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ABSTRACT. The Internet’s layered architecture and organizational structure give rise to a
number of different topologies, with the lower layers defining more physical and the higher
layers more virtual/logical types of connectivity structures. These structures are very dif-
ferent, and successful Internet topology modeling requires annotating the nodes and edges
of the corresponding graphs with information that reflects their network-intrinsic meaning.
These structures also give rise to different representations of the traffic that traverses the
heterogeneous Internet, and a traffic matrix is a compact and succinct description of the
traffic exchanges between the nodes in a given connectivity structure. In this paper, we
summarize recent advances in Internet research related to (i) inferring and modeling the
router-level topologies of individual service providers (i.e., the physical connectivity struc-
ture of an ISP, where nodes are routers/switches and links represent physical connections),
(ii) estimating the intra-AS traffic matrix when the AS’s router-level topology and routing
configuration are known, (iii) inferring and modeling the Internet’s AS-level topology, and
(iv) estimating the inter-AS traffic matrix. We will also discuss recent work on Internet con-
nectivity structures that arise at the higher layers in the TCP/IP protocol stack and are more
virtual and dynamic; e.g., overlay networks like the WWW graph, where nodes are web
pages and edges represent existing hyperlinks, or P2P networks like Gnutella, where nodes
represent peers and two peers are connected if they have an active network connection.

1. Introduction. The design and implementation of most complex systems is inevitably
broken down into simpler subsystems that tend to be separately optimized and implemented
and then interconnected, often in an ad-hoc manner. A prime example of this approach is
the architecture of the Internet, which is comprised of a modular design based on a dual
decomposition of functionality–a vertical separation into layers and a horizontal decentral-
ization across network components [121]. One of the most visible manifestations of the
Internet’s vertical decomposition is the 5-layer TCP/IP protocol stack, consisting of (from
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the bottom up) the physical layer (e.g., optical fiber, copper), the data link or network ac-
cess layer (e.g., Ethernet, frame relay), network or internet layer (e.g., Internet Protocol,
or IP), the host-to-host or transport layer (e.g., Transmission Control Protocol, or TCP),
and the application layer (e.g., HyperText Transfer Protocol, or HTTP, for the World Wide
Web, or WWW). Here, each layer hides the complexity of the layer below and provides a
well-defined service to the layer above (e.g., congestion and error control in TCP, routing
in IP).

Together, these layers support a reliable communication service over a large array of
geographically dispersed hardware components (e.g., routers, switches, fiber) with differ-
ent functionality, capability, reliability, and ownership. A manifestation of the Internet’s
horizontal decomposition is how this large-scale physical infrastructure is organized into
Autonomous Systems. Here, an autonomous system (AS) or autonomous domain is a group
of routers and networks managed by a single organization. In turn, an Internet Service
Provider (ISP) can consist of a single AS or of a group of ASes, but for simplicity, we will
use the terms AS and ISP indistinguishably throughout this paper. The TCP/IP protocol
stack as a whole and IP in particular are able to hide from the user much of the enor-
mous complexity associated with controlling this diverse set of networked resources and
coordinating the actions among the many competing ISPs. By providing the mechanisms
necessary to knit together diverse networking technologies and ASes into a single virtual
network (i.e., a network of networks, or “Internet”), they ultimately guarantee seamless
connectivity and reliable communication between sending and receiving hosts, irrespective
of where in the network they are.

While this architecture of the Internet has enabled remarkable flexibility, extensibility,
scalability, and robustness for the network as a whole, it has also created significant chal-
lenges for an exact characterization of network structure, behavior, and traffic. In particular,
it makes the inspection of the Internet’s topology and traffic difficult for two reasons. First,
there does not exist a single vantage point from which one can “see” the entire network
(i.e., there is no central authority). Second, because each layer of the architecture defines
its own connectivity and is governed by its own protocol dynamics, the meaning of network
“topology” and “traffic” depends directly on one’s choice of focus. This problem is greatly
compounded by a general reluctance on the part of the “owners” of the Internet (i.e., ISPs)
to share detailed information about their networks due to proprietary reasons, to protect
the privacy of their customers, and for fear of loosing their competitive advantage in the
fiercely contested ISP market.

Due to a general lack of publicly available information about the infrastructure of the
Internet and the traffic that it carries, networking researchers have been faced with the task
of developing measurement and analysis tools of varying sophistication to reverse engineer
the various structures and corresponding traffic flows. The general problem they have to
deal with can be broken down into four distinct tasks: (1) measurements, (2) inference, (3)
modeling, and (4) model validation. For each task, there are a number of challenges and
difficulties, and considerable ambiguity exists with respect to all four of them, but typically
for very different reasons. Yet, considerable progress has been made in these areas over
the last decade, and it is the intent of this paper to provide the appropriate background and
describe and illustrate the state-of-the-art for newcomers and nonspecialists with a number
of concrete examples.

In the process of recounting some of the most notable contributions in these areas, we
observe several recurring themes that appear in the literature and which we summarize
here.
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1. Internet measurements are typically of varying quality. They are often imperfect or
incomplete and can contain errors or ambiguities that depend on the process by which
they have been collected. In general, Internet measurements should not be taken at
face value, but need to be scrutinized for consistency with the networking context
from which they were collected.

2. Inference from quantitative data is only as good as the data that underlies the infer-
ence process. The challenge is to know whether or not “the results we [infer] from
our measurements are indeed well-justified claims” [79], and at issue are the quality
of the measurements themselves, the quality of their analysis, and the sensitivity of
the inferred properties to measurement errors.

3. Developing appropriate models that elucidate observed structure or behavior is typ-
ically an underconstrained problem, meaning that there are in general many different
explanations for one and the same phenomenon. To argue in favor of any particular
explanation typically involves additional information, either in the form of domain
knowledge or of new or complementary data. It is in the choice of this informa-
tion and how it is incorporated into the model building process, where considerable
differences arise in the various approaches that have been applied.

4. There has been an increasing awareness of the fact that the ability to replicate some
statistics of the original data or inferred quantities does not constitute validation
for a particular model. While one can always use a model with enough parame-
ters to “fit” a given data set, such models are merely descriptive and have in general
no explanatory power. For the problems described here, appropriate validation typi-
cally means identifying and collecting complementary measurements that enable the
“closing the loop” in the research process in the sense of [120].

Before proceeding with our review of recent contributions, we note that a fundamen-
tal, yet open, question in the study of complex networks in general is, What elements of
a network are most important in a representative model? Most researchers will readily
agree that connectivity as defined by nodes and arcs is fundamental (i.e., they are the math-
ematical primitives of a graph), but most practical network models of the Internet require
some type of annotation (e.g., bandwidth, delay) beyond simple connectivity. Moreover,
for researchers involved in the analysis of complex networks across disciplines (e.g., biol-
ogy, sociology—see [72] for a representative discussion), reducing the complex function of
these diverse systems to a simple graph is often the only way to obtain a common denom-
inator for comparison. As a result, considerably more effort has focused on the statistical
properties of graphs in general than on their domain-specific structure and function. The
behavior of networks, as defined by the dynamical processes that run on top of a given
topology are even less understood, except in specific cases.

In what follows, we describe some of the main efforts and approaches to discovering
and understanding Internet topology and traffic, as viewed from a number of different per-
spectives on the Internet. In particular, in Section 2 we take the perspective of a network
researcher interested in reverse engineering the physical infrastructure of a single AS as
well as its traffic. For the former, we assume no access to proprietary data, while for the
latter, we require access to ISP-specific information. In Section 3 we consider the case
of a researcher interested in reverse engineering the Internet’s AS-level topology and the
corresponding inter-AS traffic exchanges, without access to any proprietary, AS-specific
data sources. Lastly, Section 4 gives a brief description of existing work on discovering
the structure and evolution of overlay networks such as the Web graph and certain P2P
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networks. We conclude in Section 5 with a discussion of a number of challenging open
problems and future research directions.

2. The Case of a Single Autonomous System. In this section, we consider a single AS
and are interested in its router-level topology (i.e., the layout of the AS’s physical infras-
tructure consisting of routers, switches, and physical cables) and in the traffic that traverses
this infrastructure. In general, while the administrator of an AS has detailed knowledge
about its physical infrastructure, he/she has no intrinsic means for knowing its traffic ma-
trix. Since concern for customer privacy and fear of losing competitive advantage have
provided a strong disincentive for network owners and operators to share topology infor-
mation, direct inspection of an AS’s network is generally not possible, and researchers
have used both empirical and theoretic approaches to discover its physical infrastructure
by probing the AS’s network “from the outside.” On the other hand, since obtaining accu-
rate traffic matrices as a means for describing the traffic that traverses its own network is
of considerable interest to an AS, we take the perspective of a researcher who has access
to AS-specific information (e.g., router-level topology, routing matrix, link-load measure-
ments) and is concerned with the problem of estimating the intra-domain traffic matrix for
the AS in question.

2.1. Intra-AS router-level topology. For router-level related issues such as performance,
reliability, and robustness to component loss, the physical connectivity between routers is
more important than the virtual connectivity as defined by the higher layers of the pro-
tocol stack (e.g., IP). Thus, when referring in the following to router-level connectivity,
we always mean the data link or network access layer (i.e., Layer 2), especially when the
distinction between this layer and the network or internet layer (i.e. Layer 3) is important
for the purpose of illuminating the nature of the actual router-level connectivity (e.g., node
degree) and its physical constraints.

2.1.1. Measurements. Because most ISPs consider their router-level topology to be pro-
prietary, the location and connectivity of routers within the Internet cannot be measured
directly, and coaxing from them the quantities of interest typically requires significant ef-
fort and involves more or less sophisticated heuristics for interpreting any data obtained.
For example, one-hop connectivity between routers running IP can be observed using
traceroute, which records successive IP-hops along paths between selected network
host computers [65]. Traceroute has been successfully incorporated into measurement ex-
periments of varying scope (see for example, the Mercator [49], Skitter [32], Rocketfuel
[96], and DIMES [92] projects), and it remains one of the most popular tools in use today
for router-level mapping.

2.1.2. Inferring intra-AS router-level connectivity. Ongoing research continues to reveal
more and more idiosyncrasies of traceroute data and shows that their interpretation requires
great care and diligent mining of other available data sources. For example, a primary
challenge in trying to reverse-engineer a network’s physical infrastructure from traceroute-
based measurements is that IP connectivity is an abstraction (at Layer 3) that sits on top
of physical connectivity, so traceroute is unable to record directly the network’s physical
structure, and its measurements are highly ambiguous about the dependence between these
two layers. Such ambiguity in Internet connectivity persists even at higher layers of the
protocol stack, where connectivity becomes increasingly virtual, but for different reasons
(for example, see below for a discussion of the Internet’s AS and Web graphs).

The challenges associated with disambiguating the available (traceroute-based) mea-
surements and identifying those contributions that are relevant for the Internet’s router-level
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topology can be daunting. In particular, using traceroute measurements at face value and
submitting them to commonly-used, black box-type modeling techniques has been prob-
lematic for three reasons.

1. Traceroute data often gives the false appearance of direct or high connectivity among
routers. To illustrate how the somewhat subtle interactions among the different layers of
the Internet protocol stack can give the (false) appearance of high connectivity at the IP-
level, recall how at the physical layer the use of Ethernet technology near the network
periphery or Asynchronous Transfer Mode (ATM) technology in the network core can give
the appearance of high IP-connectivity since the physical topologies associated with these
technologies may not be seen by IP-based traceroute. In such cases, machines that are con-
nected to the same Ethernet or ATM network may have the illusion of direct connectivity
from the perspective of IP, even though they are separated by an entire network (potentially
spanning dozens of machines or hundreds of miles) at the physical level. See Figure 1
below for an example. In an entirely different fashion, the use of “Layer 2.5 technolo-
gies” such as Multiprotocol Label Switching (MPLS) tend to mask a network’s physical
infrastructure and can give the illusion of one-hop connectivity at Layer 3. Note that in
both cases, it is the explicit and intended design of these technologies to hide the physical
network connectivity from IP.

FIGURE 1. Sample visualization of IP-level topology from the Skit-
ter Project [32] which uses traceroute to measure connectivity. The IP
address 209.83.160.130 belongs to savvis.net, a managed IP
and hosting company offering “private IP with ATM at core,” so it is
likely that in reality this highly connected “node” corresponds to an en-
tire ATM network (at Level 2) and not just a router. (Image courtesy
UCSD/CAIDA, c©The Regents of the University of California.)

2. It is nontrivial to determine which IP addresses belong to the same router. Because
traceroute records only successive IP hops along a given path and there is typically a dif-
ferent IP address associated with each physical interface card (PIC) on a router, one must
first decide which IP addresses/PICs (and corresponding DNS names) refer to the same
router, a process known as alias resolution [95]. While one of the contributing factors to
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the high fidelity of the current state-of-the-art Rocketfuel maps is the use of an improved
heuristic for performing alias resolution [96], further ambiguities and inaccuracies remain,
as pointed out for example in [106, 8].

3. The experimental setup of some traceroute studies may introduce statistical biases
that considerably alter the nature of the discovered maps. Recently, both experimental [57]
and theoretical [1] research has identified a potential bias whereby IP-level connectivity in
traceroute studies is inferred more easily and accurately the closer the routers are to the
traceroute source(s). Such bias possibly results in incorrectly interpreting a network to have
power law-type distributions in node degree (i.e., connectivity) when the true underlying
connectivity structure is a regular graph (e.g., Erdös-Renyı́ [38]).

Because of these potential inaccuracies with traceroute data, the process by which one
models and validates a candidate router-level topology is extremely important.

2.1.3. Router-level topology modeling and model validation. The development of abstract,
yet informed, models for intra-AS network topology analysis and generation has lever-
aged both empirical and theoretical approaches. The first popular topology generator to
be used for networking simulation was the Waxman model [119], which is a variation of
the classical Erdös-Rényi random graph [38] in which nodes are placed at random in a
two-dimensional plane and links are added probabilistically in a manner that is inversely
proportional to their Euclidean distance. Although this model followed the general obser-
vation that long-range links in real networks are expensive, the use of this type of random
graph model was later abandoned in favor of models that explicitly introduce non-random
structure, particularly hierarchy and locality, as part of the network design [35, 18, 125].
The development of these structural topology models (in particular, the Georgia Tech In-
ternetwork Topology Models or GT-ITM) was based on the fact that an inspection of real
networks shows that they are clearly not random but do exhibit certain obvious hierarchical
features. An important contribution of this work was the argument that a topology model
(and generator) should reflect the design principles in common use. For example, in order
to achieve desired performance objectives, the network must have certain connectivity and
redundancy requirements, properties which are not guaranteed in random network topolo-
gies.

After the development of large-scale, traceroute-based measurement studies resulted in
broad availability of IP-level connectivity data, the emphasis on Internet topology modeling
and analysis shifted to the study of aggregate statistical properties and their explanations
[40, 93, 49, 32, 96, 103]. Of primary interest within the literature have been network sta-
tistics related to the connectivity of network components, whether they be machines in the
router-level graph or entire subnetworks in the AS-level graph (e.g., [48, 22]—see Section
3.1 for details). Consistent with a broader debate within the complex systems community,
considerable attention has been devoted to the prevalence of heavy-tailed distributions in
node degree (e.g., number of connections) and whether or not these heavy-tailed distribu-
tions conform to scaling (i.e., power-law) distributions [40, 93, 67, 27, 69].

Power laws in the network node connectivity have been a popular topic in the study of
networks across disciplines, because this simple statistic captures in a parsimonious man-
ner a prominent feature of many real-world networks, namely that most nodes have very
few connections and a few nodes have lots of connections. This feature has been a central
issue in the study of so-called scale-free network models [11], which have been a popular
theme in the study of complex networks, particularly among researchers inspired by sta-
tistical physics [72, 6, 78]. However, in the study of Internet topology, the discovery of
power laws from traceroute studies (ambiguities of traceroute measurements notwithstand-
ing) have also greatly influenced the recent generation and evaluation of network models.
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In the current environment, node degree distributions and other large-scale statistics are
popular metrics for evaluating how representative a given topology is [104], and proposed
topology generators are often evaluated on the basis of whether or not they can reproduce
the same types of macroscopic statistics, especially power law-type node degree distribu-
tions [16]. Because the structural topology generators in GT-ITM fail to produce power
laws in node degree, they were abandoned in favor of a new class of degree-based gen-
erators (see [61] for a partial list) that explicitly replicate these observed statistics. The
popularity of these generators notwithstanding, this emphasis on power-law node degree
distributions and the resulting efforts to generate and explain them with the help of newly
developed models have been met with considerable criticism for several reasons.

1. The ambiguities inherent in traceroute-based studies suggest that the appearance of
strict power laws should be viewed with healthy skepticism. As noted above, there are both
statistical as well as measurement-based reasons why traceroute data may give the false
appearance of high connectivity routers. Arguments in favor of degree-based generators
often rely on their ability to match exactly the exponent of an observed power law [11]—
an argument that breaks down if the real distribution differs from what has been inferred
from measurements.

2. The degree distribution does not uniquely characterize a graph, the forces govern-
ing its structure, or its behavior. There is considerable diversity in the space of graphs
having the same degree sequence, such that two graphs having the same power-law de-
gree distribution may be viewed as opposites from an engineering perspective that incor-
porates router capacity and is motivated by network throughput [61, 62]. Furthermore,
many graphs matching an observed power-law distribution may have no network-intrinsic
meaning whatsoever or may be unrealizable from existing hardware [61, 8].

3. There remains considerable debate as to the significance, if any, for power law dis-
tributions in the node degree of a network. For example, there is a long-standing but little-
known argument originally due to Mandelbrot [66, pp. 79–116] (see also [122, 123]) which
says in short that power-law type distributions should be expected to arise ubiquitously for
purely mathematical and statistical reasons. A detailed discussion of the debate surround-
ing power laws and “scale free” networks is available from [62, 37].

4. Degree-based models are merely descriptive and not explanatory. There are many
ways of producing power laws [73], so a generative model that merely replicates an ob-
served distribution provides no evidence of a correct physical explanation for the overall
network structure [120]. In other words, without an understanding of the main drivers
of network deployment and growth, it is difficult to identify the causal forces affecting
large-scale network properties and even more difficult to predict future trends in network
evolution.

A simple example is helpful in characterizing the potentially extreme differences be-
tween degree-based topologies and those inspired by engineering. Borrowing from the
illustrative networks first presented in [61], Figure 2 shows two network topologies having
the same degree distribution, which happens to be of the power-law type. The network
in 2(a) was inspired by the Abilene educational backbone network (http://abilene.
internet2.edu/), and the network in 2(b) was generated from a degree-based method
(i.e., [33]). In comparing the functionality of these two networks, we define network per-
formance as the maximum throughput on the network under heavy traffic conditions based
on a gravity model (e.g., [54] with a detailed discussion in Section 2.2). That is, we con-
sider flows on all source-destination pairs of edge routers, such that the amount of flow Xij

between source i and destination j is proportional to the product of the traffic demand xi,
xj at end points i, j, Xij = αxixj , where α is some constant. We compute the maximum
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throughput on the network as

max
α

∑

i,j

αxixj (1)

s.t Rx ≤ b,

where x is a vector obtained by stacking all the flows Xij = αxixj and R is the routing
matrix (defined such that Rkl = {0, 1} depending on whether or not flow l passes through
router k). We use shortest path routing to get the routing matrix, and define b as the vec-
tor consisting of all router bandwidths according to the degree bandwidth constraint (i.e.,
the convex region in 2(c-d)—see [61] for a detailed discussion) which limits the allowable
density of router degree-bandwidth. Under the same traffic assumptions and routing con-
straints, the network in 2(a) can carry more than 20 times the traffic of network 2(b). The
cause of this discrepancy is easily seen in 2(c-d), which shows that under maxflow condi-
tions the degree-based network in 2(b) suffers from severe bottlenecks, while the design in
2(a) does a better job in reconciling the routing and capacity tradeoffs.

(a) Abilene-inspired topology for a single ISP. (b) Equivalent degree-based topology.
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(c) Maxflow utilization of routers in (a).
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(d) Maxflow utilization of routers in (b).
FIGURE 2. Differences between reverse-engineered and degree-based
topologies. As first presented in [61], the networks in (a) and (b) have
the same (power-law) degree distribution. Under maxflow conditions
defined by Eq.(1), the network in (a) achieves 3.95 × 1011 Mbps total
throughput while the network in (b) achieves only 1.64 × 1010 Mbps, a
difference of more than 20×.
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Although the deficiencies of degree-based methods are now well-understood, in the ab-
sence of concrete examples of alternate models these methods have remained popular repre-
sentations for router-level Internet structure. In choosing random graphs (often constrained
to match a particular statistic of interest, such as a degree distribution) as the starting point
for a model, these approaches typically look for the “most likely” network configuration
matching the chosen statistic. Recent attempts to overcome the problems associated with
the degree distribution of a graph have focused on more sophisticated graph statistics, such
as the joint degree distribution (JDD) or higher-order correlation structures [64], these ap-
proaches still suffer from the basic problem that the “most likely” configuration may not
correspond to a semantically meaningful or functional network.

The development of router-level topology models that adhere to engineering reality and
are consistent with the statistics of large-scale measurement studies remains an open area
of research. However, recent work reported in [8] that builds on arguments in [61, 7]
advocates an approach that is primarily based on reverse-engineering observed structure by
reconciling the drivers of engineering design with the observed high variability in topology-
related measurements. The basic tenets of this approach are the following.

• The principal decision makers in the context of network provisioning, design, and
management are the ISPs, and the model should reflect the real objectives and con-
straints that they face. In essence, this approach returns to the basic perspective
advocated by proponents of structural models [35, 18, 125].

• The construction and evolution of real networks is governed by a tradeoff between
what is desirable (i.e., the objectives of the ISP) and what is possible (i.e., the con-
straints facing the ISP). This tension is naturally captured in the form of a mathemat-
ical program (i.e., a constrained optimization problem).

• The emphasis in modeling is on identifying a simple characterization of the most
important objectives (e.g., throughput maximization) and constraints (e.g., router
linecard capacity and density) that drive the decisions of the ISP. By choosing ob-
jectives and constraints that are consistent with the engineering details, one guaran-
tees that any resulting model will adhere to reality. The ability to replicate aggregate
statistics of observed networks is taken as secondary evidence only.

• Because the approach is easily extended to include new objectives or constraints, the
approach naturally lends itself to a feedback loop by which one seeks out additional
validation (e.g., in the form of new measurement studies) of the key objectives and
constraints and then incorporates them into the modeling framework.

While there is considerable work to be done in the development of appropriate topology
generators based on this optimization-based approach, simple models using this framework
have provided proof-of-concept in the ability of simple models reflecting the appropri-
ate engineering tradeoffs to provide superior explanations to measured statistics, including
power laws [61, 8, 62]. Of course, new advances in the ability to measure directly the
router-level structure of the Internet would go a long way to reducing the ambiguity and
guesswork involved in topology modeling and generation.

2.2. Intra-AS traffic matrices. Topologies do not appear in a vacuum. They are, as noted,
designed to carry traffic. Hence our understanding of a topology cannot be complete with-
out some understanding of the traffic carried by that topology; that is, its traffic matrix.
Here, a traffic matrix describes the volume of traffic flowing between pairs of points in a
network. Traffic matrices are studied because they are expected to define an invariant in the
sense that they are largely insensitive to changes of the topology. Hence, they can be used,
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for example, to compare different network topologies, and make judgments about which is
optimal under some criteria.

Work on Internet traffic matrices started as far back as 1974 [53] with an analysis of
the traffic distribution on the ARPANET, but was quite restricted until a decade ago when
Vardi [113] coined the term “Network Tomography” for the problem of inferring traffic
matrices from link load measurements. Vardi’s work presented both an interesting statisti-
cal problem, and an easier method for obtaining traffic matrices, which are not intrinsically
available to a network administrator. They must be measured (involving considerable ef-
fort, and network overhead), or inferred by tomography.

We can study traffic matrices at various granularities: e.g., computer to computer, router
to router, or PoP (for Point-of-Presence) to PoP, and from varying points of focus. Vardi [113],
Kleinrock [53] and much of the subsequent literature on traffic matrices were limited to ob-
servations of a single network, and therefore describe intra-AS or intra-domain traffic ma-
trices. This section is concerned with these intra-domain traffic matrices, but it is important
to be precise about the definition of intra-domain traffic matrix. Typical papers on traffic
matrices refer to an Origin-Destination (OD) traffic matrix (though these are sometimes
called Source/Destination traffic matrices or demands). Origin (or destination) is, however,
an ambiguous concept in the Internet. Content distribution networks allow the same con-
tent to be accessed from multiple physical locations; a single IP address can hide a cluster
of computers; or a single computer may host multiple IP addresses. Not to mention that
given the potential 232 addresses definable in IPv4 alone, the matrix would be rather too
large. Instead, origins (and destinations) have been typically defined in terms of a prefix
that specifies a group of logically related IP addresses (a subnet). The appropriate set of
prefixes themselves are not trivial to define, but there is data that can be used to create a rea-
sonable set of candidates. There are some 200,000 prefixes used currently in the Internet,
so even at this level, the traffic matrix would be enormous (though likely very sparse). We
could aggregate this traffic matrix in various ways (for instance, by origin and destination
AS), but the most common aggregate that is used today is an Ingress-Egress traffic matrix.

An Ingress-Egress (IE) traffic matrix gives the traffic volumes flowing between partic-
ular ingress and egress points (links, routers or PoPs) in the AS under consideration. It is
an aggregate of the OD traffic matrix. Typical large networks might have 10’s of PoPs, or
100’s of routers, and so the traffic matrix is of a more workable size. It is also the only
full matrix that is observable by a single AS. An AS cannot observe traffic flows which do
not cross its network, and so cannot infer traffic volumes that do not appear in its IE traffic
matrix. The distinction between the IE and OD matrices is very important. As we will see
below, they can have quite different characteristics.

In the following subsections we consider both models and inference methods for IE
traffic matrices. The inference problems most commonly considered are highly undercon-
strained, and so we need to introduce side-information to solve them, and this information
comes in the form of what is considered to be a likely model for the traffic, and so we will
briefly describe the types of models that have been used for traffic matrices. Inferred traffic
matrices are used by some of the large backbone service providers to perform network de-
sign, traffic engineering [47, 86, 87, 94], or reliability analysis [126], and commercial tools
now exist for performing these tasks, e.g., [77, 19].

2.2.1. Modeling Ingress-Egress traffic matrices. Models for traffic matrices started with
modeling the individual traffic matrix flows. The first work on traffic matrix inference
suggested use of a Poisson process model [113, 105] for the arrival of packets, however,
the Poisson model for Internet traffic is widely known to be false, and so later papers
adopted Gaussian models where traffic volumes in each time interval were formed from a
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Gaussian process [17, 124]. In such a process, typically one assumes some non-stationary
mean exists, about which there are Gaussian variations, and it is interesting to consider
the relative variations around the mean. A number of papers have commented on this
relationship [68, 85, 88, 50], which is clearly not Poisson at the time-scales of interest.

There are also a number of papers that have noted that the non-stationary mean of Inter-
net traffic may follow patterns [88, 60, 58, 59, 112], in particular, it is common to observe
diurnal and weekly cycles in the traffic, as well as long-term trends. These seasonal, and
long-term patterns exhibit variations often an order of magnitude greater than statistical
fluctuations in the traffic, and so are at least as important to characterize as the variations
around the mean.

Temporal models for individual flows are clearly limited — by focusing only on the
temporal characteristics of flows, they fail to capture the interesting correlation structure
across the traffic matrix elements. We refer to models that focus on the correlation struc-
ture of the matrices as spatial models. Such models first appeared in [68] in the form of
the choice models. However, a simpler and more intuitive model for traffic matrices is the
gravity model. The gravity model was first used in the context of Internet traffic matrices in
[127], though the idea is considerably older. Gravity models take their name from Newton’s
law of gravitation, and are commonly used by social scientists to model the movement of
people, goods or information between geographic areas [110, 81, 80]. In Newton’s law of
gravitation the force is proportional to the product of the masses of the two objects divided
by the distance squared. Similarly, in gravity models for interactions between cities, the
relative strength of the interaction might be modeled as proportional to the product of the
cities’ populations. A general formulation of a gravity model is given by Xij = Ri·Aj

fij
,

where Xij is the matrix element representing the force from i to j; Ri represents the repul-
sive factors that are associated with leaving from i; Aj represents the attractive factors that
are associated with going to j; and fij is a friction factor from i to j.

In network applications, gravity models have been used to model the volume of tele-
phone calls in a network [54]. In the context of Internet TMs, we can naturally interpret
Xij as an OD or IE traffic matrix, the repulsion factor Ri as the volume of incoming traf-
fic at location i, and the attractivity factor Aj as the outgoing traffic volume at location
j. The friction matrix (fij) encodes the locality information specific to different source-
destination pairs, however, as locality is not as large a factor in Internet traffic as in the
transport of physical goods, we shall assume a common constant for the friction factors.
The resulting gravity model simply states that the traffic exchanged between locations is
proportional to the volumes entering and exiting at those locations.

Formally, denote the network nodes by ni, i = 1, . . . , N , and the IE traffic matrix by
T , where T (i, j) denotes the volume that enters the network at node ni and exits at node
nj . Let T in(i) and T out(j) denote the total traffic that enters the network via node ni, and
exits the network via node nj , respectively. The gravity model can then be computed by
either of

T (i, j) = T tot T in(i)∑
k T in(k)

T out(j)∑
k T out(k)

= T totpin(i)pout(j), (2)

where T tot is the total traffic across the network, and pin(i) and pout(j) denote the prob-
abilities of traffic entering and exiting the network at nodes i and j respectively. Under
the conservation assumption that the network is neither a source nor sink of traffic in itself
T tot =

∑
k T in(k) =

∑
k T out(k) and we can also write

p(i, j) = pin(i)pout(j), (3)
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where p(i, j) is the probability that a packet (or byte) enters the network at node ni and
departs at node nj . Hence the gravity model corresponds to an assumption of independence
between source and destination of the traffic. More importantly, using the above, the gravity
model can be written as a matrix formed from the product of two vectors, e.g.

P = pinpT
out, (4)

so by characterizing these two vectors, we obtain a reasonable characterization of the ma-
trix.

In the form just described, the gravity model has distinct limitations. For instance, real
traffic matrices may have non-constant fij , (perhaps as a result of different time-zones), and
there is a problem (discussed later) with the use of such a model for IE matrices. However,
the model has been shown to be quite useful because it can replicate some statistics of
actual traffic matrices very well. Figure 3 shows that the Cumulative Distribution Function
(CDF) and Complimentary Cumulative Distribution Function (CCDF) of real traffic matrix
elements in comparison to a gravity model synthesis technique (and a simple log-normal
model suggested elsewhere in the literature [76]). We can see that the distribution functions
for the real traffic match a gravity model very well (see [84] for details). Of course, as noted
above, simply replicating statistics is not a sufficient validation of the model. Hence, we
cannot convey explanatory power from the model, but the model can nevertheless be useful
in a number of applications (e.g. inference, and synthesis). Moreover, the independence
assumption can be rewritten p(i|j) = pout(i), i.e., the conditional probability of choosing a
particular exit point, given an entry point, is just the probability of choosing that exit point.
In other words, traffic is homogeneous in the sense that its origin (and similarly destination)
don’t influence the destination (origin). Homogeneity is a reasonable initial assumption for
Internet traffic.

Note also some interesting features of these distributions: the traffic matrix clearly
comes from a skewed distribution, the distribution follows a rough 80-20 law (80% of
traffic is generated by the largest 20% of flows). Similar distributions have often been ob-
served, and so traffic matrix work often concentrates on these larger flows, because of their
relative importance. However note that the distribution is not heavy-tailed in the conven-
tional sense that the tail follows a power-law, and in fact, the distribution has a lighter tail
than the log-normal distribution.
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FIGURE 3. A comparison between the log-normal, and the gravity
model fits to the empirical Abilene data (a single 5 minute PoP-PoP TM
from 00:15 on the 1st of March, 2004).
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Figure 3 shows that the gravity model can lead to methods for synthesizing realistic
traffic matrices for the Abilene network. In this paper we also provide new results for the
GÉANT network, which provides Internet access to universities and research organizations
in Europe. Results for the GÉANT network (derived from data provided in [112]) are
shown in Figure 4. The synthesized gravity model (generated as for Abilene) no longer
fits the traffic matrix. To understand this, we must delve a little into the GÉANT network.
It is important in this network to note that nodes in GÉANT’s network provide access to
regional aggregation networks. However, this happens in different ways. In most cases,
the regional aggregation network is independent of GÉANT, except for transit to other
networks. The net impact is that GÉANT doesn’t see any traffic between sub-nodes of the
regional network. Typically, for a network where regional traffic does not have to come
up to the backbone, the diagonal elements of the matrix will be zero and they won’t match
the gravity model. However, in at least one case on GÉANT, the regional network uses the
GÉANT router to transit traffic within the regional network, and so this traffic does appear
on GÉANT, and inflates the values of matrix elements at this node. In particular, one node
in GÉANT aggregates 7 other nodes traffic. Figure 4 shows the result of generating a
simple gravity model with N + 7 nodes but aggregating eight of these nodes together. We
can see that at least for the large traffic matrix elements the fit is again good.
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FIGURE 4. GÉANT traffic matrices (from August 30th 2005). In this
case the simple gravity model fails to provide a usable model for the
large traffic matrix elements because GÉANT has several nodes which
aggregate other nodes traffic. Including one such aggregation when cre-
ating the matrices produces a better fit.

The interesting point to notice in the study of the GÉANT example is that the causality
between topology and traffic doesn’t just flow from traffic to topology (via network design).
The network topology also has an impact on the observed traffic. The GÉANT example
shows that to correctly build a traffic matrix, one must understand the network topology.
Another way in which this is true results from the study of IE traffic matrices. As noted,
these are more commonly studied than OD matrices. However, IE matrices can be distorted
by inter-domain routing. We provide here a simple illustrative example of how this can
commonly occur.

The Internet is made up of many connected networks. Often they interconnect at mul-
tiple points. The choice of which route to use for egress from a network can profoundly
change the nature of IE traffic matrices. Typically, networks use hot-potato routing, i.e.,
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they choose the egress point closest to the ingress point, and this results in a systematic
distortion of IE traffic matrices away from the simple gravity model.

In order to understand this, let us consider a toy example consisting of three ASes,
representing the three separate, but connected networks shown in Figure 5 (a). We shall
assume that each connects with the other, and passes traffic between each, with the total
volume passed between each following a gravity model, i.e. T = ttT /T tot, where for the
sake of example, let us take t = (3, 3, 3)T , so that

T =

A B C
A
B
C




1 1 1
1 1 1
1 1 1


 (5)

The row label denotes the source, and the column the destination.

A
B

C

(a) A simple inter-AS network.

B

C

A

1

2

3

(b) The simple network showing the internal router level
structure of A.

FIGURE 5. Example networks.
Now, let us refine the model by delving into the details of network A, which we shall as-

sume consists of three routers as shown in Figure 5 (b). Assume that a gravity model holds
between routers, and their aggregates (in this case networks B and C are still aggregates of
routers), and the traffic is evenly spread between the routers of A, then

T ′ =

1 2 3 B C
1
2
3
B
C




1/9 1/9 1/9 1/3 1/3
1/9 1/9 1/9 1/3 1/3
1/9 1/9 1/9 1/3 1/3
1/3 1/3 1/3 1 1
1/3 1/3 1/3 1 1




(6)

Notice that
• the matrix as a whole still follows a gravity model with t = (1, 1, 1, 3, 3)T ,
• the sums of appropriate submatrices still match (5).

The traffic matrices T and T ′ are OD traffic matrices — they specify volumes of traffic
between origins and destination (whether these be routers or ASes).

In order to obtain IE traffic matrices, we need to determine the ingress and egress points
of traffic on A’s network. Assume that A, B and C are peers, and that shortest-AS path is
used for inter-domain routing (this is not necessarily the case but we examine the simplest
case for the purpose of exposition). Assume also that hot-potato routing is used internally
by A and that the Interior Gateway Protocol (IGP) weights are all equal. The following exit
points will be chosen for traffic originating at a router in A’s network (destined for network
B or C): traffic originating at router 2 will exit the network at router 2, traffic originating
at router 3 will exit the network at router 3, and traffic originating at router 1 will exit the
network at routers 2 and 3 for destinations B and C respectively.

We can decompose the IE traffic matrix into four components
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1. Internal traffic: this is traffic from one router to another within A, and is given by the
top-left 3× 3 submatrix of T ′, i.e.,

T internal =

1 2 3
1
2
3




1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9


 (7)

2. Traffic departing A: is traffic that originates at a router in A (or perhaps from a cus-
tomer network of A), and it is routed using hot-potato routing. In the example pre-
sented the resulting traffic looks like:

T departing =

1 2 3
1
2
3




0 1/3 1/3
0 2/3 0
0 0 2/3


 (8)

3. Traffic coming into A: is traffic originating in networks B and C with a destination
in A. The entry points of this traffic are controlled by B and C respectively, and so,
from A’s point of view, this traffic is randomly distributed across the ingress links.
For example, assuming an even spread, the traffic matrix would appear like

T arriving =

1 2 3
1
2
3




0 0 0
1/3 1/3 1/3
1/3 1/3 1/3


 (9)

4. External traffic is traffic going between B and C (and any other networks). None of
this traffic appear on A’s network (A does not provide transit for its peers).

Adding up all of the traffic with the same entry and exit points we get

T IE =




1/9 4/9 4/9
4/9 10/9 4/9
4/9 4/9 10/9


 (10)

which doesn’t match a gravity model at all — for instance, we can see the sudden appear-
ance of larger diagonal terms in this matrix. Thus the IE traffic matrix may not appear to
be generated by a gravity model, even though the OD traffic matrix is directly generated
this way. It is important to understand the difference between IE and OD traffic matrices,
because each has limitations: OD traffic matrices are needed to understand or predict re-
sults of inter-domain routing changes, but are much harder to measure, whereas IE traffic
matrices may be changed by modifications to routing, without any fundamental change in
the users usage patterns. In essence, OD matrices are invariant under a larger group of
topology (and routing) changes than IE matrices, though the latter are still useful in many
applications.

Obviously the example above is a toy to illustrate the various issues involved. However,
in [127] a generalized gravity model was proposed that incorporated these features. The
paper shows that the generalized gravity model can provide a much better fit to real traf-
fic matrices than the simpler model and that it is, in fact, equivalent to the independence
assumption of the simple gravity model, conditional on the class of the ingress and egress
points.

The gravity model can be generalized in other ways. For instance, it is closely related
to the concept of a random dot-product graph [46, 91]. A random dot product graph is
generated in the following manner. Start with N nodes, and generate (in some fashion) a
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vector at each node i, which we will denote xi. Then we create a dot-product matrix, i.e.
we create

Fij = xi · xj =
∑

k

x
(k)
i x

(k)
j , (11)

where x
(k)
i is the kth element of the vector xi. In a dot-product graph, the probability

that an edge i−j appears in the graph is given by f(Fij), where f is some function (con-
ventionally used to ensure that the values are probabilities, i.e. lie in the interval [0, 1]).
The formalism is appealing because it includes large classes of random graphs (threshold
graphs, Erdos-Renyi graphs, etc.), and has been suggested in social networks to model
interactions between entities. For instance, A might associate with B if they have many
features in common, where the features in question are recorded in the vectors xA and xB ,
respectively.

However, for the case of vectors of length one (scalars) the matrix F is simply a gravity
matrix. So we can see that the formalism above provides a mechanism for modeling a
more general type of traffic matrix, formed by the linear combination of a series of K
gravity models. Such a superposition of matrices does not have compelling motivation,
but with one additional twist we can provide such. We generalize the formalism above to
create random matrix-product graphs by taking

Fij = xT
i Qxj , (12)

where Q is an arbitrary (fixed) matrix. The representation would be equivalent to a dot
product where Q is positive definite [46], but we do not restrict ourselves to these cases.
An example of where this might be of particular use would be in the modeling of traffic
generated by server-client interactions. In such interactions, the volume of traffic is often
asymmetric. In particular, we might model the volume of traffic between servers and clients
as proportional to the number of clients, times the number of servers. In this case, the vector
xi = (#of clients, #of servers) and the matrix product in question would be

Fij = xT
i

(
0 α
1 0

)
xj , (13)

where α is a constant expressing the degree of asymmetry in the traffic. There is a great
deal of scope for investigation of such models, and their applicability to Internet traffic
matrices.

The gravity model is a purely spatial model, while the models described earlier focus
on temporal characteristics of traffic. It is reasonable to consider whether spatio-temporal
models can be constructed. Two trains of research exist on this topic. Firstly, [60, 58, 59]
have used principal component analysis (PCA) to construct a spatio-temporal model for
traffic. The authors break traffic into principle eigenvectors (along the time axis), the first
few of which correspond to the temporal cycles in traffic (diurnal and weekly cycles), and
most other correspond to Gaussian variations around these. The traffic is correlated across
matrix elements by synchronizations in the periodic components (due to similarities in
time-zones across the networks studied). The second approach [76] has been (effectively)
to generate a probability matrix such as is discussed above, and then apply the simple
temporal models above to create the actual traffic, such that the probability matrix remains
constant, which has been shown to be reasonable for larger matrix elements [50].

2.2.2. Estimating Ingress-Egress traffic matrices. The obvious approach to obtaining an
Internet traffic matrix is to measure it directly. There are various technologies such as flow-
level aggregation that have been used for this purpose [42, 43]. However, in practice, this is
often difficult. Routers may not support an adequate mechanism for such measurements (or
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suffer a performance hit when the measurements are used), and installation of stand-alone
measurement devices can be costly.

On the other hand, the Simple Network Management Protocol (SNMP) is almost ubiqui-
tously available, and has little overhead. Unfortunately, it provides only link-load measure-
ments, not traffic matrices. Vardi’s key insight was that one might be able to infer a traffic
matrix from such link level measurements, and he proposed a method for doing so [113].
Vardi’s general approach has similarities with tomographic techniques used in fields such
as medical or seismological imaging, and hence the term Network Tomography1. Vardi
realized the problem could be written as a linear inverse problem as follows: we observe
link-load data y which are related by

y = Rx, (14)

to traffic matrix elements x written as a vector, and the routing matrix R. For a typical
network the number of link measurements is O(N) (for a network of N nodes), whereas
the number of traffic matrix elements is O(N2) leading to a massively underconstrained
linear inverse problem. There is extensive experience in solving such problems from fields
as diverse as seismology, astronomy, and medical imaging, all leading to the conclusion
that some sort of side information must be brought in, with the resulting accuracy being
strongly influenced by the quality of the prior information. A common framework for
solving such problems is regularization, where we solve the minimization problem

min
x
‖y −Rx‖22 + λ2J(x), (15)

where ‖ · ‖2 denotes the l2 norm, λ > 0 is a regularization parameter, and J(x) is a penal-
ization functional. Approaches of this type, generally called strategies for regularization
of ill-posed problems are more generally described in [51].

As we have seen, Vardi’s method was based on side-information that traffic was Poisson
(Tebaldi and West make a similar assumption [105]). Similar later approaches incorporated
more realistic temporal modeling assumptions [17, 124, 115, 116]. Apart from some scala-
bility problems in the algorithms, temporal models such as this don’t take adequate account
of correlations between traffic matrix elements, as shown in [68]. More recently, most al-
gorithms for traffic matrix estimation have incorporated some type of spatial model, such
as the gravity models described above [127, 128, 50, 126]. The generalized gravity model
was verified to be one of the best existing technique on other networks [50, 109] (Gunnar et
al. [50] actually showed a method using worst-case bounded priors was slightly better, but
did not compare the results using a generalized gravity model which was found [128] to
improve performance by several percent at least, making such a method the preferred ap-
proach). Commercial tools now exist for performing such estimates, e.g., [10, 77, 117, 19].

Of great importance is predicting how well an inference method might work for a partic-
ular network (other than those tested above). The main influence of topology in inference
appears to be in determining how ill-posed the linear inverse problem is. Performance of in-
ference appears to be approximately linear in the ratio of unknowns to measurements [128].
The higher this ratio, the worse the performance. Simple illustrative examples of this ef-
fect are a clique (a completely connected network), where (with direct routing) the traffic
matrix is completely determined by the link measurements, as opposed to a star network,
where the link measurements provide very little information about the traffic matrix. It is
also noteworthy that the gravity model assumption is likely to work best in networks which

1The term has since been used for a range of related problems, such as inference of link performance from
end-to-end performance measurements, and topology inference.
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observe large aggregates of traffic, i.e., backbone networks. On small, local area networks,
it is unlikely to be as effective.

The methods above neatly partition into temporal and spatial approaches, depending on
the type of model that is used to provide side-information in the inference process. If scal-
ability issues can be conquered, it seems that spatio-temporal models could be constructed
that might include the best of both worlds.

There are a number of additional procedures one can perform to improve the traffic
matrix estimates above, if more precise estimates are required. The most obvious approach
is to include other measurements. In many cases, it may be difficult to measure flow-level
aggregates at all of the points needed to collect a traffic matrix, but not hard to collect it
at a few points. Using flow level collection at a single ingress node provides one row of a
IE traffic matrix. Given a regularization approach such as described above, it is relatively
easy to include additional measurements such as these, and this has been shown to produce
large improvements in estimates [128, 126, 50]. Likewise, Varghese and Estan [114] have
suggested other types of data that could be easily collected at a router, for instance a local
traffic matrix giving the traffic between interfaces on the router. It was also shown in [128]
that this would provide a valuable improvement in traffic matrix estimates.

An alternative to building additional measurement infrastructure is to change the exist-
ing networks in useful ways. Nucci et al. [75] suggest changing IGP weights in a network
in order that the resulting rerouting of traffic provides measurements that would otherwise
be unobserved. Using carefully chosen schedules of changes, one can create a system of
equations that is no longer under-determined, and hence find a more precise estimate of the
traffic matrix. Of course, such an approach assumes that the traffic matrix remains relatively
constant over the period of measurement, which is not necessarily a good approximation.

Finally, it is worth noting that the above discussion has focused on point-to-point ma-
trices. For example, we measure or infer the traffic from one ingress point to an egress
point. It can be useful to consider a point-to-multipoint matrix, when considering IE matri-
ces [43]. To understand why point-to-multipoint matrices are important, it is worth going
back to the reason for studying traffic matrices in the first place. The ideal traffic matrix
would be an invariant under changes to the network topology and routing. Hence, one can
use the traffic matrix in determining which of a set of possible network designs (or rout-
ings) would be optimal. However, we have seen that the IE traffic matrix is not invariant
to topology or routing. The point-to-multipoint traffic matrix records the amount of traffic
from an ingress point to a set of egress points. The sets are chosen such that the matrix is
invariant under (typical) changes in egress point. Thus the point-to-multipoint traffic ma-
trix is more useful for planning than a simple IE traffic matrix. Zhang et al. [126] show
how to infer point-to-multipoint traffic matrices in a very similar manner to point-to-point
IE matrices, and demonstrate the utility of these new matrices.

3. The Autonomous System-Level Internet. A major reason for modeling the Internet’s
AS-level topology is to describe, characterize, and understand the logical construct that
is often referred to as the “Internet Ecosystem” [74] and consists of nodes that represent
Autonomous Systems (ASes) and (annotated) connections that indicate that the two ASes
in question are in a specific type of peering relationship. Here, an autonomous system or
domain denotes a group of networks operated by a single administrative entity. Inter-AS
connectivity is defined in terms of pairwise logical peering relationships. A peering rela-
tionship between two ASes refers to a contractual business agreement between two corre-
sponding parties (e.g., ISPs) to exchange traffic directly between them. Two ASes with an
established peering relationship are physically connected by at least one direct router-level
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link. The majority of peering relationships are either of the “customer-provider” type or the
“peer-to-peer” type. In the former, one AS plays the role of a customer, and the other AS
provides the customer with transit Internet access for a fee. In the latter, two ASes derive
mutual benefits from interconnecting with each other (e.g., obtaining direct routes to the
other party’s networks) and share the cost of maintaining the relationship. 2

This AS-level ecosystem is an environment where establishing “ground truth” is notori-
ously difficult. The main reason is that AS-specific aspects such as physical infrastructure,
traffic flows, economic aspects, or business-related data cannot in general be measured di-
rectly or are by and large proprietary in nature. Without access to direct measurements of
AS-level features, the research community has been faced with the problem of identifying
and collecting appropriate “surrogate” or “substitute” measurements that are publicly avail-
able or obtainable and that can be used to shed some light on the nature of this otherwise
elusive AS environment. In this section, we follow closely the presentation in [25] and are
concerned with two particular AS-specific aspects, (annotated) AS connectivity maps and
inter-AS traffic matrix giving the traffic demand between any pair of ASes.

3.1. (Annotated) AS-level connectivity maps.

3.1.1. Measurements. Connectivity-related Internet measurements are notorious for their
ambiguities, inaccuracies, and incompleteness, and many of them can at best be described
as being of “limited quality.” This is true at the physical layer (see for example the dis-
cussion in Section 2) as well as at the higher layers of the protocol stack, where Internet
connectivity becomes more virtual. For example, as far as measurements for inferring
AS-level connectivity are concerned, network operators are generally reluctant to disclose
information regarding their peering relationships with other ASes and routing policies for
business reasons. Peering relationships are, in general, the result of business negotiation
between two corresponding parties, or may be part of broader strategic partnership be-
tween companies. Such business-oriented peering relationships are typically protected by
non-disclosure agreement. This makes it practically impossible to measure AS connec-
tivity and the type of peering relationships directly, which in turn illustrates the need for
alternative or “surrogate” measurements.

The measurements that the research community has almost exclusively relied on for
inferring and modeling the Internet’s AS-level topology consist of BGP routing data sets
collected by the University of Oregon Route-Views Project [89]. Here the Border Gateway
Protocol (BGP) is the de facto standard inter-domain routing protocol deployed in today’s
Internet [97]. The Oregon route server connects to dozens of operational routers belonging
to commercial ISPs solely for the purpose of collecting their BGP routing data. As a result,
the Oregon route-views data sets reflect AS-level connectivity, as reported by BGP, seen
from a limited number of vantage points in the global Internet. Starting in Nov. 1997, the
Oregon route-views data sets have been archived on a daily basis by the National Labo-
ratory for Applied Network Research (NLANR) [71]. Presently, archives of the Oregon
route-views data sets are available from routeviews.org [89]. In addition to the full
BGP routing table snapshots, routeviews.org also provides daily archives of individ-
ual route updates obtained from the Oregon route server.

2Sometimes the term “peering relationship” is used exclusively to refer to “peer-to-peer” type relationships.
“Customer-to-provider” type relationships are then referred to as “transit” relationship. Here we use the term
“peering relationship” to mean both “peer-to-peer” type and “customer-to-provider” type relationships. Other
peering arrangements (e.g., “sibling-to-sibling” relationship) do exist, but are rare and therefore not considered in
this paper.
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3.1.2. Inferring AS connectivity and peering relationship. Note that the ability to infer AS
connectivity from BGP routing tables depends largely on the nature of the contract that
specifies the details of an agreed-upon AS peering relationship. For example, if such a
contract does not permit a given inter-AS route to be used by a third party, BGP does not
advertise this information to the global Internet. Moreover, since BGP is a path-vector pro-
tocol, backup links connecting multi-homed ASes may not show up in BGP routing table
snapshots. Other inaccuracies can arise either because of the dynamic nature of both ASes
and peering relationships (e.g., see [22]) or because of limitations of the heuristics used to
infer the type of peering relationship (e.g., see [48, 103, 118]). As a result, BGP-derived
AS connectivity information is bound to provide only an inaccurate and incomplete picture
of the actual AS-level Internet connectivity. However, this possibility has received surpris-
ingly little scrutiny from the research community, even though from a BGP perspective, it
should come as no surprise. After all, BGP is not a mechanism by which ASes distribute
their connectivity. Instead, BGP is a protocol by which ASes distribute the reachability of
their networks via a set of routing paths that have been chosen by other ASes in accordance
with their policies. Naturally, from each AS, one can only see the subset of existing AS
connections formed by these policy-influenced routes.

The first in-depth study that addresses and quantifies the degree of (in)completeness of
AS connectivity maps inferred from the Oregon route-views data sets was presented by
Chang et al. in [22] (see also [24]). By augmenting the Oregon route-views data with other
publicly available and carefully sanitized data obtained from (1) full BGP table dumps
from a dozen additional public route servers, (2) a selection of Internet Looking Glass sites
that provide BGP summary information, and (3) the Internet Routing Registry or WHOIS
database, Chang et al. made a number of important observations. First, they showed that
a significant number of existing AS peering relationships remain completely hidden from
most BGP routing tables. Second, the AS peering relationships with tier-1 ASes are in
general more easily observed than those with non tier-1 ASes. Last but not least, there
appear to be at least about 40% more AS peering relationships in the actual Internet than
commonly-used BGP-derived AS maps reveal, but only about 4% more ASes. Using a
much more heavy-weight, special-purpose measurement and data collection infrastructure,
these findings were largely confirmed in a more recent study by Raz and Cohen [29].

3.1.3. AS-level topology modeling and model validation. Starting with the original obser-
vation in [40] that BGP-derived AS maps exhibit power law-type node degree distribu-
tions, popular degree-based random graph techniques for modeling the Internet’s AS-level
topology have included the preferential attachment model of Barabasi and Albert [11] and
numerous variations of it, the power-law random graph models of Chung and Lu [33] and
Aiello et al. [4], and very recent work described in [63] that advocates the use of the joint
degree distribution to characterize BGP-derived AS connectivity. Much of this work is
very traditional in the sense that it is almost exclusively descriptive in nature. However, it
has also resulted in a rather weak theoretical foundation for Internet topology modeling,
in general, and AS-level topology modeling, in particular (see also the discussion in Sec-
tion 2). For one, in view of the studies of Chang et al. [22] and Raz and Cohen [29], the
BGP-derived AS maps cannot be taken at face value. When taken at face value, proper-
ties of inferred AS maps that are the results of even the most sophisticated analysis of the
data at hand are in general questionable, if not useless, unless they are accompanied by
strong robustness results that state whether or not the observed properties are insensitive
to the known ambiguities inherent in the underlying measurements. Lacking any such ro-
bustness properties, neither a modeling effort that selects a particular model based on its
ability to fit the inferred AS map well, nor a model validation approach that argues for the
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validity of a proposed model on the basis that it is capable of reproducing certain empiri-
cally observed properties of the inferred AS map have much scientific value. Both rely on
the unreasonable assumption that inaccurate measurements do not tarnish subsequent data
analysis or modeling efforts, and as far as the model validation argument is concerned, it
begs the questions which of the observed properties a proposed model has to match before
it is deemed “valid,” and how many of them. There has been an increasing awareness of the
fact that two models may be identical with respect to certain properties or graph metrics,
yet structurally, they can be drastically different (see for example [37, 8]).

This largely unsatisfactory situation with respect to using random graph models for de-
scribing and trying to understand the Internet’s AS-level ecosystem brings up the more
fundamental issue of randomness vs. design or engineering as the main forces underlying
the evolution of Internet connectivity at the AS-level. Surely, deciding on whether or not to
establish what type of peering relationship and with whom is largely based on economic ar-
guments and not the outcome of chance experiments conducted by the different ASes. This
then suggests a concrete alternative approach to Internet topology modeling, namely one
that involves optimization of tradeoffs between multiple functional objectives of networks
subject to constraints on their components, usually with an explicit source of uncertainty
against which solutions must be tolerant, or robust. In this approach that has been termed
HOT for Highly Organized Tolerance [36, 20] or Heuristically Optimized Tradeoffs [39],
constrained optimization and robustness are the overarching themes, but models of func-
tionality, uncertainty, component constraints, and environment are necessarily domain spe-
cific. The feasibility and success of this HOT approach in the concrete context of modeling
the Internet’s router-level topology is discussed in Section 2.

In the context of the Internet’s AS-level topology, a HOT-based approach has been ad-
vocated and pursued by Chang et al. in [21, 23, 26, 24]. In particular, Chang et al. present
a new framework for modeling the evolution of the AS-level Internet by identifying a set
of concrete criteria that ASes consider either in establishing a new peering relationship or
in reassessing an existing relationship. The proposed framework is intended to capture key
elements in the decision processes underlying the formation of these relationships and is
flexible enough to accommodate a wide range of AS-specific objectives and constraints. It
includes as key ingredients AS-specific aspects such as geography (i.e., number and local-
ity of PoPs within an AS), business rationale or operational characteristic (i.e., the primary
purpose(s) behind the design, operation, and management of an AS’s physical infrastruc-
ture), and traffic demands (see below). In this sense, the HOT approach emphasizes treating
ASes not as generic nodes or atomic units but as geographically dispersed networks with
multiple PoPs that can support a great diversity in operational characteristics, business ra-
tionale, and AS routes [70]. It also shifts the attention from the ambiguous and inaccurate
BGP-based measurements to the more fundamental but not necessarily easier-to-measure
AS-intrinsic aspects like geography, physical infrastructure, business model, and traffic.
Note that none of these AS-specific details factor into the random graph approach to mod-
eling the Internet’s AS-level topology described above.

By focusing on the key forces at work in generating and shaping the Internet’s AS-level
ecosystem, the HOT approach is largely avoiding the ambiguities inherent in the BGP-
based measurements and the problems that these ambiguities cause for the inferred AS
maps. At the same time, the HOT perspective puts the problem of model validation in
a completely new light. In fact, Chang et al. [21, 26] show that HOT-based models are
broadly robust to changes in the underlying parameters and perforce yield AS connectivity
maps that by and large match BGP-inferred AS connectivity with respect to most of the
commonly considered graph metrics, at least to a degree where observed deviations can
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be fully accounted for by the known ambiguities in the underlying measurements. Note
however that although – by their very construction – HOT-derived AS connectivity maps
tend to fit inferred AS maps reasonably well, irrespective of the metric or property of in-
terest, this does not mean that model validation is for free. Instead, the HOT perspective
simply changes the rule of the game and requires that validation must have a different
and more purposeful meaning. In fact, borrowing from the router-level topology modeling
work discussed in Section 2.1, the HOT perspective argues for a more engineering-driven
approach towards model validation, where the main issues are the functionality and overall
performance of the system at hand as well as its robustness to the sources of uncertainty
that have been identified in the HOT formulation in the first place. Naturally, functionality
and actual performance measures will be domain- and system-specific, and exploring the
system’s functionality may involve comparisons of aspects of the actual system to those of
the proposed HOT model. For example, Muhlbauer et al. [70] demonstrate that for rout-
ing on a modeled AS-topology to be consistent with observed AS routes, it is necessary
to consider non-atomic AS structures that are capable of supporting realistic route diver-
sity within ASes. Ensuring that this type of functionality of a proposed AS-level topology
model compares well with that observed in the real world is likely to be a more profound
and important aspect of model validation than matching some commonly considered graph
statistics or metrics.

3.2. Inter-AS traffic matrices. As illustrated above, one of the key ingredients of the
HOT-based approach to modeling the Internet’s AS-level connectivity is the amount of
traffic that is exchanged between different ASes. In particular, by examining, among other
things, inter-AS traffic volumes, two potential peering partners can determine the mu-
tual benefits associated with instantiating a peer-to-peer relationship or evaluate its cost-
effectiveness. Thus, to drive this peering decision process with reasonable traffic demands,
a realistic model for an inter-AS traffic matrix (i.e., a snapshot of Internet-wide traffic
dynamics measured over a coarse time sale and between individual ASes) is needed. How-
ever, in stark contrast to intra-AS traffic matrix estimation (see Section 2.2), we have only
incomplete knowledge of the AS-level topology, a limited understanding of inter-AS rout-
ing, and no data at all as far as “link load measurements” in the AS-level ecosystem are
concerned.

3.2.1. Difficulties measuring inter-AS traffic demands. Unfortunately, given the highly
competitive nature of today’s ISP market, network operators do not make public such sen-
sitive data as AS-wide traffic volume statistics. This makes the Internet’s inter-AS traffic
matrix an even more elusive object than its AS connectivity map, and as a result, research
efforts to measure, model and estimate the inter-domain traffic matrix are still in their in-
fancy. With some exceptions [41, 111, 44], most studies that require knowledge of inter-
domain traffic demand typically employ extremely simple (and untested) demand models,
often assuming uniform traffic demand between every pair of ASes [9, 104]. Studies such
as [41, 111] that rely on traces collected from a single vantage point (typically located in
some stub network) are inherently constrained in their ability to provide a global view of
inter-domain traffic. Nevertheless, an analysis of their data revealed that while any given
AS may exchange traffic with most of the Internet, only a small number of ASes are re-
sponsible for a large fraction of inter-domain traffic. In contrast to [41, 111], Feldmann et
al. [44] also use proprietary server logs from a large CDN and describe a methodology for
estimating the Web traffic portion of inter-AS traffic demands.

The paucity of appropriate data sets to infer inter-AS traffic demands on an Internet-
wide scale has led researchers to look for “surrogate” or “substitute” measurements that
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are publicly available or obtainable (i.e., via measurement experiments that can be per-
formed by anyone connected to the Internet) and that may be useful for getting a glimpse
at the actual inter-AS traffic demands. The first systematic study motivating the use of
possible “surrogate” measurements, designing and running Internet-wide experiments for
collecting them, and exploiting them to infer inter-AS traffic demands was performed by
Chang et al. [23, 24]. In particular, Chang et al. assume that to a first approximation,
the traffic volume exchanged between two ASes necessarily reflects the business model of
their operators. For example, an AS in the business of hosting various web and multimedia
content will exhibit a very lopsided traffic profile (i.e., disproportionately heavy outbound
traffic volumes). On the other hand, if two ASes are mainly in the business of providing
access to residential customers and have a comparable customer basis, traffic demand be-
tween the two networks can be expected to be more symmetric. By combining a range of
publicly available data sets with measurements collected from their own extensive Internet-
wide experiments, they develop a “profiling” heuristic to infer the “canonical utility” of an
AS’s physical network as providing mainly Web hosting, residential access, or business
access services. Depending on a simple high/low classification of these inferred utility val-
ues, they identify seven natural AS business models, classify each AS into one of these
models, and rank the ASes within each class by their overall utility.

To illustrate the sort of data that can serve as “surrogate” measurements for estimating
or inferring, say, an AS’s web service utility, note that an AS that hosts popular web content
or e-commerce engines as a content distribution network can be expected to carry volumi-
nous outbound traffic and relatively little inbound traffic. To this end, Chang et al. [23]
performed a set of network-wide experiments and collected large sets of application-layer
measurements for locating popular content on the Internet. The experiments consisted of
(i) obtaining a (publicly available) list of the top 10,000 most popular English keywords
submitted to search engines in the years 2003-2004; (ii) using the Google Web Services
API to retrieve for each submitted query seven sets (corresponding to English and six other
main languages) of the top-10 most closely matched URLs; (iii) extracting web server IP
addresses from these URLs by performing a carefully designed reverse-DNS lookup proce-
dure; and (iv) mapping the IP addresses to their corresponding ASes by relying on publicly
available BGP routing tables. Finally, an estimate of the byte counts of popular web con-
tent hosted by a given AS was used to define that AS’s web service/hosting utility. For a
more detailed description of these and other experiments to determine an AS’s utility as
residential Internet access provider or business access provider, see [23, 24].

3.2.2. On modeling of inter-AS traffic matrices and model validation. To develop an inter-
AS traffic demand model that generates an inter-AS traffic matrix supported by empirical
observations, Chang et al. [23] use a type of “gravity model” approach that is driven by the
utility-based AS rankings resulting from applying their AS profiling heuristic described
above. As in Section 2, this gravity model assumes that the traffic demand from AS i to j

is expressed as Ri×Aj

fij
, where Ri is a repulsive factor associated with “generating” traffic

at i, Aj an attractive factor associated with “absorbing” traffic at j, and fij a friction factor
that “opposes” traffic from i to j. Chang et al. assume that for the AS-level Internet, these
three factors can be expressed as functions of the empirically inferred AS rankings. In
particular, representing the sum of Web traffic between i and j (where either i or j is a web
hosting network) and inter-residential traffic (i.e., traffic between two residential users in
i and j), the numerator captures the traffic between ASes i and j. On the other hand, the
denominator can be shown to capture aspects of the service quality of the path between AS
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i and AS j. Given an AS map and utility-based AS rankings, generating the corresponding
inter-AS traffic matrix is relatively straightforward (see [23] for more details).

As far as model validation is concerned, the use of “surrogate” measurements clearly
complicates the task, because on top of examining the validity of a proposed model, it first
requires checking that the measurements in question are indeed suitable and relevant as
substitutes for the otherwise unavailable data. One possible strategy for dealing with this
problem is to approach regional ISPs that might be willing to provide traffic data that is
sufficiently detailed to allow one to explore key features of the proposed methodology for
inferring inter-AS traffic demands; e.g., the adequacy of using the “surrogate” measure-
ments at hand and the validity of the basic traffic demand formula given by the proposed
gravity model. This is the strategy followed in [23], but clearly, it leaves many (if not most)
critical issues on the topic of model validation for inter-AS traffic matrices unanswered.

Also note that the inter-AS traffic matrix model proposed in [23] is not a gravity model
in the strict sense, but allows for subtle interdependencies among different inter-domain
traffic flows due to nature of the friction factor or denominator in the gravity model for-
mula. On the one hand, such interdependencies may be genuine at the AS-level, where
inter-dependent traffic engineering is not uncommon. On the other hand, the highly ag-
gregated nature of quantities such as inter-domain traffic flows suggests that the gravity
model assumption; that is, interactions between individual ASes are independent, seems
reasonable. Validating these types of dependencies or lack thereof with appropriate data
remains an open problem. In addition, we note that the modeling approach pursued by
Chang et al. [23, 26, 24] implicitly allows for some interdependence between AS-level
traffic demands and AS-level connectivity. While such an interdependence appears to be
consistent with networking reality (i.e., network layout impacts traffic flow and vice versa),
a more in-depth analysis of this dependence at the AS-level in both the actual Internet and
its HOT-generated counterpart would be illuminating and looms as another intriguing open
problem.

4. Overlay Networks. A theme in the previous sections has been that it is highly unlikely
that generic random graph models can capture the essential features of the router-level or
even AS-level connectivity in today’s Internet, mainly because the lowest layers of the
Internet protocol stack involving the physical infrastructure (e.g., routers, fiber-optic ca-
bles) have hard technological or economic constraints. However, the higher layers of this
protocol stack define their own unique connectivity structures, and since the correspond-
ing network topologies become by design increasingly more virtual and unconstrained, it
is conceivable that certain random graph constructions could provide accurate and useful
models for such virtual graphs as, for example, the World Wide Web (WWW) or other types
of overlay networks. In the following, we discuss some examples of such virtual graphs
in more detail, focusing in particular on the available measurements, dominant modeling
paradigms, and issues of model validation.

4.1. The Web graph. The Web graph may be viewed as a directed graph where the nodes
and directed edges represent Web pages and hyperlinks, respectively. In contrast to the
Internet’s router-level graph, the Web graph is expressively not a representation of any as-
pect of the Internet’s physical infrastructure and is by design essentially completely uncon-
strained. At the same time, while networks such as the Internet’s router-level or AS-level
graphs are largely static or change only very slowly (over time scales on the order of weeks
or months for router-level, and hours or days for AS-level graphs), the Web graph is highly
dynamic, with new nodes/edges being added and existing nodes/edges deleted or changed
constantly, typically over time scales on the order of minutes or seconds.
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The highly dynamic nature and the enormous size have made the Web graph an interest-
ing object to measure, analyze, and model. The measurements that have informed much of
the recent research on Web graphs are based on more or less extensive crawls that provide
the data to create a static representation of the Web’s interconnectivity structure. For ex-
ample, Broder et al. [15] report on two AltaVista crawls performed in May and October of
1999 that produce Web graphs with about 200 (270) million nodes and 1,500 (2100) mil-
lion links; a crawl of the entire nd.com domain by Albert et al. [5] resulted in a graph with
about 325,000 nodes and 1,500,000 links. Such crawls typically last a couple of weeks and
the resulting graphs provide a static snapshot of the aggregate of all URLs and hyperlinks
encountered during that period. One of the few large-scale crawling studies that allows for
an examination of inferred Web graphs over time is by Fetterly et al. [45], who fetched over
150 million web pages per week for a period of 10 weeks in late 2002. There are currently
no known Web crawlers that can account for the fact that the structure that they examine is
changing underneath them so as to produce reliable input for the generation of snapshots
of Web graphs over time scales that are significantly shorter than a week.

In a large body of recent work, graph properties of these static snapshots of the Web’s
interconnectivity structure have been examined, with special focus on power-law (or scale-
free) node degree distributions (e.g., [55, 56, 5, 15]), small world property and diameter
(e.g., [5, 15]), connected components (e.g., [15, 55]), bipartite cores (e.g., [52, 55]), and
self-similarity [34]. This work has motivated the development of new models of the Web
graph that account for the various observed properties and imitate the dynamic or evolving
nature of the Web in the sense that nodes and edges can appear or disappear over time.
Three of the most popular approaches are the preferential attachment models of Albert
and Barabasi [11] or their mathematically more rigorous counterpart, the linearized chord
diagram models of Bollobas et al. [12] (see also [30]); the evolving copying models of
Kumar et al. [55] and variations thereof (e.g., see [3]; and the growth-deletion models of
Chung and Lu [33] and Cooper et al. [31]. A more complete recent survey of models of
the Web graph can be found in [13] (see also [14]).

The popularity of these models notwithstanding, their emphasis on reproducing various
properties of inferred Web graphs and the resulting efforts to explain them in the Web con-
text leaves room for significant improvements. For one, the crawler-based measurements
that are key to inferring the Web’s connectivity structure are clearly of limited quality when
it comes to exploring properties of the evolutionary aspect of the Web graph and hence of-
fer limited opportunities for validating the dynamic aspects of the proposed graph models.
Moreover, being purely descriptive models, they are in general not able to provide correct
physical explanations for the observed structural or temporal properties of measured Web
graphs. The claim is that, in the absence of a basic understanding of the main drivers of net-
work structure and evolution, it is difficult to identify the causal forces affecting large-scale
properties of the Web graph and even more difficult to predict future trends in its evolution.

4.2. P2P networks. P2P systems have become increasingly popular, with many millions
of simultaneous users and covering a wide range of applications from file-sharing programs
like LimeWire and eMule to Internet telephony services such as Skype. A natural interpre-
tation of a P2P network is a graph, where the peers are the vertices and where two peers are
connected by an edge if and only if there is an active network connection (e.g., via TCP)
between them. Like the Web, these graphs are expressively not a representation of any as-
pects of the Internet’s physical infrastructure, except, of course, that an edge between two
peers implies that they can exchange packets along some route in the Internet. However,
the fact that they are neighbors in the P2P graph says nothing about how long this route is
or through how many routers the packets have to travel. While typically a few orders of
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magnitude smaller in scale than the Web, they exhibit a similarly highly dynamic behavior,
with frequent arrivals and departures of new and existing nodes and links, respectively. At
the same time, many of the popular P2P systems are by design constrained in terms of how
many connections (neighbors) a peer can have and how much upload/download bandwidth
it can support. In this sense, P2P graphs are more like the router-level graphs discussed in
Section 2.1.

Representing a hybrid between the highly dynamic and essentially unconstrained Web
graph and the largely static but seriously constrained router-level graph makes P2P net-
works an interesting object for study. In the following, we focus mainly on the ongoing
efforts in the networking community to obtain representative measurements of existing
systems that will subsequently inform the modeling and model validation effort, which in
turn is expected to impact the design of future P2P protocols. Concentrating on unstruc-
tured P2P systems like Kazaa, eDonkey, or Gnutella, where peers select neighbors through
a predominantly random process, a common technique to capture snapshots of the P2P
topology is using sampling in conjunction with a crawler [90, 83, 2, 28] and infer P2P
properties from these snapshots. However, even though the situation is akin to the Web,
where the structure to be explored keeps changing underneath the crawler, little or no at-
tention has been paid in the past to the accuracy of these snapshots and whether or not they
might exhibit significant bias. An obvious potential cause of bias is the temporal dynamics
of these systems, whereby new peers can arrive and existing peers can depart at any time.
Locating a set of peers and measuring their properties takes time, and during that time the
peer constituency is likely to change, which can often lead to bias towards short-lived peers.
Another reason to be concerned about bias has to do with the connectivity structure of P2P
systems. As a crawler explores a given topological structure, each link it traverses is in
general much more likely to lead to a high-degree peer than a low-degree peer, seriously
biasing peer selection towards high-degree peers.

Relying on a much faster and more efficient Gnutella crawler to capture complete snap-
shots of the Gnutella network over short periods in time, Stutzbach and Rejaie [98, 99]
showed that there is indeed significant bias associated with the early P2P measurement
studies. In fact, they found that the bias can be so strong that commonly-made assumptions
such as power-law type node degree distributions for peers or exponentially distributed
peer uptimes are no longer valid. To illustrate, to a slow crawler, peers with long upti-
mes appear as high-degree nodes in the measured snapshot of the P2P network because
many short-lived peers report them as neighbors. However, this is generally incorrect since
these short-lived peers are not all present at the same time. These and similar findings
have generated renewed interest in developing unbiased sampling methods as a means for
obtaining representative measurements of large-scale, highly dynamic, unstructured P2P
systems. Recent work by Stutzbach et al. [100, 101, 102] addresses this problem and de-
velops a crawler based on a sampling technique that produces nearly unbiased samples
under a variety of circumstances commonly encountered in actual P2P systems. Because
of their improved accuracy, these next-generation measurements can be expected to lead to
more adequate models of P2P networks, allow for a more faithful characterization of churn
(i.e., the dynamics of peer participation or membership dynamics), and be more relevant
for future P2P system design.

5. Conclusions and Outlook. Two of the critical features of the architectural design of the
Internet are its vertical decomposition into layers and its horizontal decentralization across
network components. As a result, there are many different facets of “network topology”
and “network traffic,” and the precise meaning depends directly on one’s choice of focus.
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For example, while the focus in Section 2 is on the physical layout (i.e., Layer 2) of an AS
and on the corresponding intra-AS traffic matrix, Section 3 is concerned with the Internet’s
AS-level connectivity structure and the corresponding inter-AS traffic matrix. The picture
that has emerged during the past five years of the large-scale statistical properties of these
two connectivity maps strongly suggests that while they may appear deceivingly similar
when viewed from the perspective of certain graph statistics or metrics (e.g., node degree
distribution), their structures are often completely different and are likely shaped by very
different forces and factors.

In both examples, we have seen indications of explicit or implicit correlations between
network topology and traffic. After all, network topologies are designed to carry traffic, and
as shown in Section 2.2, when combined with routing, the topology can have a profound
impact on the IE traffic matrix of an AS. On the other hand, we assumed in Section 3.2 that
– in the presence of shortest-path routing – the inter-AS traffic matrix directly influences
the Internet’s AS-level connectivity structure. While a fundamental understanding of these
correlations is still missing, the examples in this paper suggest that routing plays a key role
in illuminating and possibly exploiting the impact of traffic on topology and vice versa. A
number of recent papers have started to delve more deeply into the relationships between
topology, routing and traffic. For instance, Teixeira et al. [107, 108] have considered the
impact of routing changes due to the Internet Gateway Protocol (IGP) on the IE traffic ma-
trix, while Zhang et al. [126] have explored how topology-traffic correlations (e.g., between
node degree and the amount of traffic seen at that node) can be seen in inference methods.

While we treated the intra-AS and inter-AS scenario in this paper by and large sepa-
rately, they clearly represent two opposite ends of a multi-scale spectrum of topology/traffic
examples. To illustrate, with detailed annotated maps of the physical infrastructures of
individual ASes now within reach, there are natural ways of “coarse-graining” or “coar-
sifying” such maps to obtain less detailed representations of “network topology” that are
nevertheless physically or logically meaningful. For example, one natural coarsification
of the physical connectivity could represent Internet connectivity at the IP layer (Layer
3) as seen by traceroute. Coarsifying yet further could result in a PoP-level view of In-
ternet connectivity. Finally, coarse-graining even further by collapsing all PoPs within an
AS, combined with an adequate accounting and annotation of all physical links, would
result in annotated AS-level maps that include such details as network ownership, capac-
ity, PoP-level connectivity and geography, routing policies, etc. The possibility to exploit
this networking-specific, multi-scale view of Internet topology for the purposes of network
data representation, analysis, and visualization looms as a promising open research prob-
lem, especially when combined with estimating or inferring the different traffic matrices
associated with the different “scales” and studying their multi-scale properties.

In fact, it suggests the development of an Internet-specific Multi-Resolution Analy-
sis technique; that is, a structured approach to representing, analyzing, and visualizing
Internet-related measurements that respects the critical design aspects of today’s Internet
architecture, including its dual decomposition of functionality.
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