̄, (17)

for some arbitrarily small δ > 0, ||n(t)||L1 = 2πθ ∀ t ∈ (0, Tmax) and CΩ being a
constant depending only on Ω. Then for any finite T ≤ Tmax the solution to the
Problem (13) is uniformly bounded in [0, T ].

Proof. The proof is based on the two following lemmas.

Lemma 1. Let Ω be an open, bounded domain in R2 with C1,1 boundary. Assume
that there exist ε > 0, nε > 0, such that f(n) ≥ 2ε for all n ≥ nε. If

||∇c(t)||L∞ ≤ C1 for 0 < t < Tmax ,

||∇cr||L∞ ≤ C2 ,
(18)

then

||n(t)||L∞ ≤ C3 max{1, 2πθ, ||n0(t)||L∞} for 0 < t < Tmax ,

where C3 depends on C1 and C2.

Proof. The proof is similar to that in [14], except for the new terms that involve
the chemorepellent concentration cr. Take p > 1 and multiply the first equation in
(13) by the p-th power of nm, where

nm = (n−m)+

and m is a positive constant to be found. Following [14] one can perform the
following calculations
∫

Ω

∇ · (f(n)∇n− χn∇c + χrn∇cr)np
m dx =

− 4p

(p + 1)2

∫

Ω

f(n)|∇n
p+1
2

m |2dx + χp

∫

Ω

(np
m + mnp−1

m )∇c · ∇nmdx

− χrp

∫

Ω

(np
m + mnp−1

m )∇cr · ∇nmdx .

(19)

The following upper bounds for the terms related with the endogenous chemoat-
tractant can be proved

χp

∫

Ω

np
m∇c · ∇nmdx ≤ p

ε

(p + 1)2

∫

Ω

|∇n
p+1
2

m |2dx +
pχ2

ε
C2

1

∫

Ω

np+1
m dx , (20)
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mχp

∫

Ω

np−1
m ∇c · ∇nmdx ≤ p

ε

(p + 1)2

∫

Ω

|∇n
p+1
2

m |2dx

+
p(mχ)2

ε
C2

1

∫

Ω

np+1
m dx +

p(mχ)2

ε
C2

1 .

(21)
On the other hand, since the terms with the exogenous chemorepellent have

opposite sign, the following lower bounds will be useful

χrp

∫

Ω

np
m∇cr · ∇nmdx = p

∫

Ω

2
p + 1

∇n
p+1
2

m · χrn
p+1
2

m ∇crdx

≥ −p

∫

Ω

2
p + 1

|∇n
p+1
2

m |χrn
p+1
2

m |∇cr|dx .

(22)

We then obtain that

−χrp

∫

Ω

np
m∇cr · ∇nmdx ≤ p

ε

(p + 1)2

∫

Ω

|∇n
p+1
2

m |2dx +
pχ2

r

ε

∫

Ω

np+1
m |∇cr|2dx

≤ p
ε

(p + 1)2

∫

Ω

|∇n
p+1
2

m |2dx +
pχ2

r

ε
C2

2

∫

Ω

np+1
m dx ,

(23)

where we used Young’s inequality ab < ε
4a2 + 1

ε b2 the assumptions of Lemma 1 and
the regularity of cr.

Analogously

−mχrp

∫

Ω

np−1
m ∇cr · ∇nmdx ≤ p

∫

Ω

2
p + 1

|∇n
p+1
2

m |mχrn
p−1
2

m |∇cr|dx

≤ p
ε

(p + 1)2

∫

Ω

|∇n
p+1
2

m |2dx +
p(mχr)2

ε
C2

2

∫

Ω

np−1
m dx

+
p(mχr)2

ε
C2

2

∫

Ω

np+1
m dx +

p(mχr)2

ε
C2

2 ,

(24)

where we used the simple inequality ap−1 ≤ ap+1 +1, which is valid for every a ≥ 0
and p ≥ 1.

Coupling all the estimates above, one obtains
d

dt

∫

Ω

np+1
m dx ≤ − p

(p + 1)

∫

Ω

(4f(n)− 4ε)|∇n
p+1
2

m |2dx

+ p(p + 1)C
∫

Ω

np+1
m dx + p(p + 1)C ,

(25)

where C is a generic constant that depends only on ε, m, χ and χr. Except for
the dependence of C on χr, this is the same results found in [14], so we can easily
conclude the proof following the same steps.

Lemma 2. Let Ω be an open, bounded domain in R2 with C1 boundary. For every
1 < p < +∞ and h, such that there exists n̄ > 0, such that

f(n) = nh′(n) ≥ (p + 1)2π
p

CΩaχθ ∀n ≥ n̄, (26)

the Lp norm of solution n = n(t,x) to (13) is bounded

||n(t)||Lp ≤ C(n̄, p, t) ∀ t < Tmax (27)
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where C exponentially increases with t.

Proof. To begin the proof we turn back to (19) and write

d

dt

∫

Ω

np+1
m dx− 4p

(p + 1)

∫

Ω

f(n)|∇n
p+1
2

m |2dx

+ χp(p + 1)
∫

Ω

(np
m + mnp−1

m )∇c · ∇nmdx− χrp(p + 1)
∫

Ω

(np
m + mnp−1

m )∇cr · ∇nmdx .

(28)

As in the proof of Lemma 2.2 in [15], it can be seen that

− 4p

(p + 1)

∫

Ω

f(n)|∇n
p+1
2

m |2dx+χp(p + 1)
∫

Ω

(np
m + mnp−1

m )∇c · ∇nmdx ≤

− 2p

p + 1

∫

Ω

F (n,m, p)|∇n
p+1
2

m |2dx + C2

∫

Ω

np+1
m + C1 ,

(29)

where C1 = m2aχ(p + 1), C2 = maχ(2p + 1) + m2aχ(p + 1) + 4CΩπθχap, and

F (n, m, p) = 2f(n)− 2CΩaχπθ
(p + 2)2

p + 1
.

The last terms of (28) can be estimated as follows:

−χrp(p + 1)
∫

Ω

(np
m + mnp−1

m )∇cr · ∇nmdx =

= −χrp

∫

Ω

∇np+1
m · ∇crdx−mχr(p + 1)

∫

Ω

∇np
m · ∇crdx =

= χrp

∫

Ω

np+1
m ∆crdx + mχr(p + 1)

∫

Ω

np
m∆crdx =

= −χrp

∫

Ω

np+1
m Σr(x)dx + χrpµr

∫

Ω

np+1
m crdx

−mχr(p + 1)
∫

Ω

np
mΣr(x)dx + χr(p + 1)µr

∫

Ω

np
mcrdx ,

(30)

where Σr(x) = Hr(x)
Dr

. Since this function is a source term, it is assumed non-
negative, and then

−χrp(p + 1)
∫

Ω

(np
m + mnp−1

m )∇cr · ∇nmdx ≤

χrpµr

∫

Ω

np+1
m crdx + χr(p + 1)µr

∫

Ω

np
mcrdx .

(31)

From the properties of cr, that is cr ∈ W 2,∞(Ω)∩H3(Ω), it follows that ||cr||L∞ ≤ C̄
and so

χrpµr

∫

Ω

np+1
m crdx ≤ χrpµrC̄

∫

Ω

np+1
m dx (32)

χr(p + 1)µr

∫

Ω

np
mcrdx ≤ χr(p + 1)µrC̄

∫

Ω

np
mdx

≤ χr(p + 1)µrC̄

∫

Ω

np+1
m dx + mχr(p + 1)µrC̄,

(33)

recalling that np
m ≤ np+1

m + 1.
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Coupling (29) with (32) and (33), and taking into account that from the assump-
tions of Lemma 2 F (n,m, p) ≥ 0 for any n ≥ m (once assumed m ≥ n̄), we can
write
d

dt

∫

Ω

np+1
m dx ≤ C2

∫

Ω

np+1
m + C1 + χrpµrC̄

∫

Ω

np+1
m dx + χr(p + 1)µrC̄

∫

Ω

np+1
m dx

+ mχr(p + 1)µrC̄

= C̄2

∫

Ω

np+1
m dx + C̄1 ,

(34)

where C̄1 = C1 + mχr(p + 1)µrC̄ and C̄2 = C2 + χrpµrC̄ + mχr(p + 1)µrC̄.
Taking m ≥ ||n0||L∞ it follows that

∫

Ω

np+1
m dx ≤ C̄1

C̄2

(
eC̄2t − 1

)
∀ t > 0 (35)

which leads to the thesis of Lemma 2.

The following theorem gives a sufficient condition for the a priori boundedness
of solutions to (13) at any not necessarily finite time.

Theorem 2. Let Ω be an open, bounded domain in R2 with C1,1 boundary. Assume
that there exists ε > 0 and n̄ > 0, such that nh′(n) ≥ ε for all n ≥ n̄. Moreover,
assume that there exists a function W (n), such that

W ′′(n) =
f(n)

n
(36)

and
W (n) > ηnp (37)

for some p > 2, η > 0 and every n ≥ n̄. Then for every finite T the solution to (13)
is uniformly bounded in [0, T ], where the estimate does not depend on T . Moreover,
∃ 0 < M < +∞ : ∀ t < Tmax ≤ +∞, ||n(t)||L∞ ≤ M .

Proof. We introduce a Lyapunov function for our Problem (13), that has the fol-
lowing form

H(n, c, cr) =
1
2

∫

Ω

|∇c|2dx +
µ

2

∫

Ω

c2dx +
a

χ

∫

Ω

W (n)dx

− a

∫

Ω

ncdx + a

∫

Ω

χr

χ
ncrdx,

(38)

where W is as in Theorem 2 and Σr(x) = D−1
r Hr(x). One then has

dH(n, c, cr)
dt

=
∫

Ω

∇c · ∇
(

∂c

∂t

)
dx + µ

∫

Ω

c
∂c

∂t
dx +

a

χ

∫

Ω

W ′(n)
∂n

∂t
dx

− a

∫

Ω

n
∂c

∂t
dx− a

∫

Ω

c
∂n

∂t
dx + a

χr

χ

∫

Ω

n
∂cr

∂t
dx + a

χr

χ

∫

Ω

cr
∂n

∂t
dx

(39)

Using Green’s theorem and zero Neumann boundary conditions, and applying the
equations (13), one obtains

dH(n, c, cr)
dt

= a

∫

Ω

(
1
χ

W ′(n)− c +
χr

χ
cr

)
∇·(f(n)∇n−χn∇c+χrn∇cr)dx (40)
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Using again Green’s theorem one gets
dH(n, c, cr)

dt
= − a

χ

∫

Ω

(W ′′(n)∇n− χ∇c + χr∇cr) · (f(n)∇n−χn∇c+χrn∇cr)dx.

(41)
Applying the assumption (36) one obtains

dH(n, c, cr)
dt

= − a

χ

∫

Ω

1
n
|f(n)∇n− χn∇c + χrn∇cr|2 dx ≤ 0. (42)

This means that H(n, c, cr) ≤ H(n0, c0, cr) for every t > 0, where c0 and cr are
solutions of the elliptic equations




−∆c + µc = an0 in Ω
−∆cr + µrcr = Σr(x) in Ω
∇c ·N = ∇cr ·N = 0 on ∂Ω

(43)

We have also to prove that the function H(n, c, cr) is bounded from below. To
check it we apply Young’s inequality

−
∫

Ω

ncdx ≥ − 1
2ε

∫

Ω

n2dx− ε

2

∫

Ω

c2dx

in equation (38). We obtain

H(n, c, cr) ≥ 1
2

∫

Ω

|∇c|2dx +
1
2
(µ− aε)

∫

Ω

c2dx +
a

χ

∫

Ω

W (n)dx

− a
1
2ε

∫

Ω

n2dx + a
χr

χ

∫

Ω

ncr

≥ 1
2

∫

Ω

|∇c|2dx +
1
2
(µ− aε)

∫

Ω

c2dx +
a

χ

∫

Ω

W (n)dx− a
1
2ε

∫

Ω

n2dx,

(44)

since the last term is nonnegative. Assumption (37) allows to write that

W (n) ≥ χ

2ε
n2

provided that

n ≥ ñ = max
{

n̄, p−2

√
χ

2εη

}
.

Therefore, one gets
a

χ

∫

Ω

W (n)dx− a
1
2ε

∫

Ω

n2dx ≥ −H̄ = min
{

0,
a

χ
min
n≤n̄

(W (n)− χ

2ε
n2)

}
. (45)

Thus, taking ε < µ
a , we obtain

H(n, c, cr) ≥ −H̄ (46)

and then we get
H(n0, c0, cr) ≥ H(n, c, cr) ≥ −H̄. (47)

As in [14] it follows from inequalities (44), (46) and (47) that c belongs to H1(Ω)
uniformly in time:

||c(t)||2H1(Ω) ≤
2(H(n0, c0, cr) + H̄)

min{1, µ− aε} ∀ t > 0.

Once at this point, we can follow the proof of Theorem 4.2 in [14] and easily con-
clude.
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Conclusions and Remarks. We have deduced a model with the aim of predict-
ing the qualitative structure of the capillary network induced in the presence of
exogenous chemical factors. Comparing the results obtained using chemoattractant
and chemorepellent factors, it seems that the latter are more effective in controlling
the shape of the structure.

We put in evidence the importance of the range of action of the chemical factors
and the fact that chemoattractants induce in their range of action the formation of
capillaries which depart from the source of chemoattractant, while chemorepellents
induce the formation of capillaries which surround the source of chemorepellent,
where its range of influence is fading away.

We are confident that the model presented here can be used to identify the opti-
mal placement of exogenous chemical factors in the induction of vascular networks
in vitro.
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