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Abstract: The results for a new modeling integral boundary value problem using Caputo-Hadamard impulsive implicit fractional
differential equations with Banach space are investigated, along with the existence and uniqueness of solutions. The Krasnoselskii
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1. Introduction

In engineering, physics, chemistry, control theory, signal,
image processing, and biology, the study of fractional
differential equations (FDEs) (see e.g., [1-3]), which is
connected to fractional calculus, is significant. Integer-order
derivatives are less helpful and useful for characterizing the
memory and heredity characteristics of various materials and
processes compared to fractional derivatives and integrals of
arbitrary order (see [4-11]) .

The investigation of integral boundary value problems
It has

also been extremely useful to develop a variety of applied

(BVPs) has advanced in the past few decades.

mathematical models of actual processes in applied sciences
and engineering. Liu et al. [12], an averaging principle for
Caputo-Hadamard (C-H) fractional stochastic differential
equations was established. Under appropriate conditions,
we demonstrate that the mild solution of the original
equation is approximately equivalent to that of the reduced
In [14],
Kahouli et al. demonstrated the existence and uniqueness

averaged equation without impulses in [13].

of the solution to a class of Hadamard fractional It6-Doob
stochastic integral equations of order ¢ € (0, 1) via a fixed
point technique. Hyers-Ulam stability was investigated for
Hadamard fractional It6-Doob stochastic integral equations
according to the Gronwall inequality. Recently, it has
been noted that many of the materials on the subject focus
on FDEs of the Caputo and Riemann-Liouville types with
various situations, including time delays, impulses, and

boundary value conditions [15-18].

Along with the Riemann-Liouville and Caputo

derivatives, another kind of fractional derivatives that
is mentioned in the literature is the Hadamard fractional
derivatives, which first appeared in 1892; see e.g., [19]. It
differs from the previous ones in that it includes an arbitrary

logarithm function; see [20-22] for additional details.

The most common numerical methods used in [23], the
spectral element method (SEM), has both high accuracy
and a lower computational cost when compared with finite-
element or finite-difference methods, SEM is not widely
utilized in the modeling of boundary value problems in

electromagnetics. In [24], SEM was recently utilized
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in some branches of electromagnetics as waveguides and
photonic structures for the sake of accuracy. The numerical
approximation to the set of the partial differential equations
governing a typical magnetostatic problem was presented
using SEM. Legendre polynomials and Gauss-Legendre-
Lobatto grids are employed in the current study as test
functions and meshing of the elements. The domain
decomposition based on the application reasoning of the
perfectly matched layer was studied using the SEM for the
first time in order to solve near and far electromagnetic
fields without requiring substantial computational resources
in [25]. The fundamental fractional calculus theorem was
subsequently included in the C-H derivative in [26], where
they also suggested a Caputo-type version of the Hadamard
fractional derivatives. Impulsive differential equations with
Hadamard and C-H derivatives have been the focus of recent
studies (see [27-29] and the references therein).

Now a days, problems for FDEs and the Caputo-
Hadamard fractional derivative (C-HFD) with initial and
boundary conditions (BCs) have been concentrated on by
many authors as discussed below.

In [30], Mahmudov et al. investigated the integral
boundary conditions (IBCs) for C-HFD’s of the form:

HpMo(F) = Z(T,9(3), 1<a; <2,

7
u(a) = 0, u(ﬂ):vf u(s)ds, a<n< ,veR,

where €D is the C-HFD and the function is continuous.
In [31], Arioua et al. studied the C-HFDEs involving BCs:

CONMu(T) + F(3,u(3)) =0,
u(l) =w'(1) = 0, D7 wy(e) = €D o) = 0,

1<8<e, 2<a <3,

where €D -C-HFD and .Z is a continuous function.

In [32], Benhamida et al. investigated the main results for
C-HFDEs of the BVP:

Hpny (3) = F(3, %), (DHell,T], 0<a; <1,

ap(1) + bp(T) = ¢,

where €D -C-H derivative, the function is continuous, and
a + b is not equal to zero.

In [33], Ardjounia et al. studied a nonlocal conditions for
FDE’s by using the C-H derivative:

CHDM () = F (T, 7/(9)H DY (),
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Je[1,9,0<a; <1,
(1) + a(x) = po,

where .%-nonlinear continuous functions, Z)(]”—C-H

derivative.
In [34], Irguedi et al. discussed the BVP for functional
impulsive FDEs of the form

HDy(t) = ft, ),
AVi=, = LO(5)),
AY li=y, = T(Y(@),
y(a) = (1),

T
y(T) = f h(s, y(s))ds.

In [35], Graef et al. studied impulsive C-HFDEs with
IBCs of the form

CHDry(1) = f(1,y()),
AYl=y, = L(y(t)),
AY =y, = I(y(1),

T
(1) = f] 8(s, y(s))ds,
T
y(T) = f; h(s, y(s))ds.
In [36], Akhter studied the new BCs for the CFD
CoOny(F)=F(3,%(D), Je[0,1], 1 <a; <2,
7
9(0) =0, aZ’(&) + 0% (&) =ﬁf0 % (s)ds,

where €D - are Caputo fractional derivatives, .7 is a
continuous function, and a, b, 8 € R.
Inspired by the above performance, we investigate the C-

H impulsive implicit FDEs with integral BC of the form

Hpnay (3) = F(3, (DT O (I),  (1.1)
for 3 €[0,1],1 <a; <2,
YO =20+ %, %R, k=1,...,m, (1.2)

i
DO) =0, W) +0Y (&) = f D (s, (13)
0
where ¢ D1 is C-HFD of order a;,

Z:[0,1]xRxR—>R
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is a continuous function, a,b,e € R,0 <n < 1 and

0=9y<I,<T <..<J, =1,

AY|g-5, = ¥ (3) = Z(3y)

and

(3 = Jim Y (Jx +b),
(3 = I}L%{ Y (. +1D)
denote the limits of the right and left hand %/ (3J) at
J =9y

The linear combination of the BC values & and &; is
the nonlocal position of an unknown function and is
proportional to the continuous distribution of an unknown
function of an arbitrary length 7.

Motivations:

(1) This study uses the C-HFD to develop a new class of
implicit C-HIFI-DE with BCs.

(2) We additionally verify the existence and uniqueness
of the solutions to Eqs (1.1)—(1.3) using the Banach
contraction principle and Krasnoselskii fixed-point
theorem respectively.

(3) We extend the C-HFD, nonlinear integral terms, and
implicit conditions to the results discussed in [36].

The rest is organized as follows: In Section 2, we
discuss the basic concepts and lemmas that will be used to
support findings. In Section 3, we prove the uniqueness of
solutions (1.1)—(1.3) and the existence of the system under
suitable assumptions. Applications are then presented in

Section 4.
2. Preliminary notes

Let the space

@%(j,R) = {@ )R % e Cﬁ(ﬁk, Sk+1],R}
be continuous-everywhere for J, at #/(3;) and #(3;),
where
(3 =2(3p)
exists, and

|12 1|5 = sup{|# ()| : 0< T <1},
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Definition 2.1. [36] The Caputo derivative of F is a

continuous function

COMH(T) = f (I - )" Z(s)ds,

where

n—1<a<n n=[a]+l1.

Definition 2.2. [36] The Hadamard fractional integral of

F is a continuous function

w I (3) =

S,

( (S))“‘ : EAON
lﬁ( 1)

where ay > 0.

Definition 2.3. [36] The Hadamard fractional derivative of

F is given as

7 (s) h

1 2 n 55 | S n—a;—1 o~
fn-a )( )fo(og?) 5

Definition 2.4. [36] For the n order differentiable function
F, the C-HFD of order a is

HD"Y (D) =

1 3 n—ap—1 25

CH n
D"Y(F) = —— log — I F(s5)—
(5 r(n—al)fl (Ogs) e

Lemma 2.1. Let 8> a; > 0, F € Li[a, b]. Then,

Congh = 7P~ Z(), VI € [a,b).

Lemma 2.2. Let % be an impulsive solution of IBC with
g: I XRxXxR—>R
given by

CHp™ay(3) = o(9),
V(37 =Y (T + %),
D0)=0, aZ’' (&) + 0% (&) = efn X (5)ds,
0
(2.3)

l<a <2, 2.1)

k=1,..m (2.2)
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if and only if { f é—‘l @ g(r) 8,
) r(a1 -
l"(011) ﬁ) ( 5) - Q(;) bs f (10g &2 )w1 B 9(1')
{—f<>— T - o
F(al nt ﬁ) : (lo )m Lo l"((11) (f gTbu) ° }
e b (fd (1og )" ¥bu) bs} If § € (31, 9,), then

forS €[0,9)),

CH
@11 g(s) DY (F) =), Te(I,.9
r(al) o ( 5) —ds (3) =4a(3) (31, 3,]

1 1 @1=2 o
+%{F(m—l) b (log &)™ %s with
+F(ar}—l) . (log %)011—2 @br (3B =2 (3 + %,
r(al) fo (fo ( )“ qgl)b”) DS} and then
for 3 € (84,93,), 1 9, gy 8(9)
ar- V() =% (3]) - —— e 27y
YO =3 A+ Bl [ (o) s 24 O =FO0 ( 5) )

5)_1 (loe )72 30 ! " —g(s)
+3 @ Jo (log% T 05 * log °
%{r(l 1)fo ( r) [(ay) (og )

3] 2 ;=2 T
+r(a}—1> o (log fT) o { f 51 @ g(r)bs
_ﬁ j(‘)'] (j(-)s (log §)<11—1 @bu) DS} F(CY] -1)
52 “ q(f)
for 3 € (3,.93), r(a1 - 1) f e
' f al ]@Du ds
F(a/l) u

m N {1/1—1 (S)

Zk:l @l + _F((III) j(; (IOg %) _gs DS R a)— 9(5)
| @1-2 o = N

+2{ L9 (log )" s =D >f( )

¥\ Ta-D Y
| 2 (100 £\072 ) 71 g(s)
VeI fo (1°g T) Soor + l"(aq) (log —) Tbs

_efo'i (ﬁ j(‘;“(log f)m—l %bu)bs} ff fl -2 (r)
{F(Otl -1

for 3 € (Oxs,.,)s

§2 e Q(T)
where F(al _ 1) f -~
7 [ [ ) 1g<u> N
B = (67 —ag) - bg-‘z) £ 0. @D
Proof. Assume % satisfies (2.1) and (2.2). If 3 € [0, J), =% + = f ( ) C;(S)DS
then (@ 1) ®
f gl - g(r) .
Hpnay(F) =), Te3,], Z0) =0, F(a] -1
n (2.5) &\~ -2
WE)+Y (&) =€ | W(ops. 2 9(0
0 (€) + 67 (&) efo (s)0s F(al_lf(m 2)
From Lemma 2.1, we have _ " fs s\n~! @
F(al)e | ( A <logr) " du|ds,.

— 1 fs 1 g o @bs
“Tan Jy |85 5
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If t € (J,, J3), then from (2.1), |§(3, u, D)| < ag+be(T) u| + ce(I) o],

N ;-
Y(3) =%(33) - % (log ;) g(s) forJedJ, wver.

(A3) daconstant K > 0>

(1]—1
) @bs
S

+ T (log—
(a1) Jo s |f(t,x,y)| < K, foraeteJ

Ji_ £\ 9
%{F (a1 - 1) j(:{ r r Theorem 3.1. Assume assumptions (Ay) holds. Then we
1 j\& o é @1-2 @ br have the following inequality:
T - 1) &
m 1 g(u) gf (lOg y)ﬂl + g (IOgé:l)a]_l
f (F(a )f z —bu) D9} 1= Me| T +1) " 1B\ T(a)
: a) -1 a+1 (31)
9, - q(s) L (og&)" ™ ellogm™ ) <1
=X (37)+ % ~ Ty f ( ) [(a) Iy +2) '
f ( )”‘ g(s) Then Egqs (1.1)—(1.3) have a unique solution on [0, 1].
F
(6{V1) f fl s g(r) Proof. The operator
T =1y M PE(T,R) = PET,R)
f‘ (log & ) g(r)
Iﬂ(af 11 r is defined as
(tl 1
(f )
Iﬂ(Oll) AP
-1 u S g\t . ds
=N+ D+ F( 5 (10g _) @bs = ;@ﬁfo (IOg ;) F (5, 9(5), "D O
1 ;-2
fl @2 9(1”) +§{ ! f logé F (s, 50(5),0”@”‘@(5))§
{r(al—l)f R (5 sz) -
2 @ ” £\ CH gy _5
_ f‘ (log §2) (r) + T -1 f; (log s) F(5,9(), " D" p(3))
F(CZ[ 1 r 7 1 s G\1- -y bs
. f ( ) @nu) DS} - J] (e ) oe) Fevor oo )T
[(ay)

(3.2)

If 3 € (I, Jxs1) and we again try to apply (2.1), we get the
o e g v 4Py 8 Clearly, the fixed points of operator .# are solutions of

problems (1.1)-(1.3). For any ¢, % € Z%(J,Rand J €

9, we have

other equation of (2.1). O

3. Main results

RACENERACLE)

We require the following assumptions to show the major 5 )
aj
results: < f (log —) |§(S, 0(5), MDD 0 (s))
0 S
(A;) For some constants % > 0and 0 < .#Z¢ < 13, H o s
~ F (909, D ()| =
|7 (3, u,0) - Z(3,0,9)| < L Ju—1| + e |0 -7

1 1 -2
S [ e oo
forJ e J,u,u,0,0€eR. (a1 —-1) Jo ]

Ds
(A2) 3z, bs. ¢ € €(J. ), where - F (59, D" p(e)| =
- 1 T EH\M?
¢ =supcg(J) < 13, —f(l _) a7 CH gy
£=supcs e ) es) [ Feee. T Dmee)

Mathematical Modelling and Control Volume 4, Issue 3, 286-296.



291

D
— F (s, 0(3), OHz)wl (S))':S Note that ¥, 1 € B,. Then,

K 1 ) s\@~! ar CH gy
—e fo (—r(al) fo (log2)" |#aup, D pa) ot B B,

du\ ds
= (o), MO go(u))j;);},
and checking the inequality in the above equation,

where
a(3) = F(3,0(3),a(3)) R T T
and |%@+9§9|§|r(al)fo (log;) F (5, (5),"" D @(s))?
() = F(T)Z(I),5(I)). 3 1 fl &\ CH gy s
+ S\ @ =1 Jy (log . ) F (5,2 (5),°" DY (5)) .
From (A;), 3 "2
] +F((1/1— 5 f (mg%) y(s,@(s),“”@“'?y(s))¥
|9(9) = 5(D)| = | Z(3, 9(9), 9(9) - F (3, %(3),13)) v e e o be
s f (— f (log—) f(u,@/(u),“@“'@/(u))—)—}
< Ze|p(3) =V (O)| + e [5(5) - 1) 0 \T(@) Jo "= w)s
and +Z:‘%
a(3) - p(I)| < =Z; lp(3) - 2(9)]. R U SO A L C
1 — A _F(a’l)fo (og;) | (S)I;
We have g 1 d ENTTE L bs
+%{r(a1—1)j: (log?) C4S
)T — A (x)(T 5 -2
|2 @@ - A DD . [ o o) i
- L [(log T +i((10g§1)"‘ o Dl - )t s s §
T I- e | T+ D) B\ T e [N [ e ) i ) JJ}
+(10g§2)al_1 B 6(10{;77)(”Jrl it — 1) o \I'(a1) Jo u wjs o
T(a)) T(@) +2) ol

The above equation is less than one, and therefore .# is and by (A>), we have

a contraction. The problem is stated in (1.1)—(1.3) has a

unique solution on [0, 1]. O |g(3)| - |y(5, (), g(g))i
Theorem 3.2. Suppose that condition A, holds. Then, < agy) + by(y) |50(5)| + cg) |9(5)|
problems (1.1)—(1.3) have at least one solution on [0, 1]. < af+ b} 80(5)| + ¢t g(§)| ,

Proof. Consider
B, = {p € PC(TR):Ipl <. and
Let .o/ and A be the two operators explained on B, by QL+ p(3)|
(I-¢p)

Lo e . la®)] <
(A p)D) := e f (log —) F (5, 9(s), DM p(5))—

(a1) Jo s s
and where

J 1 i g\a? o bs
Bo)0) =l ——— [ (log2) Fe@(6). Mo H ()= .
(Bo)D) %{rm.—l)f (loe)  FezE. T D@6 i = sup ag)

2 a2 SEJ
1= 0
7 1 s s a-1 P CH a1 g, y E and
_Efo (F(al)fo (l‘)g u) F @Y W, DY (W) | -
" by = sup bg(y),
; ted
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1 8( 5)‘“*‘ a; + b3 [9(3)] vs
log—| ————
T(ar) (I-¢p s

|/ + BY| <

{ f a @12 af + b [|[9(9)]] vs
[(a; - 1) B (9]
@12 g 4 b (T
+]‘é 1 (log 52) ag + b |9( )| hs
o D[l —1 T I-cs) s

_ff”(f 1 (10 s) -1 0} + 0 [p(3)] bu
[(a;) (1—c£")

+;?],}

| g\ [ 1 £\
S[r(a, 1) (log _) * |%|[F(cx1) (k’g )

& )a'

1
" Ty (l g

€ r]a|+l m o
_ ¢ (1002 a
F(a1+2)(0gu) + 2%

i=1

+ b7

Thus,
Ap + BY € B,.

It is also clear that B is a contraction mapping. From

continuity of @, the operator (Ap)(J) is continuous in

accordance with F. Also we observe that

1 I 9 b
|p)(D)| < D fo (log ;)”l-lﬂcwf

1 a+bi[pd)
T +1) (Q-c)

Hence, A is uniformly bounded on B,.

Now, we show that (A)(J) is equicontinuous,

9,3, € 9,8, < 3y, and p € B,. The compact set .F
is bounded,
sup | F ()] = Co < oo,
(3,x,9)€T XB,
and we get

|Ap)(T2) - AP)(T))|

_ 1 i S] @~ Ds
- r(al)fl (log?) FE&7
1 i 52 o=l Ds

_r(cmf (l°g7) 7GO3
NI

I o)

+f (logﬁ) (s)—
I,

Mathematical Modelling and Control

F(al)

% + bz [p(9)]
(=)

0/1—1
(log %) ]32(5)%

Sl a—1 52 a—1
log? - log?

I, a-1
2 )
+f (logé) —S]—>0as 3, — J,.
3 ) S

1

Thus, A(B,) is relatively compact, and using the Ascoli-
Arzela theorem, U is compact.

Problems (1.1)—(1.3) have at least one fixed point on 7.

O

Theorem 3.3. Suppose that condition A3 holds. Then,

problems (1.1)—(1.3) have at least one solution on [0, 1].

Proof. We shall use Schaefer’s fixed point theorem to prove
that .# defined by (10) has a fixed point. The proof will be
given in several steps.

Step 1. M is continuous. Let g, be a sequence 3 p,, — ¢
in BPE(J,R). Then, foreach J € J,

||(*mg>n)<8> - (9sz>(8>||

r(al) |J(s (), SHDN % (s))

F (o), pm (|22

Sf_1 f 1ogé " 2”54‘(5 % (s), HDN ()
B l"(a]—l) A s IS "

— F(s (s), Hpm @(s))“b—;

1 $2 -2
+—f (logé)
Ll —1) Jo 5
Ds

- F(s,% (s),Hpn

f (F(cn)

- ZH (v),Hpm @(u))'?u)%}

1(5), HDM 7 ()

|J (w2 (), DM ()

. Z 9 x| 7 29D 345

- Z(,% (5), D (9))).

Since .# is continuous, we have
|(#9.) @)~ p)@| =0 as n— .

Step 2. .# maps bounded sets into bounded sets in
PE(J,R).
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Now, for any r > 0, we take <L log 5,) — (log )™
< o [(og 52" ~ (log 31",
u€ B, ={pe PCUR)Iplls <1} which implies
For x € B, and for each ¢ € [1, T], we have ”//180 (82) - Ay (81)”00 —0as 3 - T,

and from Steps 1-3, we can conclude that .# is continuous

ai—1 g CH gy -
|(Emgo)(5)| I'(ay) f (log ) F69(, 7D p(s)) and completely continuous by the Arzela-Ascoli theorem.

+ 3 {ﬁ j\‘ (log _)al—zy(g’ p(5),cwz)alp(s))_ Step 4 A prllon bounds.
(@ =1 s Now it remains to show that the set

‘fz ) — 20‘~ CH g el
F(al 1) f (log ) F (5,99, 77D W(S)) A={pe PECU,R): 9 =p(p) forsome 0 <p < 1}

a—1 CH i
- Ef (F(afl) f (log 7 ) F (, p(w), DM p(u ))_) _} is bounded.
For such a p € A, and for each J € J, we have
+ Z A

1 9 g\ b
o(9) Sp{m fO (bg;) F (5, 9(5), D" p(5) =

- {(IOg AN [(IOg &) (log&)™!
- I 1 B r r | a-2
@D "] |m (@ (@) + g{—l f (log é) F s, 9(5), M D () 2
ot} $h g,,} BlT@-DJo 755 s
— 2 =2
o +2) | 5 + —r(al 5 f[ (log f—:) F (s, 9(s), HD™ {«)(s))E
1= 0 »
<r S g\ai—1
- efn (;f (log 2) F(u,p(), CﬂD"‘(u)) )DS}
o \Tan) Jo u 5
Thus,

+Z@,}
(log 7)" = 3 [(logfl)f’"l
Llay+1) |9 [(ay) Forp € [0,1],let p be > foreach J € J

(logé&)™ ™ elogm™™] v, | e
I(a;) [(a; +2) +;g

et CH qa E
. <t f ( ) F (5,95, D" ()

fl @ CH gy bs
{F(al—l)f Og F(5,9(9),""' D @(s))

I )OI SK{

Step 3. .# maps bounded sets into equicontinuous sets of

PELR). b 5 f (102 2) s 909, D" ()~
Let 31,9, € J,9, < J,, B, be abounded set of € (J,R) (0”” 0 s
. 1 3 s\¥~ CH omatr s
as in Step 2, and let p € B,. Then, —efo (mfo (log ﬂ) F(u,p), " D" (1) — ) 5}
[Wp (32) = A9 (31)|| +Z%
1 I, 3 a—1 ] a—1 i= ~
< Fay f l(log —2) - (log —1) ] _gUog7)" 3 [(logé)" " (log&)™!
@ y . g =\ T + b Tl T T(err)
F (5,909, D ()= _ ellogn)”™ Z "
5
1 S go-t X T(a +2)
: 2 CH _S
+ T(@) (log —) F(5,9(5), T D" 9(s)) . Thus,
3] a;—1
f I g 2| - (log ﬁ) ] 2 29D < co.
I‘((1/1) s s
9,\1" Uos Thus, we deduce that . has a fixed point which is a solution
F(al) (l 08 T) 5 on J of problems (1.1)—(1.3). o
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4. Example

Let us consider the C-H implicit impulsive fractional BVP

1

10 1
HDTH(F) = —| ———
o 15(1+|@<5>|

+ 10?'1)‘7“@(3)”,5 [0, 1].

“4.1)
@(S;):@(5;)+%+%, (4.2)

Y(0) =0, 3@'(%) +4@'(é) = 2[0Z Y (s)ps.  (4.3)

Here,
10 1 1 1
= -, :4’b:3, = -, = -, :2, = —
@ ==, a fi=g. =3¢ =7
and
1 1 10
FEOY MDY (D) = —| ——— +|HD7Z (T
(t, % (9) &) 15[1+|g(5)| | )

foru, 0,1, € R.

|7 (3,u,0) - Z(3.1,9)| < % Ju—u + % o3|,

Z [(log AN [(log&)“'“ (log &)™™'
1— M | T +1) |9 I'(ay) I'(ay)
_ellogm™™ ~0.00367 < 1

T(a; +2) ' '

Thus, the conditions are satisfied. Then, the above

problems (4.1)—(4.3) have a unique solution on [0, 1].

5. Conclusions

We examine a novel integral BVP issue for the fractional
derivative of C-H in this research. To look into the existence
and uniqueness, fixed point theorems are used. The findings
of this work not only extend the scope of earlier findings,
but also offer a completely new method in that various
fractional derivatives are taken into account, distinct BCs
and derivatives are linked, various fixed point theorems
are applied, and the C-H fractional derivative is examined.
Future directions for this study include using numerical
approaches and utilizing various fractional derivative types
to solve integral boundary value issues for FDEs.
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