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Abstract. We consider the initial value problem for the filtration equation in

an inhomogeneous medium

ρ(x) ut = ∆um, m > 1.

The equation is posed in the whole space Rn, n ≥ 2, for 0 < t < ∞ ; ρ(x)
is a positive and bounded function with a certain behaviour at infinity. We

take initial data u(x, 0) = u0(x) ≥ 0, and prove that this problem is well-posed

in the class of solutions with finite “energy”, that is, in the weighted space
L1

ρ, thus completing previous work of several authors on the issue. Indeed, it

generates a contraction semigroup.
We also study the asymptotic behaviour of solutions in two space dimensions

when ρ decays like a non-integrable power as |x| → ∞ : ρ(x) |x|α ∼ 1, with

α ∈ (0, 2) (infinite mass medium). We show that the intermediate asymptotics
is given by the unique selfsimilar solution U2(x, t; E) of the singular problem

(
|x|−αut = ∆um in R2 × R+

|x|−αu(x, 0) = Eδ(x), E = ‖u0‖L1
ρ

1. Introduction. Nonlinear diffusion in inhomogeneous media. This paper
is concerned with a model of nonlinear diffusion taking place in an inhomogeneous
medium. A main objective of the studies in this area is to show how the theory es-
tablished in the homogeneous case suffers from qualitative and quantitative changes
when inhomogeneity is present in the medium and to develop the tools to answer
the relevant questions in the new setting. We take as basis for our study the initial
value problem {

ρ(x) ut = ∆um in Q := Rn × R+

u(x, 0) = u0
(1)

The equation in (1) arises as a simple model in the study of heat propagation
in inhomogeneous plasma, as well as in filtration of a liquid or gas through an
inhomogeneous porous medium, see the works by Kamin and Rosenau [16], [17] and
the references therein. In both cases, the function ρ(x) stands for the properties
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of the material where diffusion of heat or matter takes place. In the case of mass
diffusion or filtration in porous media, u is a density, saturation or concentration,
and ρ(x) represents the porosity of the medium. In the case of heat propagation,
u stands for a temperature and ρ(x) represents the density of the medium. In the
sequel, we use the thermal simile for convenience.

The case of a homogeneous medium, i.e., ρ(x) ≡ 1 (or a constant), has been
extensively studied in the literature since the pioneering work [19]. The basic exis-
tence and uniqueness theory is by now well established, as well as further properties
of the solutions like propagation properties, smoothing properties and regularity, as-
ymptotic behaviour, and so on. We refer to the surveys [1] and [23] and the quoted
literature. The book [25] contains detailed and up-to-dated account on this issue.

The equation with variable ρ(x) (inhomogeneous medium) was first studied in
one spatial dimension in [16] and [17]. Thus, in [16], the basic existence and unique-
ness results were derived for problem (1) under the assumptions

(i) u0 is non-negative, smooth and bounded,
(ii) ρ is positive, smooth and bounded.

A main issue of [16] and [17] is the study of the long time behaviour of solutions.
It turns out that it strongly depends on the integrability of ρ(x) at infinity. More
precisely, according to [16], if ρ(x) ∼ |x|−α as |x| → ∞ with 0 < α < 1 and
the initial data are compactly supported, then the solutions decay to zero and
behave like a family of explicit solutions U1(x, t;E), which are the unique selfsimilar
solutions to the singular problem{ |x|−αut = (um)xx in Q

|x|−αu(x, 0) = Eδ(x) (2)

These solutions have the form

U1(x, t; E) = t−
1−α

1+m(1−α) F (ξ); ξ = |x|t− 1
1+m(1−α) , (3)

where the profile is given by

F (ξ) = C1

[
C2 − ξ2−α

] 1
m−1

+
,

where C1 = C1(m, α) and C2 = C2(m, α, E). Note that here the dimension is
n = 1, that

E(t) := ‖u(·, t)‖L1
ρ

=
∫

ρ(x)u(x, t) dx

is an invariant of the evolution, E(t) = E, called the “thermal energy”, and also
that the convergence |x|−αU1(x, t; E) → E δ(x) takes place in the weak sense of
measures as t → 0. Note finally that in the case α = 0 we recover the homogeneous
case, and then the solutions (3) are the famous Barenblatt solutions [4]; the main
conclusion we derive is that the homogeneous theory has a nice continuation into
this inhomogeneous range. We will call the new solutions also Barenblatt solutions.

Marked differences with the homogeneous case start when ρ(x) ∼ |x|−α when
|x| → ∞ with α > 1 for n = 1. Indeed, in [17] it is shown that if ρ ∈ L1(R), solu-
tions with bounded data do not decay to zero. Instead, they converge on compact
sets to the (spatial) mean of u , that is,

u(x, t) → ū := E/‖ρ‖L1 as t →∞. (4)

When problem (1) is thought of as modelling heat transfer, ū represents the mean
temperature and this phenomenon is known as “isothermalization”, and is essen-
tially due to the fact that the thermal energy is preserved in time and is spread
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out over an infinite medium that has however finite mass. The isothermalization
result is extended to the two-dimensional case in Guedda et al. [11], by showing
that (4) takes place if ρ ∈ L1(R2). On the other hand, the one-dimensional result
is refined in the recent paper by Galaktionov et al. [12], where the singular self-
similar solution representing the long-time behavior is identified. Also in this paper,
some estimates of solutions in the critical case α = 1 are given. These estimates
suggest that the asymptotic behavior in this case is described by a logarithmically
contracted version of U1.

Isothermalization does not take place for the similar problem posed in dimensions
n ≥ 3 when ρ decays fast enough, due to a new feature of the evolution, namely
mass loss, described in [14]. Moreover, as shown in [9], [10], [15], in dimensions
n ≥ 3 uniqueness is lost in the class of bounded solutions; however, it holds in the
narrower class of solutions with certain decay properties that we review in Section
2 for the reader’s convenience. Recently, Eidus and Kamin [10] proved existence of
solutions in such a class when

u0 ∈ L∞loc(Rn) ∩ L1
ρ(x)|x|2−n(Rn), u0 ≥ 0.

Note that growing data are allowed in this class when ρ(x) decays as |x| → ∞.
We stop here the description of the mathematical problems under investigation

and present our contribution that consists of two main results.

• First, we extend the existence theory for equation (1) to the natural class of ini-
tial data u0 ∈ L1

ρ(Rn) with u0 ≥ 0 in dimensions n ≥ 2 ; some decay restrictions
on ρ are needed. This extension requires the a priori estimates that we have re-
cently obtained in [22] by using a new version of the usual technique of Schwartz
symmetrization for parabolic equations as developed for instance in [5, 24]. This
version is conceived to treat inhomogeneous problems of the present type.

• On the other hand, we settle the question of large time behaviour of these solutions
in two space dimensions, in the “infinite mass” case

ρ(x)|x|α ∼ c > 0 as |x| → ∞, α ∈ (0, 2).

We prove convergence towards the corresponding Barenblatt solutions. This is the
correct asymptotics for media with infinite mass.

Organization. The rest of the paper is organized as follows: In Section 2 we
present some background material and give the precise statements of our main
results, Theorems 1 and 3. Section 3 is devoted to the proof of Theorem 1 concerning
well posedness of (1). Finally, in Section 4 we prove our result on the asymptotic
behaviour of solutions, Theorem 3.

2. Preliminaries and statements. Given a positive, measurable function ρ de-
fined on Rn, by L1

ρ = L1
ρ(Rn) we denote the weighted Lebesgue space of measurable

functions such that

‖f‖L1
ρ

:=
∫

Rn

ρ |f | dx < ∞.

Throughout the paper, we will always consider initial data for our evolution prob-
lems in the class u0 ∈ L+

ρ := {f ∈ L1
ρ : f ≥ 0 a.e.} where the weight function is the

density ρ(x) from (1). We will assume that the weight satisfies
(Hρ) ρ ∈ C1(Rn), ρ > 0. Moreover, there exist constants 0 < A ≤ B such that

A(1 + |x|)−α ≤ ρ(x) ≤ B(1 + |x|)−α on Rn (5)
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with 0 < α < 2 if n = 2 and 0 < α ≤ 2(n− 1) if n ≥ 3 .
Due to the degenerate character of the equation in (1), solutions must be under-

stood in a weak sense. We adopt the following definition

Definition 1. A weak solution to (1) is a non-negative and continuous in Q func-
tion with u ∈ C([0, +∞) : L1

ρ(Rn))∩L∞(Rn×(τ, +∞)), ∇um ∈ L2(Rn×(τ, +∞))
for every τ > 0, and such that the identity

∫∫

Q

{∇um · ∇φ− ρuφt} dx dt =
∫

Rn

ρu0φ(x, 0) dx

holds for every test function φ ∈ C1(Q) ∩ C(Q) with φ = 0 for large t and large
|x|.

This definition leads to non-uniqueness in dimensions n ≥ 3. Following [9],
[10], [13], [15], we can avoid non-uniqueness by restricting ourselves to solutions
satisfying the following extra condition on the average behavior of um as |x| → ∞.

lim
R→+∞

R1−n

∫

|x|=R

∫ T

0

um(x, t) dt dS = 0 for every T > 0. (6)

Our main result concerning well-posedness reads

Theorem 1. Let ρ satisfy (Hρ) and let u0 ∈ L+
ρ . Then,

(i) If n = 2, there exists a unique solution to problem (1) in the sense of Defini-
tion 1.

(ii) If n ≥ 3, there exists a unique solution to problem (1) in the sense of Defini-
tion 1 satisfying condition

(C) lim
R→+∞

R1−n

∫

|x|=R

∫ T

τ

um(x, t) dt dS = 0 for every 0 < τ < T.

In both cases the maps St : u0 7→ u(t) form a semigroup of L1
ρ-contractions on

the set L+
ρ . The Maximum Principle applies.

Let us make some comments.
1) Theorem 1 extends the existence results in [9], where the data are assumed to be
continuous and bounded, as well as those of [10], where the data are assumed locally
bounded. Such an extension to the “natural functional space” is not immediate and
needs new a priori estimates that we supply.
2) It should be noted, however, that in [10] the growth conditions imposed on the
initial data are somewhat weaker for n ≥ 3 and no decay assumptions on ρ like
(Hρ) are needed for existence. Indeed, it is well known in the homogeneous theory
that well-posedness can be proved in larger classes of solutions not having finite
thermal energy, [2, 6]. However, the L1 theory is a cornerstone of the extended
theory in that case, and so is the L1

ρ theory in our case.

3) The main ingredient for the present extension is the a priori L∞-estimate of
solutions to (1) in terms of ‖u0‖L1

ρ
alone obtained by the authors in [22]. The

following is a slightly more general version of Theorem 6.1 of [22].

Theorem 2. Let n ≥ 2 and ρ ∈ C1(Rn) satisfy

cρ0(x) ≤ ρ(x) ≤ ρ0(x), (7)
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where 0 < c ≤ 1 and ρ0 is a bounded, continuous, positive radial function. Let
s(r) denote the solution of the initial value problem

sn−1 ds

dr
= ρ0(r)rn−1; s(0) = 0

and let there exist K > 0 such that

s(r) ≥ K r ρ0(r)1/2, ds/dr ≥ K ρ0(r)1/2 for r ≥ 0. (8)

Let u0 ∈ L1
ρ ∩ L∞(Rn) ∩ C(Rn), u0 ≥ 0 and let u be the unique weak solution to

(1) according to ([9]) (satisfying condition (C) if n ≥ 3). Then,
(i) If

∫
ρ0(x) dx = ∞, we have the estimates

u(x, t) ≤ C t−n/(n(m−1)+2); ‖u(·, t)‖L1
ρ
≤ ‖u0‖L1

ρ
, (9)

where C = C(‖u0‖L1
ρ
, K, c, m, n).

(ii) If
∫

ρ0(x) dx < ∞, we have the estimates

u(x, t) ≤ Ct−1/(m−1); ‖u(·, t)‖L1
ρ
≤ C ′t−1/(m−1), (10)

where C and C ′ depend on ‖u0‖L1
ρ
, K, c, m, and n.

Remark 1. Theorem 6.1 of [22] deals with the particular case ρ0 = C(1 + |x|)−α .
In this case, (Hρ) are sufficient conditions for (7), (8) to hold, as shown in Lemma
3.2 of that paper.

Singular problem. We also need a definition of solution to the singular problem{ |x|−αut = ∆um in Q
|x|−αu(x, 0) = Eδ(x) (11)

Definition 2. Let n = 2 and E > 0. A weak solution to (11) is a non-negative
and continuous in Q function with u ∈ C((0, +∞) : L1

ρ) ∩ L∞(R2 × (τ, +∞)),
∇um ∈ L2(R2 × (τ, +∞)) for τ > 0, and such that the identity∫∫

Q

{∇um · ∇φ− |x|−αuφt} dx dt = Eφ(0, 0)

holds for every test function as in Definition 1.

It can be easily checked that the following Barenblatt solutions

U2(x, t; E) = t−1/mF (ξ); ξ = |x|t− 1
m(2−α) , (12)

and
F (ξ) = C1

[
C2 − ξ2−α

] 1
m−1

+
; ξ ≥ 0,

where C1 = C1(m, α) and C2 = C2(m, α, E), are indeed weak solutions to (2) in
the above sense. The following properties of (12) can be easily verified.

i) suppU2(t) = BR(t) with R(t) = C
1/(2−α)
2 t1/m(2−α);

ii) ‖U2(t)‖L∞ = C1t
−1/m;

iii) The profile F is convex if m < 2 and α ≥ 1 or m = 2 and α > 1, concave if
m > 2 and α ≤ 1 or m = 2 and α < 1 and linear if m = 2, α = 1;

iv) ∂U2/∂t ∈ L1
|x|−α, loc(Q).

As we explained in the Introduction, we prove that for n = 2 general solutions
to (1) decay to zero, being U2(x, t; E) with E = ‖u0‖L1

ρ
the first term in the

asymptotic expansion. More precisely, the following holds.
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Theorem 3. Let n = 2. Let ρ satisfy (Hρ) and let u0 ∈ L+
ρ with ‖u0‖L1

ρ
= E > 0.

Assume moreover that

lim
|x|→∞

ρ(x)|x|α → 1 as |x| → ∞. (13)

Let u(x, t) be the unique solution of Problem (1), according to Theorem 1. Then,

‖u(·, t)− U2(·, t; E)‖L1
ρ
→ 0 as t →∞. (14)

Remark 2. Clearly, the more general assumption ρ(x)|x|α ∼ c > 0 can be reduced
to (13) by means of the change t = ct′. The new energy is then E′ = E/c.

The proof of Theorem 3 relies on scaling techniques, hence sharp estimates of
the solutions are required. Such estimates are a direct consequence of Theorem 2
for n = 2. For n = 1, such a global estimate is false, as shown in [22]. Indeed, the
asymptotic result in [16] takes place on expanding sets of the form {|x| ≤ Ctβ}. On
the other hand, for n ≥ 3 the estimate given by Theorem 2 does not hold uniformly
for the rescaled solutions, see Section 4. This explains the choice n = 2.

3. Well posedness. This section is devoted to prove Theorem 1.
• Let us first deal with the existence question. In [9], [10], for n ≥ 3 and u0 ∈
C(Rn)∩L∞(Rn), a solution to (1) is constructed as the monotone limit of solutions
to the initial-boundary problems




ρ(x) ut = ∆um in QR := BR × R+

u(x, 0) = u0 in BR

u(x, t) = 0 for |x| = R,
(15)

where BR = {x : |x| < R}. More precisely, denoting by uR the unique solution to
(15) (which is in turn constructed by means of an approximation procedure, see [3],
[9]), there exists u := limR→+∞ uR a.e. in Q and it is a weak solution to (1) in
the sense of Definition 1. This construction also works for n = 2, but this case is
not considered in [9], [10] since their main concern are non-uniqueness phenomena
occurring for n ≥ 3. The main point that we want to stress from this construction
is that the solution obtained is minimal, i.e. u ≤ v for any other solution v
according to Definition 1. The case n = 2 is considered in [11], but their approach
is somewhat different.

In order to extend the existence theory to data u0 ∈ L+
ρ , we need some estimates

for the minimal solutions. First of all, weak solutions to the problem (15) generate
a semigroup of contractions in L1

ρ(BR). More precisely, if u1 and u2 denote two
solutions with initial data u01 and u02 respectively, we have

‖{u1(·, t)− u2(·, t)}+‖L1
ρ(BR) ≤ ‖{u01 − u02}+‖L1

ρ(BR) (16)

for all t > 0. Here {s}+ = max {s, 0}. Interchanging the solutions in (16) and
adding the results, we obtain

‖u1(·, t)− u2(·, t)‖L1
ρ(BR) ≤ ‖u01 − u02‖L1

ρ(BR) (17)

The contraction results (16) and (17) can be proved exactly as in [3] for ρ ≡ 1;
see also [21] for variable ρ. The presence of ρ here is irrelevant, since it is bounded
from below by some positive constant on each BR.

As a consequence of these results, there is at most one weak solution to (15)
and we have a comparison result: if we denote by uR, ( ũR) the solution to (15)
with initial data u0 (resp. ũ0) then u0 ≤ ũ0 implies uR(x, t) ≤ ũR(x, t) for
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(x, t) ∈ QR. If we take ũ0 = ‖u0‖L∞ and we pass to the limit R → ∞ we get
u(x, t) ≤ ‖u0‖L∞ for the minimal solution to (1). If moreover u0 ∈ L+

ρ it follows
from (17) with u02 = 0 that u(·, t) ∈ L+

ρ and ‖u(·, t)‖L1
ρ
≤ ‖u0‖L1

ρ
.

Given two initial data u01, u02 ∈ C(Rn)∩L∞(Rn)∩L+
ρ , we can pass to the limit

R → ∞ in the estimate (17), which is valid for the approximations u1R and u2R

and then we have
‖u1(·, t)− u2(·, t)‖L1

ρ
≤ ‖u01 − u02‖L1

ρ
(18)

for all t > 0. Convergence of the norms follows by the dominated convergence
theorem. Indeed, u0iχBR

→ u0i a.e. in Rn for i = 1, 2 and moreover |u01 −
u02|χBR

≤ |u01| + |u02| ∈ L+
ρ for every R. The same argument applies to the left

hand side.
The following estimate is obtained in [9] assuming that u0 ∈ C(Rn) ∩ L∞(Rn)

and ρ ∈ L1(Rn). It also holds if u0 ∈ C(Rn) ∩ L∞(Rn) ∩ L+
ρ , as it can be easily

verified. See also [11].
∫ T

τ

∫

Rn

|∇um|2 dx dt+
1

m + 1

∫

Rn

ρ(x)um+1(x, T ) dx ≤ 1
m + 1

∫

Rn

ρ(x)um+1(x, τ) dx

(19)
for any 0 ≤ τ < T .

Let now u0 ∈ L+
ρ ∩ L∞. Take a sequence {u0k} ⊂ L+

ρ ∩ L∞(Rn) ∩ C(Rn) such
that u0k → u0 in L1

ρ and ‖u0k‖L∞ ≤ ‖u0‖L∞ , ‖u0k‖L1
ρ
≤ ‖u0‖L1

ρ
and let uk

denote the corresponding solution. It follows from (18), applied to u0k and u0m

that {uk} is a Cauchy sequence in C([0, +∞) : L1
ρ), with a limit u in this space.

On the other hand, by comparison we have uk ≤ ‖u0k‖L∞ ≤ ‖u0‖L∞ . Moreover,
by estimate (19) with τ = 0 we have ‖∇um

k ‖L2(Q) ≤ C‖u0‖m
L∞‖u0‖L1

ρ
with a

constant C > 0 independent of k. Therefore ∇um
k converges weakly in L2(Q)

to ∇um and the limit function u satisfies the integral identity in Definition (1).
According to the regularity theory [8], {uk} is locally equicontinuous and uk → u
in Cloc(Q) for some subsequence (not relabelled). Thus u is a weak solution of
(1).

Finally, observe that all the estimates above hold in the limit. Clearly, u ≤
‖u0‖L∞ . Since u0k → u0 and uk(t) → u(t) in L1

ρ for each t > 0, we can pass
to the limit in (18) and it holds for any two such constructed solutions. As a
consequence of the lower semicontinuity of the norm in the weak topology, estimate
(19) holds in the limit. Finally, we also note that the estimates (9) and (10) from
Theorem 2 hold with constants depending only on ‖u0‖L1

ρ
.

Assume now u0 ∈ L+
ρ . Let {u0k} ⊂ L+

ρ ∩ L∞(Rn) be such that u0k → u0 in
L1

ρ and ‖u0k‖L1
ρ
≤ ‖u0‖L1

ρ
. Denote by uk the corresponding solution, according

to the previous step. It is at this stage where Theorem 2 plays a prominent role.
Combining the estimate (19) with τ > 0 and (9), (10) we obtain

∫ T

τ

∫

Rn

|∇um
k |2 dx dt ≤ Cτ−σ, (20)

where σ = σ(m, n) > 0 and C > 0 depends only on ‖u0‖L1
ρ
. As in the previous

step, we conclude that {uk} is a Cauchy sequence in C([0, ∞) : L1
ρ)) converging

to a limit u in this space. Thanks to (20), (9) and (10) and the regularity results
of [8], it follows that u is a weak solution to (1) with data u0 and estimates (18),
(20), (9) and (10) hold in the limit. The construction is complete.
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• It remains to verify condition (C) for n ≥ 3. To this end, consider for each
t ≥ 0 the potential function vR(x, t) solving

{ −∆v = ρ uR in BR

v = 0 on ∂BR

where uR represents the approximated solution to (15) introduced above. Denoting
by GR the Green function of the Laplace operator in BR, we have vR = GR∗(ρuR)
and the function wR := ∂tvR = GR ∗ (ρ∂tuR) = GR ∗ (∆um

R ) verifies

−∆wR = −∆(GR ∗∆um
R ) = ∆um

R .

Therefore, hR := wR + um
R is a harmonic function on BR with hR = 0 on ∂BR,

hence hR ≡ 0 on BR. We conclude that ∂tvR = −um
R . Integrating on [τ, T ] with

0 < τ < T we have

vR(y, T ) +
∫ T

τ

um
R (y, t) dt = vR(y, τ) ≤ G ∗ (ρuR(τ)),

where G denotes the fundamental solution of the Laplace equation. When u0 ∈
C(Rn)∩L∞(Rn)∩L+

ρ , it follows from [10] that we can pass to the limit R → +∞,
thus obtaining ∫ T

τ

um(y, t) dt ≤ G ∗ (ρu(τ)) (21)

even with τ = 0. If u0 ∈ L+
ρ , (21) holds for the approximations uk and it is retained

in the limit if τ > 0, since uk → u uniformly on {y} × [τ, T ] and uk(t) → u(t)
in L1

ρ(Rn) for each t ≥ 0. Condition (C) then follows from (21) and the following
lemma with µ = ρu(τ).

Lemma 1. ([EK], Lemma A.4 in [7]) If n ≥ 3, µ ∈ L∞loc(Rn) and µ|x|2−n ∈
L1(Rn), then the function F (y) = G ∗ µ satisfies

R1−n

∫

|y|=R

F (y) dS −→ 0 as R → +∞.

• Let us now turn our attention to the uniqueness question. First of all, observe
that if u(x, t) denotes the above constructed solution with u0 ∈ L+

ρ , then for any
τ > 0 the function uτ (x, t) := u(x, t + τ) is a solution in the sense of [9] with
uτ,0 = u(x, τ) ∈ C(Rn)∩L∞(Rn)∩L+

ρ . Moreover, uτ satisfies condition (6), since
∫ T

0

um
τ (x, t) dt =

∫ T+τ

τ

um(x, t) dt

and (6) follows from (C). Consequently, the above constructed solution is the unique
solution in the sense of [9] after arbitrarily small time τ > 0.

With this in mind, uniqueness follows easily. Let u0 ∈ L+
ρ and let u1, u2 be

two different solutions to (1). Then, there exists T, ε > 0 such that ‖u1(·, T ) −
u2(·, T )‖L1

ρ
> ε. According to the definition, we can choose τ with 0 < τ < T so

small, that
‖ui(·, τ)− u0(·)‖L1

ρ
< ε/4; i = 1, 2

and therefore ‖u1(·, τ) − u2(·, τ)‖L1
ρ

< ε/2. For t > τ, both u1, u2 are uniquely
determined by the above token. In particular, they can be obtained by means of the
minimal construction above, thus enjoying the L1-contraction property (18). Then,
for t > τ ,

‖u1(·, t)− u2(·, t)‖L1
ρ
≤ ‖u1(·, τ)− u2(·, τ)‖L1

ρ
< ε/2.
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This gives rise to a contradiction at t = T . Uniqueness is proved.
Next, we prove that for n = 2 the total energy is preserved. More precisely, the

following holds.

Theorem 4. Let n = 2 and let ρ(x) satisfy (Hρ). Let u(x, t) be the unique weak
solution of (1) constructed above, with data u0 ∈ L+

ρ and ‖u0‖L1
ρ

= E. Then,

‖u(·, t)‖L1
ρ

= E for any t ≥ 0. (22)

Proof. The proof is rather standard. It relies on the following finite propagation
property, which is interesting by itself.

Lemma 2. Let the hypotheses of Theorem 4 hold. Let u0 ∈ L∞(R2) and compactly
supported. Then supp u(·, t) ⊂ BC(t+1)γ for some constant C depending on the
data.

Proof. By our assumption on ρ, there exists the family of Barenblatt solutions
U2(x, t; E). Moreover, we have ρ(x) ≥ A|x|−α for |x| > 1. Without loss of
generality, we may assume A = 1; otherwise we perform the change t = Ct′ with
suitable C. Let Ũ(x, t) = U2(x, t + 1; Ẽ). Let Ω := {Ũt > 0}. In the set
Ω ∩ {|x| > 1} we have

ρ(x)Ũt ≥ |x|−αŨt = ∆Ũm. (23)

Choose Ẽ large enough, such that u0(x) ≤ Ũ(x, 0) in R2. A simple computation
shows that Ω = {ξ > ξ0}, where ξ2−α

0 = k(α, m)C2 with k < 1. On the surface
∂Ω = {ξ = ξ0} we have

Ũ(t) = c(α, m)C2(t + 1)−1/m.

Choosing, if necessary, a larger Ẽ, we will have Ω ⊂ {|x| > 1} and u ≤ Ũ on ∂Ω.
This is feasible since C2 grows with Ẽ and

u ≤ min {‖u0‖∞, Ct−1/m}
by estimates in Section 3.

Given T > 0, choose R = R(T ) large enough, such that supp Ũ(t) ⊂ BR for
t ∈ [0, T ]. Let uR denote the solution to the approximating problem (15) from
Section 3. Then we have

uR(x, 0) = u0(x) ≤ Ũ(x, 0);
uR = Ũ = 0 for |x| = R, t ∈ [0, T );
uR ≤ u ≤ Ũ on ∂Ω ∩ {0 ≤ t ≤ T}.

(24)

From (23), (24) and the comparison principle it follows that uR ≤ Ũ in the region

ΩR,T := Ω ∩ {|x| ≤ R} ∩ {0 ≤ t ≤ T}
In the limit T, R →∞, u ≤ Ũ in Q. In particular, supp u(·, t) ⊂ supp Ũ(·, t) =
BC(t+1)γ for all t ≥ 0.

Then, by Lemma in [14] p. 119 (which holds in any dimension), we conclude
that (22) holds for this class of data. For general data, we argue by approximation,
using the fact that convergence takes place in the space C([0, +∞) : L1

ρ).

Remark 3. Note that the L1
ρ-norm of the solutions is not preserved for ρ satisfying

(Hρ) if n ≥ 3, as it follows from [14] and from the second estimate in (10).

Remark 4. Theorem 4 is proved in [11] for solutions with u0 ∈ L∞ ∩ L+
ρ , without

any decay restriction on ρ.
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4. Asymptotic behaviour. This section is devoted to the proof of Theorem 3. It
consists of several steps.
Step 1: Rescaling. Define the rescaled versions of u(x, t):

uλ(x, t) = λβu(λγx, λt); λ > 0, (25)

where
β =

1
m

, γ =
1

m(2− α)
. (26)

It is easy to check that uλ is a solution of{
ρλ(x) ut = ∆um,
u(x, 0) = u0λ

(27)

with ρλ(x) = λαγρ(λγx) and u0λ = λβu0(λγx). Besides, we have∫
ρλ(y)u0λ dy = E for λ > 0. (28)

Step 2: Uniform estimates and compactness. By virtue of (Hρ), ρ(x)
and ρλ(x) satisfy hypothesis (7) with ρ0 = B(1 + |x|)−α, respectively ρ0λ =
λαγρ0(λγx). In both cases we have c = B/A. By Remark 1, (Hρ) also guarantees
the existence of K such that (8) holds. Moreover, as it can be easily checked, this
condition is met by ρ0(x) and ρ0λ(x) with the same value of K. This is a crucial
point in the proof.

Therefore, by Theorem 2 (more precisely, by virtue of its extension to solutions
with general u0 ∈ L1

ρ, see Section 3), all uλ satisfy the estimates

uλ(x, t) ≤ Ct−1/m; ‖uλ(·, t)‖L1
ρλ
≤ ‖uλ0‖L1

ρλ
= E for t > 0 (29)

with a constant C(E, A, B, α, m) independent of λ. The above decay rate is
sharp, since it is attained by the Barenblatt solutions (3).

We also need a uniform L2-estimate for ∇um
λ . (20) and (29) entail

∫ +∞

τ

∫

R2
|∇um

λ |2 dx dt ≤ Cτ−1, (30)

with C independent of λ. By virtue of (29), (30) and the fact that, on each compact
subset of Q, the equation for uλ satisfies the ellipticity condition uniformly in λ,
we can apply the results in [8] to conclude that the family {uλ} is relatively compact
in L∞loc(Q). By means of diagonal extraction, there exists a subsequence λn →∞
such that uλn

converges uniformly on compacts of Q to some U ∈ C(Q). By
(30), we can also assume that ∇um

λn
→ ∇Um weakly in L2(R2× (τ, +∞)) for each

τ > 0.

Step 3: Passage to the limit. The convergences above allow to pass to the limit
in the integral identity in Definition 1. It is also clear that U ∈ L∞(R2× (τ, +∞))
for τ > 0, and satisfies (29) with the same constant C. The lower semicontinuity
of the norm in the weak topology implies that the estimate (30) holds in the limit.

Step 4: Identification of the limit. It is convenient to start with compactly
supported data. In this case, Theorem 4 applies and

‖uλ(t)‖L1
ρλ

= ‖u0λ‖L1
ρλ

= ‖u0‖L1
ρ

(31)

by (28). Moreover, applying Lemma 2 to uλ(·, t) we have

supp uλ(·, t) = λ−γsupp u(·, λt) ⊂ BC(t+1/λ)γ . (32)
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Therefore, in the limit λn → ∞ we have supp U ⊂ BCtγ for t > 0 and the
limit uλn → U from Step 3 takes place not only locally in Q, but also on sets of
the form [τ1, τ2] × R2 with 0 < τ1 < τ2. For each t > 0, convergence takes place
in every Lp(R2) (1 ≤ p ≤ ∞) and also in L1

|x|−α , since α ∈ (0, 2). It is also clear
that U ∈ C((0, +∞) : L1

ρ) and ∇Um ∈ L2(R2 × (τ, ∞)).
Moreover, the uniform estimates (29), (31), (32), the fact that ρλ ≤ C|x|−α ∈

L1
loc(R2) and the Lebesgue dominated convergence theorem imply that for each

t > 0 we have ∫
|x|−αU(x, t) dx = lim

n→∞

∫
ρλn

(x)uλn
(x, t) dx = E.

Since supp U(·, t) shrinks to {0} as t → 0, we have |x|−αU(x, t) → Eδ(x) in
D′(R2) as t → 0. The same arguments allow passing to the limit in the integral
identity from Definition 1 with ρλu0λ replaced by Eδ(x), thus obtaining the in-
tegral identity in Definition 2. The details of this line of argumentation are given
in [25] for ρ = 1. Thus U is a weak solution of the singular problem (2) with
E = ‖u0‖L1

ρ
.

Next, we prove the following

Lemma 3. For any weak solution with u0 ∈ C∞c and ‖u0‖L1
ρ

= E,

lim uλn
(x, t) = U2(x, t; E)

for all convergent subsequences {uλn}.
Proof. We borrow from [16]. It is enough to prove that, given F ∈ C∞c (Q) and
ε > 0, there exist small enough τ > 0 and large enough λ > 0 such that∣∣∣∣

∫∫

Q

ρλ(x)[uλ(x, t)− U2(x, t + τ ; E)]F (x, t) dx dt

∣∣∣∣ < ε. (33)

It is clear that solutions in the sense of Definition 1 are solutions in the weaker sense
of [9], [16], i.e., are such that the identity∫∫

Q

{ρuφt + um∆φ} dx dt +
∫

R2
ρuφ(x, 0) dx = 0 (34)

holds for any test function φ ∈ C2, 1
x, t (Q) vanishing for large t and large |x|. The

same applies to solutions of the singular problem (2). Subtracting the corresponding
integral identities and setting U2,τ = U2(t + τ) for short, we get∫∫

Q

ρλ(uλ−U2,τ )[φt +aλ,τ (x, t)∆φ] dx dt =
∫∫

Q

[|x|−α−ρλ(x)]U2,τφt dx dt

+
∫

[|x|−αU2,τ (x, 0)−ρλ(x)uλ(x, 0)]φ(x, 0) dx,
(35)

where

aλ,τ (x, t) :=





um
λ − Um

2,τ

ρλ(uλ − U2,τ )
if uλ 6= U2,τ

m

ρλ
Um−1

2,τ if uλ = U2,τ

Observe that aλ,τ ≥ 0 and aλ,τ ∈ L∞(Q) with ‖aλ,τ‖L∞(Q) depending on λ, τ .
Choose a sequence {aλ,τ,n} ⊂ C∞(Q) such that

n−2 ≤ aλ,τ,n ≤ ‖aλ,τ‖L∞(Q) + n−2;
aλ,τ − aλ,τ,n√

aλ,τ,n
→ 0 in L2

loc(Q) as n →∞. (36)
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Assume that supp F ⊂ BR0 × (0, T ) and consider the solution φλ,τ,n,R of the
backwards linear problem

{
φt + aλ,τ,n∆φ = F in QR := BR × [0, T )
φ(x, T ) = 0, φ(x, t) = 0 on ∂BR × [0, T ] (37)

with R > R0. Clearly, the problem (37) is uniformly parabolic. Hence, it has a
unique solution φλ,τ,n,R ∈ C2,1

x,t (QR)∩C(QR). The following estimates are standard,
see [3].

|φλ,τ,n,R| ≤ C1;
∫∫

BR×[0, T ]

aλ,τ,n(∆φλ,τ,n,R)2 dx dt ≤ C2, (38)

where C1, C2 do not depend on λ, τ, n,R.
In order to produce an admissible test, we introduce a function η : [0, +∞) → R

with the properties a) η ∈ C2([0, +∞)) and b) 0 ≤ η ≤ 1; η(r) = 1 for r ∈ [0, 1/2],
η(r) = 0 for r ∈ [1, +∞). Let ηR(x) := η(|x|/R) for R > R0. The function
φ̃λ,τ,n,R(x, t) = φλ,τ,n,R(x, t)·ηR(x) is clearly in C2,1

x,t (Q) and its support is contained
in BR × [0, T ]. Plugging this function in the integral identity (35) and taking into
account (37) we obtain

∫∫

Q

ρλ(uλ−U2,τ )F dx dt = I1 + I2 + I3 + I4,

where

I1 :=
∫

[|x|−αU2,τ (x, 0)− ρλuλ(x, 0)]φ(x, 0)ηR(0) dx;

I2 :=
∫∫

Q

[|x|−α − ρλ]U2,τφtηR dx dt;

I3 :=
∫∫

Q

(Um
2,τ − um

λ )[2∇φ · ∇ηR + φ∆ηR] dx dt;

I4 :=
∫∫

Q

ρλ(uλ − U2,τ )(aλ,τ − aλ,τ,n)ηR∆φdx dt.

By (32) and property (i) of U2, we can choose R1 > 1 large enough, such that

(suppuλ ∪ suppU2,τ ) ∩ {0 ≤ t ≤ T} ⊂ BR1 × [0, T ]

for all τ < 1 and λ > 1 and fix R = 2R1. Then I3 = 0. Since ηR(0) = 1 and both
ρλuλ(x, 0) and |x|−αU2,τ (x, 0) converge to Eδ(x) in D′ (and also in the sense of
measures) as λ → ∞ and τ → 0 respectively, we can choose λ0 > 1 large and
τ0 < 1 small such that |I1| < ε/3 if λ > λ0 and τ = τ0.

Having fixed R and τ , we take λ1 > λ0 large such that |I2| < ε/3 for λ > λ1 .
This is possible, since integrating I2 by parts we have

I2 = −
∫∫

Q

[|x|−α − ρλ]
∂U2,τ

∂t
φ ηR dx dt +

∫∫

Q

[|x|−α − ρλ]U2,τ (x, 0) φ ηR dx.

Now, by property (iv) of U2 , the first estimate in (38) and the fact that ρλ → |x|−α

point-wise, it follows that both integrals converge to zero as λ →∞.
Once λ, τ and R are fixed, we fix n large enough such that

|I4| ≤ C(λ, τ, R)
∥∥∥∥

aλ,τ − aλ,τ,n√
aλ,τ,n

∥∥∥∥
L2(BR×(0,T ))

< ε/3,

where use of the second estimate in (38) and the second property of {aλ,τ,n} in (36)
has been made. The proof is concluded.
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As a consequence, lim
λ→∞

uλ(x, t) = U2(x, t; E). In particular, for t = 1 we have

‖uλ(·, 1)− U2(·, 1; E)‖L1
|x|−α

→ 0 as λ → +∞.

Recalling the definition of uλ and using the scaling invariance of U we obtain the
desired result. Observe that we can replace the weight |x|−α by the weight ρ(x).
General data: Assume now that u0 ∈ L+

ρ and denote by u the corresponding
solution according to Theorem 1, with E = ‖u(t)‖L1

ρ
. We use a density argument.

Given ε > 0, choose u′0 ∈ C∞c (R2) such that

‖u0 − u′0‖L1
ρ
≤ ε.

If we denote by u′ the solution with data u′0, and E′ = ‖u′(t)‖L1
ρ
, we have

‖u(·, t)− U2(·, t; E)‖L1
ρ

≤ ‖u(·, t)− u′(·, t)‖L1
ρ

+ ‖u′(·, t)− U2(·, t; E′)‖L1
ρ

+‖U2(·, t; E′)− U2(·, t; E)‖L1
ρ
.

Clearly, the functions U2 are ordered: U2(x, t; E1) ≤ U2(x, t; E2) on Q if E1 ≤
E2. Therefore,

‖U2(·, t; E′)− U2(·, t; E)‖L1
ρ

= |E − E′| ≤ ‖u0 − u′0‖L1
ρ
≤ ε.

Moreover, by the L1
ρ -contraction property (18),

‖u(·, t)− u′(·, t)‖L1
ρ
≤ ‖u0 − u′0‖L1

ρ
≤ ε.

Therefore,
‖u(·, t)− U2(·, t; E)‖L1

ρ
≤ 2ε + δ(t),

where δ(t) → 0 as t → ∞, according to our previous result. Passing to the limit
t →∞ the result follows from the arbitrariness of ε.

Remark 5. The fact that for n = 2 the estimate (9) holds uniformly in λ for the
problems (27) with fixed initial data allows to construct an existence and uniqueness
theory of solutions to the singular problem (2) with data u0 ∈ L+

ρ by approximation.
It is enough to take ρ1(x) ∈ C1 with ρ1(x) = |x|−α for |x| ≥ 1 and pass to the
limit as λ → ∞ in the sequence of problems (1) with ρ = ρ1λ. All the estimates
hold for such solutions, and Theorem 3 remains valid for the singular problem.

As a consequence of the previous remark and Theorem 3, we have the following
uniqueness result.

Corollary 1. Let n = 2. Then for each E > 0 problem (2) admits a unique
self-similar weak solution, namely the Barenblatt-type solution U2.

Proof. Suppose that V (x, t) = t−βG(xt−γ) is a self-similar solution to (2). First,
observe that the values of β and γ are uniquely determined. Indeed, plugging V
in the equation in (2), we get the relation

(2− α)γ + (m− 1)β = 1. (39)

On the other hand, it is clear that Ṽ (x, t) = V (x, t + τ) is a solution to (2) in
the sense of Definition 1 with ρ replaced by |x|−α for any τ > 0. By Theorem 4,
‖Ṽ (t)‖L1

ρ
, and hence ‖V (t)‖L1

ρ
, is constant. This gives a second relation:

(2− α)γ = β. (40)

From (39) and (40) we get the values in (26). Moreover, ‖V (t)‖L1
ρ

= E.
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Consider problem (2) with u0(x) = Ṽ (x, 0). By uniqueness, its weak solution is
Ṽ (x, t). Denote by Ṽλ its rescaled versions, according to formula (25).

Replacing t by λ in the asymptotic formula (14), performing the change of
variables x = λγy in the integral and recalling (40), the definition of Ṽλ and the
invariance of U2, we conclude

Ṽλ(1) = Vλ(1 + 1/λ) −→ U2(1; E) (41)

in L1
|x|−α as λ → ∞. By the triangle inequality, and taking into account the

self-similarity of V,

‖V (1)− U2(1; E)‖ ≤ ‖V (1)− V (1 + 1/λ)‖+ ‖V (1 + 1/λ)− U2(1; E)‖
= ‖V (1)− V (1 + 1/λ)‖+ ‖Vλ(1 + 1/λ)− U2(1; E)‖. (42)

(all norms are in L1
|x|−α). Given ε > 0, according to (41) we can choose now λ

large enough, such that

‖Vλ(1 + 1/λ)− U2(1; E)‖L1
|x|−α

≤ ε. (43)

On the other hand, since V ∈ C((0, +∞) : L1
ρ),

‖V (1)− V (1 + 1/λ)‖L1
|x|−α

≤ ε, (44)

again for λ large. Since ε > 0 is arbitrary, it follows from (42), (43) and (44) that
V (1) = U2(1; E), thus G = F and V = U2 in Q.

We can easily prove another uniqueness result.

Theorem 5. Let n = 2. Then for each E > 0 problem (2) admits a unique radial
weak solution, namely the Barenblatt-type solution U2.

Proof. If u(x, t) = U(r, t) with r = |x| is a radial solution to (2) and s = Cr1−α/2

with C = 2/(2− α), then the function

ũ(y, t) = Ũ(s, t) := U(r, t); s = |y|
is a radial solution of the problem

{
ut = ∆yum in Q
u(y, 0) = C−1Eδ(y) (45)

The solution to (45) is unique [20], [18], even without the radiality assumption.
This proves the assertion.

Remark 6. The above change of variables is, up to a constant, the one used in
[22] in order to compare solutions to inhomogeneous problems with solutions to
related homogeneous problems. In dimensions n ≥ 3, the corresponding change
does not lead to the homogeneous porous medium equation. The theory of the
singular problem in dimensions n ≥ 3, will be presented in a forthcoming paper.
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