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Abstract: In this paper, a class of survival red blood cells model with time-varying delays and impulsive effects is considered. First,
some sufficient conditions for the persistence are derived by use of the theory on impulsive differential equations. The persistence
describes the persistent survival of the mature red blood cells in the mammal under delay and impulsive perturbations. Then assuming
that the coefficients in the model are ω-periodic, some criteria ensuring the existence-uniqueness and global attractivity of positive ω-
periodic solution of the addressed model are obtained, which are suitable for survival red blood cells model with any ω ∈ R+. These
global attractivity criteria describe the nonexistence of any dynamic diseases in the mammal. Moreover, our proposed results in this
paper extend and improve some recent works in the literature. Finally, two examples and their computer simulations are given to show
the effectiveness and advantages of the results.

Keywords: survival red blood cells model; persistence; positive stationary oscillation; impulsive effects; time-varying

1. Introduction

The scalar delay differential equation

N′(t) = −αN(t) + βe−γN(t−τ), t ≥ 0, (1.1)

where α, β, γ, τ ∈ R+, was proposed by Wazewska-
Czyzewska and Lasota [1] as an appropriate model to
describe the survival of red blood cells in an animal. In
this model, it is assumed that the cells are lost from the
circulation at a rate α, N(t) denotes the density of mature
red blood cells in blood circulation at time t, β and γ denote
the production of red blood cells per unit time and τ is the
time delay between the production of immature cells in the
bone marrow and their maturation for release in circulating
bloodstreams. More detailed information about system
(1.1) can be found in [2–8], where [2–6] deals with the
periodic solutions for system, [7] deals with the automorphic
solutions for system, [8] deals with the global attractivity,
and [9–11] deals with the dynamics of discrete case.

The variation of the environment plays an important role

in many biological and ecological dynamical systems. Thus,
the system parameters are not fixed constants and often vary
within a certain range and the assumption of parameters
fluctuation in the system is necessary. In particular, due to
the effects of a periodically varying environment such as
seasonal fluctuations, the system parameters often exhibit
periodicity. As pointed out by Nicholson [12] that any
periodic change of climate tends to impose its period upon
oscillations of internal origin or to cause such oscillations
to have a harmonic relation to periodic climatic changes.
Hence, it is more realistic to consider the nonautonomous
case of system (1.1) as follows ( [13–15]):

N′(t) = −α(t)N(t) + β(t)e−γ(t)N(t−τ(t)), t ≥ 0, (1.2)

or its special and extensive cases ( [2, 3, 6, 16, 17]):

N′(t) = −α(t)N(t) + β(t)e−γ(t)N(t−mω), t ≥ 0, (1.3)

N′(t) = −α(t)N(t) +

m∑
i=1

βi(t)e−γi(t)N(t−τi(t)), t ≥ 0, (1.4)
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where α, β, βi, γ, γi, τ, τi are all positive ω-periodic
functions, ω is a positive constant and m is a non-
negative integer. In particular, Li and Wang [14] studied
the existence and global attractivity of positive periodic
solutions of system (1.2) by employing the continuation
theorem developed by Gaines and Mawhim [18]. However,
these results can only be applied to system (1.2) when
0 < α(t) < 1 and τ̇(t) ≤ 1, which is too restrictive in real
applications.

In [16], Saker and Agarwal investigated the oscillation
and global attractivity of system (1.3) when γ(t) = γ, where
γ is a real constant, and obtained that system (1.3) has a
unique positive ω-periodic solution if

lim
t→∞

γ

∫ t

t−mω
β(s) exp

( ∫ s

s−mω
α(u)du

)
ds <

π

2
.

Obviously, it leads to

γβImωeα
I mω <

π

2
, (1.5)

where αI , βI denote the minimum values of α(t) and β(t),
respectively. It implies that the criteria in [16] are only valid
for the special time delay τ = mω, where mω satisfies the
inequality (1.5).

In [17], Liu et al. investigated the existence and global
attractivity of unique positive periodic solution of system
(1.4) and obtained that system (1.4) has a unique positive
ω-periodic solution if Mpq ≤ 1, where

M =

exp
( ∫ ω

0
α(s)ds

)
exp

( ∫ ω

0
α(s)ds

)
− 1

,

p =

m∑
i=1

∫ ω

0
βi(s)ds, q = max

i∈Λ
γS

i .

Obviously, it leads to

m∑
i=1

βI
iωq ≤ 1,

which implies that the criteria in [17] are only valid for some
special periodic constants ω and m. Hence, techniques and
methods for dynamical analysis of red blood cells models
(1.2)-(1.4) should be further developed and explored.

Recently, dynamical analysis of impulsive nonlinear
systems has attracted the attention of many researchers
[19–29]. For instance, based on the concept of periodic
time scales, Wang [19] studied the periodic solution for a
new type of neutral impulsive stochastic Lasota-Wazewska
model. Modeling by Fractional Mathematics, Stamov [20]
investigated uncertain impulsive fractional order Lasota-
Wazewska model on the survival of red blood cells. In
addition, taking into account the effects of both delays and
impulses such as weather change, resource availability, food
supplies, etc, Yan [23] considered the following red blood
cells model with impulsive effects:

x′(t) = −α(t)x(t) +

m∑
i=1

βi(t)e−γi(t)x(t−miω), t ∈ [tk−1, tk),

x(tk) = (1 + bk)x(t−k ), k ∈ Z+,

(1.6)
where bk > −1 denotes the possible measure of an impulsive
effect on cell x at time tk, k ∈ Z+. The author obtained some
sufficient conditions for existence and global attractivity
of positive periodic solution of system (1.6) under the
assumption that

Γ(t) �
∏

0<tk<t

(1 + bk) is ω-periodic.

Then Liu and Takeuchi [24] pointed out that the ω-
periodicity of Γ in [23] implies that Γ(ω) = 1 which is a more
restrictive condition and so some new sufficient conditions
were derived in [24] for the existence and global attractivity
of positive periodic solution of system (1.6), which removed
the restriction that Γ(ω) = 1 and extended and improved
the results in [23]. Unfortunately, one may observe that the
methods used in [21–24] are only valid for red blood cells
models with time-invariant delays [21, 22] or some special
time delays [23, 24], i.e., τi = miω. In other words, it is
necessary that τi

ω
∈ Z+.

Motivated by the above discussions, our aim in this paper
is to study the dynamics of the following red blood cells
model with time-varying delays and impulsive effects:

ẋ(t) = −α(t)x(t) +

m∑
i=1

βi(t)e−γi(t)x(t−τi(t)), t ∈ [tk−1, tk),

x(tk) = Ik(tk, x(t−k )), k ∈ Z+.

(1.7)
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The paper is organized as follows. In Section 2, we introduce
some necessary notations, definitions and prove that the
solutions are positive and ultimately bounded. In Section
3, we present some results on persistence of system (1.7)
based on those ultimately bounded conditions. In our model
the persistence describes the persistent survival of the mature
red blood cells under delay and impulsive perturbations. In
Section 4, some sufficient conditions ensuring the existence
and global attractivity of unique positive periodic solution
are presented under the assumption that the coefficients in
the model are ω-periodic, which are suitable for Lasota-
Wazewska model with any ω ∈ R+. These criteria describe
the nonexistence of any dynamic diseases in the mammal.
Two examples and their computer simulations are offered to
show the effectiveness and advantages of our new results in
Section 5. Finally, we draw conclusions in Section 6.

2. Preliminaries

Notations. Let R denotes the set of real numbers, R+ the set
of positive real numbers and Z+ the set of positive integers.
[•]∗ denotes the integer function. Λ = {1, 2, · · · ,m}. For
any interval J ⊆ R, set S ⊆ Rk(1 ≤ k ≤ N),C(J, S ) =

{ϕ : J → S is continuous} and PC(J, S ) = {ϕ : J → S is
continuous everywhere except at finite number of points t, at
which ϕ(t+), ϕ(t−) exist and ϕ(t+) = ϕ(t)}. In particular, let
PCτ be an open set in PC([−τ, 0],R+). Given a continuous
function f which is defined on J ∈ R, we set

f I � inf
s∈J

f (s), f S � sup
s∈J

f (s).

Consider the red blood cells model (1.7) with initial value:

ẋ(t) = −α(t)x(t) +

m∑
i=1

βi(t)e−γi(t)x(t−τi(t)), t ∈ [tk−1, tk),

x(tk) = Ik(tk, x(t−k )), k ∈ Z+,

xt0 = φ(s), −τ ≤ s ≤ 0,
(2.1)

where φ ∈ PCτ, 0 ≤ τi(t) ≤ τ, i ∈ Λ, where τ is a given
constant. For each t ≥ t0, xt ∈ PCτ is defined by xt(s) =

x(t + s), s ∈ [−τ, 0].
In this paper we need the following assumptions:

(H1) α, βi and γi : R+ → R+, i ∈ Λ, are all continuous
functions with positive lower and upper bounds.

(H2) The impulse times tk, k ∈ Z+, satisfy 0 ≤ t0 < t1 <

. . . < tk → +∞ as k → +∞.

(H3) Ik : R+ × R+ → R+ are continuous functions which
satisfies ρI

ku ≤ Ik(t, u) ≤ ρS
k u, u ∈ R+, t ∈ R+, k ∈ Z+,

where ρI
k and ρS

k are some positive constants.

Definition 2.1. System (2.1) is said to be persistent, if there
exist constants M > 0 and m > 0 such that each positive
solution x(t) of model (2.1) satisfies

0 < m ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ M.

Definition 2.2. A map x : R+ → R+ is said to be an
ω-periodic solution of system (2.1), if

(1) x(t) is a piecewise continuous map with first-class
discontinuity points and satisfies (1);

(2) x(t) satisfies x(t + ω) = x(t), t , tk and x(tk + ω+) =

x(t+k ), k ∈ Z+.

Definition 2.3. Let x∗ = x∗(t, t0, φ∗) be a solution of system
(2.1) with initial value (t0, φ∗), where φ∗ ∈ PCτ. Then the
solution x∗ is said to be a positive stationary oscillation of
system (2.1), if

(1) x∗ is the unique positive ω-periodic solution of system
(2.1);

(2) For any other solution x = x(t, t0, φ) of system (2.1)
through (t0, φ), it holds that

|x − x∗| → 0 as t → ∞.

To derive the main results, we need to introduce some
Lemmas and their Corollaries.

Lemma 2.1. R+ is the positively invariant set of system

(2.1).

Proof. Let x(t) = x(t, t0, φ) be a solution of system (2.1)
with initial value (t0, φ), where φ ∈ PCτ. First, we prove that
x(t) > 0 for t ∈ [t0, t1). Suppose on the contrary, in view
of the continuous of x on interval [t0, t1) and φ(0) > 0, then
there exists a t̂ ∈ [t0, t1) such that x(t̂) = 0 and x(t) > 0 for
t ∈ [t0, t̂). Thus it follows from system (2.1) that

ẋ(t) = x(t)

 −α(t) +

m∑
i=1

βi(t)
eγi(t)x(t−τi(t))x(t)

 , t ∈ [t0, t̂),
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which leads to

x(t) = x(t0) exp
( ∫ t

t0
Γ(s)ds

)
, t ∈ [t0, t̂),

where

Γ(t) =

 −α(t) +

m∑
i=1

βi(t)
eγi(t)x(t−τi(t))x(t)

 .
Since x is continuous on interval [t0, t1), it can be deduced
that

0 = x(t̂) = x(t̂−) = x(t0) exp
( ∫ t̂−

t0
Γ(s)ds

)
.

Obviously, this is a contradiction and so x(t) > 0 for t ∈

[t0, t1). Note that x(t1) = I1(x(t−1 )) > 0, we can similarly
prove that x(t) > 0 for t ∈ [t1, t2). In this way, it can be
finally deduced that x(t) > 0 for t ∈ [t0,∞). The proof is
complete. �

Lemma 2.2. ( [30]) Assume that there exist functions m ∈

PC(R+,R+), p, q ∈ C(R+,R) and constants dk ≥ 0 such that D+m(t) ≤ p(t)m(t) + q(t), t ∈ [tk−1, tk),

m(tk) ≤ dkm(t−k ), k ∈ Z+.

Then

m(t) ≤ m(t0)
∏

t0<tk≤t

dk exp
( ∫ t

t0
p(s)ds

)
+

∫ t

t0

∏
s<tk≤t

dk exp
( ∫ t

s
p(u)du

)
q(s)ds, t ≥ t0.

Remark 2.1. It should be noted that the above assertion still
holds if the sign “ ≤ ” in Lemma 2.2 are replaced by “ ≥ ”.

Lemma 2.3. Assume that (H1) − (H3) hold. If there exist

some real constants η1 > 0, η2 > 0, θ1 ≥ 0 and θ2 ≥ 0 such

that

−η2(t − s) − θ2 ≤ Ψ2(s, t) ≤ Ψ1(s, t) ≤ −η1(t − s) + θ1

(2.2)
for any t0 ≤ s ≤ t,, where

Ψ1(s, t) =
∑

s<tk≤t

ln ρS
k −

∫ t

s
α(u)du,

Ψ2(s, t) =
∑

s<tk≤t

ln ρI
k −

∫ t

s
α(u)du.

Then the set Ω = {x ∈ R+ : 0 < m ≤ x ≤ M} is the

ultimately bounded set of system (2.1), where M and m are

any positive constants that satisfy

M >

m∑
i=1

βS
i

η1
eθ1 , m <

m∑
i=1

βI
i

η2
exp(−γS

i M)e−θ2 .

Proof. Let x(t) = x(t, t0, φ) be a solution of system (2.1)
with initial value (t0, φ), where φ ∈ PCτ. By Lemma 2.1,
we know that x(t) > 0 for t ∈ [t0,∞). Then it follows from
system (2.1) that


ẋ(t) ≤ −α(t)x(t) +

m∑
i=1

βi(t), t ∈ [tk−1, tk),

x(tk) ≤ ρS
k x(t−k ), k ∈ Z+.

By Lemma 2.2 and (2.2), it can be deduced that

x(t) ≤ φ(0)
∏

t0<tk≤t

ρS
k exp

(
−

∫ t

t0
α(s)ds

)
+

m∑
i=1

∫ t

t0

∏
s<tk≤t

ρS
k exp

(
−

∫ t

s
α(u)du

)
βi(s)ds

≤ φ(0) exp
( ∑

t0<tk≤t

ln ρS
k

)
exp

(
−

∫ t

t0
α(s)ds

)
+

m∑
i=1

βS
i

∫ t

t0
exp

( ∑
s<tk≤t

ln ρS
k

)
exp

(
−

∫ t

s
α(u)du

)
ds

= φ(0) exp
( ∑

t0<tk≤t

ln ρS
k −

∫ t

t0
α(s)ds

)
+

m∑
i=1

βS
i

∫ t

t0
exp

( ∑
s<tk≤t

ln ρS
k −

∫ t

s
α(u)du

)
ds

= φ(0) exp(Ψ1(t0, t)) +

m∑
i=1

βS
i

∫ t

t0
exp(Ψ1(s, t))ds

≤ φ(0) exp
(
− η1(t − t0) + θ1

)
+

m∑
i=1

βS
i

∫ t

t0
exp

(
− η1(t − s) + θ1

)
ds

≤ exp
(
− η1(t − t0) + θ1

)(
φ(0) −

m∑
i=1

βS
i

η1

)
+

m∑
i=1

βS
i

η1
eθ1

→

m∑
i=1

βS
i

η1
eθ1 as t → ∞,

which implies that there exists a constant T1 ≥ t0 such that
x(t) ≤ M, t ≥ T1.
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Next we show that there exists a constant T2 ≥ T1 +τ such
that m ≤ x(t), t ≥ T2. First, from system (2.1) we know that

ẋ(t) ≥ −α(t)x(t) +

m∑
i=1

βi(t) exp(−γS
i M),

t ∈ [tk−1, tk) ∩ [T1 + τ,∞),

x(tk) ≥ ρI
k x(t−k ), k ∈ Z+.

Without loss of generality, one may suppose that T1 + τ ,

tk, k ∈ Z+. Then by Remark 2.1 and (2.2), it can be deduced
that

x(t) ≥ x(T1 + τ)
∏

t0<tk≤t

ρI
k exp

(
−

∫ t

t0
α(s)ds

)
+

m∑
i=1

νi

∫ t

t0

∏
s<tk≤t

ρI
k exp

(
−

∫ t

s
α(u)du

)
βi(s)ds

≥ x(T1 + τ) exp
( ∑

t0<tk≤t

ln ρI
k

)
exp

(
−

∫ t

t0
α(s)ds

)
+

m∑
i=1

βI
i νi

∫ t

t0
exp

( ∑
s<tk≤t

ln ρI
k

)
exp

(
−

∫ t

s
α(u)du

)
ds

= x(T1 + τ) exp(Ψ2(t0, t)) +

m∑
i=1

βI
i νi

∫ t

t0
exp(Ψ2(s, t))ds

≥ x(T1 + τ) exp
(
− η2(t − t0) − θ2

)
+

m∑
i=1

βI
i νi

∫ t

t0
exp

(
− η2(t − s) − θ2

)
ds

≥ exp
(
− η2(t − t0) − θ2

)(
x(T1 + τ) −

m∑
i=1

βI
i νi

η2

)
+

m∑
i=1

βI
i

η2
exp(−γS

i M)e−θ2

→

m∑
i=1

βI
i

η2
νie−θ2 as t → ∞,

where νi = exp(−γS
i M) which implies that there exists a

constant T2 ≥ T1 + τ such that m ≤ x(t), t ≥ T2. The proof
is therefore complete. �

Suppose that

sup
k∈Z+

ρS
k � ρ

S > 1, inf
k∈Z+

ρI
k � ρ

I ∈ (0, 1), (2.3)

then the following result can be derived.

Corollary 2.1. Assume that (H1)− (H3) hold. If there exists

a constant µ > 0 such that tk − tk−1 ≥ µ >
ln ρS

αI , k ∈ Z+. Then

the set Ω = {x ∈ R+ : 0 < m ≤ x ≤ M} is the ultimately

bounded set of system (2.1), where M and m are any real

constants that satisfy

M >

m∑
i=1

βS
i

αI −
ln ρS

µ

ρS , m <

m∑
i=1

βI
i

αS −
ln ρI

µ

exp(−γS
i M)ρI .

Proof. For any given t0 ≤ s ≤ t, if there exist some
impulsive points on the interval [s, t], then assume without
loss of generality that tm ≤ s < tm+1 < · · · < tm+ j ≤ t <

tm+ j+1, where tm+k, k = 1, · · · , j, are the impulsive points
on the interval [s, t]. Then note that tk − tk−1 ≥ µ, one may
derive that t − s ≥ tm+ j − tm+1 ≥ ( j − 1)µ, which implies that
t−s
µ

+1 ≥ j. In this case, it can be deduced from the definition
of Ψ1 and Ψ2 that

Ψ1(s, t) =

m+ j∑
k=m+1

ln ρS
k −

∫ t

s
α(u)du

≤ j ln ρS − αI(t − s)

≤
( t − s
µ

+ 1
)

ln ρS − αI(t − s)

≤ −(t − s)
(
αI −

ln ρS

µ

)
+ ln ρS ,

Ψ2(s, t) =

m+ j∑
k=m+1

ln ρI
k −

∫ t

s
α(u)du

≥ j ln ρI − αS (t − s)

≥
( t − s
µ

+ 1
)

ln ρI − αS (t − s)

≥ −(t − s)
(
αS −

ln ρI

µ

)
+ ln ρI .

Obviously, if there is no impulsive point on the interval
[s, t], the above assertions also hold. Hence, let η1 =

αI −
ln ρS

µ
, η2 = αS −

ln ρI

µ
, θ1 = ln ρS and θ2 = − ln ρI

and by Lemma 2.3, we can obtain Corollary 2.1. �

If
sup
k∈Z+

ρS
k � ρ

S > 1, inf
k∈Z+

ρI
k � ρ

I ≥ 1, (2.4)

then we have
Corollary 2.2. Assume that (H1)− (H3) hold. If there exists

a constant µ > 0 such that tk − tk−1 ≥ µ >
ln ρS

αI , k ∈ Z+. Then

the set Ω = {x ∈ R+ : 0 < m ≤ x ≤ M} is the ultimately

Mathematical Modelling and Control Volume 1, Issue 1, 12–25
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bounded set of system (2.1), where M and m are any real

constants that satisfy

M >

m∑
i=1

βS
i

αI −
ln ρS

µ

ρS , m <

m∑
i=1

βI
i

αS exp(−γS
i M).

Proof. The proof is similar to Corollary 2.1 and we only
need notice that

Ψ2(s, t) =

m+ j∑
k=m+1

ln ρI
k −

∫ t

s
α(u)du

≥ −αS (t − s),

which implies that η2 = αS and θ2 = 0. �

In addition, if

sup
k∈Z+

ρS
k � ρ

S ≤ 1, inf
k∈Z+

ρI
k � ρ

I ≤ 1, (2.5)

then we have
Corollary 2.3. Assume that (H1) − (H3) hold. Then the set

Ω = {x ∈ R+ : 0 < m ≤ x ≤ M} is the ultimately bounded

set of system (2.1), where M and m are any real constants

that satisfy

M >

m∑
i=1

βS
i

αI ρ
S , m <

m∑
i=1

βI
i

αS −
ln ρI

µ

exp(−γS
i M)ρI .

Proof. Notice that

Ψ1(s, t) =

m+ j∑
k=m+1

ln ρS
k −

∫ t

s
α(u)du

≤ −αI(t − s),

which implies that η1 = αI and θ1 = 0. By the proof of
Corollary 2.1, we can obtain the above result. �

In particular, when there is no impulsive effects, i.e.,
Ik(t, u) = u, the following result can be directly derived by
Corollary 2.3.

Corollary 2.4. Assume that (H1) and (H2) hold. Then the

set Ω = {x ∈ R+ : 0 < m ≤ x ≤ M} is the ultimately

bounded set of system (2.1), where M and m are any real

constants that satisfy

M >

m∑
i=1

βS
i

αI , m <

m∑
i=1

βI
i

αI exp(−γS
i M).

3. Persistence of Lasota-Wazewska model

We are now in a position to state our main results on
persistence of system (2.1).

Theorem 3.1. Assume that (H1) − (H3) hold. Then system

(2.1) is persistent if there exist some constants η1 > 0, η2 >

0, θ1 ≥ 0 and θ2 ≥ 0 such that

−η2(t − s) − θ2 ≤ Ψ2(s, t) ≤ Ψ1(s, t) ≤ −η1(t − s) + θ1,

for any t0 ≤ s ≤ t, where

Ψ1(s, t) =
∑

s<tk≤t ln ρS
k −

∫ t
s α(u)du,

Ψ2(s, t) =
∑

s<tk≤t ln ρI
k −

∫ t
s α(u)du.

Corollary 3.1. Assume that (H1)−(H3) and (2.3) hold. Then

system (2.1) is persistent if there exists a constant µ > 0 such

that tk − tk−1 ≥ µ >
ln ρS

αI , k ∈ Z+.

Corollary 3.2. Assume that (H1)−(H3) and (2.4) hold. Then

system (2.1) is persistent if there exists a constant µ > 0 such

that tk − tk−1 ≥ µ >
ln ρS

αI , k ∈ Z+.

Corollary 3.3. Assume that (H1)− (H3) and (2.5) hold, then

system (2.1) is persistent.

Corollary 3.4. Assume that (H1) holds, then system (2.1)
without impulsive effects is persistent.

Remark 3.1. Based on the results (Lemma 2.3 and
Corollaries 2.1–2.3) in Section 2, the above conclusions can
be obtained easily and the detailed proofs are omitted here.

Remark 3.2. One may observe from Corollaries 3.1–3.3
that there exists a necessary restriction on the lower bound
of impulsive intervals [tk−1, tk) to guarantee the persistence
when ρS > 1. But the restriction can be removed when
ρS ≤ 1. The ideas behind it is that the encountered impulsive
perturbation can be large enough provided the impulsive
intervals are larger than a special value which is related to
the perturbation scopes. But the restriction on impulsive
intervals can be removed when the impulsive perturbation
is small.

4. Periodicity of Lasota-Wazewska model

In this section, we shall investigate the stationary
oscillation of system (2.1). First, to derive the results we
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need introduce some assumptions that are more restrictive
than (H1) − (H3) as follows:

(P1) α, βi, γi and τi : R+ → R+, i ∈ Λ, are all positive
continuous ω-periodic functions, where ω > 0 is a real
constant.

(P2) Ik(t, u) = ρku, u ∈ R+, k ∈ Z+.

(P3) For given ω > 0, there exists an integer q ∈ Z+ such
that tk + ω = tk+q and ρk+q = ρk, k ∈ Z+.

Lemma 4.1.( [31]) Assume that (P1) − (P3) hold. Then

system (2.1) has an ω-periodic solution if there exists a φ ∈

PCτ such that xt0+ω(t0, φ) = φ, where x(t, t0, φ) is the solution

of system (2.1) through (t0, φ).

Theorem 4.1. Assume that (P1) − (P3) hold. Then system

(2.1) admits a positive stationary oscillation if there exist

constantsM > 0, δ ≥ 0 such that

n∏
k=1

max{1, ρk} ≤ Meδ(tn−t0), n ∈ Z+, (4.1)

and

δ < αI −

m∑
i=1

βS
i γ

S
i eδτ. (4.2)

Proof. First, we prove that the following inequality holds:

|e−γi(t)u − e−γi(t)v| ≤ γS
i |u − v|, t ∈ R+, u, v ∈ R+. (4.3)

In fact, let E = e−γi(t), then it holds that |e−γi(t)u − e−γi(t)v| =

|Eu − Ev| = Eξ | ln E||u − v| ≤ EξγS
i |u − v|, where ξ is a real

value between u and v. Since u, v ∈ R+, we know that ξ > 0,
which implies that (4.3) holds.

Let x = x(t, t0, φ) and y = y(t, t0, ϕ) be two arbitrary
solutions of system (2.1) with initial values (t0, φ) and (t0, ϕ),
respectively, where φ, ϕ ∈ PCτ. Consider an auxiliary
function V(t) = |x − y|. Obviously, V ∈ PC(R,R+).
Calculating the upper right derivative of function V, it can

be deduced from (4.3) that

D+V(t) ≤ −α(t)|x(t) − y(t)|

+

m∑
i=1

βi(t)|e−γi(t)x(t−τi(t)) − e−γi(t)x(t−τi(t))|

≤ −αI |x(t) − y(t)|

+

m∑
i=1

βS
i γ

S
i |x(t − τi(t)) − y(t − τi(t))|

= −αIV(t) +

m∑
i=1

βS
i γ

S
i V(t − τi(t))

≤ −αIV(t) +

m∑
i=1

βS
i γ

S
i Vτ(t),

(4.4)
where Vτ(t) = supt−τ≤s≤t V(s).
On the other hand, it follows from (P2) that

V(tk) = |x(tk) − y(tk)| = |Ik(tk, x(t−k )) − Ik(tk, y(t−k ))| = ρkV(t−k ).
(4.5)

From (4.1)–(4.5) and using the Lemma 2.1 in [32], we get

V(t) ≤ MVτ(t0)e−(λ−δ)(t−t0), t ≥ t0, (4.6)

where λ > 0 satisfies λ < αI −

m∑
i=1

βS
i γ

S
i eλτ.

By (4.2), one may choose a ε > 0 small enough such that

δ + ε < αI −

m∑
i=1

βS
i γ

S
i e(δ+ε)τ.

Choose λ = δ + ε, then (4.6) becomes

V(t) ≤ MVτ(t0)e−ε(t−t0), t ≥ t0,

i.e.,

|x(t) − y(t)| ≤ M|φ − ϕ|τe−ε(t−t0), t ≥ t0.

Thus there exists a T ≥ t0 such that

|x(t) − y(t)|τ ≤ 1
2 |φ − ϕ|τ, t ≥ T. (4.7)

Define an operator

F : φ→ xt0+ω(t0, φ).

Obviously, operator F maps the set PCτ into itself. By
induction, it can be deduced that

F kφ = xt0+kω(t0, φ), k ∈ Z+.
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Let k large enough such that t0 +kω−2τ ≥ T, then it follows
from (4.7) that

‖F kφ −F kϕ|τ = |xt0+kω(t0, φ) − yt0+kω(t0, ϕ)|τ ≤
1
2
|φ − ϕ|τ.

Hence, operator F is a contraction mapping in Banach
space PCτ. Using Banach fixed point theorem, there exists
a unique φ? ∈ PCτ such that Fφ? = φ?. By Lemma 4.1,
we know that system (2.1) has a positive ω-periodic solution
x(t, t0, φ?).

Furthermore, we show that x(t) = x(t, t0, φ?) is the unique
ω-periodic solution of system (2.1) and all other solutions
converge exponentially to it. Suppose on the contrary that
there exists another ω-periodic solution y(t) = y(t, t0, ϕ?)
where ϕ? ∈ PCτ. Then similar to the proof of (4.7), we get
that for t ≥ 0

|x(t, t0, φ?) − y(t, t0, ϕ?)|τ
= |x(t + kω, t0, φ?) − y(t + kω, t0, ϕ?)|τ

≤ M|φ? − ϕ?|τe−ε(t+kω−t0) → 0 as k → ∞,

which implies that x(t) ≡ y(t), t ≥ 0. Hence, x(t) is the
unique positive ω-periodic solution of system (2.1) and all
other solutions converge exponentially to it, i.e., system
(2.1) admits a positive stationary oscillation. The proof is
thus complete. �

If

sup
k∈Z+

ρk � ρ
S > 1,

then we have

Corollary 4.1. Assume that (P1) − (P3) hold. Then system

(2.1) admits a positive stationary oscillation if there exist

constants µ > 0, δ > 0 such that tk − tk−1 ≥ µ >
ln ρS

δ
, k ∈ Z+

and

δ < αI −

m∑
i=1

βS
i γ

S
i eδτ.

Proof. Notice that max{1, ρk} ≤ ρ
S , k ∈ Z+ and tn − t0 ≥

nµ, n ∈ Z+, by Theorem 4.1 we can obtain the above result.
�

Remark 4.1. Compared Corollary 4.1 with Corollaries 3.1
and 3.2, one may observe that tk − tk−1 ≥ µ > ln ρS

δ
> ln ρS

αI

implies that more restrictive condition on impulsive interval
is needed to guarantee the existence of stationary oscillation.

In addition, if
sup
k∈Z+

ρk � ρ
S ≤ 1,

then we have

Corollary 4.2. Assume that (P1) − (P3) hold. Then system

(2.1) admits a positive stationary oscillation if αI >
m∑

i=1

βS
i γ

S
i .

Proof. Notice that max{1, ρk} ≤ 1, k ∈ Z+ and let M =

1, δ = 0, by Theorem 4.1 we can obtain the above result. �

Corollary 4.3. Assume that (P1) holds, then system

(2.1) without impulsive effects admits a positive stationary

oscillation if αI >

m∑
i=1

βS
i γ

S
i .

Remark 4.2. In [15,17,18], the authors investigated the
stationary oscillation of system (2.1) with/without impulsive
effects under the assumption that τ(t) is a constant delay
that satisfies τ

ω
∈ Z+. Note in our results, the restriction is

completely removed and the time-varying delay τ(t) may be
large enough or small enough provided that it is positive ω-
periodic.

Remark 4.3. When there is no impulsive effects, i.e., ρk ≡

1, the stationary oscillation of system (2.1) has been studied
by Li and Wang [13] under the assumptions that 0 < α(t) < 1
and τ̇(t) ≤ 1 and Liu et al. [16] under the assumption that
Mpq ≤ 1, where

M =

exp
( ∫ ω

0
α(s)ds

)
exp

( ∫ ω

0
α(s)ds

)
− 1

,

p =

m∑
i=1

∫ ω

0
βi(s)ds, q = max

i∈Λ
γS

i .

It is obvious that those assumptions are greatly relaxed in
Corollary 4.3. Moreover, one may note from Corollary
4.3 that there is nothing restriction on periodic constant ω.
In other words, the development results in this paper are
suitable for any ω ∈ R+.

5. Applications

In this section, we shall give two examples and theirs
computer simulations to show the effectiveness of the
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proposed results.

Example 5.1. Consider a delayed red blood cells model with
impulses as follows:

ẋ(t) = −
[
1.1 + 0.1 sin

2π
5

t
]
x(t)

+

3∑
i=1

[
4.8 + 0.2 cos

2π
5

(t + i)
]

× exp
(
− (0.5 + 0.3 sin

2π
5

(t + i)) x(t − τ)
)
,

t ∈ [tk−1, tk),
x(tk) = ρx(t−k ), k ∈ Z+,

(5.1)
where ρ > 0 and τ > 0 are some real constants.

Property 5.1. Case: ρ > 1. System (5.1) is persistent if there

exists a constant µ > 0 such that tk+1− tk ≥ µ > ln ρ, k ∈ Z+.

Property 5.2. Case: ρ ≤ 1. System (5.1) is persistent for

any impulsive sequence {tk}k∈Z+
satisfying (H2).

Proof. It is easy to check that system (5.1) satisfies the
conditions (H1) − (H3) and by Corollaries 3.2 and 3.3, we
can obtain the above properties, respectively. �

Remark 5.1. When there is no impulsive effects, i.e., ρ = 1,
the state trajectories of system (5.1) are given in Figure
1.(a). In this case, obviously, system (5.1) is persistent. If
we consider the impulsive effects such as ρ = 2, then by
Property 5.1, we know that system (5.1) is persistent if
tk+1 − tk ≥ 0.6931. Figure 1.(b, c) show the state trajectories
of system (5.1) with tk = 0.7k and 10k, respectively.
However, when tk = 0.6k which violates the Property 5.1,
it is interesting to see from Figure 1.(d) that system (5.1)
is non-persistent. It confirms that the proposed condition
in Property 5.1 is feasible and effective to guarantee the
persistence of system (5.1).

In addition, if ρ = 0.5, then by Property 5.2, we know that
system (5.1) is persistent for any impulsive sequence {tk}k∈Z+

in (H2). Figure 1.(e, f ) show the state trajectories of system
(5.1) with tk = 0.1k and 2k, respectively.

Remark 5.2. In the simulations of Example 4.1, we choose
the time delay τ = 3.4, time step h = 0.01 and initial values
φ = 2m,m = 1, · · · , 4.
Example 5.2. Consider a simple delayed red blood cells

model with impulses:

ẋ(t) = −x(t) +
[
0.9 + 0.1 sin

2π
ω

t
]

× exp
(
− (0.4 + 0.1 cos

2π
ω

t) x(t − τ(t))
)
,

x(tk) = ρx(t−k ), k ∈ Z+,

(5.2)

where τ(t) = 0.2 − 0.1
[

sin
2π
ω

t
]∗

and ω > 0, ρ > 0 are two
real constants.

Property 5.3. Case: ρ > 1. System (5.2) admits a positive

stationary oscillation if there exist constants q ∈ Z+, δ >

0, µ > 0 such that tk + ω = tk+q and
tk+1 − tk ≥ µ >

ln ρ
δ
, k ∈ Z+,

1 > δ + 0.5e0.3δ.

Corollary 5.1. Case: ρ > 1. System (5.2) with tk =

µk, k ∈ Z+ admits a positive stationary oscillation if there

exist constants δ > 0, µ > 0 such that

µ >
ln ρ
δ
, k ∈ Z+,

1 > δ + 0.5e0.3δ,

ω

µ
∈ Z+.

Property 5.4. Case: ρ ≤ 1. System (5.2) admits a positive

stationary oscillation if there exists a constant q ∈ Z+ such

that tk + ω = tk+q.

Corollary 5.2. Case: ρ ≤ 1. System (5.2) with tk = µk, k ∈

Z+ admits a positive stationary oscillation if
ω

µ
∈ Z+.

Proof. It is easy to check that system (5.2) satisfies the
conditions (P1) − (P3) and by Corollaries 4.1 and 4.2, we
can obtain the above properties, respectively. �

Remark 5.3. From Property 5.4, one may note that system
(5.2) without impulsive effects admits a positive stationary
oscillation for any ω ∈ Z+.

Remark 5.4. When there is no impulsive effects, i.e.,
ρ = 1, by Corollary 5.2, we know that system (5.2)
admits a positive stationary oscillation for any ω > 0. The
corresponding simulations for ω = 2 and 8 are shown in
Figure 2.(a, b). If we consider the impulsive effects such as
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Figure 1. (a) State trajectories of system (5.1) without impulsive effects. (b) State trajectories of system (5.1) with
ρ = 2, µ = 0.7. (c) State trajectories of system (5.1) with ρ = 2, µ = 10. (d) State trajectories of system (5.1) with
ρ = 2, µ = 0.6. (e) State trajectories of system (5.1) with ρ = 0.5, µ = 0.1. (f) State trajectories of system (5.1) with
ρ = 0.5, µ = 2.
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ρ = 2 or 4.8, then by Corollary 5.1, we know that system
(5.2) admits a positive stationary oscillation if

ρ = 2 :


µ ≥ 1.7329,
ω

µ
∈ Z+,

ρ = 4.8 :


µ ≥ 3.9215,
ω

µ
∈ Z+.

Thus it can be deduced that system (5.2) admits a positive
stationary oscillation when (I) ω = ρ = 2 and tk = 2k;
(II) ω = 8, ρ = 4.8 and tk = 4k, which is shown in Figure
2.(c, d). In addition, if ρ = 0.8, then by Corollary 5.2, we
know that system (5.2) tk = µk, k ∈ Z+ admits a positive
stationary oscillation if

ω

µ
∈ Z+. Figure 2.(e, f ) show the

state trajectories of system (5.2) with tk = 0.1k,w = 2 and
tk = 0.8k,w = 8, respectively. Those simulations match our
development results perfectly.

Remark 5.5. In the simulations of Example 4.2, we choose
the time step h = 0.01 and initial values φ = 0.2m,m =

1, · · · , 4.

Remark 5.6. Obviously, all of the criteria in [15,17,18] are
invalid for system (5.2) since τ

ω
∈̄Z+. In particular, when

there is no impulsive effects, i.e., ρ = 1, the criteria in
[16] can be applied to guarantee the stationary oscillation
of system (5.2) under the assumption that

eω

eω − 1
0.45ω ≤ 1.

However, from Remark 5.3, we know that system (5.2)
without impulsive effects admits a positive stationary
oscillation for any ω ∈ R+. Thus our development results
are more general than those [15–18].

6. Conclusions

This paper was dedicated to the dynamical analysis of
survival red blood cells model with time-varying delays
and impulsive effects. By use of the theory on impulsive
differential equations, some sufficient conditions for the
persistence have been presented. Then assuming that the
coefficients in the model are common periodic, some criteria
ensuring the existence-uniqueness and global attractivity of
positive periodic solution were obtained, which extended
and improved some recent works in the literature. Two
examples and their computer simulations have been given

to show the effectiveness and advantages of the results. In
addition, the ideas used in this paper can be developed to
study some other dynamical systems.
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