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Abstract: In this paper we study some chemostat models with random bounded fluctuations on the input flow. We start with the classical
chemostat system and obtain new models incorporating, for instance, wall growth and different consumption functions, motivated by
phenomena in real devices. In every case, we prove existence and uniqueness of positive global solution, existence of deterministic
absorbing and attracting sets and we investigate the internal structure of the attracting sets to obtain detailed information about the
long-time dynamics of the systems. This allows us to provide conditions under which either extinction or persistence of the species is
ensured, the main goal for practitioners. In addition, we provide several numerical simulations to support the theoretical results.
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1. Introduction

Chemostat refers to a laboratory device used for growing
microorganisms in a culture environment. It was invented
at the same time by Monod (see [28]) and Novick and
Szilard (see [29]) and provide a powerful tool to study
microbial ecosystems at steady state with many applications,
for instance, it can be used to investigate genetically
altered microorganisms (see [34,35]), waste-water treatment
processes (see [16, 25]), models of mammalian large
intestine (see [19, 20]) and plays an important role in
theoretical ecology (see [3,4,14,15,17,23,24,31,36,39–41]).

It is worth mentioning that the chemostat has been subject
to a large number of scientific publications in applied
sciences and Mathematics, being the focus of attention of
several books and papers.

This good reputation is due to the fact that it is a very
simple device that allows us to develop many different
works reproducing the real devices in a very loyal manner.
Moreover, it is also very interesting as a mathematical

object, in fact it constitutes an active branch of applied
mathematics which, moreover, proposes a recent formal
framework called the theory of the chemostat.

Feed Bottle Collection VesselCulture Vessel

Figure 1. The chemostat device.

Regarding the biological aspects, the chemostat device
consists of three tanks, the feed bottle, the culture vessel and
the collection vessel, which are interconnected by pumps,
see Figure 1. The substrate is stored in the feed bottle and
pumped to the culture vessel, where the interactions with the
species take place. In addition, in order to keep the volume
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of the culture vessel constant, another flow is pumped from
the culture vessel to the collection vessel. Then, our goal
is to understand the dynamics of both the nutrient and the
species in the culture vessel.

The classical chemostat model is given by the following
system of ordinary differential equations (see [22, 33])

ds
dt

= D(sin − s) − µ(s)x, (1.1)

dx
dt

= −Dx + µ(s)x, (1.2)

where s = s(t) and x = x(t) denote the concentration of
the substrate and the species, respectively, D is the dilution
rate, or input flow, sin describes the input concentration of
substrate and µ is the consumption function of the species.

There are many works in the literature concerning the
deterministic chemostat model (1.1)-(1.2). However, they
assume strong restrictions. Among the different assumptions
made when studying the system (1.1)-(1.2), one is to
consider the input flow D fast enough such that species
are removed from the culture vessel before having the
opportunity to stick to the walls. This phenomenon, known
as wall growth, was introduced by Pilyugin and Waltman
(see [30]) and it is observed in real devices.

Hence, we divide the total concentration of species into
two different groups, the planktonic biomass (species in the
liquid media) and the attached biomass (species on the wall)
such that we obtain the resulting chemostat (see [33])

ds
dt

= D(sin − s) −
µ(s)

y
x1 −

µ(s)
y

x2 + bνx1, (1.3)

dx1

dt
= − (ν + D) x1 + µ(s)x1 − r1x1 + r2x2, (1.4)

dx2

dt
= −νx2 + µ(s)x2 + r1x1 − r2x2, (1.5)

where s = s(t), x1 = x1(t) and x2 = x2(t) denote the
concentration of the substrate, the planktonic biomass and
the attached biomass, respectively, ν is the collective death
rate, b ∈ (0, 1) is the fraction of dead biomass which is
recycled and r1 and r2 describe the rates at which the species
stick on to and shear off the walls, respectively. D denotes
again the input flow, sin is the input concentration of species,
µ describes the consumption of the species and y ∈ (0, 1]
is the yield coefficient of transformation of substrate into
biomass.

Another relevant ingredient when dealing with
chemostats is the consumption function of the species.
Even though there are different possibilities, the most
typical one, called Monod, is given by the following
expression

µ(s) =
µ̄0s

a + s
, (1.6)

where µ̄0 denotes the maximum growth rate of the species
and a is the so-called Monod constant.

However, it is very well-known that some species stop
consuming when the concentration of substrate is high. This
is very important in industrial setup, where large input
concentrations sin can be observed. Hence, in order to
model also this growth inhibition, we introduce the Haldane

function (see [21])

µ(s) =
µ̄0s

a + s +
1
ki

s2
, (1.7)

where µ̄0 denotes the growth rate coefficient of the species,
a is again the Monod constant and ki describes the inhibition
of species to take substrate if it is at high concentration (see
[1]).

Once reached this point, we know now some important
ingredients that could be incorporated to the classical
chemostat (1.1)-(1.2) in order to obtain more realistic
models. However, there is still another important strong
assumption and it is that the input flow is constant. It is
very well known that, in practice, some particles of dirt
can remain inside the pumps and then the input flow is
not constant, in fact, it is random (see Figure 2 where we
present the evolution of the dilution rate in a real chemostat,
where the red dashed line represents the nominal value D),
in fact practitioners claim that the best approach would be
to consider it to be random and bounded, as observed in real
devices.
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Figure 2. Evolution of the input flow on time in a
real chemostat.
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There are many different ways to model random
fluctuations. The most typical one is to consider the
standard Wiener process and replace D by D + αẆ(t),
where α > 0 denotes the intensity of the noise and Ẇ(t)
is the white noise. Nevertheless, since the Wiener process
is unbounded with probability one, it could take arbitrary
large values, both positive and negative, leading into several
drawbacks from the biological point of view. We refer every
interested reader to [11] (Section 3), where Caraballo et

al consider the classical chemostat model (1.1)-(1.2) with
Monod consumption function and perturb the input flow by
means of the Wiener process, and [38] (Section 4) where
López-de-la-Cruz investigates the chemostat model with
wall growth (1.3)-(1.5) and Monod consumption function
and models stochastic fluctuations on the input flow by using
the Wiener process.

Some of the drawbacks found when using the Wiener
process to perturb the input flow is that the solutions of the
resulting stochastic systems may take negative values, which
is completely unrealistic from the biological point of view,
and persistence of species cannot be guaranteed due to the
large fluctuations of the noise. For more details, see [11,38].

In order to overcome the previous drawbacks, another
way to model perturbations on the input flow in chemostat
models was proposed by Caraballo et al (see [5, 10, 13]).
This new approach, based on the fact that such perturbations
should be random but bounded, as the real ones, is explained
in Section 2.

We recall that modeling bounded random perturbations
is a very important issue for many researchers in applied
sciences when trying to model real noises (see [5, 6,
12]). In addition, we also achieve important results
when considering bounded random fluctuations, apart from
obtaining models that fit the real perturbations in a very loyal
manner. The most important one is to be able to prove the
persistence of the species, the main goal for practitioners
(see [5–7, 12, 26, 27, 38]).

Motivated by these explanations, our aim in this paper is
to collect results concerning both chemostat models (1.1)-
(1.2) and (1.3)-(1.5) where the input flow D is perturbed
by bounded random fluctuations (as we will see in Section
2) and both the Monod and the Haldane consumption
functions are considered. For every model, we prove first the

existence and uniqueness of positive global solution of the
corresponding random system, the existence of deterministic
absorbing and attracting sets (that, in addition, do not
depend on the noise) and we provide conditions under
which both the extinction and the persistence of the species
can be guaranteed, apart from depicting several numerical
simulations supporting the theoretical part. In this way,
this work is a complete survey on chemostat models with
bounded random input flow.

The rest of the paper is organized in the following way:
in Section 2 we present some preliminaries; in Section
3 we study the classical chemostat model with random
bounded input flow and Monod consumption function;
after that, in Section 4, we focus on the classical model
with wall growth, apart from considering bounded random
perturbations on the input flow and Monod consumption
function; then, in Section 5, we investigate the classical
chemostat model with bounded random input flow and
non-monotonic consumption function; next, in Section 6,
we focus on the chemostat model with wall growth, non-
monotonic kinetics and bounded random perturbations on
the input flow; finally, in Section 7, we provide some
conclusions about the different results presented in this
paper.

2. Preliminaries

In this section we recall some results needed throughout
the rest of this paper about deterministic chemostats
with non-monotonic consumption function, the Ornstein-
Uhlenbeck process and how to model bounded random
fluctuations. Finally, we state some definitions of (uniform)
persistence that are used in this work.

2.1. The deterministic chemostat model

The next proposition recalls some classical results
concerning the chemostat model (1.1)-(1.2) when µ has
a non-monotonic growth. We refer interested readers to
[22, 32] for details.

Proposition 2.1. Assume that there exists ŝ ∈ (0, sin) such

that µ is increasing on (0, ŝ) and decreasing on (ŝ, sin).

Mathematical Modelling and Control Volume 1, Issue 1, 52–78
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Define the break-even concentrations λ−(D), λ+(D) as

λ−(D) = min{s ∈ [0, ŝ] ; µ(s) ≥ D}, D ∈ [0, µ(ŝ)]

λ+(D) = max{s ∈ [ŝ, sin] ; µ(s) ≥ D}, D ∈ [µ(sin), µ(ŝ)]

1. If D > µ(ŝ), the system (1.1)-(1.2) possesses a

unique equilibrium E0 := (0, sin), which is globally

asymptotically stable on R2
+.

2. If D < µ(sin), the system (1.1)-(1.2) admits a unique

positive equilibrium E− := (sin − λ
−(D), λ−(D)) which

is globally asymptotically stable on R?+ × R+.

3. If D ∈ [µ(sin), µ(ŝ)], the system (1.1)-(1.2) presents

a bi-stability between E− and E0. From any initial

condition in R?+ ×R+ excepted on a set of null measure,

the solution converges asymptotically to E− or E0.

Remark 1. Note that only the second case is desirable to
guarantee that the wash-out is avoided.

Remark 2. For the Haldane function (1.7), the break even
concentrations λ± are given by

λ±(D) =
(µ̄0 − D)ki ±

√
(µ̄0 − D)2k2

i − 4D2aki

2D
.

In the rest of the paper, we consider that µ is non-
monotonic on [0, sin] when dealing with the Haldane
function, otherwise the analysis is similar to monotonic
growth function. In addition, we consider the following
hypothesis.

Assumption 2.1. There exists sm ∈ (0, sin) such that µ is
increasing on (0, sm) and decreasing on (sm, sin).

2.2. The Ornstein-Uhlenbeck process

In this section we collect some results concerning the
Ornstein-Uhlenbeck (OU) process. We refer readers to
[5, 7, 8] for details.

The OU process is a stationary mean-reverting Gaussian
stochastic process defined as

(t, ω) 7→ z(t, ω) := z∗(θtω) = −βν

0∫
−∞

eβsθtω(s)ds, (2.1)

for all t ∈ R, ω ∈ Ω and β, ν > 0, where ω denotes a
standard Wiener process in a probability space (Ω,F ,P),

β is the mean reversion constant representing the strength
with which the process is attracted by the mean, ν > 0 is the
volatility constant describing the variation or the size of the
noise and θt denotes the usual Wiener shift flow given by

θtω(·) = ω(· + t) − ω(t), t ∈ R.

We note that the OU process (2.1) can be obtained as the
stationary solution of the Langevin equation

dz + βzdt = νdω. (2.2)

Typically, the OU process (2.1) can model the position of
a particle by taking into account its friction in a fluid (which
is the main difference with the typical standard Wiener
process). Indeed, it can be considered as a generalization
of the standard Wiener process and provides a link between
the standard Wiener process (β = 0, ν = 1) and no noise at
all (β = 1, ν = 0).

We recall in the next proposition some of its properties.

Proposition 2.2 (See [2, 9]). There exists a θt-invariant set

Ω̃ ∈ F of Ω of full measure such that for ω ∈ Ω̃ and β, ν > 0,

we have

(i) the random variable |z∗(ω)| is tempered with respect to

{θt}t∈R, i.e., for a.e. ω ∈ Ω̃,

lim
t→∞

e−ηt sup
t∈R
|z∗(θ−tω)| = 0, for all η > 0.

(ii) this mapping is a stationary solution

of (2.2) with continuous trajectories

(t, ω)→ z∗(θtω) = −βν

0∫
−∞

eβs(θtω)(s)ds.

(iii) for any ω ∈ Ω̃ one has

lim
t→±∞

|z∗(θtω)|
t

= 0; lim
t→±∞

1
t

∫ t

0
z∗(θsω)ds = 0;

lim
t→±∞

1
t

∫ t

0
|z∗(θsω)| ds = E

[
|z∗|

]
< ∞.

From now on we consider β and ν fixed.

2.3. Modeling random bounded fluctuations

In this section we present a way to model bounded random
fluctuations on the input flow of the chemostat model, fitting
the real ones observed in practice.
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Let us consider an interval [Dl,Dr] that is typically
provided by practitioners from observations, where 0 < Dl <

D < Dr < ∞.
Define now the function Φ : R→ [−d, d] given by

Φ(z) =
2d
π

arctan(z), (2.3)

where d = Dr − D = D − Dl > 0.
Then, we have that

Dl < D + Φ(z∗(θtω)) < Dr for all t ∈ R, (2.4)

which means that the perturbed input flow D + Φ(z∗(θtω)) is
bounded in the desired interval [Dl,Dr] for every time, as in
real devices.

In addition, we have the following ergodic property.

Proposition 2.3 (See [10, 13]). Let be Φ(z) = 2d
π

arctan(z)
defined as in (2.3). Then

lim
t→+∞

1
t

∫ t

0
Φ(z∗(θsω))ds = 0, a.s. in Ω. (2.5)

Remark 3. We remark that the ergodic property (2.5)
remains true as long as Φ is an odd measurable function such
that

lim
z→+∞

Φ(z) = d > 0.

Remark 4. The resulting random systems, when using the
previous way to model the perturbations on the input flow,
generate a random dynamical system and then the theory
of random dynamical systems and pullback attractors (see
[8]) could be used. However, we investigate the resulting
systems for every fixed realization of the noise ω ∈ Ω since,
in this way, we can prove every result in forward sense,
which is more natural than the pullback one in this case.

2.4. Persistence in the chemostat

In this section, we recall some definitions of (uniform)
persistence (see [18]) that we consider in the present work.

Definition 2.1. The dynamics of a chemostat model, where
x = x(t) denotes the concentration of the species, is strongly
persistent if there exists ε > 0 such that for any initial
condition and any realization of the D + Φ(z∗(θ(·)ω)), the
solution verifies

lim inf
t→+∞

x(t) > ε.

Definition 2.2. The dynamics of a chemostat model, where
x = x(t) denotes the concentration of the species, is weakly
persistent if there exists ε > 0 such that for any initial
condition and any realization of D+Φ(z∗(θ(·)ω)), the solution
verifies

lim sup
t→+∞

x(t) > ε.

3. The classical chemostat model

In this section we consider the classical chemostat model
(1.1)-(1.2) where the input flow D is replaced by D +

Φ(z∗(θtω)), as explained in Section 2.3. Then, we obtain
the following random chemostat

ds
dt

=
[
D + Φ(z∗(θtω))

]
(sin − s) − µ(s)x, (3.1)

dx
dt

= −
[
D + Φ(z∗(θtω))

]
x + µ(s)x, (3.2)

where we consider the Monod function µ given by (1.6) to
model the consumption of the species.

We recall that every state variable and parameter is
defined as explained in the introductory section.

In the rest of this section X = {(s, x) ∈ R2 : s ≥ 0, x ≥ 0}
denotes the positive cone in the two-dimensional space.

3.1. Existence and uniqueness of a positive global solution

In this section we prove that the system (3.1)-(3.2) has a
unique positive global solution.

Theorem 3.1. For any u0 := (s0, x0) ∈ X, the random

system (3.1)-(3.2) possesses a unique global solution

u(·; 0, ω, u0) := (s(·; 0, ω, u0), x(·; 0, ω, u0)) ∈ C1([0,+∞),X)

with u(0; 0, ω, u0) = u0, where s0 := s(0; 0, ω, u0) and x0 :=
x(0; 0, ω, u0).

Proof. Set u(·; 0, ω, u0) := (s(·; 0, ω, u0), x(·; 0, ω, u0)) and
write the system (3.1)-(3.2) as

du
dt

= L(θtω) · u + F(u, θtω),

where

L(θtω) =

 −(D + Φ(z∗(θtω))) −µ̄0

0 −(D + Φ(z∗(θtω))) + µ̄0
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and F : X × [0,+∞) −→ R2 is given by

F(ξ, θtω) =

 µ(ξ1)ξ2 + sinD + sinΦ(z∗(θtω))

−µ(ξ1)ξ2

 ,
where ξ = (ξ1, ξ2) ∈ X.

Since z∗(θtω) is continuous with respect to t (see
Proposition 2.2 (ii)) and Φ is continuous, then Φ(z∗(θtω))
is continuous with respect to t and L generates an evolution
system on R2. Moreover, F(·, θtω) ∈ C1(X × [0,+∞);R2)
whence it is locally Lipschitz with respect to (ξ1, ξ2) ∈ X.
Therefore, the system (3.1)-(3.2) has a unique local solution.

Now, define the new state variable q = s+x−sin satisfying
the differential equation

dq
dt

= −
[
D + Φ(z∗(θtω))

]
q,

whose solution is

q(t; 0, ω, q0) = q0e−Dt−
∫ t

0 Φ(z∗(θsω))ds, (3.3)

for every t ≥ 0 and q0 = s0 + x0 − sin.

It is straightforward to check that q does not blow up at
any finite time. In addition, from (3.2) we have

x(t; 0, ω, x0) ≤ x0e−(D−µ̄0)t−
∫ t

0 Φ(z∗(θsω))ds,

since µ(s) ≤ µ̄0 for any s ≥ 0, thus x is bounded by an
expression which does not blow up at any finite time.

Therefore, s does not blow up either and the unique local
solution of the system (3.1)-(3.2) is a global one.

Moreover, x ≡ 0 solves (3.2) and, from (2.4), we have

ds
dt

∣∣∣∣∣
s=0

=
[
D + Φ(z∗(θtω))

]
sin > 0,

then the unique global solution of the system (3.1)-(3.2)
remains insideX for every initial value u0 ∈ X and t ≥ 0. �

3.2. Existence of a deterministic attracting set

Once proved the existence of a unique positive global
solution of the random chemostat (3.1)-(3.2), we focus on
proving the existence of absorbing and attracting sets for the
solutions of such a system.

From now on, F ⊂ X denotes a bounded set.

Theorem 3.2. For any ε > 0, there exists a deterministic

compact absorbing set given by

Bε := {(s, x) ∈ X : sin − ε ≤ s + x ≤ sin + ε} , (3.4)

for the solutions of the system (3.1)-(3.2) in forward sense,

i.e., there exists TF(ω, ε) > 0 such that for every given

u0 ∈ F and ω ∈ Ω, the solution corresponding to u0 remains

inside Bε for all t ≥ TF(ω, ε).

Proof. Consider again q = s + x − sin. Then, from (3.3), we
obtain

lim
t→+∞

q(t; 0, ω, q0) = 0. (3.5)

Thus, for every given u0 ∈ F, ω ∈ Ω and any ε > 0, there
exists TF(ω, ε) > 0 such that

−ε ≤ q(t; 0, ω, q0) ≤ ε

for every t ≥ TF(ω, ε), whence Bε (given by (3.4)) is a
compact absorbing set in X for the solutions of the system
(3.1)-(3.2). �

From Theorem 3.2, we have that

A := {(s, x) ∈ X : s + x = sin} (3.6)

is a deterministic attracting set for the solutions of the system
(3.1)-(3.2) in forward sense, i.e.,

lim
t→+∞

sup
u0∈F

inf
b0∈A
|u(t; 0, ω, u0) − b0|X = 0.

3.3. Internal structure of the attracting set

Now, we are interested in investigating the random
dynamics inside the attracting set A given by (3.6), in
order to obtain more detail information about the long-time
behavior of the system (3.1)-(3.2).

To this end, we first state the following theorem providing
conditions under which the extinction of the species
happens.

Theorem 3.3. Provided

D > µ(sin), (3.7)

the attracting set (3.6) is reduced to A0 = {(sin, 0)}, which

means the extinction of the species.
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Proof. Since Bε, given by (3.4), is a compact deterministic
absorbing set for the solutions of the system (3.1)-(3.2), for
every ε > 0, ω ∈ Ω and s0 > 0, there exists TF(ω, ε) > 0
such that s(t; 0, ω, s0) ≤ sin + ε for all t ≥ TF(ω, ε). Then,
since µ is monotonic, µ(s(t; 0, ω, s0)) ≤ µ(sin + ε) for every
t ≥ TF(ω, ε), ω ∈ Ω and s0 > 0. Thus, from (3.2) we have

dx
dt
≤ −

[
D + Φ(z∗(θtω))

]
x + µ(sin + ε)x,

whose solution is

x(t; 0, ω, x0) ≤ x0e−(D−µ(sin+ε))t−
∫ t

0 Φ(z∗(θsω))ds.

Then, as long as condition (3.7) holds true, there exists
ε0 > 0 such that D > µ(sin + ε) for every ε ∈ (0, ε0), whence
x tends to zero when t goes to infinity.

Therefore, the attracting set A given by (3.6) is reduced
to a singleton componentA0 = {(sin, 0)}. �

Next, we provide conditions under which the persistence
of the species can be ensured, the main goal for practitioners.

Theorem 3.4. Assume that

s̄ < sin (3.8)

holds true, where s̄ = µ−1(Dr). Then, for any ε > 0, there

exists a compact deterministic absorbing set

B̂ε =

(s, x) ∈ X :
sin − ε ≤ s + x ≤ sin + ε,

s ≤ s ≤ s̄,

sin − s̄ − ε ≤ x ≤ sin − s + ε

 (3.9)

for the solutions of the system (3.1)-(3.2), where s = µ−1(Dl).

Proof. Recall that q = s + x− sin. From (3.5), for any ε > 0,
ω ∈ Ω and u0 ∈ F, there exists TF(ω, ε) > 0 such that

− ε ≤ q(t; 0, ω, q0) ≤ ε (3.10)

for every t ≥ TF(ω, ε).

Now, from (3.1) we have

ds
dt

= (sin − s)(D + Φ(z∗(θtω))) − µ(s)x

= (sin − s)(D + Φ(z∗(θtω))) − µ(s)q − µ(s)(sin − s).

Hence, from (3.10) we have

ds
dt
≤ (sin − s)(D + Φ(z∗(θtω))) − µ(s)(sin − s) + εµ̄0

and

ds
dt
≥ (sin − s)(D + Φ(z∗(θtω))) − µ(s)(sin − s) − εµ̄0

for every u0 ∈ F, ε > 0, ω ∈ Ω and for all t ≥ TF(ω, ε).
On the one hand, thanks to (3.8), we have

ds
dt

∣∣∣∣∣
s=s̄

≤ (sin − s̄)(D + Φ(z∗(θtω))) − µ(s̄)(sin − s̄) + εµ̄0

≤ (sin − s̄)π− + εµ̄0,

for every u0 ∈ F, ε > 0, ω ∈ Ω and for all t ≥ TF(ω, ε),
where

π− := sup
t≥0

((D + Φ(z∗(θtω))) − µ(s̄)) .

Then, by considering ε ∈ (0,−(sin − s̄)π−/µ̄0), we have
(sin − s̄)π− + εµ̄0 < 0 and

ds
dt

∣∣∣∣∣
s=s̄

< 0, (3.11)

whence we have a strictly positive upper bound s̄ for the
concentration of the substrate.

On the other hand, from (3.8) we have sin > s then

ds
dt

∣∣∣∣∣
s=s

≥ (sin − s)(D + Φ(z∗(θtω))) − µ(s)(sin − s) − εµ̄0

≥ (sin − s)π+ − εµ̄0,

for every u0 ∈ F, ε > 0, ω ∈ Ω and for all t ≥ TF(ω, ε),
where

π+ := inf
t≥0

(
(D + Φ(z∗(θtω))) − µ(s)

)
.

Now, for ε ∈ (0, (sin − s)π+/µ̄0) we obtain (sin − s)π+ −

εµ̄0 > 0 and
ds
dt

∣∣∣∣∣
s=s

> 0, (3.12)

whence we have a strictly positive lower bound s for the
substrate.

Note that it is straightforward to prove that

ds
dt

∣∣∣∣∣
s=s∗

> 0 and
ds
dt

∣∣∣∣∣
s=s̃

< 0

for every s∗ ∈ (0, s) and s̃ > s̄.
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Hence, from (3.11) and (3.12) we have that

s < s(t; 0, ω, s0) < s̄

for every given ε ∈ (0,min {(sin − s̄)π+/µ̄0,−(sin − s̄)π−/µ̄0}),
ω ∈ Ω, t ≥ TF(ω, ε) and s0 > 0.

Now, we focus on the species. From the previous
reasoning,

−s̄ + sin − ε < x(t; 0, ω, x0) < −s + sin + ε,

for every given ε ∈ (0,min{(sin − s̄)π+/µ̄0,−(sin − s̄)π−/µ̄0}),
ω ∈ Ω, t ≥ TF(ω, ε) and x0 > 0.

Then, B̂ε (given by (3.9)) is a compact deterministic
absorbing set for the solutions of the system (3.1)-(3.2) in
forward sense. �

As a corollary of Theorem 3.4, we have that the attracting
setA in (3.6) is reduced to

Ã = {(s, x) ∈ A : s ≤ s ≤ s̄, sin − s̄ ≤ x ≤ sin − s} (3.13)

as long as (3.8) holds true, whence we ensure the persistence
of the species.

Remark 5. It is worth mentioning that some improvements
are achieved when comparing this work with the
deterministic framework. More precisely, we recall that the
washout equilibrium (sin, 0) is attractive if D = µ(sin) in
the deterministic case, and then we obtain extinction of the
microbial biomass, see [22, 32]. However, in the random
case we prove conditions under which the attracting set has
several points (all of them except the wash-out) inside the
positive cone.

3.4. Numerical simulations

In this section we illustrate the theoretical results with
some numerical simulations. The blue dashed lines
correspond to the solutions of the deterministic systems and
the rest are different realizations of the random ones.

In Figure 3 we depict the evolution on time of both the
substrate and the species with sin = 1, a = 1, µ̄0 = 3.1,
D = 1.7, d = 0.4, Dr = 2.1, Dl = 1.3, s0 = 1 and x0 = 5. In
this case, D = 1.7 > 1.55 = µ(sin) then the species become
extinct as proved in Theorem 3.3.
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Figure 3. Extinction of the species in the classical
chemostat model.

Figure 4 shows the phase plane (s, x) for the previous
values of the parameters. We also depict an arrow pointing
the initial condition (s0, x0).
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Figure 4. Extinction of the species in the classical
chemostat model.

In Figure 5 we display the evolution of both the substrate
and the species with sin = 4, a = 0.6, µ̄0 = 4, D = 1.7,
d = 0.25, Dr = 1.95, Dl = 1.45, s0 = 4 and x0 = 5. In
this case we include a zoom of an interval closed to the final
time to observe the dynamics of the solutions better. Since
s̄ = 0.57072 < sin = 4, we have persistence of the species,
as proved in Theorem 3.4.

Figure 6 displays the phase plane where the values of the
parameters are the ones in the previous figure. In addition,
we also depict a zoom to observe better the dynamics around
the attracting set (3.13), in fact, it is easy to notice how the
solutions approach to the line s + x = sin.
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Figure 5. Persistence of the species in the
classical chemostat model.
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Figure 6. Persistence of the species in the
classical chemostat model.

4. The chemostat model with wall growth

In this section, we consider the chemostat model with wall
growth (1.3)-(1.5) where the input flow D is replaced by D+

Φ(z∗(θtω)), as in Section 2.3. Then, we obtain the following
random system

ds
dt

= (D + Φ(z∗(θtω))) (sin − s) −
µ(s)

y
(x1 + x2) + bνx1,

(4.1)

dx1

dt
= − (ν + D + Φ(z∗(θtω))) x1 + µ(s)x1 − r1x1 + r2x2,

(4.2)

dx2

dt
= −νx2 + µ(s)x2 + r1x1 − r2x2, (4.3)

where µ is given by (1.6).

In this section X = {(x, y, z) ∈ R3 : x ≥ 0, y ≥ 0, z ≥ 0}
denotes the positive cone in the three-dimensional space.

4.1. Existence and uniqueness of positive global solution

In this section we prove that the system (4.1)-(4.3) has a
unique positive global solution.

Theorem 4.1. For any u0 := (s0, x10, x20) ∈ X, the system

(4.1)-(4.3) possesses a unique global solution u(·; 0, ω, u0) ∈
C1([0,+∞),X) given by

u(·; 0, ω, u0) := (s(·; 0, ω, u0), x1(·; 0, ω, u0), x2(·; 0, ω, u0)),

with u(0; 0, ω, u0) = u0, where s0 := s(0; 0, ω, u0), x10 :=
x1(0; 0, ω, u0) and x20 := x2(0; 0, ω, u0).

Proof. Write the system (4.1)-(4.3) as

du
dt

= L(θtω) u + F(u, θtω),

where L(θtω) is given by


−D(θtω) −µ0 + bν −µ0

0 − (ν + D(θtω)) − r1 + µ̄0 r2

0 r1 −ν + µ̄0 − r2

 ,
with D(θtω) := D + Φ(z∗(θtω)), and F : X × [0,+∞) → R3

is defined by

F(ξ, θtω) =


(D + Φ(z∗(θtω)) sin +

µ(ξ1)
y ξ2 +

µ(ξ1)
y ξ3

−µ(ξ1)ξ2

−µ(ξ1)ξ3

 ,

where ξ = (ξ1, ξ2, ξ3) ∈ X.

Since Φ(z∗(θtω)) is continuous, L generates an evolution
system on R3. Moreover, F(·, θtω) ∈ C1

(
X × [0,+∞);R3

)
then it is locally Lipschitz with respect to (ξ1, ξ2, ξ3) ∈ X.
Thus, the system (4.1)-(4.3) has a unique local solution.

Define now q = s +
µ0
µ̄0

(x1 + x2) satisfying the following
differential inequalities

dq
dt

≤ (D + Φ(z∗(θtω)) sin − Dls −
µ0

µ̄0
Dlx1 −

µ0

µ̄0
νx2

≤ (D + Φ(z∗(θtω)) sin − ϑ

[
s +

µ0

µ̄0
x1 +

µ0

µ̄0
x2

]
= (D + Φ(z∗(θtω)) sin − ϑq,
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where ϑ := min{Dl, ν} > 0, whose solution is given by

q(t; 0, ω, q0) ≤ q0e−ϑt + sin

∫ t

0
(D + Φ(z∗(θsω))) e−ϑ(t−s)ds.

(4.4)

Thus, q does not blow up at any finite time, then s, x1 and
x2 do not blow up at any finite time either and the unique
local solution of the system (4.1)-(4.3) is defined globally in
time.

In order to prove that every solution of the system (4.1)-
(4.3) remains in X for any u0 ∈ X, consider x1 ≥ 0 and
x2 ≥ 0 whence

ds
dt

∣∣∣∣∣
s=0

= (D + Φ(z∗(θtω))) sin + bνx1 > 0,

since the random input flow is bounded from below by a
positive constant. On the other hand, for any s ≥ 0 and
x2 ≥ 0, we have

dx1

dt

∣∣∣∣∣
x1=0

= r2x2 ≥ 0

and, for every s ≥ 0 and x1 ≥ 0, we obtain

dx2

dt

∣∣∣∣∣
x2=0

= r1x1 ≥ 0.

Thus, every solution of the random system (4.1)-(4.3)
remains positive for every t ≥ 0. �

4.2. Existence of a compact deterministic attracting set

In this section, we are interested in studying the existence
of a deterministic attracting set for the solutions of the
random system (4.1)-(4.3), in order to obtain details about
the asymptotic behavior of such a system.

In this section, F ⊂ X denotes again a bounded set.

Next theorem proves the existence of a compact
deterministic absorbing set for the solutions of the system
(4.1)-(4.3).

Theorem 4.2. For any ε > 0, there exists a deterministic

compact absorbing set for the solutions of the system (4.1)-
(4.3) given by

Bε :=
{

(s, x1, x2) ∈ X : s +
µ0

µ̄0
(x1 + x2) ≤

sinDr

ϑ
+ ε

}
.

(4.5)

Proof. Consider again q = s +
µ0
µ̄0

(x1 + x2). Then, from (4.4)
we have

0 ≤ q(t; 0, ω, q0) ≤ q0e−ϑt +
sinDr

ϑ

[
1 − e−ϑt

]
for every t ≥ 0, ω ∈ Ω and q0 > 0, whence there exists
TF(ω, ε) > 0 such that

0 ≤ q(t; 0, ω, q0) ≤
sinDr

ϑ
+ ε

for all t ≥ TF(ω, ε), ω ∈ Ω and q0 > 0. Then Bε (given by
(4.5)) is a deterministic compact absorbing set (forwards in
time) for the solutions of the system (4.1)-(4.3). �

As a corollary of Theorem 4.2, we have that

A :=
{

(s, x1, x2) ∈ X : s +
µ0

µ̄0
(x1 + x2) ≤

sinDr

ϑ

}
(4.6)

is a deterministic attracting set (forwards in time) for the
solutions of the system (4.1)-(4.3).

4.3. Internal structure of the deterministic attracting set.

In this section we study the random dynamics of the
system (4.1)-(4.3) inside the attracting set (4.6). To this end,
we first define two state variables

x = x1 + x2 and p =
x1

x1 + x2
, (4.7)

the total concentration of species x and the proportion of the
planktonic species p.

By differentiation, we obtain the random system

ds
dt

= (D + Φ(z∗(θtω))) (sin − s) −
µ0s

a + s
x + bνpx, (4.8)

dx
dt

= −νx − (D + Φ(z∗(θtω))) px +
µ̄0s

a + s
x, (4.9)

dp
dt

= − (D + Φ(z∗(θtω))) p(1 − p) − r1 p + r2(1 − p),

(4.10)

where µ0 := µ̄0/y > µ̄0.
Let us first start studying the equation (4.10) which is

uncoupled of the rest of the system.

Theorem 4.3. There exists a deterministic compact

absorbing set

Bp = [pl, pr] (4.11)
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for the solutions of (4.10), where pl and pr are constants

given by

pl :=
r2

Dr + r1 + r2
and pr :=

Dl + r2

Dl + r1 + r2
. (4.12)

Proof. From (4.10), we have

dp
dt

= − (D + Φ(z∗(θtω))) p(1 − p) − r1 p + r2(1 − p)

≤ −(Dl + r1 + r2)p + Dl + r2,

whence
dp
dt

∣∣∣∣∣
p=p∗

< 0

for every p∗ > pr and

dp
dt

∣∣∣∣∣
p=pr
≤ 0.

On the other hand, from (4.10) we obtain

dp
dt

= − (D + Φ(z∗(θtω))) p(1 − p) − r1 p + r2(1 − p)

≥ −(Dr + r1 + r2)p + r2,

whence
dp
dt

∣∣∣∣∣
p=p̃

> 0

for every p̃ < pl and

dp
dt

∣∣∣∣∣
p=pl
≥ 0.

Hence, Bp (given by (4.11)) is a deterministic compact
absorbing set for the solutions of (4.10). �

Next, we study the system (4.8)-(4.9). To this end, we
define

z = µ̄0s + µ0x.

Theorem 4.4. For any ε > 0, there exists a deterministic

compact absorbing set

B(s,x)
ε :=

{
(s, x) ∈ R2

+ : zl − ε ≤ µ̄0s + µ0x ≤ zr + ε
}

(4.13)

for the solutions of the system (4.8)-(4.9).

Proof. By differentiation, since b ≤ 1, µ̄0 ≤ µ0 and
p(t; 0, ω, p0) ≤ 1 for every t ≥ 0, ω ∈ Ω and p0 ∈ (0, 1),
we have

dz
dt
≤ − (D + Φ(z∗(θtω))) plz + µ̄0sin (D + Φ(z∗(θtω)))

(4.14)
and

dz
dt
≥ −

[
ν + (D + Φ(z∗(θtω))) −

µ̄0bν
µ0

pl
]

z

+ µ̄0 (D + Φ(z∗(θtω))) sin (4.15)

for every time t large enough.
By solving (4.14) and (4.15), we have

z(t; 0, ω, z0)

≤ z0e−Dplt−pl
∫ t

0 Φ(z∗(θrω))dr

+ µ̄0sin

∫ t

0
(D + Φ(z∗(θsω))) e−Dpl(t−s)−pl

∫ t
s Φ(z∗(θrω))drds

≤ z0e−Dl plt +
µ̄0sinDr

plDl

[
1 − e−plDlt

]
and

z(t; 0, ω, z0)

≥ z0e
−

(
ν+D−

µ̄0bν
µ0

pl
)
t−

∫ t
0 Φ(z∗(θrω))dr

+ µ̄0sin

∫ t

0
(D + Φ(z∗(θsω))) e

−

(
ν+D−

µ̄0bν
µ0

pl
)
(t−s)−

∫ t
s Φ(z∗(θrω))dr

ds

≥ z0e
−

(
Dr+ν−

µ̄0bν
µ0

pl
)
t
+

µ̄0sinDl

Dr + ν −
µ̄0bν
µ0

pl

1 − e
−

(
Dr+ν−

µ̄0bν
µ0

pl
)
t
 ,

respectively, for every time t large enough, ω ∈ Ω and z0 =

µ̄0s0 + µ0x0 > 0.
Thus, for every z0 = µ̄0s0 + µ0x0 > 0, ε > 0 and ω ∈ Ω,

there exists TF(ω, ε) > 0 such that

zl − ε ≤ z(t; 0, ω, z0) ≤ zr + ε (4.16)

for all t ≥ TF(ω, ε), where

zl :=
µ̄0sinDl

Dr + ν −
µ̄0bν
µ0

pl
, zr :=

µ̄0sinDr

plDl (4.17)
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and Dr + ν −
µ̄0bν
µ0

pl > 0.
Then, B(s,x)

ε (given by (4.13)) is a deterministic compact
absorbing set (forwards in time) for the solutions of the
system (4.8)-(4.9). �

Therefore, we have that

A(s,x) :=
{
(s, x) ∈ R2

+ : zl ≤ µ̄0s + µ0x ≤ zr
}

(4.18)

is a deterministic attracting set for the solutions of the system
(4.8)-(4.9).

Now, we are interested in studying the internal structure
of the deterministic attracting set (4.18) in order to
provide conditions under which either the extinction or the
persistence of species can be proved.

Next theorem provides conditions under which the
extinction of the species cannot be avoided.

Theorem 4.5. Assume that

ν + Dpl > µ̄0 (4.19)

holds true. Then, the attracting set (4.6) for the solutions of

the system (4.1)-(4.3) is reduced to

A0 =

[
zl

µ̄0
,

zr

µ̄0

]
× {0} × {0}.

Proof. From (4.9) we have

dx
dt
≤ −

[
ν + (D + Φ(z∗(θtω))) pl − µ̄0

]
x

for every time t large enough, whose solution is

x(t; 0, ω, x0) ≤ x0e−(ν+Dpl−µ̄0)t−pl
∫ t

0 Φ(z∗(θsω))ds,

whence
lim

t→+∞
x(t; 0, ω, x0) = 0

as long as (4.19) is fulfilled, which means the extinction of
both the planktonic and the attached biomass. �

Now we provide conditions to ensure the persistence of
the total concentration of species.

Theorem 4.6. Assume that

ν + Dr <
zl

a +
zr

µ̄0

(4.20)

is fulfilled, where zl and zr are given as in (4.17). Then, there

exists a deterministic compact absorbing set

B̂(s,x)
ε :=

(s, x) ∈ R2
+ :

x ≥ x̃, s ≥ s̃,

zl − ε ≤ µ̄0s + µ0x ≤ zr + ε


(4.21)

for the solutions of the system (4.8)-(4.9), where

x̃ :=
zl − (ν + Dr)

(
a +

zr

µ̄0

)
µ0 + µ̄0

, s̃ :=
Dlsin

Dr + 2
zr

a

. (4.22)

Proof. Recall that

0 ≤ p(t; 0, ω, p0) ≤ 1

for every t ≥ 0, ω ∈ Ω and p0 ∈ (0, 1).
Thus, from (4.9), we obtain

dx
dt
≥ −νx − Dr x +

µ̄0s
a + s

x (4.23)

for all t ≥ 0, ω ∈ Ω and x0 > 0.
By definition, we have

z(t; 0, ω, z0) = µ̄0s(t; 0, ω, s0) + µ0x(t; 0, ω, x0)

and, thanks to (4.16), for each z0 = µ̄0s0 + µ0x0 > 0, ω ∈ Ω

and ε > 0, there exists TF(ω, ε) > 0 such that

zl − ε ≤ µ̄0s(t; 0, ω, s0) + µ0x(t; 0, ω, x0) ≤ zr + ε

for every t ≥ TF(ω, ε).
Thus, we have

µ̄0s(t; 0, ω, s0) ≥ zl − ε − µ0x(t; 0, ω, x0)

and
s(t; 0, ω, s0) ≤

zr

µ̄0
+
ε

µ̄0
− x(t; 0, ω, x0)

for every initial value (s0, x0) ∈ F, ω ∈ Ω, ε > 0 and t ≥

TF(ω, ε).
Then, from (4.23), we have

dx
dt
≥ −νx − Dr x +

zl − µ0x − ε

a +
zr

µ̄0
+
ε

µ̄0
− x

x

for every x0 > 0, ω ∈ Ω, ε > 0 and t ≥ TF(ω, ε).
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Now, consider ε < µ̄0 x̃, where x̃ is defined as in (4.22),
and we obtain

dx
dt

∣∣∣∣∣
x=x̃
≥

−(ν + Dr) +
zl − µ0 x̃ − ε

a +
zr

µ̄0
+
ε

µ̄0
− x̃

 x̃

>

−(ν + Dr) +
zl − µ0 x̃ − µ̄0 x̃

a +
zr

µ̄0
+
µ̄0 x̃
µ̄0
− x̃

 x̃ = 0

for every x0 > 0, ε ∈ (0, µ̄0 x̃), ω ∈ Ω and t ≥ TF(ω, ε).
Hence, as long as (4.20) is fulfilled, we have

x(t; 0, ω, x0) > x̃,

for any ε ∈ (0, µ̄0 x̃), x0 > 0, ω ∈ Ω and t ≥ TF(ω, ε).
We note that it is straightforward to prove that

dx
dt

∣∣∣∣∣
x=x∗

> 0

for every x∗ ∈ (0, x̃).
This proves a positive lower bound x̃ for the total

concentration of species.
Now, recall that

ds
dt

= (D + Φ(z∗(θtω))) sin − (D + Φ(z∗(θtω))) s

−
µ0s

a + s
x(t; 0, ω, x0) + bνpx,

for all t ≥ 0, ω ∈ Ω and every initial value s0 > 0.
In addition, from (4.16), for each x0 > 0, ε > 0 andω ∈ Ω,

there exists TF(ω, ε) > 0 such that

x(t; 0, ω, x0) ≤
zr

µ0
+
ε

µ0

for every t ≥ TF(ω, ε).
Then, from (4.8) we have

ds
dt
≥ Dlsin − Dr s −

µ0s
a

zr + ε

µ0
,

for every s0 > 0, ε > 0, ω ∈ Ω and t ≥ TF(ω, ε).
Hence, for any ε ∈ (0, zr), s0 > 0 and ω ∈ Ω, there exists

TF(ω, ε) > 0 such that

ds
dt

∣∣∣∣∣
s=s̃

> 0

for all t ≥ TF(ω, ε), where s̃ is defined in (4.22), whence

s(t; 0, ω, s0) > s̃

for any ε ∈ (0, zr), s0 > 0, ω ∈ Ω and t ≥ TF(ω, ε).
It is easy to prove that

ds
dt

∣∣∣∣∣
s=s∗

> 0

for every s∗ ∈ (0, s̃).
Thus, by considering ε ∈ (0,min{µ̄0 x̃, zr}), u0 ∈ F and

ω ∈ Ω, there exists TF(ω, ε) > 0 such that

x(t; 0, ω, x0) > x̃ and s(t; 0, ω, s0) > s̃

for all t ≥ TF(ω, ε) and then B̂(s,x)
ε (given by (4.21)) is a

deterministic compact absorbing set (forwards in time) for
the solutions of the system (4.8)-(4.9). �

Therefore, we have that

Â(s,x) :=
{
(s, x) ∈ R2

+ : x ≥ x̃, s ≥ s̃, zl ≤ µ̄0s + µ0x ≤ zr
}

(4.24)
is a deterministic attracting set (forwards in time) for the
solutions of the system (4.8)-(4.9).

Remark 6. It is not difficult to check that both x̃ < zl

µ0
and

s̃ < zl

µ̄0
are satisfied.

Finally, next theorem ensures the persistence of both the
planktonic and the attached biomass individually.

Theorem 4.7. As long as (4.20) is fulfilled, we have

x1(t; 0, ω, x10) > pl x̃ > 0

and

x2(t; 0, ω, x20) > (1 − pr)x̃ > 0

for every t large enough, ω ∈ Ω and x10, x20 > 0, where pl,

pr and x̃ are defined as in (4.12) and (4.22).

Proof. From (4.7), Theorem 4.3 and Theorem 4.6, we have

x1(t; 0, ω, x10) = p(t; 0, ω, p0)x(t; 0, ω, x0) > pl x̃ > 0

and

x2(t; 0, ω, x20) = x(t; 0, ω, x0)(1−p(t; 0, ω, p0)) > (1−pr)x̃ > 0

for every t large enough, ω ∈ Ω and x10, x20 > 0. �
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Theorem 4.7 gives conditions to ensure the persistence of
both the planktonic and the attached biomass.

Remark 7. We highlight that the bound x̃ in (4.22) can be
finer by considering ε ∈

(
0, µ̄0

n x̃
)
, for any n ∈ N, instead of

ε ∈ (0, µ̄0 x̃) in the proof. In this case, the bound x̃ can be
replaced by x̃n given by

x̃n :=
zl − (ν + Dr)

(
a +

zr

µ̄0

)
µ0 +

µ̄0

n

> x̃ > 0.

Similarly, by considering ε ∈
(
0, 1

nzr
)
, for any n ∈ N,

instead of ε ∈ (0, zr) in the proof, we obtain s̃n given by

s̃n :=
Dlsin

Dr +
zr

a

(
1 +

1
n

) > s̃ > 0.

4.4. Numerical simulations

In this section we illustrate the theoretical results with
numerical simulations. The blue dashed lines correspond
to the solution of the deterministic system and the rest are
different realizations of the random one.

In Figure 7 we show the dynamics of both the substrate,
the planktonic biomass and the attached biomass on time. In
this case we set sin = 4, a = 1.8, µ0 = 2, µ̄0 = 1.7, b = 1,
ν = 1.7, r1 = 0.6, r2 = 0.4, D = 1.7, d = 0.25, Dr = 1.95,
Dl = 1.45, s0 = 2.5, x10 = 2 and x10 = 2. We can observe
the extinction of the species, which is not surprising from
Theorem 4.5 since ν + Dpl = 1.9305 > 1.7 = µ̄0.
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Figure 7. Extinction of the species in the classical
chemostat model with wall growth.

In Figures 8 and 9 we illustrate the phase plane for
the previous values of the parameters (Figure 8) and the

dynamics of the substrate versus the planktonic biomass and
the attached biomass (Figure 9. The arrow points the initial
condition.
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Figure 8. Extinction of the species in the classical
chemostat model with wall growth.
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Figure 9. Extinction of the species in the classical
chemostat model with wall growth.

In Figure 10 we plot again the evolution of the substrate,
the planktonic biomass and the attached biomass on time.
We also add little zooms of an interval closed to the final
time to observe better the dynamics of the solutions. In this
case we consider sin = 10, a = 1.4, µ0 = 7.7, µ̄0 = 6.7,
b = 0.7, ν = 0.1, r1 = 0.4, r2 = 0.5, D = 0.7, d = 0.1,
Dr = 0.8, Dl = 0.6, s0 = 2.5, x10 = 2 and x20 = 2. From
Theorems 4.6 and 4.7, since (4.20) holds true, we observe
that the species persist.

In Figures 11 and 12 we consider the same values of the
parameters that the ones in the previous figure. However,
in this case we show the phase plane (Figure 11) and the
dynamics of the substrate versus the planktonic and the
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Figure 10. Persistence of the species in the
classical chemostat model with wall growth.

attached biomass (Figure 12) with little panels to observe
better how the solutions approach the attracting set (4.24).
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Figure 11. Persistence of the species in the
classical chemostat model with wall growth.

5. The classical chemostat model with non-monotonic
kinetics

In this section we consider the classical chemostat model
(1.1)-(1.2) where the input flow D is replaced by D +

Φ(z∗(θtω)), as in Section 2.3, and the consumption function
is given by (1.7). Then, the resulting model is

ds
dt

= (D + Φ(z∗(θtω)))(sin − s) −
µ̄0s

a + s +
s2

ki

x, (5.1)

dx
dt

= (D + Φ(z∗(θtω)))x +
µ̄0s

a + s +
s2

ki

x. (5.2)

Our aim in this section is to collect some known results
about the system (5.1)-(5.2) to complement the results in
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Figure 12. Persistence of the species in the
classical chemostat model with wall growth.

Section 3. Then, we present a sketch of the proofs that can
be found in [10].

From now on X := {(s, x) : s ≥ 0, x ≥ 0} denotes the
positive cone in the two-dimensional space.

Theorem 5.1 (See [10]). For any u0 := (s0, x0) ∈ X, the

system (5.1)-(5.2) possesses a unique global solution

u(t; 0, ω, u0) := (s(t; 0, ω, u0), x(t; 0, ω, u0)) ∈ C1([0,+∞);X).

The proof of this theorem is based on classical arguments
from the theory of ordinary differential equations, thanks to
the continuity and boundedness of the perturbed input flow.

Now, we focus on the existence of deterministic absorbing
and attracting sets for the solutions of the system (5.1)-(5.2).

Theorem 5.2 (See [10]). The system (5.1)-(5.2) possesses a

deterministic absorbing set

Bε := {(s, x) ∈ X : sin − ε ≤ s + x ≤ sin + ε} (5.3)

and then

A := {(s, x) ∈ X : s + x = sin} . (5.4)

is a deterministic attracting set for the solutions of the

system.

Sketch of the proof. Define q = s − sin + x satisfying

dq
dt

= −(D + Φ(z∗(θtω)))q

whose solution is given by

q(t; 0, ω, q0) = q0e−
∫ t

0 (D+Φ(z∗(θsω)))ds,

whence
lim

t→+∞
q(t; 0, ω, q0) = 0.

Thus, Bε (given by (5.3)) is a forward deterministic
absorbing set for the solutions of the system (5.1)-(5.2). �
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Our aim now is to study the internal structure of the
deterministic attracting set (5.4), in order to obtain details
about the long-time dynamics of the system (5.1)-(5.2).

To this end, we first present conditions under which
extinction of species cannot be avoided.

Theorem 5.3 (See [10]). Assume that

Dl > µ(sm) (5.5)

is fulfilled, where sm =
√

kia. Then, the singleton

A0 := {(sin, 0)}

is a forward attracting set for the solutions of the system

(5.1)-(5.2).

Sketch of the proof. From (5.2), we have

dx
dt
≤ −(Dl − µ(sm))x.

whose solution is given by

x(t; 0, ω, x0) ≤ x0e−(Dl−µ(sm))t,

whence we conclude since (5.5) is fulfilled. �

Finally, we present some results providing conditions
under which strong and weak (uniform) persistence of the
species is ensured.

Theorem 5.4 (See [10]). Assume that

µ(sin) > D.

is fulfilled. Then, the random system (5.1)-(5.2) is weakly

(uniform) persistent.

Sketch of the proof. Let ε > 0 be such that µ(s) > D for all
s ∈ [sin − ε, sin + ε] and define

η := min{µ(s) − D : s ∈ [sin − ε, sin + ε]} > 0.

From Theorem 5.2, there exists T (ω, ε) > 0 such that
s(t; 0, ω, s0) < sin + ε for any t > T (ω, ε), ω ∈ Ω and s0 > 0.

Now, for t > T (ω, ε), define the sets

U(t) := {τ ∈ [T (ω, ε), t] : s(τ; 0, ω, s0) < sin − ε} ,

V(t) := {τ ∈ [T (ω, ε), t] : s(τ; 0, ω, s0) ∈ [sin − ε, sin + ε]}

and the functions in [0, 1]

u(t) :=
meas(U(t))
t − T (ω, ε)

, v(t) :=
meas(V(t))
t − T (ω, ε)

= 1 − u(t).

From (5.2), we have

dx
dt
≥

−(D + Φ(z∗(θtω)))x(t), t ∈ U(t)

(η − Φ(z∗(θtω)))x(t), t ∈ V(t)

and, by integration between T (ω, ε) and t > T (ω, ε), one
obtains

x(t) ≥ x(T (ω, ε))e(t−T (ω,ε))
[
u(t)(−D)+(1−u(t))η− 1

t−T (ω,ε)

∫ t
T (ω,ε) Φ(z∗(θrω))dr

]
(5.6)

for t > T (ω, ε).
Assume now that

lim
t→+∞

u(t) = 0.

Then, from Proposition 2.3, we have that

lim
t→+∞

e−
1

t−T (ω,ε)

∫ t
T (ω,ε) Φ(z∗(θrω))dr

= 1,

whence, from (5.6), we obtain

lim
t→+∞

x(t; 0, ω, x0) = +∞

which is a contradiction since x is bounded. Then

lim
t→+∞

meas(U(t)) = +∞,

that is

lim
t→+∞

meas({t : s(t; 0, ω, s0) < sin − ε}) = +∞,

whence
lim inf

t→+∞
s(t; 0, ω, s0) ≤ sin − ε

or equivalently

lim sup
t→+∞

x(t; 0, ω, x0) ≥ ε > 0

since s + x converges to sin (see Theorem 5.2). �

Remark 8. Recall that the weak (uniform) persistence of
species can be proved in the deterministic case if D <

µ(sin), as in Theorem 5.4. It is worth mentioning that the
upper bound Dr of the variations of the removal rate do not
need to fulfill this and then we can have realizations of the
perturbed dilution rate with effective value above µ(sin) on
large periods of time. This means that the species could be
arbitrary closed to the extinction but it always persist.
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Next we assume a stronger condition on the removal rate
to ensure the strong (uniform) persistence of the species.

Theorem 5.5 (See [10]). Assume that

Dr < µ(sin)

is fulfilled. Then, the random system (5.1)-(5.2) is strongly

(uniform) persistent and the set

Â := {(x, y) ∈ X : s + x = sin, x ≥ sin − λ
−(Dr)} (5.7)

is (forward) attracting, where the function λ− is defined in

Proposition 2.1.

Sketch of the proof. Consider ε > 0 such that µ(s) > Dr for
any s ∈ [sin − ε, sin + ε] and

η := min{µ(s) − Dr : s ∈ [sin − ε, sin + ε]} > 0.

From Theorem 5.2, s converges to [0, sin]. Thus, there
exists T (ω, ε) > 0 such that

s(t; 0, ω, s0) < sin + ε, q(t; 0, ω, q0) > −κ,

for all t > T (ω, ε), ω ∈ Ω, s0 > 0 and q0 = s0 + x0 − sin,
where

κ :=
µ(sin − ε/2) − Dr

µ(sin − ε/2)
(ε/2) > 0.

Now, if s(t; 0, ω, s0) ∈ [sin − ε, sin + ε] for any t > T (ω, ε),
ω ∈ Ω and s0 > 0, from (5.2) we have

dx
dt

> ηx

for any t > T (ω, ε), whence x is unbounded and we obtain
a contradiction. Then, there exists T (ω) ≥ T (ω, ε) such that
s(T (ω)) ≤ sin − ε/2.

Moreover, from (5.1)

ds
dt

= F(t, s) := (D+Φ(z∗(θtω))−µ(s))(sin−s)−µ(s)q. (5.8)

Since

F(t, sin − ε/2) ≤ (Dr − µ(sin − ε/2))(ε/2) + µ(sin − ε/2)κ = 0

for t > T (ω, ε), then [0, sin−ε/2] is forward invariant for the
semi-flow {ṡ = F(t, s), t > T (ω, ε)} whence

s(t; 0, ω, s0) ≤ sin − ε/2,

for all t > T (ω), ω ∈ Ω and s0 > 0.
Then, from (5.8),

ds
dt
≤ (Dr − µ(s))(sin − s) − µ(s)q

for every t > T (ω), whence s(t; 0, ω, s0) ≤ s+(t; 0, ω, s0) for
any t > T (ω), ω ∈ Ω and s0 > 0, where s+ solves

ds+

dt
= (Dr−µ(s+))(sin−s+)−µ(s+)q, s+(T (ω)) = s(T (ω)).

Note that s+(t; 0, ω, s0) belongs to [0, sin] for any t ≥ T (ω),
ω ∈ Ω and s0 > 0, then it is bounded, and its dynamics is
asymptotic autonomous with limiting dynamics

ds†

dt
= (Dr − µ(s†))(sin − s†).

If Dr < µ(sin), we have λ−(Dr) < sin and

(Dr − µ(σ))(λ−(Dr) − σ) > 0, ∀σ ∈ [0, sin] \ {λ−(Dr)}

is fulfilled.
Finally, s† goes to λ−(Dr) when t goes to infinity. Then,

from the theory of asymptotically autonomous dynamical
systems [37], one concludes that s+ converges to λ−(Dr)
when t goes to infinity, whence

lim sup
t→+∞

s(t; 0, ω, s0) ≤ λ−(Dr)

i.e.,

lim inf
t→+∞

x(t; 0, ω, x0) ≥ sin − λ
−(Dr) > 0.

�

Finally, next theorem provides an upper bound for the
species.

Theorem 5.6 (See [10]). Assume x0 > 0. Then,

lim sup
t→+∞

x(t; 0, ω, x0) ≤ sin − λ
−(Dl)

for any solution of the system (5.1)-(5.2) as long as Dl <

µ(sm).

Sketch of the proof. Recall that q = sin − x − s. From (5.2)
one has

dx
dt

= (µ(s) − (D + Φ(z∗(θtω))))x
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= (µ(sin − x − q) − (D + Φ(z∗(θtω))))x := F(t, x).

Since q converges to zero when t goes to infinty, for every
ε > 0, ω ∈ Ω and q0 = s0 + x0 − sin, there exists T (ω, ε) > 0
such that |q(t; 0, ω, q0)| < ε for every t > T (ω, ε) and then
x(t; 0, ω, x0) < sin + ε for every t > T (ω, ε), ω ∈ Ω and
x0 > 0.

Moreover, for all x ∈ (sin − λ
−(Dl) + ε, sin + ε), we obtain

sin − x − q ∈ (−q − ε, λ−(Dl) − q − ε), in fact, since sin −

x − q = s ≥ 0, we have sin − x − q ∈ (0, λ−(Dl) − q − ε) ⊂
(0, λ−(Dl)) whence F(t, x) < 0 since µ(0, λ−(Dl)) < Dl and
D + Φ(z∗(θtω)) ≥ Dl.

Thus, for every ε > 0,

lim sup
t→+∞

x(t; 0, ω, x0) ≤ sin − λ
−(Dl) + ε.

�

5.1. Numerical simulations

In this section we illustrate the theoretical results with
numerical simulations. Again, the blue dashed lines
correspond to the solution of the deterministic systems and
the rest are different realizations of the random ones.

In Figure 13 we plot the evolution of the substrate and the
species on time with sin = 14, a = 7, µ̄0 = 4, ki = 5, D = 1.7,
d = 0.25, Dr = 1.95, Dl = 1.45, s0 = 14 and x0 = 5. In this
case Dl = 1.45 > 0.9302 = µ(sm) then we have extinction of
the species, as proved in Theorem 5.3.
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Figure 13. Extinction of the species in the
classical chemostat model with non-monotonic
kinetics.

Figure 14 shows the phase plane for the same values of
the parameters, where the arrow points the initial condition.
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Figure 14. Extinction of the species in the
classical chemostat model with non-monotonic
kinetics.

In Figure 15 we display the evolution of the substrate
and the species with sin = 16.7, a = 7, µ̄0 = 7, ki = 7,
D = 1.4, d = 0.25, Dr = 1.65, Dl = 1.15, s0 = 16.7
and x0 = 5. Thanks to Theorem 5.5, since Dr = 1.65 <

1.8397 = µ(sin), we have (uniform) strong persistence of the
species. In addition, we include a little panel with a zoom of
the dynamics closed to the final time.
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Figure 15. Persistence of the species in the
classical chemostat model with non-monotonic
kinetics.

In Figure 16 we show the phase phase plane for the values
of the parameters of the previous figure, with a little panel to
see better the dynamics around the attracting set (5.7).
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Figure 16. Persistence of the species in the
classical chemostat model with non-monotonic
kinetics.

Finally, we present some numerical simulations to prove
that bi-stability can also observed. To this end, in Figures 17
and 18 we set sin = 20.1, a = 7, µ̄0 = 4, ki = 7, D = 1,
d = 0.25, Dr = 1.25, Dl = 0.75 and s0 = 20.1. We can
observe how the species become extinct in Figure 17 with
x0 = 0.01 and persist in Figure 18 if x0 = 5.
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Figure 17. Extinction of the species in the
classical chemostat model with non-monotonic
kinetics.

6. The chemostat model with wall growth and
non-monotonic kinetics

In this section we consider the chemostat model with
wall growth (1.3)-(1.5) and replace the input flow D by
D + Φ(z∗(θtω)), as in Section 2.3. In addition, we assume
that the consumption function µ is non-monotonic given by
(1.7). Then, we obtain the following random system

ds
dt

= (D + Φ(z∗(θtω)))(sin − s) −
µ(s)

y
x1 −

µ(s)
y

x2 + bνx1,

(6.1)
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Figure 18. Persistence of the species in the
classical chemostat model with non-monotonic
kinetics.

dx1

dt
= − (ν + D + Φ(z∗(θtω))) x1 + µ(s)x1 − r1x1 + r2x2,

(6.2)

dx2

dt
= −νx2 + µ(s)x2 + r1x1 − r2x2. (6.3)

Our aim in this section is to present some results
concerning the system (6.1)-(6.3) to complement the ones
in Section 4. Then, we present a sketch of the proofs and
refer readers to [13] for details.

6.1. Existence and uniqueness of positive global solution

In this section we prove the existence and uniqueness of
solution of the random system (6.1)-(6.3).

Now X =
{
(s, x1, x2) ∈ R3 : s ≥ 0, x1 ≥ 0, x2 ≥ 0

}
denotes

the positive cone in the three dimensional space.

Theorem 6.1 (See [13]). For every u0 := (s0, x10, x20) ∈
X, the random system (6.1)-(6.3) possesses a unique global

solution u(·; 0, ω, u0) ∈ C1([0,+∞);X) given by

u(·; 0, ω, u0) := (s(·; 0, ω, s0), x1(·; 0, ω, x10), x2(·; 0, ω, x20)).

The proof of this theorem is based on standard arguments
from the theory of ordinary differential equations, thanks to
the continuity and boundedness of the perturbed input flow.

6.2. Existence of absorbing and attracting sets

In this section, we are interested in investigating the
existence of absorbing and attracting sets for the solutions
of the random system (6.1)-(6.3), in order to obtain more
information about the long-time dynamics of the system in
study.
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Theorem 6.2. For any ε > 0, the random system (6.1)-(6.3)
possesses a deterministic absorbing set (forwards in time)

given by

Bε :=
{

(s, x1, x2) ∈ X : s + x1 + x2 ≤
Dr sin

m
+ ε

}
, (6.4)

where m = min{Dl, ν}. As a consequence,

A :=
{

(s, x1, x2) ∈ X : s + x1 + x2 ≤
Dr sin

m

}
(6.5)

is a deterministic attracting set for the solutions of the

random system (6.1)-(6.3) forwards in time.

Sketch of the proof. Define q = s + x1 + x2 satisfying

dq
dt
≤ Dr sin − mq,

where m = min{Dl, ν}, whose solution is given by

q(t; 0, ω, q0) ≤ q0e−mt +
Dr sin

m

(
1 − e−mt

)
for all t > 0, ω ∈ Ω and q0 = s0 + x10 + x20 > 0.

Then, for any ε > 0 and ω ∈ Ω, there exists T (ω, ε) > 0
such that

s(t; 0, ω, s0) + x1(t; 0, ω, x10) + x2(t; 0, ω, x20) ≤
Dr sin

m
+ ε

for any t ≥ T (ω, ε) and s0, x10, x20 > 0, whence Bε (given
by (6.4)) is a forward absorbing set for the solutions of the
random system (6.1)-(6.3). �

6.3. Internal structure of the deterministic attracting set

Now, we study the internal structure of the deterministic
attracting set (6.5) in order to obtain more detailed
information about the random dynamics inside it.

To this end, as we did in Section 4, we consider the
total concentration of species x and the proportion of the
planktonic biomass p defined as

x = x1 + x2 and p =
x1

x1 + x2
. (6.6)

By differentiation, we obtain the random system

ds
dt

= (D + Φ(z∗(θtω)))(sin − s) −
µ0s

s + a +
1
ki

s2
x + bνpx,

(6.7)

dx
dt

= −(ν + (D + Φ(z∗(θtω)))p)x +
µ̄0s

s + a +
1
ki

s2
x, (6.8)

dp
dt

= −(D + Φ(z∗(θtω)))p(1 − p) − r1 p + r2(1 − p), (6.9)

where we recall that µ0 := µ̄0/y > µ0 as in Section 4.
Our goal now is to investigate the long-time dynamics of

the random system (6.7)-(6.9).
We first focus on studying the dynamics of the equation

for the proportion (6.9) since it is uncoupled of the rest of
the system.

Theorem 6.3 (See [13]). The interval

Bp := [pl, pr] (6.10)

is a deterministic absorbing set for the solutions of the

random equation (6.9), where

pl :=
Dr + r1 + r2 −

√
(Dr + r1 + r2)2 − 4Dlr2

2Dl

and

pr :=
Dl + r1 + r2 −

√
(Dl + r1 + r2)2 − 4Dlr2

2Dl .

Sketch of the proof. From (6.9) we have

dp
dt
≥ Dl p2 − (Dr + r1 + r2)p + r2.

Define H : p ∈ [0, 1] → H(p) ∈ R as H(p) = Dl p2 −

(Dr + r1 + r2)p + r2 which is a convex parabolic function.
By Bolzano’s Theorem, it is easy to prove that there exists

a unique pl ∈ (0, 1) such that

H(p)


> 0 for p ∈ [0, pl),
= 0 for p = pl,

< 0 for p ∈ (pl, 1],

where

pl =
Dr + r1 + r2 −

√
(Dr + r1 + r2)2 − 4Dlr2

2Dl .

Then, we have
dp
dt

∣∣∣∣∣
p=p̄

> 0

for all p̄ < pl, whence

p(t; 0, ω, p0) ≥ pl
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for every t large enough, ω ∈ Ω and p0 ∈ (0, 1).
A similar argument works to obtain the upper bound pr

and then Bp (given by (6.10)) is a deterministic absorbing
set for the solutions of the random equation (6.9). �

Once investigated the equation for the proportion, we
study the system (6.7)-(6.8).

Theorem 6.4 (See [13]). For any ε > 0, the random system

(6.7)-(6.9) has a deterministic absorbing set (forwards in

time) given by

B(s,x)
ε :=

{
(s, x) ∈ R2

+ : zl − ε ≤ µ̄0s + µ0x ≤ zr + ε
}
,

(6.11)
where

zl :=
µ̄0sinDr

plDl and zr :=
µ̄0sinDl

Dr + ν −
µ̄0bν
µ0

pl
.

Then

A(s,x) :=
{
(s, x) ∈ R2

+ : zl ≤ µ̄0s + µ0x ≤ zr
}

(6.12)

is a deterministic attracting set (forwards in time) for the

solutions of the random system (6.7)-(6.9).

Sketch of the proof. Define z = µ̄0s + µ0x satisfying the
differential equation

dz
dt

= µ̄0(D + Φ(z∗(θtω)))sin − µ̄0(D + Φ(z∗(θtω)))s + µ̄0bνpx

− µ0νx − µ0(D + Φ(z∗(θtω)))px.

From the previous equation, it is easy to obtain

dz
dt
≤ µ̄0(D + Φ(z∗(θtω)))sin − (D + Φ(z∗(θtω)))plz

and

dz
dt
≥ −

(
ν + D + Φ(z∗(θtω)) −

µ̄0bν
µ0

pl
)

z

+ µ̄0(D + Φ(z∗(θtω)))sin (6.13)

for t large enough.
Hence, by solving (6.3) and (6.13), it is not difficult to

prove that, for any ε > 0, ω ∈ Ω and (s0, x0) ∈ R2
+, there

exists T (ω, ε) > 0 such that

zl − ε ≤ µ̄0s(t; 0ω, s0) + µ0x(t; 0, ω, x0) ≤ zr + ε (6.14)

for all t ≥ T (ω, ε), whence B(s,x)
ε (given by (6.11)) is

a deterministic absorbing set (forwards in time) for the
solutions of the random system (6.7)-(6.8). �

Now, we are interested in providing conditions under
which the extinction of the species cannot be avoided.

Theorem 6.5 (See [13]). Assume

ν + D > µ(sm). (6.15)

Then, for any ω ∈ Ω and x0 = x10 + x20 > 0,

lim
t→+∞

x(t; 0, ω, x0) = 0, (6.16)

which means the extinction of the species.

Sketch of the proof. From (6.8) one has

dx
dt
≤ − (ν + D + Φ(z∗(θtω)) − µ(sm)) x, (6.17)

whose solution is given by

x(t; 0, ω, x0) ≤ e
−(ν + D − µ(sm))t −

∫ t

0
Φ(z∗(θrω))dr

(6.18)
for every t > 0, ω ∈ Ω and x0 = x10 + x20 > 0.

Hence, as long as (6.15) is fulfilled, we have

lim
t→+∞

x(t; 0, ω, x0) = 0.

�

Finally, we provide conditions under which not only the
total concentration of species persists, but also both the
planktonic and the attached biomass individually.

Theorem 6.6 (See [13]). Provided

µ̄0

ν + Dr pr zl > zr + µ̄0a +
(zr)2

kiµ̄0
, (6.19)

where every constant was already defined, the attracting set

(6.12) is reduced to

Â(s,x) :=
{
(s, x1, x2) ∈ A(s,x) : s ≥ s̄, x ≥ x̄

}
, (6.20)

where

s̄ :=
−a1 −

√
a2

1 − 4a2a0

2a2
and x̄ :=

−b1 −

√
b2

1 − 4b2b0

2b2
,
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with

a2 := −Dr − 2
µ̄0

µ0
bνpl, a0 := Dlsina +

zlabνpl

µ0

a1 := Dlsin − Dra − zr +
zlbνpl

µ0
− 2

µ̄0

µ0
abνpl,

b2 := −
µ2

0

kiµ̄0
, b1 := −

µ̄0µ0

ν + Dr pr + µ0 +
2zrµ0

kiµ̄0
,

b0 :=
µ̄0zl

ν + Dr pr − zr − µ̄0a −
(zr)2

kiµ̄0

Sketch of the proof. From (6.7), we obtain

ds
dt
≥ Dlsin − Dr s −

s(zr + ε − µ̄0s)
s + a

+
1
µ0

bνpl(zl − ε − µ̄0s),

(6.21)
where we used (2.4) and (6.14).

Consider now ε < µ̄0s∗, where s∗ > 0 such that

Dlsin − Dr s∗ −
s∗zr

s∗ + a
+

1
µ0

bνpl(zl − 2µ̄0s∗) ≥ 0. (6.22)

Hence, from (6.21) we have

ds
dt

∣∣∣∣∣
s=s∗
≥ 0.

Then, we prove the existence of s∗ > 0 such that (6.22)
holds or, in other words,

a2(s∗)2 + a1s∗ + a0 ≥ 0,

where a2, a1 and a0 are defined as in the statement of
Theorem 6.7.

To this end, define F : s ∈ [0,+∞) 7→ F(s) ∈ R as F(s) =

a2s2+a1s+a0 which is a concave parabolic function. It is not
difficult to prove that there exists s̄ > 0 such that F(s) > 0
for every s ∈ [0, s̄), F(s) < 0 when s ∈ (s̄,+∞) and F(s̄) = 0,
where

s̄ =
−a1 −

√
a2

1 − 4a2a0

2a2
. (6.23)

Hence (6.22) fulfills for every s∗ ∈ [0, s̄], in fact

ds
dt

∣∣∣∣∣
s=s∗

> 0

for s∗ ∈ [0, s̄) and
ds
dt

∣∣∣∣∣
s=s̄
≥ 0,

whence
s(t; 0, ω, s0) ≥ s̄

for every t large enough, ω ∈ Ω and s0 > 0.
A similar argument works to provide the lower bound for

the total concentration of species x̄. �

Finally, the next theorem ensures the persistence of both
the planktonic and the attached biomass.

Theorem 6.7 (See [13]). Assume that (6.19) holds true.

Then, for every x10 > 0, x20 > 0, ω ∈ Ω and t > 0 large

enough, the following lower bounds hold true

x1(t; 0, ω, x10) ≥ x̄1 and x2(t; 0, ω, x20) ≥ x̄2,

where

x̄1 := pl x̄ and x̄2 := (1 − pr)x̄,

i.e., both the planktonic biomass and the attached biomass

persist, and pl, pr, x̄ are given in Theorems 6.3 and 6.6.

This theorem can be easily proved from the definition
of the proportion (6.6), Theorem 6.3 and Theorem 6.6. A
complete proof can be found in [13].

6.4. Numerical simulations

In this section we illustrate the theoretical results with
numerical simulations. The blue dashed lines correspond
to the solution of the deterministic systems and the rest are
different realizations of the random one.

In Figure 19 we plot the evolution of the substrate, the
planktonic biomass and the attached biomass on time. We
set sin = 4, a = 0.4, µ0 = 4, ki = 0.5, µ̄0 = 1.4, b = 0.1,
ν = 1.4, r1 = 0.4, r2 = 0.8, D = 1.7, d = 0.1, Dr = 1.8,
Dl = 1.6, s0 = 2, x10 = 5 and x20 = 2. In this case ν + D =

3.1 > 1.4343 = µ(sm) and then we have extinction of the
species from Theorem 6.5.

0 5 10 15 20
0

2

4

0 5 10 15 20
0

5

0 5 10 15 20
0

1

2

Figure 19. Extinction of the species in the
classical chemostat model with wall growth and
non-monotonic kinetics.

In Figures 20 and 21 we show the phase plane (Figure 20)
and the dynamics of the substrate versus both the planktonic
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and the attached biomass (Figure 21). The arrows point the
initial conditions.
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Figure 20. Extinction of the species in the
classical chemostat model with wall growth and
non-monotonic kinetics.
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Figure 21. Extinction of the species in the
classical chemostat model with wall growth and
non-monotonic kinetics.

In Figure 22 we illustrate the evolution of the substrate,
the planktonic biomass and the attached biomass on time
with little panels showing a zoom of the interval closed to
the final time. In this case sin = 5, a = 1.7, µ0 = 8, ki = 7,
µ̄0 = 7.5, b = 0.1, ν = 0.1, r1 = 0.4, r2 = 0.8, D = 0.7,
d = 0.1, Dr = 0.8, Dl = 0.6, s0 = 2, x10 = 5 and x20 = 2.
Since (6.19) holds, we have persistence of the species from
Theorems 6.6 and 6.7.
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Figure 23. Persistence of the species in the
classical chemostat model with wall growth and
non-monotonic kinetics.
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Figure 22. Persistence of the species in the
classical chemostat model with wall growth and
non-monotonic kinetics.

In Figures 23 and 24 we show the phase plane (Figure 23)
and the dynamics of the substrate versus both the planktonic
biomass and the attached biomass (Figure 24) with zooms to
observe better the dynamics around the attracting set (6.20).

Finally, we present some numerical simulations to show
that bi-stability can be also observed. We set sin = 10, a =

1.8, µ0 = 3.4, ki = 7.7, µ̄0 = 2.3, b = 0.1, ν = 0.4, r1 = 0.4,
r2 = 0.8, D = 1.7, d = 0.4, Dr = 2.1, Dl = 1.3 and s0 = 5. In
Figure 25 we have extinction of the species with x10 = 0.01
and x20 = 0.01 and we observe persistence of the species if
x10 = 4 and x20 = 1 in Figure 26.
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Figure 24. Persistence of the species in the
classical chemostat model with wall growth and
non-monotonic kinetics.
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Figure 25. Extinction of the species in the
classical chemostat model with wall growth and
non-monotonic kinetics.
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Figure 26. Persistence of the species in the
classical chemostat model with wall growth and
non-monotonic kinetics.

7. Conclusions

In this paper we present results about different chemostat
models where the input flow is perturbed by bounded
random fluctuations, as in real life. We start with the
classical chemostat model with Monod kinetics in Section
3. Then, in Section 4, we incorporate wall growth. After
this, in Section 5 we revisit the classical chemostat but in
this case we consider the Haldane consumption function.
Finally, in Section 6 we investigate the chemostat model
with wall growth and Haldane kinetics.

We prove for every model the existence and uniqueness
of positive global solution. Then, we focus on the existence
of absorbing and attracting sets for the solutions of the
systems which, moreover, do not depend on the realization
of the noise. After that, we study the internal structure of
the corresponding attracting set, in order to obtain more
detailed information about the asymptotic behavior of the
state variables. This allows us to provide conditions under
which the extinction of the species cannot be avoided and,
what is the main goal in practice, conditions to guarantee
the persistence of the species.

We recall that the approach in which real noise (bounded)
is modeled in this paper helps us to achieve important
improvements, specially when comparing the results in this
paper with the ones when using the usual standard Wiener
process, as explained in the introduction.

Now, we divide this section in four different parts to
highlight the results in the different sections of the paper.

7.1. Classical chemostat with Monod kinetics

In Section 3 we consider the classical chemostat model
with Monod consumption function. In this case, the
extinction of the species cannot be avoided if D > µ(sin)
(see Theorem 3.3) and we can ensure the persistence of the
species as long as s̄ < sin (see Theorem 3.4). This essentially
means that the input flow D cannot be too large compared
with the input concentration of substrate sin, which is logical
from the biological point of view. Of course, if we do
not supply enough substrate to the culture vessel and the
input flow is large, the species cannot have good access to
the nutrient and, moreover, they are removed fast from the
culture vessel.
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It is worth mentioning that some improvements are
achieved in this section when comparing with the
deterministic framework. More precisely, the washout
equilibrium (sin, 0) is attractive if D = µ(sin) in the
deterministic case, which means extinction of species.
However, in the random case we prove conditions under
which the attracting set has several points (all of them except
the washout) inside the positive cone.

7.2. Chemostat with wall growth and Monod kinetics

In Section 4, we prove that condition ν + Dpl > µ̄0 leads
into the extinction of the species (see Theorem 4.5) whereas
the persistence can be ensured if

ν + Dr <
zl

a +
zr

µ̄0

holds true (see Theorems 4.6 and 4.7), in fact both the
planktonic and the attached biomass persist.

The condition needed to have persistence basically
imposes some restrictions on the dilution rate D and the
death collective rate ν, which is totally reasonable. Recall
that the dilution rate cannot be too large since, otherwise,
the species would not have a suitable access to the substrate
and, moreover, they would be removed fast from the culture
vessel. Concerning the collective death rate, it is not
surprising that it needs to be small enough to preserve the
species from the extinction.

7.3. Classical chemostat with Haldane kinetics

In Section 5 we prove that the species become extinct
if Dl > µ(sm) holds true (see Theorem 5.3). In addition,
the weakly uniform persistence of species is ensured for
D < µ(sin) (see Theorem 5.4). This means that species
can be temporarily arbitrary closed to the extinction but they
persist despite of the random disturbances on the input flow,
in fact, D < µ(sin) ensures the persistence of the species in
the deterministic case but the effective input flow does not
necessarily satisfies this condition. Eventually, we prove the
(uniform) strong persistence of the species as long as Dr <

µ(sin) (see Theorem 5.5) and provide lower bounds for the
concentration of species that can be useful for practitioners.

7.4. Chemostat with wall growth, nutrient recycling

Haldane kinetics

In Section 6 we show that the species become extinct if
ν + D > µ(sin) (see Theorem 6.5) and persist provided that

µ̄0

ν + Dr pr zl > zr + µ̄0a +
(zr)2

kiµ̄0
,

fulfills, see Theorems 6.6 and 6.7, which means that both
the collective death rate ν and the input flow D cannot be too
large.

It is worth mentioning that, as in the deterministic case
(see [22]), in both Sections 5 and 6 dealing with Haldane
kinetics, we observe bi-stability for certain values of the
input flow (see numerical simulations in both sections)
such that the species can converge either to the wash-out
(which means extinction) or a positive equilibrium. This
phenomenon is an important issue in industrial setup since
it requires a careful monitoring of the system to prevent it
from going to the wash-out.

Finally, we would like to remark that the way in which
bounded random fluctuations are modeled in this paper has
proved again to be a very realistic and powerful approach
that allows us to obtain models fitting the real ones in a
very loyal manner. In addition, it also helps us to provide
conditions to ensure persistence, which is the main goal from
the point of view of applications.
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12. T. Caraballo, J.López-de-la-Cruz, A. Rapaport,
Modeling bounded random fluctuations in biological
systems: application to the chemostat model with two
species, IFAC-PapersOnLine, 52 (2019), 187–192.
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