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Abstract. We perform a numerical study on a domain decomposition method
proposed in [13] for the linear transport equation between a diffusive and a
non-diffusive region. This method avoids iterating the diffusion and transport
solutions as in a typical domain decomposition method. Our numerical re-
sults, in both one and two space dimensions, confirm the theoretical analysis
of [13]. We also provide an improved second order method that provides a
more accurate numerical solution than that proposed in [13].

1. Introduction. Consider the steady, linear transport equation with isotropic
scattering and slab geometry:

µ∂xΨ(x, µ) + σ(x)Ψ(x, µ) = σ(x)c(x)Ψ(x) ,

where Ψ(x) = 1
2

∫ 1

−1

Ψ(x, µ)dµ .
(1.1)

The phase space density Ψ is defined so that Ψ(x, µ) 1
2dµdx is the number of particles

(e.g. neutrons) located inside an interval of width dx centered at x, moving in a
direction whose angle θ with the x axis is such that µ = cos θ belongs to an interval
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of width dµ centered at µ. The function σ(x) > 0 is the scattering cross-section at
position x, while c(x) > 0 is the average number of emitted particles per collision
at x. Below we assume that 0 < c(x) ≤ 1. When c = 1 the material is purely
scattering; when c < 1 there exist absorbing collisions. The transport equation (1.1)
is posed for x ∈ (x

L
, x

R
) and µ ∈ [−1, 1], supplemented with boundary conditions at

x
L

and x
R
. Perhaps the simplest example of boundary conditions for (1.1) consists

in prescribing the phase-space density of particles entering the domain (x
L
, x

R
) at

x
L

and x
R
:

Ψ(xL , µ) = FL(µ) , for µ ∈ (0, 1] ,

Ψ(x
R
,−µ) = FR(µ) , for µ ∈ (0, 1] .

(1.2)

More general boundary conditions can also be analyzed by the methods of the
present paper. For more details on the physical meaning of (1.1)-(1.2), the interested
reader is referred to chapter XXI of [7].

Our interest is the numerical computation of (1.1)-(1.2) in the case where the
order of magnitude of the scattering cross-section σ varies considerably over the
domain (xL , xR). Such situations are frequently encountered in most applications
of transport theory where the background medium is often made of (very) different
materials. Specifically, we consider the case of two different materials with an
interface located at x

M
∈ (x

L
, x

R
). At x

M
, the scattering cross-section σ and emission

rate c are assumed to be discontinuous; they are given as follows in terms of a small
parameter ε:

σ(x) = 1 , and 0 < c∗ ≤ c(x) ≤ c∗ < 1 , for x ∈ (x
L
, x

M
) ,

σ(x) = ε−1 , and c(x) = 1− ε2γ(x) , for x ∈ (x
M

, x
R
) .

(1.3)

We also make the following assumption (which was used in the mathematical
analysis in [13]):

0 < γ∗ ≤ γ(x) ≤ γ∗ , for each x ∈ (xM , xR) (1.4)

for some constants γ∗ and γ∗; we shall also restrict our attention to ε’s such that

0 < ε < ε∗ , where ε∗ < 1/γ∗ . (1.5)

Notice that these assumptions exclude the case where c takes the value 1: in partic-
ular, the case of a purely scattering, low σ medium is excluded by the assumption
(1.3). And when c = 1, there will be a counter example to show that the coupling
method will not work in section 2.2.4.

The small parameter ε is the ratio of the mean free path (the average distance
a particle travels between two consecutive collisions with the background medium)
to the size of the domain xR − xM . Changing the space variable x in (1.1) into

x
M
−

∫ x
M

x

σ(z)dz for x ∈ (x
L
, x

M
)

and xM +
∫ x

x
M

σ(z)dz for x ∈ (xM , xR)

one sees that there is no loss of generality in assuming σ to be piecewise constant
as in (1.3). (In the context of radiative transfer, the new space variables so defined
are referred to as the “optical thickness”: see chapter I, §7 in [6].)

Since the mean-free path is small in the region (xM , xR), we expect that the
solution Ψε is isotropic (i.e. a function of x alone) to leading order and governed
by the diffusion approximation of (1.1). Hence the domain (xM , xR) is referred to
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Figure 1. Geometry of the one-dimensional interface problem

as “the diffusion region”. The smallness of the mean free path in (x
M

, x
R
) makes it

very costly to solve the transport equation accurately there. Solving the diffusion
equation on the other hand is much more efficient. By contrast, in the domain
(xL , xM ) one must retain the µ-dependence in the solution Ψε and solve the transport
equation for Ψε in that domain, which will be therefore referred to as “the transport
region”. For problems like this, it is very natural to use a domain decomposition
method which solves the transport equation on the left and the diffusion equation
on the right.

Domain decomposition methods matching kinetic and hydrodynamic or diffusion
models have received a lot of attention in the past 15 years. Some of the ideas in
the present work can be found in [10]; other methods have been proposed in [1], [4],
[8], [9], [14], [17], [18], [19], [20], [21], [22], [23]. In the notations of Figure 1, solving
the problem (1.1)-(1.2) with coefficients given by (1.3) reduces to finding good
approximations of the angle distributions of particles crossing the interface in the
direction of the transport domain — i.e. f− — and in the direction of the diffusive
domain — i.e. f+. In fact, the solution in the diffusive region depends only on some
appropriate angle average of f+, so that the most critical task is to evaluate f−
accurately. In most of the existing domain decomposition methods for this problem
— for instance in [1], [23] — this is done by an iteration procedure in which the
diffusion and the transport equation are solved alternately until convergence of the
successive approximates to f− and f+ is reached.

In [13], the authors proposed a boundary condition at x
M

on the transport side
which mimics the reflection of particles on an infinitely thick, purely scattering
domain. This reflection condition is based on almost explicit computations for the
steady transport equation in a half-space filled with a purely scattering material.
Using this reflection condition yields the correct transport and diffusion solutions
in one step up to an O(ε) error and in two steps (a prediction-correction algorithm)
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up to an O(ε2) error. In particular, this method avoids iterating alternately on the
diffusion and transport solutions until convergence of the fluxes at the interface is
reached. A complete mathematical justification of the convergence of this method,
for the one dimensional case, was done in [13].

In this paper we perform some numerical verification of this domain decompo-
sition method. We conduct numerical experiments for both one and two space
dimensions. Our numerical results agree with the convergence analysis of [13]. We
also provide an improved second order method that provides more accurate numer-
ical solution than that proposed in [13].

2. The Domain Decomposition Method.

2.1. The reflecting operator and the Chandrasekhar H-function. The do-
main decomposition method needs the following two basic quantities for the trans-
port equation. First we define the Chandrasekhar H-function via an integral equa-
tion ([6])

1
H(µ)

=
∫ 1

0

H(µ′)
2(µ + µ′)

µ′dµ′. (2.1)

The density of particles emerging from a purely scattering half-space is

(RG)(µ) =
1
2
H(µ)

∫ 1

0

G(µ′)
H(µ′)
µ + µ′

µ′dµ′. (2.2)

The presentation of Chandrasekhar’s H-function and of the reflection operator
R arises from [10] pp. 309-311 (in the context of the Boltzmann equation) and is ex-
plained explicitly in [11] pp.222-224. Another presentation, according to stochastic
processes, can be found in [3].

2.2. The Domain Decomposition Method. We now review the domain decom-
position method proposed in [13].

2.2.1. Order O(ε) coupling.
Step 1. Solve the steady transport problem

µ∂xΦ0 + Φ0 − cΦ0 = 0, (x, µ) ∈ (xL, xM )× [−1, 1], (2.3)

Φ0(xL, µ) = FL(µ), µ ∈ (0, 1], (2.4)

Φ0(xM ,−µ) = R(Φ0(xM , ·)|(0,1])(µ), µ ∈ (0, 1], (2.5)

where R is the reflecting operator defined in (2.2).
Step 2. Using the density Φ0 provided in Step 1, solve the diffusion problem

− 1
3
∂xxΘ0 + γΘ0 = 0, x ∈ (xM , xR), (2.6)

Θ0(xM ) =
√

3
2

∫ 1

0

µH(µ)Φ0(xM , µ)dµ, (2.7)

Θ0(xR) =
√

3
2

∫ 1

0

µH(µ) FR(µ)dµ, (2.8)

where H is the Chandrasekhar function defined in (2.1).
The following result was proved in [13].
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Theorem 1. Let Ψε be the solution of the original two-scale steady transport prob-
lem (1.1)-(1.2) with coefficients as in (1.3), and define Ψ0 as follows:

Ψ0(x, µ) = Φ0(x, µ), ∀(x, µ) ∈ (xL, xM )× [−1, 1];

Ψ0(x, µ) = Θ0(x), ∀(x, µ) ∈ (xM , xR)× [−1, 1].

Then

‖Ψε − Φ0‖L1([xL,xR]×[−1,1]) = O(ε)

and, for each x′M , x′R ∈ (xM , xR) such that x′M < x′R, one has

‖Ψε − Φ0‖L2([xL,xM ]×[−1,1]) + ‖Ψε − Φ0‖L∞([x′M ,x′R]×[−1,1]) = O(ε)

as ε → 0.

2.2.2. Order O(ε2) coupling.

In order to obtain a second order scheme, one needs another coupling procedure.
At first we solve

µ∂xΦ1 + Φ1 − cΦ1 = 0, (x, µ) ∈ (xL, xR)× [−1, 1], (2.9)

Φ1(xL, µ) = 0, µ ∈ (0, 1], (2.10)

Φ1(xM ,−µ) = R(Φ1(xM , ·)|(0,1])(µ) + (λ + µ)∂xΘ0(xM ), µ ∈ (0, 1].
(2.11)

With the results of Φ1, we continue to compute

−1
3
∂xxΘε + γΘε = 0, x ∈ (xM , xR), (2.12)

Θε(xM )− ελ∂xΘε(xM ) =
√

3
2

∫ 1

0

µH(µ)(Φ0 + εΦ1)(xM , µ)dµ, (2.13)

Θε(xR) + ελ∂xΘε(xR) =
√

3
2

∫ 1

0

µH(µ)FR(µ)dµ, (2.14)

where λ is given as follows:

λ =
√

3
2

∫ 1

0

µ2H(µ)dµ.

The following results are from [13].

Theorem 2. Let Ψε be the solution of the original two-scale steady transport prob-
lem (1.1)-(1.2) with coefficients as in (1.3). Define Ψ1

ε as follows:

Ψ1
ε = (Φ0 + εΦ1)(x, µ), ∀(x, µ) ∈ (xL, xM )× [−1, 1];

Ψ1
ε = Θε(x)− εµ∂xΘε(x), ∀(x, µ) ∈ (xM , xR)× [−1, 1].

Then, for each x′M , x′R ∈ (xM , xR) such that x′M < x′R, one has

‖Ψε −Ψ1
ε‖L2([xL,xM ]×[−1,1]) + ‖Ψε −Ψ1

ε‖L∞([x′M ,x′R]×[−1,1]) = O(ε2)

as ε → 0.
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2.2.3. An improved order O(ε2) coupling. Substitute ∂xΘ0(xM ) in (2.9) by
∂xΘε(xM ) derived from (2.12) and compute Ψ1

ε again, denoting the result by Φ̃1

and Θ̃ε, which satisfies (2.9)-(2.14) with the boundary condition (2.11) changed to

Φ̃1(xM ,−µ) = R(Φ̃1(xM , ·)|(0,1])(µ) + (λ + µ)∂xΘ̃ε(xM ), (2.15)
µ ∈ (0, 1].

With these definitions, let

Ψ̃1
ε = (Φ0 + εΦ̃1)(x, µ)x ∀(x, µ) ∈ (xL, xM )× [−1, 1]; (2.16)

Ψ̃1
ε = Θ̃ε(x)− εµ∂xΘ̃ε(x), ∀(x, µ) ∈ (xM , xR)× [−1, 1]. (2.17)

Then one gets a similar second order estimate as in Theorem 2 with Ψ1
ε replaced by

Ψ̃1
ε. We call this method the improved O(ε2) method. Considering that (2.12)-(2.11)

are linear equations, we do not need much computation to complete this iteration

procedure, i.e. Φ̃1 = Φ1 · ∂xΘε

∂xΘ0
, and solving the diffusion equation is a much easier

job compared to the transport equation.
Besides, by the procedure which is essentially identical to the proof of Theorem

3.2 in [13] pp. 15-16 (the only difference lies at the expression of function ψε(µ) =
Ψε(xM ,−µ) − R(Ψε(xM , ·)|(0,1])(µ) − (λ + µ)∂xΘε(xM )), the boundary condition
derived from (2.15) is a second order one . And because we replace ∂xΘ0 with
∂xΘε, which leads to the decrease of ‖ψε‖L∞ , the truncation error of this method
is expected to be smaller than the original second order method (see [13] pp. 15
(4.28)). This will be confirmed numerically later. And it can also be verified by
the fact that Θ0 is the main value of Θε so that there will be an extra order O(ε2)
term in order O(ε2) coupling than the improved one. Note that the improved O(ε2)
method is like a prediction-correction method, not an iteration one, which means
that to do more iterations is meaningless.

2.2.4. A counterexample when c = 1. Following is another example to show that
when c = 1 the coupling method is not accurate.
Example . We consider one purely scattering problem in one space dimension:

µ∂xΨ(x, µ) + σ(x)Ψ(x, µ) = σ(x)c(x)Ψ(x)

with isotropic Dirichlet boundary conditions as:

Ψ(−1, µ) = −1− µ, for µ ∈ (0, 1],

Ψ(1,−µ) =
1
ε
− µ, for µ ∈ (0, 1].

It can be easily checked that the analytical true solution is:

Ψ(x, µ) = x− µ for x ∈ [−1, 0],

Ψ(x, µ) =
x

ε
− µ for x ∈ (0, 1].

While for the O(ε) coupling method, the solution in the transport domain does
not depend on the value of ε, which means the O(ε) coupling error of the transport
domain will not be reduced when ε becomes smaller. So the O(ε) coupling method
is a O(1) one actually.
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2.3. Numerical algorithm.

2.3.1. Order O(ε) scheme. We use the Gauss quadrature to approximate the colli-
sion operator. The Gaussian quadrature points of [0, 1] are given by µm, with the
corresponding weight Am, for m = 1, · · · , M , satisfying

µ−m = −µm, A−m = Am.

We use the upwind scheme for the transport equation, and center difference for
the diffusion equation.
Step 1. In domain [x

L
, x

M
], setting

h =
xM − xL

I
, xi = xL + ih, Φm

i = Φ0(xi, µm),

i = 0, · · · , I, m = 1, · · · ,M,

then

• For µm > 0

µm

h
(Φm

i − Φm
i−1) + Φm

i − c

4

M∑

l=−M

AlΦl
i = 0;

• for µ−m < 0

µ−m

h
(Φ−m

i+1 − Φ−m
i ) + Φ−m

i − c

4

M∑

l=−M

AlΦl
i = 0.

• Using the Gauss quadrature again, we obtain the discrete boundary conditions

Φm
0 = FL(µm), m = 1, · · · ,M,

Φ−m
I =

1
4
H(µm)

M∑

l=1

µlH(µl)
µm + µl

AlΦl
I .

Step 2. In domain [x
M

, x
R
], setting

h =
xR − xM

J
, xj = xM + jh, j = 0, · · · , J, Θj = Θ0(xj),

we use

− 1
3

Θj+1 − 2Θj + Θj−1

h2
+ γΘj = 0, (2.18)

with the boundary condition

Θ0 =
√

3
4

M∑

l=1

µlH(µl)AlΦl
I ,

ΘJ =
√

3
4

M∑

l=1

µlH(µl)AlFR(µl).
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2.3.2. Order O(ε2) scheme.
Step 1. Observing that (2.9) differs from (2.3) only in the right hand side of the
equations, so one just needs a discretization of ∂xΘ0(xM ), and we use the second
order formula

∂xΘ0(xM ) =
−Θ0(xM + 2h) + 4Θ0(xM + h)− 3Θ0(xM )

h
+ O(h2).

Step 2. We use fictitious points to discretize the diffusion boundary conditions in
order to gain a second order accuracy in the diffusion region (to be the same order
of accuracy as the interior of the domain [x

M
, x

R
]). Using

∂xΘε(xM ) =
Θ1 −Θ−1

2h
+ O(h2),

then the left boundary condition is discretized as

Θ0 − ελ
Θ1 −Θ−1

2h
=
√

3
2

∫ 1

0

µH(µ)(Φ0 + εΦ1)(xM , µ)dµ.

Using (2.12) at xM ,

− 1
3

Θ1 − 2Θ0 + Θ−1

h2
+ γΘ0 = 0.

By combining these two equations, one gets the second order approximation of the
diffusion boundary condition at x

M
:

− ελ

h
Θ1 +

(
1 +

3h

2
ελ(

2
3h2

+ γ)
)

Θ0 =
√

3
4

M∑

l=1

µlH(µl)(Φ0 + εΦ1)(xM , µl).

Similarly, the diffusion boundary condition at x
R

is discretized by
(

1 +
3h

2
ελ(

2
3h2

+ γ)
)

ΘJ − ελ

h
ΘJ−1 =

√
3

4

M∑

l=1

µH(µl)FR(µl).

In the interior of the domain, the same second order centered difference scheme as
in (2.18).
Step 3. Replacing the (discrete) ∂xΘ0(xM ) of step 1 with ∂xΘε(xM ) of step 2, we
obtain the numerical approximation of Ψ̃1

ε.

3. Two Dimensional Case.

3.1. The Problem. We first introduce the two-dimensional transport equation
with two spatial scales. Consider the two-dimensional transport equation:

ω · ∇xΨ(x, ω) + σ(x)Ψ(x, ω) = σ(x)c(x)Ψ(x), (3.1)

where Ψ(x) =
1

|SD−1|
∫

SD−1
Ψ(x, ω)dω, (3.2)

with boundary condition

Ψ(x, ω) = Fb(x, ω), for (x, ω) ∈ Σ−. (3.3)

where

Σ− = {(x, ω) ∈ ∂Ω× SD−1|ω · nx < 0} (3.4)

and nx is an unit outward normal of ∂Ω locating at the point x.
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The transport coefficients are assumed to be scaled as:

σ = σT (x), and c(x) = cT (x) ∈ (0, 1), for x ∈ ΩT , (3.5)
σ(x) = ε−1σD(x), and c(x) = 1− ε2γ(x), for x ∈ ΩD, (3.6)

where the physical meaning of c(x), σ(x), ε is the same as the one-dimensional model,
while ω expresses the direction of the particles, which is therefore similar to the
variable µ. Functions σT (x),σD(x),γ(x) are assumed to be smooth with σ(x) > 0
and c(x) > 0.

Assume Ω is a convex domain with smooth boundary, and ΩD representing the
diffusion region is also a similar one while its closure ΩD is included in Ω . ΩT =
Ω \ ΩD is the transport region (see figure 2).

3.2. The H-Function and the Reflecting Operator. Let S−ν = {ω ∈ SD−1|ω ·
ν < 0} and denote the reflection with the respect to ω by sν(ω) = ω − 2(ω · ν)ν.
Then the multidimensional H-function is defined by

1
Hν(ω)

=
1

|SD−1|
∫

S−ν

Hν(ω′)
|ω · ν|+ |ω′ · ν| |ω

′ · ν| dω′, (3.7)

while the reflecting operator is given by

RνG(ω) =
1

|SD−1|
∫

S−ν
rν(ω, ω′)G(ω′) |ω′ · ν| dω′. (3.8)

For the diffusion boundary conditions we also need

Λν(G) =
1

K · |SD−1|
∫

S−ν
|ω · ν|G(ω)Hν(ω)dω (3.9)

with r and K defined as

rν(ω, ω′) =
Hν(ω)Hν(ω′)
|ω · ν|+ |ω′ · ν| and K =

√
1

|SD−1|
∫
SD−1(ω · ν)2dω.

The equation (3.7) suggests that Hν only depends on ω ·ν, then with the notation

Hν(ω) = HD(|ω · ν|)
one will get

1
HD(µ)

=

∣∣SD−2
∣∣

|SD−1|
∫ 1

0

HD(µ′)
µ + µ′

µ′(1− µ′2)
D−3

2 dµ′ (3.10)

which is a analogous to the one-dimensional definition in (2.1).

3.3. A Domain Decomposition Method. In terms of the function Λν and the
reflection operator Rν , an O(ε) algorithm was given in [13] as follows:

Given the notations
Σ+

i = {(x, ω) ∈ ∂ΩD × SD−1|ω · νx > 0}
Σ−i = {(x, ω) ∈ ∂ΩD × SD−1|ω · νx < 0} (3.11)

where γx is the outward normal to ΩD at the point x ∈ ∂ΩD.
• on the transport domain ΩT , solve

ω · ∇xΦ(x, ω) + σ(x)Φ(x, ω) = σ(x)c(x)Φ(x), for (x, ω) ∈ ΩT × SD−1,

Φ(x, ω) = Fb(x, ω), for (x, ω) ∈ Σ−,

Φ(x, sνx(x)) = RνxΦ(x, ω), for (x, ω) ∈ Σ−i .

(3.12)
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Figure 2. Geometry of the multi-dimensional interface problem

• on the diffusion domain ΩD, solve

γΘ(x)− 1
D
∇x ·

(
1

σ(x)∇xΘ(x)

)
= 0, on ΩD,

Θ(x) = Λνx(Φ(x, ·)), on ∂ΩT ,

(3.13)

where Rνx and Λνx are expressed in (3.8) and (3.9) respectively.

The following theorem, proved in [13], gives an error estimate of this coupling
scheme.

Theorem 3. Let Ψε be the solution of the original high-dimensional problem (3.1)-
(3.5) with parameters described as in (3.3), define Ψ2 as follows:

Ψ2(x, ω) = Φ(x, ω), if x ∈ ΩT ;

Ψ2(x, ω) = Θ(x), if x ∈ ΩD.

Then
∥∥Ψε −Ψ2

∥∥
L1(Ω×SD−1)

= O(ε)

and for any smooth convex domain Ω′D satisfying Ω′D ⊂ ΩD, one has
∥∥Ψε −Ψ2

∥∥
L2(ΩT×SD−1)

+
∥∥Ψε −Ψ2

∥∥
L∞(Ω′D×SD−1)

= O(ε) (3.14)

as ε → 0.
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3.4. Numerical algorithm. We now describe our numerical discretization in the
cases where both Ω and ΩD are rectangles in R2. We smooth out the corners to
avoid singularities.

§ ¦

¨ ¥

ΩT

Transport region

σ = O(1)

§ ¦

¨ ¥

ΩD

Diffusion region

σ = O(1/ε)

-x νx

6

x

nx

©©©©©©©¼Fb

Figure 3. The interface problem of high dimensions

I

II

III IV

Suppose Ω = [xL, xR]× [yD, yU ]. Define the discrete direction vector as

ωm
1 = (

√
1− α2

m, αm), ωm
2 = (−

√
1− α2

m, αm),

ωm
3 = (−

√
1− α2

m,−αm), ωm
4 = (

√
1− α2

m,−αm),

where αm = sin(
π

2
µm), µm being the one-dimensional Gaussian quadrature points

over [0, 1], with weight Am. We divide the interface ∂ΩD into four parts I, II, III,
and IV with unit normals ν1, ν2, ν3, and ν4 respectively (see figure 3).

Step 1. In the domain ΩT . Let

xi = xL + ih, i = 0, · · · , I, yj = yD + jh, j = 0, · · · , J,

h =
xR − xL

I
=

yU − yD

J
, Φm

ijk = Φ(xi, yj , ω
m
k ), (3.15)

m = 1, · · · ,M, k = 1, · · · , 4.

The discretization the transport equation is done by the upwind scheme:

• in the first quadrant of ω-plane:

√
1− α2

m

Φm
ij1 − Φm

i−1,j1

h
+ αm

Φm
ij1 − Φm

i,j−1,1

h
+ σijΦm

ij1

=
1
8
σijcij

M∑

l=1

4∑

k=1

AlΦl
ijk;
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• in the second quadrant of ω-plane:

−
√

1− α2
m

Φm
i,j+1,1 − Φm

ij1

h
+ αm

Φm
ij1 − Φm

i,j−1,1

h
+ σijΦm

ij1

=
1
8
σijcij

M∑

l=1

4∑

k=1

AlΦl
ijk;

• in the third quadrant of ω-plane:

−
√

1− α2
m

Φm
i,j+1,1 − Φm

ij1

h
− αm

Φm
i,j+1,1 − Φm

ij1

h
+ σijΦm

ij1

=
1
8
σijcij

M∑

l=1

4∑

k=1

AlΦl
ijk;

• in the fourth quadrant of ω-plane:

√
1− α2

m

Φm
ij1 − Φm

i−1,j1

h
− αm

Φm
i,j+1,1 − Φm

ij1

h
+ σijΦm

ij1

=
1
8
σijcij

M∑

l=1

4∑

k=1

AlΦl
ijk.

The numerical boundary conditions at the interfaces ∂ΩD are:

• the top boundary I:

Φm
ij1 = Φm

ij2 =
1
8

∑

k=3,4

M∑

l=1

∣∣ωl
k · ν1

∣∣ AlH(
∣∣ωl

k · ν1

∣∣)∣∣ωl
k · ν1

∣∣ + |ωm
k · ν1|

Φl
ijkH(|ωm

k · ν1|);

• the bottom boundary II:

Φm
ij3 = Φm

ij4 =
1
8

∑

k=1,2

M∑

l=1

∣∣ωl
k · ν2

∣∣ AlH(
∣∣ωl

k · ν2

∣∣)∣∣ωl
k · ν2

∣∣ + |ωm
k · ν2|

Φl
ijkH(|ωm

k · ν2|);

• the left boundary III:

Φm
ij2 = Φm

ij3 =
1
8

∑

k=1,4

M∑

l=1

∣∣ωl
k · ν3

∣∣ AlH(
∣∣ωl

k · ν3

∣∣)∣∣ωl
k · ν3

∣∣ + |ωm
k · ν3|

Φl
ijkH(|ωm

k · ν3|);

• the right boundary IV:

Φm
ij1 = Φm

ij4 =
1
8

∑

k=2,3

M∑

l=1

∣∣ωl
k · ν4

∣∣ AlH(
∣∣ωl

k · ν4

∣∣)∣∣ωl
k · ν4

∣∣ + |ωm
k · ν4|

Φl
ijkH(|ωm

k · ν4|).

Step 2. In domain ΩD, let

xi = xL + ih, i = 0, · · · , L, yj = yD + jh, j = 0, · · · , n,

h =
xR − xL

L
=

yU − yD

N
, Θij = Ψ(xi, yj).
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Applying the centered difference scheme will result in:

γijΘij − 1
D

[ 1
σi+1/2,j

(Θi+1,j −Θij)− 1
σi−1/2,j

(Θij −Θi−1,j)

h2

−
1

σi,j+1/2
(Θi,j+1 −Θij)− 1

σi,j−1/2
(Θij −Θi,j−1)

h2

]
= 0,

where

σi+ 1
2 ,j = σ(

1
2
(xj + xj+1), yj), σi− 1

2 ,j = σ(
1
2
(xj−1 + xj), yj)

σi,j+ 1
2

= σ(xj ,
1
2
(yj + yj+1)), σi,j− 1

2
= σ(xj ,

1
2
(yj−1 + yj))

The boundary conditions at ∂ΩD are the discretization of (3.9) by the Gauss
quadrature:

• the top boundary I:

Θij =
1

2K · |SD−1|
∑

k=3,4

M∑

l=1

∣∣ωl
k · ν1

∣∣ AlH(
∣∣ωl

k · ν1

∣∣)Φl
ijk;

• the bottom boundary II:

Θij =
1

2K · |SD−1|
∑

k=1,2

M∑

l=1

∣∣ωl
k · ν2

∣∣ AlH(
∣∣ωl

k · ν2

∣∣)Φl
ijk;

• the left boundary III:

Θij =
1

2K · |SD−1|
∑

k=1,4

M∑

l=1

∣∣ωl
k · ν3

∣∣ AlH(
∣∣ωl

k · ν3

∣∣)Φl
ijk;

• the right boundary IV:

Θi,j =
1

2K · |SD−1|
∑

k=2,3

M∑

l=1

∣∣ωl
k · ν4

∣∣ AlH(
∣∣ωl

k · ν4

∣∣)Φl
ijk.

4. Numerical examples. We give three numerical examples, two in one space
dimension and one in two space dimension. As a comparison we also solve the
transport equation in the entire domain by the same method as in the domain
decomposition method (namely upwind for space derivative and Gauss quadrature
for the collision operator), with space cells much smaller than ε.

Example 1. First, we consider a purely scattering problem in one space dimension:

µ∂Ψ(x, µ) + σ(x)Ψ(x, µ) = σ(x)c(x)Ψ(x)

where

σ = 1, and c = 1, for x ∈ (−1, 0),

σ =
1
ε
, and c = 1, for x ∈ (0, 1),

with isotropic Dirichlet boundary conditions as:

Ψ(−1, µ) = 1, for µ ∈ (0, 1],

Ψ(1,−µ) = 2, for µ ∈ (0, 1],
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which shows that γ = 0 by (1.3).
We take h = 1.0E − 5 for the true solution and transport domain solution and

h = 1.0E − 4 for the diffusion domain. The results of ε = 0.1 based on the O(ε),
O(ε2) and the improved O(ε2) methods are shown in figures 4. Error estimating
forms with different ε values are shown in Table 1-3. From the error tables, one
can see that although the coupling methods are not accurate at the case of c = 1,
however, we still can get an good approximation solution through the improved
O(ε2) coupling method in this example, that also shows its powerful efficiency.

Example 2. This is a one-dimensional example with small absorption (c < 1).
Suppose that γ = 1. The coefficients and outer boundary conditions are given by

σ = 1, and c = 0.9, for x ∈ (−1, 0),

σ = 10, and c = 1− ε2γ, for x ∈ (0, 1);

Ψ(−1, µ) = 1, for µ ∈ (0, 1],

Ψ(1,−µ) = 1, for µ ∈ (0, 1].

The numerical results for ε = 0.1 using h = 1.0E − 5 in transport domain and
h = 1E − 4 in diffusion domain are shown in figure 5, in which the true solution is
obtained by taking h = 1.0E − 5 with the upwind scheme for the whole two-scale
transport problem. The desired accuracy in ε is observed, with remarkably accurate
results for the improved O(ε2) solution. Besides, for ε = 0.20 and 0.05 after taking
the same steps, we also get some good results. Error estimating forms with different
ε values are shown in Table 4-6, which confirm the conclusions of Theorem 1 and
Theorem 2. Table 4 also shows that the difference between ∂Θε and ∂Θ0 is really an
order O(ε) term, which provides us with the evidence that the improved coupling
method is a real second order one. Besides, Table 5 not only confirms that the
improved coupling method is an order O(ε2) algorithm, but also verifies that the
truncation error has been greatly reduced by the improved coupling. And at the
same time we also compute another norm to estimate the errors of coupling methods,
see Table 6. From Table 6 one may say that the improved method is slightly better
than the old second order method. That is because what the new O(ε2) coupling
method improves is a first order revision to the ∂xΘε, which improves much of the
transport solution, while for the boundary layer (when ε is small) near xM which
offers most parts of the L∞ norm error, it will contribute less. So if we use the
L∞ norm in [x′M , x′R] of the diffusion domain, the difference of the errors between
the old and new O(ε2) coupling methods will be slight, while if using L2 norm,
the difference will be large (see Table 5). Following is a two-dimensional problem
example. To show the efficiency of the domain decomposition methods clearly, we
choose ε = 0.1.

Example 3. This is a two-dimensional problem defined in Ω = [−0.5, 0.5] ×
[−0.5, 0.5], with ΩD = [−0.25, 0.25] × [−0.25, 0.25]. In this case, D = 2, K =

√
2

2 .
Suppose Fb(x, ω) = 1, ε = 0.1 and γ = 1. The problem to be solved is

ω · ∇xΨ(x, ω) + σ(x)Ψ(x, ω) = σ(x)c(x)Ψ(x),
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ε ‖Ψε − Φ0‖1 |∂xΘε(xM )− ∂xΘ0(xM )|
0.20 5.408E-1 3.826E-1
0.10 3.234E-1 2.151E-1
0.05 1.794E-1 1.147E-1

Table 1. ‖ · ‖1 = ‖ · ‖L1([xL,xR]×[−1,1]).

ε ‖Ψε − Φ0‖2 ‖Ψε −Ψ1
ε‖2 ‖Ψε − Ψ̃1

ε‖2
0.20 4.089E-1 1.927E-1 2.046E-2
0.10 2.444E-1 6.174E-2 4.240E-3
0.05 1.339E-1 1.917E-2 3.599E-3

Table 2. ‖ · ‖2 = ‖ · ‖L2([xL,xM ]×[−1,1]) + ‖ · ‖L2([x′M ,x′R]×[−1,1]).

ε ‖Ψε − Φ0‖3 ‖Ψε −Ψ1
ε‖3 ‖Ψε − Ψ̃1

ε‖3
0.20 6.884E-1 2.608E-1 1.105E-1
0.10 4.113E-1 1.102E-1 5.576E-2
0.05 2.258E-1 4.807E-2 3.387E-2

Table 3. ‖ · ‖3 = ‖ · ‖L2([xL,xM ]×[−1,1]) + ‖ · ‖L∞([x′M ,x′R]×[−1,1]).

ε ‖Ψε − Φ0‖1 |∂xΘε(xM )− ∂xΘ0(xM )|
0.20 4.650E-1 2.179E-1
0.10 2.580E-2 1.179E-1
0.05 1.366E-2 6.151E-2

Table 4. ‖ · ‖1 = ‖ · ‖L1([xL,xR]×[−1,1]).

with

σ = 1, and c = 0.9, for x ∈ ΩT ,

σ = 10, and c = 0.99, for x ∈ ΩD.

The numerical results the of O(ε) method using h = 0.01 are given in figures 6-8.
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ε ‖Ψε − Φ0‖2 ‖Ψε −Ψ1
ε‖2 ‖Ψε − Ψ̃1

ε‖2
0.20 3.369E-1 8.228E-2 4.020E-2
0.10 1.862E-1 2.587E-2 1.285E-2
0.05 9.827E-2 8.239E-3 4.371E-3

Table 5. ‖ · ‖2 = ‖ · ‖L2([xL,xM ]×[−1,1]) + ‖ · ‖L2([x′M ,x′R]×[−1,1]).

ε ‖Ψε − Φ0‖3 ‖Ψε −Ψ1
ε‖3 ‖Ψε − Ψ̃1

ε‖3
0.20 5.453E-1 2.375E-1 1.706E-1
0.10 3.112E-1 1.111E-1 8.952E-2
0.05 1.673E-1 5.303E-2 4.725E-2

Table 6. ‖ · ‖3 = ‖ · ‖L2([xL,xM ]×[−1,1]) + ‖ · ‖L∞([x′M ,x′R]×[−1,1]).

5. Appendix A: Tabulate H-function. Using the Gauss quadrature,

∫ 1

−1

f(x)dx =
M∑

k=1

Akf(µk) + Rn[f ], (5.1)

equation (2.1) can be discretized as

1
H(µk)

=
1
4

M∑

l=1

µlH(µl)
µk + µl

Al , k = 1, · · · ,M,

where µk are the Gaussian quadrature points over [0, 1] with the corresponding
weight Ak.

Setting H(µk) = Xk leads to

1
4

N∑

l=1

µlAlXkXl

µk + µl
− 1 = 0. (5.2)

By letting X = (X1, · · · , XN )T and F (X) = (F1(X), · · · , FN (X))T , one can use
the Newton Iteration to tabulate the H-function:

Xk+1 = Xk −D−1F (Xk) · F (xk), (5.3)

where

Fk(X) =
1
4

N∑

l=1

µlAlXk ·Xl

µk + µl
− 1 = 0,
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and DF (X) =
(

∂F

∂X1
,

∂F

∂X2
, · · · ,

∂F

∂XN

)
=

1
4




A1X1 +
∑

l 6=1
µlAlXl

µ1+µl

µ2A2X1
µ1+µ2

· · · · · · µnAnX1
µ1+µN

µ1A1X2
µ2+µ1

A2X2 +
∑

l 6=2
µlAlXl

µ2+µl

µ3A3X3
µ2+µ3

· · · µnAnX2
µ2+µN

...
. . . . . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . . . .
...




The graph of H-function is on figure 9, and the discrete values of one-dimensional
problem are listed in table 7. By almost the same way, we obtain the graph of H
in the two-dimensional problem (see the figure 10 and table 8).

uk Xk

0.01985507175 1.06140994454730
0.10166676130 1.25088788493250
0.23723379505 1.52276222262328
0.40828267875 1.84458076013795
0.59171732125 2.17917814046071
0.76276620495 2.48626918656969
0.89833323870 2.72763016718132
0.98014492825 2.87266987430492

Table 7. The values of H-function in one-dimensional problem, M=8

∣∣ωk · ν∣∣ Xk

0.03118321783 1.06836148422777
0.15901983478 1.28797460262252
0.36408107700 1.60433394553000
0.59826084448 1.95114484085644
0.80130141766 2.24679274859548
0.93136725805 2.43482245820158
0.98727538820 2.51541359436124
0.99951368521 2.53303903557824

Table 8. The values of H-function in two-dimensional problem, M=8
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6. Appendix B: The Reflector For The General Linear Transport Equa-
tion. The following is about the reflector of the general linear transport equation,

ω · ∇Ψ(x, ω) + Σ(x)Ψ(x, ω) = K̃Ψ(x, ω) + q(x), in Ω×W,

where

K̃Ψ(x, ω) = σs(x)
∫

W

f(ω′, ω)Ψ(x, ω′)dµ(ω′).

and
∫

W

f(ω′, ω)dµ(ω′) = 1

After changing variables to lengthen the boundary layer and ignoring the O(ε2)
terms, we have the half-space transport problem:

−(ω · ν)∂zΓ(z, ω) + Γ(z, ω)− Γ(z, ω) = 0,

Γ(0, ω) = G(ω), ω · ν < 0,
(6.4)

where

Γ(x, ω) =
1

|SD−1|
∫

SD−1
f(ω′, ω)Γ(x, ω′)dω′

In addition, there exists a linear functional Λν and a bounded operator Rν both
acting on L2(S−ν , |ω · ν|dω) such that

Γ(z, ω) → Γ∞ = Λν(G) for each ω ∈ SD−1 and

Γ(0, sν(ω)) = (RνG)(ω) for each ω ∈ S−ν ,
(6.5)

with the notation sν(ω) = ω − 2(ω · ν)ν.
Now we get down to calculate the reflector using the method which is analogous

to Appendix B of [13].
First, consider the adjoint half-space transport problem:

(ω · ν)∂zv + v − v = 0, z > 0, ω ∈ SD−1

v(0, ω) = 0, ω · ν > 0,

(ω · ν)v = −1, z > 0,

where

(ω · ν)v =
1

|SD−1|
∫

SD−1
f(ω′, ω)(ω′ · ν)vdω′.
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Let Γ ∈ L∞(R+; L2(SD−1, |ω · ν|dω)) be the unique solution of (6.4), observe
that

d

dz

∫

SD−1
f(ω′, ω)(ω′ · ν)Γ(z, ω′)v(z, ω′)dω′

=
∫

SD−1
f(ω′, ω)(Γ(z, ω′)− Γ(z, ω))v(z, ω′)dω′

−
∫

SD−1
f(ω′, ω)Γ(z, ω′)(v(z, ω′)− v(z, ω))dω′

=− Γ(z, ω)
∫

SD−1
f(ω′, ω)v(z, ω′)dω′

+ v(z, ω)
∫

SD−1
f(ω′, ω)Γ(z, ω′)dω′

=0.

So by evaluating the quantity (ω · ν)Γv at z = 0 and z →∞, one has

1
|SD−1|

∫

S−ν
f(ω′, ω)(ω′ · ν)v(0, ω′)dω′ = (ω · ν)vΛν(G). (6.6)

The reasons for the equation (6.6) is as follows:

(ω · ν)Γv|z=0 =
1

|SD−1|
∫

SD−1
(ω′ · ν)G(ω′)v(0, ω′)f(ω′, ω)dω′

=
1

|SD−1|
∫

S−ν
(ω′ · ν)G(ω′)v(0, ω′)f(ω′, ω)dω′ for v(0, ω) = 0

when ν · ω > 0.
And

(ω · ν)Γv|z→∞ = (ω · ν)vΛν(G).

Then the equation (6.6) leads to the formula

Λν(G) =
1

|SD−1|
∫

S−ν
|ω′ · ν|G(ω′)v(0, ω′)f(ω′, ω)dω′

Now we define the H-function Hν(ω) = C · v(0, ω) where C = ((ω · ν)2)
1
2

Consider the next function

u(z, ω) = (ω · ν)Γ(z, ω) +
∫ z

0

Γ(s, ω)ds,

it satisfies

− (ω · ν)∂zu + u− u = 0, z > 0, ω ∈ SD−1

u(0, ω) = (ω · ν)G(ω), ω · ν < 0,

(ω · ν)u = C2Λν(G), z > 0,

Let w ∈ L∞(R+; L2(SD−1, |ω · ν|dω)) be the solution of

− (ω · ν)∂zw + w − w = 0, z > 0, ω ∈ SD−1,

w(0, ω) = (ω · ν)G(ω), ω · ν < 0.

It must also verify the condition (ω · ν)w = 0 for all z > 0.
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Indeed, by averaging over SD−1 the equations for w and (ω · ν)w, one finds that

(ω · ν)w = const and
d

dz
(ω · ν)2w = (ω · ν)w

Hence the function u− w satisfies

− (ω · ν)∂z(u− w) + (u− w)− (u− w) = 0, z > 0, ω ∈ SD−1

(u− w)(0, ω) = 0, ω · ν < 0,

(ω · ν)(u− w) = C2Λν(G), z > 0,

By the uniqueness of the solution of (6.4), we have

(u− w)(z, sνω) = C2Λν(G)v(z, ω), (6.7)

where sν(ω) = ω − 2(ω · ν)ν.
At z = 0 and for ω · ν < 0, this relation (6.7) can be recast as

−(ω · ν)RG(ω)− (Rν(ω · ν)G)(ω)

=
1

|SD−1|Hν(ω)
∫

S−ν
|ω′ · ν|Hν(ω′)G(ω′)f(ω′, ω)dω′.

(6.8)

The reasons for (6.8) are:

u(0, ω) = (ω · ν)Γ(0, ω) =⇒ u(z, sν(ω)) = −(ω · ν)RνG(ω)
w(0, ω) = (ω · ν)G(ω) =⇒ w(z, sν(ω)) = −(Rν(ω · ν)G)(ω)

The relation (6.8) shows that

RνG(ω) =
1

|SD−1|
∫

S−ν
rν(ω, ω′)G(ω′)|ω′ · ν|f(ω′, ω)dω′,

where

rν(ω, ω′) =
Hν(ω)Hν(ω′)
|ω · ν|+ |ω′ · ν|

−1 −0.5 0 0.5 1

1

1.2

1.4

1.6

1.8

2

2.2

2.4
true solution
O(ε) coupling
O(ε2) coupling
improved O(ε2)

Figure 4. Example 1, the compare between the true solution Ψε

and the coupling methods’ solutions Ψ0, Ψ1
ε and Ψ̃1

ε. ε = 0.1.
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−1 −0.5 0 0.5 1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
true solution
O(ε) coupling
O(ε2) coupling
improved O(ε2)

Figure 5. Example 2, the compare between the true solution Ψε

and the coupling methods’ solutions Ψ0, Ψ1
ε and Ψ̃1

ε. ε = 0.1.

Figure 6. Example 3, the numerical density distribution Ψ2 by
the O(ε) domain decomposition method. h = 0.01
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Figure 7. Example 3, the numerical density distribution result
Ψε by solving directly the original problem.

Figure 8. Example 3, the error between Figures 6 and 7.
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Figure 9. the H-function’s curve in one-dimensional problem.
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Figure 10. the H-function’s curve in two-dimensional problem.
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