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Abstract. The aim of this paper is to optimize traffic distribution coefficients

in order to maximize the trasmission speed of packets over a network. We con-
sider a macroscopic fluidodynamic model dealing with packets flow proposed
in [10], where the dynamics at nodes (routers) is decided by a routing algo-

rithm depending on traffic distribution (and priority) coefficients. We solve the
general problem for a node with m incoming and n outgoing lines and explicit
the optimal parameters for the simple case of two incoming and two outgoing

lines.

1. Introduction. There are some recent works on car traffic flow on networks,
see [7, 8, 11], that relie on macroscopic description via car densities and other
conserved quantities [3, 12, 13]. To treat a telecommunication network, we look
at an intermediate time scale, thus assume that packets transmission happens at a
faster level but the equilibria of the whole network are reached only as asymptotic.

A network is formed by a finite collection of transmission lines and nodes (or
routers), each packet is seen as a particle on the network and it is assumed that
each packet travels on the network with fixed speed and assigned final destination.
Moreover it is assumed that routers receive, process and then forward packets.
Packets may be lost with a probability increasing with the number of packets to be
processed. Each lost packet is sent again.

Hence, on a single straight transmission line each router sends packets to the
following one a first time and lost packets are sent a second time and so on until
they reach next router. Looking at intermediate time scale we assume conservation
of packets and get the following simple model consisting of a single conservation
law:

ρt + f (ρ)x = 0, (1)

where ρ is the packet density, v is the velocity and f(ρ) = vρ is the flux.
Since the speed on the line is assumed constant, an average transmission speed

among routers can be derived considering the amount of packets that may be lost
along with an assigned loss probability function (see [10]). From the average trans-
mission speed one gets a velocity function and thus a flux function.

In order to consider complex networks, one needs a way of solving dynamics at
nodes in which many lines intersect. For this, we consider the routing algorithm:
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(RA) Packets are processed by arrival time and are sent to outgoing lines in order
to maximize the flux.

A key role is played by Cauchy problems with initial data constant on each trans-
mission line called Riemann problems at the node. In order to determine unique
solutions to Riemann problems, some additional parameters are introduced, called
respectively priority parameters and traffic distribution parameters. The theory for
this model is developed in [10].

In this paper we focus on a simple network formed of a single node with m
incoming and n outgoing lines. We assume that packets flow from m initial nodes
to n final ones. We assign the packet quantities flowing from initial to final nodes and
compute the final equilibrium as function of the traffic distribution (and priority)
parameter. Such equilibrium should belong to the admissible region for the final
fluxes. The strategy we use (see [10]) is to project the equilibrium point on the
admissible region which is a convex set in IRN with N = n,m. We take this
projected point as solution to the Riemann Problem.

Next, from the solution to the Riemann Problem, we determine the average
speeds at which packets travel on the network and we define three functionals mea-
suring:

• the speed of the packets travelling on the lines,
• the average travel time,
• the speed of the packets, weighted with their quantity, travelling on the lines,

i.e. the fluxes.
We will see that the third functional does not depend on the the traffic distribution
and priority parameters. The aim is to optimize the choice of the coefficients in
order to maximize the first functional and to minimize the second one.

A key point is that from different choices of the projection on the admissible
region we get different solutions to the Riemann Problem. In the simple case of
m = n = 2, we deal with the projection of a point on a segment in IR1. In this case
there is only one reasonable choice and we are able to completely solve the problem
giving the optimal values as function of the packets densities.

It is interesting to notice that in many cases there is a set of optimal values
(with the extreme case of functional not depending on the parameter) of the traffic
distribution and priority parameters.

The paper is organized as follows. Section 2 describes the dynamics of packet
density on a single transmission line based on a prescribed packet loss probability.
Then basic definitions and notations for telecommunication networks are given.
Section 3 illustrates the routing algorithm for Riemann problems at nodes. In
Section 4 we indicate the optimal parameters for the dynamic of packet density
given in Section 2 and for a simple network with m incoming and n outgoing lines.
Finally in Section 5 we exactly compute the optimal parameters for the simple case
n = m = 2.

2. Packets flow on a telecommunication network. Each transmission line,
represented by a real interval I, consists of many edges and nodes. Each node
corresponds to a server sending and receiving packets. To determine the dynamics
on I we need to describe the effect of packets loss on the velocity of transmission
function. We assume that each node Nk sends again packets that are lost by the
following node Nk+1. More precisely, we assume that there exists a function p :
[0, ρmax] 7→ [0, 1] that assigns the packet loss probability as function of the packet
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density. Suppose that δ is the distance between the nodes Nk and Nk+1. Let ∆t0
be the transmission time of packets from node Nk to node Nk+1 in the case in which
they are sent with success at the first attempt, and ∆tav the average transmission
time when some packets are lost by Nk+1 and they are sent again by Nk. Let us
denote with v̄ = δ

∆t0
and v = δ

∆tav
the packets velocity, respectively, in the two

cases. Therefore at the first attempt the packets sent by node Nk reach with success
node Nk+1 with probability (1− p) and they are lost by node Nk+1 and sent again
by node Nk with probability p. At the second attempt there are p packets to be
sent again and (1 − p)p packets are sent with success while p2 are lost. Going on
at the n-th attempt (1− p)pn−1 packets are sent successfully and pn are lost. The
average transmission time is equal to

∆tav =
+∞∑
n=1

n∆t0(1− p)pn−1 =
∆t0
1− p

,

from which we get that the transmission velocity is given by v = δ
∆tav

= δ
∆t0

(1−p) =
v̄(1− p).

In this paper we assume that the following packets loss probability is assigned:

p(ρ) =
ρ + v̄ − 1

v̄
.

Then the transmission velocity is equal to v (ρ) = v̄(1 − p(ρ)) = 1 − ρ, and, since
f (ρ) = v(ρ)ρ, the flux function is:

f (ρ) = ρ(1− ρ). (2)

Other packets loss probability may be assumed and analogous results in terms of
optimal traffic distribution and priority coefficients may be found. For simplicity,
we suppose that the maximal packet density is ρmax = 1.

Next we give some basic definitions and notations for telecommunication net-
works. We model a telecommunication network by a finite set of intervals Ii =
[ai, bi] ⊂ R, i = 1, ..., N, ai < bi, on which we consider the equation (1). Hence the
datum is given by a finite set of functions ρi defined on [0,+∞[× Ii.

On each transmission line Ii we want ρi to be a weak entropic solution, that is
for every function ϕ : [0,+∞[× Ii 7→ R smooth, positive with compact support on
]0,+∞[× ]ai, bi[ ∫ +∞

0

∫ bi

ai

(
ρi

∂ϕ

∂t
+ f (ρi)

∂ϕ

∂x

)
dxdt = 0, (3)

and for every k ∈ R and every ϕ̃ : [0,+∞[× Ii 7→ R smooth, positive with compact
support on ]0,+∞[× ]ai, bi[

∫ +∞

0

∫ bi

ai

(
|ρi − k| ∂ϕ̃

∂t
+ sgn(ρi − k) (f (ρi)− f (k))

∂ϕ̃

∂x

)
dxdt ≥ 0. (4)

It is well known that, for equation (1) on R and for every initial data in L∞,
there exists a unique weak entropic solution depending in a continuous fashion from
the initial data in L1

loc. Moreover, for initial data in L∞ ∩ L1 we have Lipschitz
continuous dependence in L1, see [5, 6].

We assume that the transmission lines are connected by some nodes. Each node
J is given by a finite number of incoming transmission lines and a finite number of
outgoing transmission lines, thus we identify J with ((i1, ..., im) , (j1, ...jn)) where
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the first m-tuple indicates the set of incoming transmission lines and the second n-
tuple indicates the set of outgoing transmission lines. Each transmission line can be
incoming transmission line at most for one node and outgoing at most for one node.
Hence the complete model is given by a couple (I,J ), where I = {Ii : i = 1, ..., N} is
the collection of transmission lines and J is the collection of nodes. For boundaries
of transmission lines not connected to nodes we can use the theory of [1, 2, 4].

3. Riemann problems at nodes. Now we discuss the solution at nodes. If ρ =
(ρ1, ..., ρm+n) is a weak solution at the node such that each x 7→ ρi(t, x) has bounded
variation, then ρ satisfies the Rankine-Hugoniot condition at the node J , namely

m∑
ϕ=1

f(ρϕ(t, b−ϕ )) =
m+n∑

ψ=m+1

f(ρψ(t, a+
ψ )), (5)

for almost every t > 0.
For a scalar conservation law a Riemann problem is a Cauchy problem for an

initial data of Heavyside type, that is piecewise constant with only one discontinuity.
One looks for centered solutions, i.e. ρ(t, x) = φ(x

t ), which are the building blocks
to construct solutions to the Cauchy problem via wave front tracking algorithm.
These solutions are formed by continuous waves called rarefactions and by traveling
discontinuities called shocks. The speed of waves are related to the values of f ′,
see [5, 9]. Analogously, we call Riemann problem for a node the Cauchy problem
corresponding to an initial data which is constant on each transmission line.

To solve Riemann problems according to (RA) we need some additional para-
meters called priority and traffic distribution parameters. We have only m priority
parameter p ∈ ]0, 1[ and n traffic distribution parameter α ∈ ]0, 1[. We denote with
ρϕ(t, x), ϕ = 1, . . . , m and ρψ(t, x), ψ = m + 1, . . . , m + n the traffic densities,
respectively, on the incoming transmission lines and on the outgoing ones and by
(ρϕ,0, ρψ,0) the initial data. We denote by τ : [0, 1] → [0, 1] the function that asso-
ciates to every density the other density with the same flux. By equation (2) we
have that σ = 1

2 and τ(ρ) = 1 − ρ. Since the speed of waves must be negative
on incoming lines and positive on outgoing ones, we want to determine a unique
(m + n)-tuple (ρ̂1, ..., ρ̂m+n) ∈ [0, 1]m+n such that

ρ̂ϕ ∈
{ {ρϕ,0} ∪ ]τ(ρϕ,0), 1] , if 0 ≤ ρϕ,0 ≤ σ,

[σ, 1] , if σ ≤ ρϕ,0 ≤ 1,
(6)

ϕ = 1, ..., m, and

ρ̂ψ ∈
{

[0, σ], if 0 ≤ ρψ,0 ≤ σ,
{ρψ,0} ∪ [0, τ(ρψ,0)[ , if σ ≤ ρψ,0 ≤ 1,

(7)

ψ = m+1, ..., m+n, and, on each incoming line Iϕ, ϕ = 1, ..., m, the solution consists
of the single wave (ρϕ,0, ρ̂ϕ), while, on each outgoing line Iψ, ψ = m + 1, ..., m + n,
the solution consists of the single wave (ρ̂ψ, ρψ,0).

Define γmax
ϕ and γmax

ψ as follows:

γmax
ϕ =

{
f(ρϕ,0), if ρϕ,0 ∈ [0, σ],
f(σ), if ρϕ,0 ∈ ]σ, 1] , ϕ = 1, . . . , m, (8)

and

γmax
ψ =

{
f(σ), if ρψ,0 ∈ [0, σ],
f(ρψ,0), if ρψ,0 ∈ ]σ, 1] , ψ = m + 1, . . . , m + n. (9)
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The quantities γmax
ϕ and γmax

ψ represent the maximum flux that can be obtained by
a single wave solution on each transmission line. In order to maximize the number
of packets through the node over incoming and outgoing lines we define

Γ = min {Γin,Γout} ,

where Γin =
∑m

ϕ=1 γmax
ϕ and Γout =

∑m+n
ψ=m+1 γmax

ψ . One can easily see that, to solve
the Riemann problem, it is enough to determine the fluxes γ̂ϕ = f(ρ̂ϕ), ϕ = 1, . . . , m,
and γ̂ψ = f(ρ̂ψ), ψ = m + 1, . . . , m + n. Let us determine γ̂ϕ, ϕ = 1, . . . , m. We
have to distinguish two cases:

I: Γin = Γ,
II: Γin > Γ.

In the first case we set γ̂ϕ = γmax
ϕ , ϕ = 1, . . . , m. Let us analyse the second case in

which we use the priority parameters p1, . . . , pm where 0 < pϕ < 1 and
∑m

ϕ=1 pϕ =
1. Not all packets can enter the node, so let C be the amount of packets that can
go through. Then pϕC packets come from the ϕ–st incoming line. Consider the
space (γ1, . . . , γm) and denote by P the point with coordinates γϕ = pϕΓ. Recall
that the final fluxes should belong to the region:

Ω =
{
(γ1, . . . , γm) : 0 ≤ γϕ ≤ γmax

ϕ , ϕ = 1, . . . , m
}

.

We distinguish two cases:
a) P belongs to Ω,
b) P is outside Ω.
In the first case we set (γ̂1, . . . , γ̂m) = P , while in the second case we set

(γ̂1, . . . , γ̂m) = Q, with Q = proj(P ), where proj is some projection on Ω̂ =
Ω∩ {∑m

ϕ=1 γϕ = Γ}. From the choice of this projection the analysis and the choice
of the parameters p1, . . . , pm can be very different. The most natural projection to
take is the projection on a convex set. For n = m = 2, since Ω̂ is a one dimensional
set, one essentially has a unique reasonable projection that maximizes the fluxes γ1

and γ2. This case will be treated in Section 5 where a detailed description of the
optimal choices of the parameters pϕ is given.

Let us now determine γ̂ψ, ψ = m+1, . . . , m+n. As for the incoming transmission
lines we have to distinguish two cases :

I: Γout = Γ,
II: Γout > Γ.

In the first case γ̂ψ = γmax
ψ , ψ = m + 1, . . . , m + n. Let us determine γ̂ψ in the

second case in which we use the traffic distribution parameters αm+1, . . . , αm+n

where αψ ∈]0, 1[ and
∑n

ψ=m+1 αψ = 1. Since not all packets can go on the outgoing
transmission lines, we let C be the amount that goes through. Then αψC packets
go on the outgoing line Iψ. Consider the space (γm+1, . . . , γm+n) and denote by P
the point with coordinates: γψ = αψΓ. Recall that the final fluxes should belong
to the region:

Ω =
{
(γm+1, . . . , γm+n) : 0 ≤ γψ ≤ γmax

ψ , ψ = m + 1, . . . , m + n
}

.

We distinguish two cases:
a) P belongs to Ω,
b) P is outside Ω.

In the first case we set (γ̂m+1, . . . , γ̂m+n) = P , while in the second case we set
(γ̂m+1, . . . , γ̂m+n) = Q, where Q = proj(P ).
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Figure 1. A single node network. The circles on the left and on
the right represent the sources and the destination respectively.
The circle in the middle o represents the node. The segments eϕ

and eψ represent the lines incoming from the sources and outgoing
to the destinations respectively.

4. Optimization of a simple network. We focus on a network as in figure 1
comprised of only one node o. There are packets from sources to destinations passing
through the node o and running on lines. We denote by e1, . . . , em, em+1, . . . , em+n

the lines from sources {1, . . . , m} to the node o and from o to destinations {m +
1, . . . , m + n} and by cϕψ with ϕ ∈ {1, . . . , m} and ψ ∈ {m + 1, . . . , m + n} the
number of packets running from source ϕ to destination ψ first on line eϕ, then
through the node o and finally on line eψ. We define the packets densities running
on the lines as follows

• ρϕ from eϕ to o: ρϕ =
∑m+n

ψ=m+1 cϕψ;
• ρψ from o to eψ: ρψ =

∑m
ϕ=1 cϕψ.

Our aim is to solve the RP for the node at o. Then we want to compute the
velocity, the average transmission time and the flux over the network as function of
the parameters αψ and pϕ. Therefore we introduce the following costs:

J1 =
m∑

ϕ=1

m+n∑

ψ=m+1

Vϕψ, J2 =
m∑

ϕ=1

1
vϕ

+
m+n∑

ψ=m+1

1
vψ

, J3 =
m∑

ϕ=1

m+n∑

ψ=m+1

cϕψVϕψ,

with Vϕψ = vϕ + vψ, vϕ = v(ρ̂ϕ) and vψ = v(ρ̂ψ) are the velocities on the lines
eϕ, eψ, and ρ̂ is the solution to the RP with initial data (ρϕ,0, ρψ,0). We define
γmax

ϕ (resp. γmax
ψ ) as in equation (8) (resp. equation (9)) and consider the points

described by the following systems:{
γϕ = Γpϕ (10)

where the pϕ’s are the priority parameters with
∑m

ϕ=1 pϕ = 1, and
{

γψ = Γαψ (11)

where the αψ’s are the traffic distribution parameters with
∑m+n

ψ=m+1 αψ = 1.
We introduce the following conditions:
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Aψ: γψ = αψΓin ≤ γmax
ψ .

Let now Γ = Γin and denote by Pin the polyhedron given by the intersection
of the simplex Tin = {α ∈ IRn : 0 ≤ αψ ≤ 1, ψ = m + 1, . . . , m + n,

∑
αψ = 1}

and the cube Cin = {α ∈ IRn : αψ ≤ γmax
ψ

Γ , ψ = m + 1, . . . , m + n} and proj
the projection of a point in Tin on the boundary of Pin. We do not give a precise
description of such a projection so as to maintain the description of the solution
as general as possible. Indeed different choices of the projection lead to different
optimal subsets of Tin.

The solutions to the RP are the following:
• (γmax

1 , . . . , γmax
m ,Γαm+1, . . . ,Γαm+n) if all Aψ are satisfied,

• (γmax
1 , . . . , γmax

m ,Γproj(αm+1, . . . , αm+n)) if any of the Aψ is not satisfied.
Notice that the case where all Aψ are false is not possible since otherwise it would
be Γin > Γout.

Consider the following conditions:
Bϕ: γϕ = pϕΓout ≤ γmax

ϕ .
Now, if Γ = Γout we denote by Pout the polyhedron given by the intersection of

the simplex Tout = {p ∈ IRm : 0 ≤ pϕ ≤ 1, ϕ = 1, . . . , m,
∑

pϕ = 1} and the cube
Cout = {p ∈ IRm : p ≤ γmax

ϕ

Γ , ϕ = 1, . . . , m} and proj the projection of a point in
Tout on the boundary of Pout. In this case the solutions given to the RP are the
following:

• (Γp1, . . . ,Γpm, γmax
m+1, . . . , γ

max
m+n) if all Bϕ are satisfied,

• (Γproj(p1, . . . , pm), γmax
m+1, . . . , γ

max
m+n) if any of the Bϕ is not satisfied.

Notice that the case where all Bϕ are false is not possible since otherwise it would
be Γout > Γin. To compute the cost we observe that ρ̂ϕ = f−1(γ̂ϕ) (ρ̂ψ = f−1(γ̂ψ)
resp.) and γ̂ϕ is either γmax

ϕ or Γpϕ or Γ(proj(p))ϕ (γ̂ψ is either γmax
ψ or Γαψ or

Γ(proj(α))ψ resp..)
In what follows we will determine the cost functions and optimize them on the

parameters αψ and pϕ such that conditions Aψ and Bϕ are satisfied.

Remark. Indeed, for the general case of m incoming and n outgoing lines, the
projection proj has not been fixed. However, we notice that when some of the
conditions are not satisfied, the cost functions are evaluated on a projected point
Γproj(α) (Γproj(p) resp.) and do not depend on the parameters αψ’s (pϕ’s resp.)
anymore. Hence the cost functions are constant in the set proj−1(α) (proj−1(p)
resp..) If αopt (popt resp.) optimizes a cost function when restricted to Pin (Pout

resp.), then proj−1(αopt) (proj−1(popt) resp.) optimizes the same cost function non
restricted. This procedure will be made in detail in the case m = n = 2.

4.1. Optimal choice for flux (2). Recall that we set ρmax = 1, hence vmax = 1,
v(ρ) = 1 − ρ and f(ρ) = ρ(1 − ρ). We want to solve ρ̂(1 − ρ̂) = γ̂. Hence, by
solving ρ̂2 − ρ̂ + γ̂ = 0, we get ρ̂ = 1

2 (1 ±
√

∆(γ̂)) where ∆(γ̂) = 1 − 4γ̂ and
v(ρ̂ϕ) = (1− ρ̂ϕ) = 1

2 (1−sϕ

√
∆(γ̂ϕ)) (v(ρ̂ψ) = (1− ρ̂ψ) = 1

2 (1−sψ

√
∆(γ̂ψ)) resp.),

with:
incoming lines:

sϕ =





−1 if ρϕ,0 ≤ σ and Γ = Γin,
or ρϕ,0 ≤ σ, pϕΓ = γmax

ϕ and Γ = Γout;
+1 if ρϕ,0 > σ,

or ρϕ,0 ≤ σ, pϕΓ < γmax
ϕ and Γ = Γout;
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outgoing lines:

sψ =





+1 if ρψ,0 ≥ σ and Γ = Γout,
or ρψ,0 ≥ σ, αψΓ = γmax

ψ and Γ = Γin;
−1 if ρψ,0 < σ,

or ρψ,0 ≥ σ, αψΓ < γmax
ψ and Γ = Γin.

Then

Vϕψ =
1
2
(2− sϕ

√
∆(γ̂ϕ)− sψ

√
∆(γ̂ψ)),

J1 =
m∑

ϕ=1

m+n∑

ψ=m+1

Vϕψ

=
1
2


2mn−


n

n∑
ϕ=1

sϕ

√
∆(γ̂ϕ) + m

m+n∑

ψ=m+1

sψ

√
∆(γ̂ψ)





 ,

and

J2 =
m∑

ϕ=1

1
vϕ

+
m+n∑

ψ=m+1

1
vψ

=
m∑

ϕ=1

2
1− sϕ

√
∆(γ̂ϕ)

+
m+n∑

ψ=m+1

2
1− sψ

√
∆(γ̂ψ)

.

For J3 we get:

J3 =
m∑

ϕ=1

m+n∑

ψ=m+1

cϕψVϕψ =
m∑

ϕ=1

ρϕ(1− ρϕ) +
m+n∑

ψ=m+1

ρψ(1− ρψ)

=
1
4

m∑
ϕ=1

(1 + sϕ

√
∆(γ̂ϕ))(1− sϕ

√
∆(γ̂ϕ))

+
1
4

m+n∑

ψ=m+1

(1 + sψ

√
∆(γ̂ψ))(1− sψ

√
∆(γ̂ψ))

=
1
4

m∑
ϕ=1

(1−∆(γ̂ϕ)) +
1
4

m+n∑

ψ=m+1

(1−∆(γ̂ψ))

=
∑
ϕ

γ̂ϕ +
∑

ψ

γ̂ψ.

We notice that J3 is constant. Indeed, if Γ = Γin and all Aψ are satisfied,

J3 =
∑
ϕ

γmax
ϕ +

∑

ψ

αψΓin =
∑
ϕ

γmax
ϕ + Γin;

if Γ = Γin and any Aψ is not satisfied,

J3 =
∑
ϕ

γmax
ϕ + Γina,

where a is some constant depending on proj(α); if Γ = Γout and all Bϕ are satisfied,

J3 =
∑
ϕ

pϕΓout +
∑

ψ

γmax
ψ = Γout +

∑

ψ

γmax
ψ ;

if Γ = Γout and any Bϕ is not satisfied,

J3 =
∑

ψ

γmax
ψ + Γoutb,
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where b is some constant depending on proj(p).
Finally we want to maximize the cost J1 and to minimize the cost J2 with respect

to the parameters αψ and pϕ.

4.2. Case Γin = Γout. Assume first that Γ = Γin = Γout. Then all Aϕ are
satisfied if and only if γψ = γmax

ψ for all ψ. Indeed if γψ < γmax
ψ for some ψ

then Γin

∑
αψ =

∑
γψ <

∑
γmax

ψ = Γout and we get a contradiction. In this case

γ̂ = (γmax
1 , . . . , γmax

n , γmax
m+1, . . . , γ

max
m+n),

thus J1 and J2 do not depend neither on the parameters αψ nor on the parameters
pϕ.

4.3. Case Γin < Γout. Assume now that Γ = Γin < Γout and all Aψ satisfied. In
this case we have:

γ̂ = (γmax
1 , . . . , γmax

m , αm+1Γin, . . . , αm+nΓin),

hence:

2J1 = 2mn− n
∑

sϕ

√
∆(γ̂ϕ)−m

∑
sψ

√
∆(γ̂ψ)

= 2mn− n
∑
ϕ

sϕ

√
1− 4γmax

ϕ (12)

−m
∑

ψ

sψ

√
1− 4αψΓin, (13)

1
2
J2 =

∑ 1
1− sϕ

√
∆(γ̂ϕ)

+
∑ 1

1− sψ

√
∆(γ̂ψ)

=
∑
ϕ

1
1− sϕ

√
1− 4γmax

ϕ

(14)

+
∑

ψ

1
1− sψ

√
1− 4αψΓin

. (15)

Now the part of the cost in (12) (resp. in (14)) does not depend on the αψ’s and
maximizing J1 (resp. minimizing J2) is equivalent to maximizing expression (13)
(resp. minimizing expression (15).) Since we are in the case Γ = Γin < Γout, for the
sψ’s we always have sψ = −1 for all ψ = m + 1, . . . , m + n apart the case sψ = +1
when ρψ,0 ≥ σ and αψΓ = γmax

ψ .
Remark. In what follows, we will always consider sψ = −1. If ρψ,0 ≥ σ then the
functionals J1 and J2 are discontinuous at αψ = γmax

ψ /Γ and their values must be
computed separately. We will give all the details in the case m = n = 2.

Finally, setting sψ = −1, we have to maximize the expression

Ĵ1 =
∑

ψ

√
1− 4αψΓin (16)

and to minimize the expression

Ĵ2 =
∑

ψ

1
1 +

√
1− 4αψΓin

. (17)

Since the parameters αψ are restricted to the condition
∑

αψ = 1 we substitute
the expression αm+n = 1 − ∑m+n−1

ψ=m+1 αψ in Ĵ1 and in Ĵ2 and, by slight abuse of
notation, we also denote by Ĵ1 and Ĵ2 the resulting functions of αm+1, . . . , αm+n−1.
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We begin with the analysis of Ĵ1 as function of αm+1, . . . , αm+n−1. The partial
derivatives of Ĵ1 are given by

∂

∂αi
Ĵ1(α) = 2Γin

−
√

1− 4(1−∑m+n−1
ψ=m+1 αψ)Γin +

√
1− 4αiΓin

√
1− 4αiΓin

√
1− 4(1−∑m+n−1

ψ=m+1 αψ)Γin

.

We then get that ∂
∂αi

Ĵ1(α) ≥ 0 for αi ≤ 1−∑m+n−1
ψ=m+1 αψ. We obtain that Ĵ1 has a

critical point in αm+1 = · · · = αm+n−1 = αm+n = 1
n .

We observe that Ĵ1, as function of αm+1, . . . , αm+n−1, and its level surfaces, on
the n − 1–dimensional space with coordinates αm+1, . . . , αm+n−1, are symmetric
with respect to the line αm+1 = · · · = αm+n−1. The Hessian of Ĵ1 is negative
definite. Indeed

∂2

∂α2
i

Ĵ1 = −4Γ2

(
1

(1− 4(1−∑
αψ)Γ)3/2

+
1

(1− 4αiΓ)3/2

)

∂2

∂αi∂αj
Ĵ1 = −4Γ2 1

(1− 4(1−∑
αψ)Γ)3/2

, for i 6= j

αT Hess(Ĵ1)α = −4Γ2
m+n−1∑

i=m+1

(
1

(1− 4αiΓ)3/2
α2

i

)

−4Γ2 1
(1− 4(1−∑

αψ)Γ)3/2




m+n−1∑

i,j=m+1

αiαj


 .

Then Ĵ1 is concave and has a maximum in αm+1 = · · · = αm+n−1 = αm+n = 1
n .

Now if such a point of maximum does not satisfy the constraints , i.e. does
not belong to Pin, we have to find the maximum of Ĵ1 on Pin. The points of Pin

candidate to maximize Ĵ1 are those lying on the boundary of Pin that is having
coordinates γψ = γmax

ψ for some ψ ∈ {m + 1, . . . , m + n}. Then we fix ψ and

consider the restriction of Ĵ1 on the hiperplane Πψ = {α ∈ IRn−1 : αψ = γmax
ψ

Γ }.
The critical point of Ĵ1 restricted to Πψ is given by the points α ∈ Πψ such that
∇Ĵ1 ⊥ Πψ, i.e. ∇Ĵ1 ‖ n, where n is the versor normal to Πψ. Therefore the critical
points of Ĵ1 on Πψ are given by the points that satisfy the following condition:

∇Ĵ1 − (∇Ĵ1 · n)n = 0. (18)

Now for ψ ∈ {m + 1, . . . , m + n − 1}, n = ēψ (the canonical versor having all
components zero apart from the ψ–th which is equal to 1) and equation (18) means
that

∂

∂αi
Ĵ1 = 0,

for all i 6= ψ, i = m + 1, . . . , m + n − 1. In particular the points where ∂
∂αi

Ĵ1 = 0
are those for which αi = 1−∑m+n−1

j=m+1 αj .

If ψ = m + n we have that αm+n = 1−∑m+n−1
j=m+1 αj = γmax

m+n

Γ , hence we get that
n = 1√

n−1
(1, . . . , 1)T and equation (18) means that

(n− 2)
∂

∂αi
Ĵ1 −

∑

j 6=i

∂

∂αj
Ĵ1 = 0
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Figure 2. The level curves and the regions for J1 when n = 3.

for all i = m + 1, . . . , m + n − 1. Formally these are n − 1 conditions which are
however linearly dependent. Indeed they can be described by a linear system of
rank n− 2.

We denote by pψ the point of Πψ which satisfies equation (18) and by π the canon-
ical projection π : IRn → IRn−1, π(αm+1, . . . , αm+n−1, αm+n) = (αm+1, . . . , αm+n−1).
There are three possibilities for such points:

1: there exists one and only ψ ∈ {m + 1, . . . , m + n} such that the point pψ

belongs to π(Pin);
2: there exists more than one ψ ∈ {m + 1, . . . , m + n} such that the point pψ

belongs to π(Pin);
3: the point pψ does not belong to π(Pin) for all ψ ∈ {m + 1, . . . , m + n}.
If case 1. holds pψ is the point the maximizes Ĵ1. If case 2. holds there are a

finite number of points that are candidate to maximize Ĵ1. It is sufficient to check
all of them to find out the maximum. Finally, if case 3. holds, it means that the
space is divided in regions by the hiperplanes Hi where ∂

∂αi
Ĵ1 = 0 and π(Pin) is

entirely contained in one of these regions. In this case, for each region, there exists
one vertex of π(Pin) which maximizes Ĵ1. For n = 3 we give a complete description
of the regions and the maximizing vertices. See figure 2 for a picture of the level
curves of J1 and the different regions.

For n = 3 and ψ = m+1, condition (18) gives ∂
∂αm+2

Ĵ1 = 0 which is satisfied by

α such that αm+1 = γmax
m+1
Γ and αm+2 = 1−αm+1

2 , i.e.

pm+1 =
(

γmax
m+1

Γ
,
1
2

(
1− γmax

m+1

Γ

))
.

For ψ = m + 2, condition (18) gives ∂
∂αm+1

Ĵ1 = 0 which is satisfied by α such that

αm+2 = γmax
m+2
Γ and αm+1 = 1−αm+2

2 , i.e.

pm+2 =
(

1
2

(
1− γmax

m+2

Γ

)
,
γmax

m+2

Γ

)
.
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Figure 3. The cones Ci in the different regions identify the opti-
mal vertices.

Finally for ψ = m+3, condition (18) gives ∂
∂αm+1

Ĵ1− ∂
∂αm+2

Ĵ1 = 0 which is satisfied

by α such that αm+3 = γmax
m+3
Γ , αm+1 = αm+2 and αm+1 = 1−αm+3

2 , i.e.

pm+3 =
(

1
2

(
1− γmax

m+3

Γ

)
,
1
2

(
1− γmax

m+3

Γ

))
.

If we are in case 3. we introduce the following three lines

H1 = {α = (αm+1, αm+2) : αm+1 = 1− αm+1 − αm+2}
= {α = (αm+1, αm+2) : αm+2 = 1− 2αm+1},

H2 = {α = (αm+1, αm+2) : αm+2 = 1− αm+1 − αm+2}
= {α = (αm+1, αm+2) : αm+2 =

1
2
(1− αm+1)},

H3 = {α = (αm+1, αm+2) : αm+2 = αm+1}.
Hi are the lines where ∂

∂αi
Ĵ1 = 0 and these lines divide the region of IR2: {α ∈ IR2 :

αm+1 + αm+2 ≤ 1} in 6 regions. We denote by
R1: the region comprised between H1 and H2 below H3,
R2: the region comprised between H2 and H3 below H3,
R3: the region comprised between H3 and H1 below H3,
R4: the region comprised between H1 and H2 above H3,
R5: the region comprised between H2 and H3 above H3,
R6: the region comprised between H3 and H1 above H3.

Now, in the regions R1 and R4 the tangent space to the level curves is generated
by a vector which belongs to the cone C1 generated by the vectors (1, 0), (0, 1) (see
figure 3.)

In the regions R2 and R5 the tangent space to the level curves is generated by a
vector which belongs to the cone C2 generated by the vectors (0, 1), (1,−1).

In the regions R3 and R6 the tangent space to the level curves is generated by a
vector which belongs to the cone C3 generated by the vectors (1,−1), (1, 0).
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We denote by vi the vertex of π(Pin) such that each line of Ci passing through
vi, separates π(Pin) from the point (1

3 , 1
3 ).

We state that the maximum of Ĵ1 on π(Pin) is reached on the vertex vi in the
regions Ri and R3+i. Indeed the level curves passing through the other vertices are
farther from (1

3 , 1
3 ) than those passing through vi.

Next we show that Ĵ2 behave in a fashion similar to Ĵ1. For the partial deriva-
tives, by denoting α̃ = α̃(αm+1, . . . , αm+n−1) = (1−∑

αψ), we have:

∂

∂αi
Ĵ2(α) = 2Γin

√
1−4α̃Γin

(
1 +

√
1−4α̃Γin

)2 −√1− 4αiΓin

(
1 +

√
1−4αiΓin

)2

√
1− 4αiΓin

(
1 +

√
1−4αiΓin

)2√1− 4α̃Γin

(
1 +

√
1−4α̃Γin

)2 .

We have that ∂
∂αi

Ĵ2(α) ≥ 0 for αi ≥ 1 − ∑m+n−1
ψ=m+1 αψ. We obtain that Ĵ2 has a

critical point in αm+1 = · · · = αm+n−1 = αm+n = 1
n .

The Hessian of Ĵ2 is positive definite. Indeed

∂2

∂α2
i

Ĵ2 = 4Γ2

(
1(

1+
√

1−4αiΓ
)√

1−4αiΓ

)2 (
2(

1+
√

1−4αiΓ
) +

1√
1−4αiΓ

)

+4Γ2

(
1(

1+
√

1−4α̃Γ
)√

1− 4α̃Γ

)2 (
2(

1+
√

1−4α̃Γ
) +

1√
1−4α̃Γ

)

∂2

∂αi∂αj
Ĵ2 = 4Γ2

(
1(

1+
√

1−4α̃Γ
)√

1−4α̃Γ

)2 (
2(

1+
√

1−4α̃Γ
) +

1√
1−4α̃Γ

)
,

and, finally

αT Hess(Ĵ2)α =

4Γ2
m+n−1∑

i=m+1

(
1(

1+
√

1−4αiΓ
)√

1−4αiΓ

)2 (
2(

1+
√

1−4αiΓ
) +

1√
1−4αiΓ

)
α2

i

+4Γ2

(
1(

1+
√

1−4α̃Γ
)√

1−4α̃Γ

)2 (
2(

1+
√

1−4α̃Γ
) +

1√
1−4α̃Γ

)


m+n−1∑

i,j=m+1

αiαj


 .

Then Ĵ2 is convex and has a minimum in αm+1 = · · · = αm+n = 1
n .

It worths noticing that, up to exchanging the maximum with the minimum, Ĵ2

behaves exactly as Ĵ1. Indeed ∂
∂αi

Ĵ1 = 0 and ∂
∂αi

Ĵ2 = 0 are verified on the same
hiperplanes. Therefore we have the same points pψ, the same regions and the same
optimal vertices if case 3. holds. See figure 4 for the level curves and the regions of
J2 when n = 3.

4.4. Case Γout < Γin. Assume now that Γ = Γout < Γin. In this case we have:

γ̂ = (p1Γout, . . . , pmΓout, γ
max
1 , . . . , γmax

n ),
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Figure 4. The level curves and the regions of J2 when n = 3.

hence:

2J1 = 2mn− n
∑

sϕ

√
∆(γ̂ϕ)−m

∑
sψ

√
∆(γ̂ψ)

= 2mn− n
∑
ϕ

sϕ

√
1− 4pϕΓout (19)

−m
∑

ψ

sψ

√
1− 4γmax

ψ , (20)

and
1
2
J2 =

∑ 1
1− sϕ

√
∆(γ̂ϕ)

+
∑ 1

1− sψ

√
∆(γ̂ψ)

=
∑
ϕ

1
1− sϕ

√
1− 4pϕΓout

(21)

+
∑

ψ

1
1− sψ

√
1− 4γmax

ψ

. (22)

Now the part of the cost in (20) (resp. in (22)) does not depend on p and maxi-
mizing J1 (resp. minimizing J2) is equivalent to maximizing expression (19) (resp.
minimizing expression (21).) Since we are in the case Γ = Γout < Γin, for the sϕ’s
we only have the case: sϕ = +1 for all ϕ = 1, . . . , m, apart the case sϕ = −1 when
ρϕ,0 ≤ σ and pϕΓ = γmax

ϕ .

Remark. As done for the case Γ = Γin, we only consider sϕ = +1. Then one
should compare the optimal value of the functionals evaluated taking sϕ = +1 with
the value for sϕ = −1 and pϕ = γmax

ϕ /Γ. This will be done in detail for the case
m = n = 2.

Finally we have to maximize the expression

Ĵ1 = −
∑
ϕ

√
1− 4pϕΓout (23)
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and to minimize the expression

Ĵ2 =
∑
ϕ

1
1−√

1− 4pϕΓout

. (24)

Notice that we get the same expression for Ĵ1 that we obtained in equations (23)
with opposite sign and p in the place of α. Hence now Ĵ1 is convex and we have to
find its maximal value when restricted to π(Pout). Such maximal value will fall on
a vertex of π(Pout) and there are only a finite number of vertices to be checked.

For Ĵ2 we have

∂
∂pi

Ĵ2(p) =

2Γin

q
1−4(1−Pm−1

ϕ=1 pϕ)Γout

�
1−
q

1−4(1−Pm−1
ϕ=1 pϕ)Γout

�2
−√1−4piΓout(1−

√
1−4piΓout)2

√
1−4piΓout(1−

√
1−4piΓout)2

q
1−4(1−Pm−1

ϕ=1 pϕ)Γout

�
1−
q

1−4(1−Pm−1
ϕ=1 pϕ)Γout

�2 .

and

pT Hess(Ĵ2)p

= 4Γ2
m−1∑

i=1

(
1(

1−√1− 4piΓ
)√

1− 4piΓ

)2 (
2(

1−√1− 4piΓ
) +

1√
1− 4piΓ

)
p2

i

+4Γ2


 1(

1−
√

1− 4(1−∑m−1
ϕ=1 pϕ)Γ

) √
1− 4(1−∑m−1

ϕ=1 pϕ)Γ




2


 2(

1−
√

1− 4(1−∑m−1
ϕ=1 pϕ)Γ

) +
1√

1− 4(1−∑m−1
ϕ=1 pϕ)Γ







m∑

i,j=1

pipj


 .

Hence Ĵ2 is concave and has a maximum in p1 = · · · = pm = 1
m . Since we want

to find the minimum value of Ĵ2 restricted to π(Pout) it is sufficient to analyse the
value of Ĵ2 on the vertices of π(Pout).

5. Optimization of a simple network with m = n = 2. We focus here on the
case n = m = 2, i.e. on a simple network with one node o, two sources {1, 2},
two destinations {3, 4} and four lines {a, b, c, d}, where a and b are the incoming
lines to the node o and c and d are the outgoing lines from the node o. There are
packets from sources {1, 2} to destinations {3, 4} passing through o and running on
lines a, b, c, d: cϕψ with ϕ ∈ {a, b} and ψ ∈ {c, d}. We define the packets densities
running on the lines as follows

• ρa from a to o: ρa = cac + cad;
• ρb from b to o: ρb = cbc + cbd;
• ρc from o to c: ρc = cac + cbc;
• ρd from o to d: ρd = cad + cbd.

Our aim is to solve the RP for the node at o. Then we want to measure the average
transmission over the network as function of the parameters α and p. We consider
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the following costs:

J1 = Vac + Vad + Vbc + Vbd

J2 =
1
va

+
1
vb

+
1
vc

+
1
vd

J3 = cacVac + cadVad + cbcVbc + cbdVbd.

with Vϕψ = vϕ + vψ, vϕ = v(ρ̂ϕ), vψ = v(ρ̂ψ) and where ρ̂ is the solution to the
RP. The systems (10) and (11) are satisfied by the points (pΓ, (1 − p)Γ) for the
incoming lines and (αΓ, (1− α)Γ) for the outgoing lines, respectively. For these to
be the solutions to the RP for the outgoing lines, the following conditions must be
satisfied:

A1: γc = αΓin ≤ γmax
c

A2: γd = (1− α)Γin ≤ γmax
d .

Otherwise, we consider the only reasonable projection which gives:
proj(αΓ, (1−α)Γ) = (γmax

c ,Γ− γmax
c ) if A1 is not satisfied and A2 is satisfied and

proj(αΓ, (1− α)Γ) = (Γ− γmax
d , γmax

d ) if A1 is satisfied and A2 is not satisfied.
Therefore if Γ = Γin the solutions given to the RP are the following:
• (γmax

a , γmax
b , αγc, (1− α)γd) if both A1 and A2 are satisfied.

• (γmax
a , γmax

b , γmax
c ,Γin − γmax

c ) if A1 is not satisfied and A2 is satisfied.
• (γmax

a , γmax
b ,Γin − γmax

d , γmax
d ) if A1 is satisfied and A2 is not satisfied.

Notice that the case of both A1, A2 false is not possible since otherwise it would
be Γin ≥ Γout.

For the incoming lines, the conditions read:
B1: γ̃a = pΓout ≤ γmax

a

B2: γ̃b = (1− p)Γout ≤ γmax
b .

Otherwise, we consider the following reasonable projection on the admissible set:
proj(pΓ, (1− p)Γ) = (γmax

a ,Γ− γmax
a ) if B1 is not satisfied and B2 is satisfied and

proj(pΓ, (1− p)Γ) = (Γ− γmax
b , γmax

b ) if B1 is satisfied and B2 is not satisfied.
Thus, if Γ = Γout the solutions to the RP are the following:
• (pγa, (1− p)γb, γ

max
c , γmax

d ) if both B1 and B2 are satisfied.
• (γmax

a ,Γout − γmax
a , γmax

c , γmax
d ) if B1 is not satisfied and B2 is satisfied.

• (Γout − γmax
b , γmax

b , γmax
c , γmax

d ) if B1 is satisfied and B2 is not satisfied.
Also now the case of both B1, B2 false is not possible since otherwise it would be
Γout ≥ Γin.

Once fixed ρϕ and ρψ, ϕ ∈ {a, b} and ψ ∈ {c, d}, we can find for which α and p
conditions A1, A2, B1, B2 are satisfied as follows. If Γ = Γin, let

γ′c = Γ− γmax
d , γ′d = Γ− γmax

c , β− =
γ′d

γmax
c

, β+ =
γmax

d

γ′c

then, for α ≥ 1
1+β− , A1 is false and A2 is true, for α ≤ 1

1+β+ , A1 is true and A2
is false and finally, for 1

1+β+ ≤ α ≤ 1
1+β− , both A1 and A2 are true.

If otherwise Γ = Γout, let

γ′a = Γ− γmax
b , γ′b = Γ− γmax

a , q− =
γ′b

γmax
a

, q+ =
γmax

b

γ′a

then, for p ≥ 1
1+q− , B1 is false and B2 is true, for p ≤ 1

1+q+ , B1 is true and B2 is
false and finally, for 1

1+q+ ≤ p ≤ 1
1+q− , both B1 and B2 are true.
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To compute the cost we observe that ρ̂ϕ = f−1(γ̂ϕ) (ρ̂ψ = f−1(γ̂ψ) resp.) and
γ̂ϕ is either pγϕ, (1− p)γϕ, γmax

ϕ or Γ− γmax
ϕ (γ̂ψ is either αγψ, (1−α)γψ, γmax

ψ or
Γ− γmax

ψ resp.).
Substituting all the possible solutions to the RP in the expression of J3 we obtain

that J3 = 2Γ. Therefore, as for the general case of m incoming lines and n outgoing
lines, we consider the flux of equation (2), set vmax = ρmax = 1 and maximize J1

and minimize J2.
Now if Γ = Γin = Γout. Then both A1 and A2 are satisfied if and only if

β− = β+ = γmax
d

γmax
c

, hence α = γmax
c

γmax
c +γmax

d
= γmax

c

Γ . In this case

γ̂ = (γmax
a , γmax

b , γmax
c , γmax

d ),

and J1 and J2 do not depend neither on α nor on p.

5.1. Case Γin < Γout. Assume now that Γ = Γin < Γout and both A1 and A2 are
satisfied. In this case we have:

γ̂ = (γmax
a , γmax

b , α(γmax
a + γmax

b ), (1− α)(γmax
a + γmax

b )).

and maximizing J1 and minimizing J2 is equivalent to maximizing the expression
(13) and minimizing the expression (15).

Since we are in the case Γ = Γin < Γout and A1 and A2 true, for sc and sd we
have: sc = sd = −1. Hence we have to maximize the expression

Ĵ1 =
√

1− 4αΓin +
√

1− 4(1− α)Γin (25)

and to minimize the expression

Ĵ2 =
1

1 +
√

1− 4αΓin

+
1

1 +
√

1− 4(1− α)Γin

. (26)

Now the case ρa = ρb = 1
2 cannot happen since we would have γmax

a = γmax
b = 1

4 ,
and Γ = 1

2 . But the maximal value of Γout is 1
2 which fact contradicts the assumption

that Γin < Γout. Assume then that not both ρa and ρb are equal to 1
2 . By the

expressions of the first and second derivatives of J1 (J2 resp.) we get that J1 is
concave (J2 is convex) and has a maximum (minimum) in ᾱ where ᾱ = 1

2 .
For the α’s such that A2 is satisfied but A1 is not and viceversa, we have that

J1 and J2 do not depend on α and, in particular the values of the Ĵ1 and Ĵ2 are

Ĵ1 =





√
1− 4γmax

ψ +
√

1− 4(Γ− γmax
ψ ) if sc = sd = −1 and αψΓ ≥ γmax

ψ ,

−√
1− 4γmax

ψ +
√

1− 4(Γ− γmax
ψ ) if sψ = +1 and αψΓ ≥ γmax

ψ ,

Ĵ2 =





1
1+
√

1−4γmax
ψ

+ 1

1+
√

1−4(Γ−γmax
ψ )

if sc = sd = −1 and αψΓ ≥ γmax
ψ ,

1
1−√1−4γmax

ψ

+ 1

1+
√

1−4(Γ−γmax
ψ )

if sψ = +1 and αψΓ ≥ γmax
ψ ,

where we used the notation ψ = c, d, αψ = α, 1− α.

5.1.1. Optimal choices of α. First we give the optimal choice of α when sc = sd =
−1. Then we will treat the case when either sc or sd or both are equal to +1. We
can collect the informations of the previous section as follows:

• β− ≤ 1 ≤ β+ then J1 is constant for 0 ≤ α ≤ 1
1+β+ then it increases for

1
1+β+ ≤ α ≤ 1

2 then it decreases for 1
2 ≤ α ≤ 1

1+β− and then it is again
constant for 1

1+β− ≤ α ≤ 1.
The optimal value of J1 is for α = 1

2 .
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• β− ≤ β+ ≤ 1 then J1 is constant for 0 ≤ α ≤ 1
1+β+ then it decreases for

1
1+β+ ≤ α ≤ 1

1+β− and then it is again constant for 1
1+β− ≤ α ≤ 1.

The optimal values of J1 are for α ∈ [0, 1
1+β+ ].

• 1 ≤ β− ≤ β+ then J1 is constant for 0 ≤ α ≤ 1
1+β+ then it increases for

1
1+β+ ≤ α ≤ 1

1+β− and then itis again constant for 1
1+β− ≤ α ≤ 1.

The optimal values of J1 are for α ∈ [ 1
1+β− , 1].

Finally for J2 we have the following cases:

• β− ≤ 1 ≤ β+ then J2 is constant for 0 ≤ α ≤ 1
1+β+ then it decreases for

1
1+β+ ≤ α ≤ 1

2 then it increases for 1
2 ≤ α ≤ 1

1+β− and then it is again
constant for 1

1+β− ≤ α ≤ 1.
The optimal value of J2 is for α = 1

2 .
• β− ≤ β+ ≤ 1 then J2 is constant for 0 ≤ α ≤ 1

1+β+ then it increases for
1

1+β+ ≤ α ≤ 1
1+β− and then it is again constant for 1

1+β− ≤ α ≤ 1.
The optimal values of J2 are for α ∈ [0, 1

1+β+ ].
• 1 ≤ β− ≤ β+ then J2 is constant for 0 ≤ α ≤ 1

1+β+ then it decreases for
1

1+β+ ≤ α ≤ 1
1+β− and then itis again constant for 1

1+β− ≤ α ≤ 1.
The optimal values of J2 are for α ∈ [ 1

1+β− , 1].

Now we treat the case when either sc or sd or both are equal to +1. For Ĵ1 it
is fundamental to recall that it is a measure of the velocity which is a decreasing
function of the density v = 1 − ρ hence taking the solution of ρψ with sψ = +1
corresponds to taking a lower velocity. We distinguish the following cases.

If β− ≤ 1 ≤ β+, then the maximal value of J1 does not change by exchanging
sψ = −1 with sψ = +1 (with the optimal value for α = 1

2 .)
If β− ≤ β+ ≤ 1 and sd = −1 then the maximal value of J1 remains invaried with

the optimal choice being α ∈ [0, 1
1+β+ ].

If β− ≤ β+ ≤ 1 and sd = +1 then the maximal value of J1 does not exists. One
can chose α = 1

1+β+ + ε.
If 1 ≤ β− ≤ β+ and sc = −1 then the maximal value of J1 remains invaried with

the optimal choice being α ∈ [ 1
1+β− , 1].

If 1 ≤ β− ≤ β+ and sc = +1 then the maximal value of J1 does not exists. One
can chose α = 1

1+β− − ε.

Analogously, for Ĵ2, since it is a measure of the time, which is an increasing
function of the density 1

v = 1
1−ρ , taking the solution of ρψ with sψ = +1 corresponds

to taking a bigger time value. Hence we distinguish the following cases:
If β− ≤ 1 ≤ β+, then the minimal value of J2 does not change by exchanging

sψ = −1 with sψ = +1 (with the optimal value for α = 1
2 .)

If β− ≤ β+ ≤ 1 and sd = −1 then the maximal value of J1 remains invaried with
the optimal choice being α ∈ [0, 1

1+β+ ].
If β− ≤ β+ ≤ 1 and sd = +1 then the maximal value of J1 does not exists. One

can chose α = 1
1+β+ + ε.

If 1 ≤ β− ≤ β+ and sc = −1 then the maximal value of J1 remains invaried with
the optimal choice being α ∈ [ 1

1+β− , 1].
If 1 ≤ β− ≤ β+ and sc = +1 then the maximal value of J1 does not exists. One

can chose α = 1
1+β− − ε.
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5.2. Case Γout < Γin. Assume now that Γ = Γout < Γin and B1 and B2 are
satisfied. In this case we have:

γ̂ = (pΓ, (1− p)Γ, γmax
c , γmax

d ),

and maximizing J1 and minimizing J2 is equivalent to maximizing the expression
(19) and minimizing the expression (21).

Since we are in the case Γ = Γout < Γin and B1 and B2 true, for sa and sb we
only have the case: sc = sd = +1. Hence we have to maximize the expression

Ĵ1 = −(
√

1− 4pΓ +
√

1− 4(1− p)Γ) (27)

and to minimize the expression

Ĵ2 =
1

1−√1− 4pΓout
+

1
1−

√
1− 4(1− p)Γout

. (28)

Notice that in this case we have the same expression of Ĵ1 that we obtained in
equations (25) with opposite sign and p in the place of α. For J2, as in the general
case, we obtain that it is a concave function of p and has a maximum in p = 1

2 .
Similarly to the case Γ = Γin we obtain that when conditions B1 is false and B2 is
true or viceversa then the cost functions J1 and J2 are constant with respect to p.
In particular the values of Ĵ1 and Ĵ2 are the following:

Ĵ1 =




−√

1− 4γmax
ϕ −

√
1− 4(Γ− γmax

ϕ ) if sa = sb = +1 and pϕΓ ≥ γmax
ϕ ,

+
√

1− 4γmax
ϕ −

√
1− 4(Γ− γmax

ϕ ) if sϕ = −1 and pϕΓ ≥ γmax
ϕ ,

Ĵ2 =





1
1−√1−4γmax

ϕ

+ 1

1−
√

1−4(Γ−γmax
ϕ )

if sa = sb = +1 and pϕΓ ≥ γmax
ϕ ,

1
1+
√

1−4γmax
ϕ

+ 1

1−
√

1−4(Γ−γmax
ϕ )

if sϕ = −1 and pϕΓ ≥ γmax
ϕ ,

where we have used the notation ϕ = a, b, pϕ = p, 1− p.

5.2.1. Optimal choice of p. First we give the optimal choice of p when sa = sb = +1.
Then we will treat the case when either sa or sb or both are equal to −1. We can
collect the above informations in the following way:

• q− ≤ 1 ≤ q+ then J1 is constant for 0 ≤ p ≤ 1
1+q+ then it decreases for

1
1+q+ ≤ p ≤ 1

2 then it increases for 1
2 ≤ p ≤ 1

1+q− and then it is again
constant for 1

1+q− ≤ p ≤ 1.
We distinguish three cases: 1

2 − 1
1+q+ > 1

1+q− − 1
2 , 1

2 − 1
1+q+ = 1

1+q− − 1
2

and 1
2 − 1

1+q+ < 1
1+q− − 1

2 . Simplifying we obtain the three cases: q−q+ > 1,
q−q+ = 1 and q−q+ < 1. In the first case we have that the optimal values
of J1 are for p ∈ [0, 1

1+q+ ], in the second case the optimal values of J1 are for
p ∈ [0, 1

1+q+ [ ∪ ] 1
1+q− , 1], and in the third case the optimal values of J1 are

for p ∈ [ 1
1+q− , 1],

• q− ≤ q+ ≤ 1 then J1 is constant for 0 ≤ p ≤ 1
1+q+ then it increases for

1
1+q+ ≤ p ≤ 1

1+q− and then it is again constant for 1
1+q− ≤ p ≤ 1.

The optimal values of J1 are for p ∈ [ 1
1+q− , 1].

• 1 ≤ q− ≤ q+ then J1 is constant for 0 ≤ p ≤ 1
1+q+ then it decreases for

1
1+q+ ≤ p ≤ 1

1+q− and then it is again constant for 1
1+q− ≤ p ≤ 1.

The optimal values of J1 are for p ∈ [0, 1
1+q+ ].
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For J2 we have the following cases:

• q− ≤ 1 ≤ q+ then J2 is constant for 0 ≤ p ≤ 1
1+q+ then it increases for

1
1+q+ ≤ p ≤ 1

2 then it decreases for 1
2 ≤ p ≤ 1

1+q− and then it is again
constant for 1

1+q− ≤ p ≤ 1.
We distinguish three cases: 1

2 − 1
1+q+ > 1

1+q− − 1
2 , 1

2 − 1
1+q+ = 1

1+q− − 1
2

and 1
2 − 1

1+q+ < 1
1+q− − 1

2 . Simplifying we obtain the three cases: q−q+ > 1,
q−q+ = 1 and q−q+ < 1. In the first case we have that the optimal values
of J2 are for p ∈ [0, 1

1+q+ ], in the second case the optimal values of J2 are for
p ∈ [0, 1

1+q+ [ ∪ ] 1
1+q− , 1], and in the third case the optimal values of J2 are

for p ∈ [ 1
1+q− , 1],

• q− ≤ q+ ≤ 1 then J2 is constant for 0 ≤ p ≤ 1
1+q+ then it decreases for

1
1+q+ ≤ p ≤ 1

1+q− and then it is again constant for 1
1+q− ≤ p ≤ 1.

The optimal values of J2 are for p ∈ [ 1
1+q− , 1].

• 1 ≤ q− ≤ q+ then J2 is constant for 0 ≤ p ≤ 1
1+q+ then it increases for

1
1+q+ ≤ p ≤ 1

1+q− and then it is again constant for 1
1+q− ≤ p ≤ 1.

The optimal values of J2 are for p ∈ [0, 1
1+q+ ].

We treat now the case where sa = sb = −1. Concerning J1 we compare the
following quantities:

√
1− 4γmax

a −
√

1− 4(Γ− γmax
a ) ≤ √

1− 4γmax
b −

√
1− 4(Γ− γmax

b ). (29)

Assume first that q− ≤ 1 ≤ q+. Then γa, γb ≥ Γ/2 and
√

1− 4γmax
ϕ −

√
1− 4(Γ− γmax

ϕ ) ≤ 0.

Therefore we get that the inequality (29) is satisfied if:

2−4Γ−2
√

1− 4γmax
b

√
1− 4(Γ− γmax

b ) ≤ 2−4Γ−2
√

1− 4γmax
a

√
1− 4(Γ− γmax

a ),

that is if

1− 16(γmax
a )2 − 4Γ + 16Γγmax

a ≤ 1− 16(γmax
b )2 − 4Γ + 16Γγmax

b ,

i.e. when
γmax

a (Γ− γmax
a ) ≤ γmax

b (Γ− γmax
b ),

which is true if γmax
a is farther than γmax

b from Γ/2. Hence, in the case q− ≤ 1 ≤ q+,
the optimal value of J1 is attained in the opposite intervals that maximize J1 when
both sa and sb are equal to +1.

If q− ≤ q+ ≤ 1 then it means that γa ≥ Γ/2 ≥ γb hence
√

1− 4γmax
a −

√
1− 4(Γ− γmax

a ) ≤ 0 ≤ √
1− 4γmax

b −
√

1− 4(Γ− γmax
b )

and J1 is maximized for p ∈ [0, 1
1+q+ ].

If 1 ≤ q− ≤ q+ then it means that γa,≤ Γ/2 ≤ γb hence
√

1− 4γmax
a −

√
1− 4(Γ− γmax

a ) ≥ 0 ≥ √
1− 4γmax

b −
√

1− 4(Γ− γmax
b )

and J1 is maximized for p ∈ [ 1
1+q− , 1].
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We consider now the case where sa = −1 and sb = +1 and compare the following
quantities:

+
√

1− 4γmax
a −

√
1− 4(Γ− γmax

a ) ≥ −√
1− 4γmax

b −
√

1− 4(Γ− γmax
b ). (30)

If q− ≥ 1 then (30) is trivially satisfied since its left handside is positive. If otherwise
q− ≤ 1 we get that

2−4Γ−2
√

1− 4γmax
a

√
1− 4(Γ− γmax

a ) ≤ 2−4Γ+2
√

1− 4γmax
b

√
1− 4(Γ− γmax

b )

which is always verified. Hence, in this case, the optimal value of J1 is attained for
p ∈ [ 1

1+q− , 1].
Finally we treat the case sa = +1 and sb = −1 and compare the quantities:

−
√

1− 4γmax
a −

√
1− 4(Γ− γmax

a ) ≤ +
√

1− 4γmax
b −

√
1− 4(Γ− γmax

b ). (31)

If q+ ≤ 1 then (31) is trivially satisfied since its right handside is positive. If
otherwise q+ ≥ 1 we get

2−4Γ+2
√

1− 4γmax
a

√
1− 4(Γ− γmax

a ) ≥ 2−4Γ−2
√

1− 4γmax
b

√
1− 4(Γ− γmax

b )

which is always verified. Hence, in this case, the optimal value of J1 is attained for
p ∈ [0, 1

1+q+ ].
Concerning J2, if sa = sb = −1, we have to compare the following quantities:

1
1+
√

1−4γmax
a

+
1

1−
√

1−4(Γ−γmax
a )

≤ 1
1+

√
1+4γmax

b

+
1

1+
√

1+4(Γ+γmax
b )

.

(32)
Let

Φ(γ) =
1

1 +
√

1− 4γ
+

1
1−

√
1− 4(Γ− γ)

and notice that
d

dγ
Φ(γ) =

2
(1 +

√
1− 4γ)2

√
1− 4γ

+
2

(1−
√

1− 4(Γ− γ))2
√

1− 4(Γ− γ)
≥ 0.

Hence Φ(γ) is a strictly increasing function of γ. Therefore the inequality (32) is
satisfied if and only if γmax

a ≤ γmax
b that is, if and only if

Γ− γmax
a

γmax
a

= q− ≥ 1
q+

=
Γ− γmax

b

γmax
b

.

Finally q+q− > 1 implies that J2 is minimized for p ∈ [ 1
1+q− , 1], q+q− < 1 implies

that J2 is minimized for p ∈ [0, 1
1+q− ] and q+q− = 1 implies that J2 is minimized

for p ∈ [ 1
1+q− , 1] ∪ [0, 1

1+q− ]. This means that the intervals that optimize J2 are
reversed with respect to the case where both sa = sb = +1.

Next we consider the case where sa = −1 and sb = +1 and compare:
1

1+
√

1−4γmax
a

+
1

1−
√

1−4(Γ−γmax
a )

≤ 1
1−√

1−4γmax
b

+
1

1−√
1−4(Γ− γmax

b )
.

(33)
We denote by

Ψ(γ) =
1

1−√1− 4γ
+

1
1−

√
1− 4(Γ− γ)

.
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and we notice that Ψ is a concave function simmetric with respect to Γ/2. Moreover
we have

δ(γ) = Ψ(γ)− Φ(γ) =
1

1−√1− 4γ
− 1

1 +
√

1− 4γ
=
√

1− 4γ

2γ
≥ 0.

Now if γa ≤ γb, that is if q+q− ≥ 1, then, since Φ is increasing, Φ(γa) ≤ Φ(γb) ≤
Ψ(γb), i.e. the inequality (33) is satisfied, and J2 is minimized for p ∈ [ 1

1+q− , 1].
If γa ≥ γb, which is equivalent to say that q+q− ≤ 1, then J2 is minimized by

p ∈ [ 1
1+q− , 1] when sa = sb = +1, a fortiori these are the optimal parameters when

sa = −1 which correspond to taking a smaller time.
Finally, if sa = +1 and sb = −1, we compare:

1
1−√1− 4γmax

a

+
1

1−
√

1− 4(Γ− γmax
a )

≥ 1
1−√

1− 4γmax
b

+
1

1−√
1− 4(Γ− γmax

b )
. (34)

We have that the inequality (34) is satisfied if γb ≤ γa which means that q+q− ≤ 1.
Hence, in this case, J2 is minimized for p ∈ [0, 1

1+q+ ]. If otherwise γb ≥ γa, i.e. if
q+q− ≥ 1, then p ∈ [0, 1

1+q+ ] is the optimal choice when sa = sb = +1. A fortiori it
is the optimal choice if we take sb = −1, that is a smaller time.
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