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Abstract: A kind of algebra, called numerical algebra, is proposed and investigated. As its opponent, non-numerical algebra is
also defined. The numeralization and dis-numeralization, which convert non-numerical algebra to numerical algebra and vise versa,
are considered. Product structure matrix (PSM) of a finite dimensional algebra is constructed. Using PSM, some fundamental
properties of finite dimensional algebras are obtained. Then a necessary and sufficient condition for a numerical algebra to be a field is
presented. Finally, the invertibility of Segre (commutative) quaternion and some related properties of matrices over Segre quaternion are
investigated.
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1. Introduction

It is well known that the Galois extension of a field is
of special importance in analyzing various fields, solving
polynomial equations, etc. [16]. In addition to field
extension, some other extensions of R to algebras on it are
also useful. This paper considers the extension of a field F to
a finite dimensional algebra on F. Such extensions are very
general, which contain Galois extension, noncommutative
Galois extension [1, 21], commutative quaternions [17, 18],
dual and hyperbolic numbers [19, 22], etc. as its special
cases.

To make the problem clear, the algebra considered in this
paper is defined as follows:

Definition 1.1. [12, 14] An algebra, A, is a finite

dimensional vector space V over a pre-assigned field F with

a bilinear operator, ∗ : V × V → V, satisfying distributive

rule:

X ∗ (aY + bZ) = a(X ∗ Y) + b(X ∗ Z)
(aX + bY) ∗ Z = a(X ∗ Z) + b(Y ∗ Z), X,Y,Z ∈ V, a, b ∈ F.

Starting from the idea of extension, it is obvious that we
need to distinct two kinds of algebras over a given field
F, called numerical and non-numerical algebras, which are
defined as follows:

Definition 1.2. An algebra A over F, denoted by A =

(V, ∗), is called a numerical algebra, if F is one dimensional

subspace of V. The set of numerical algebras is denoted by

NA. Otherwise, it is called a non-numerical algebra. The

set of non-numerical algebras is denoted by VA.

Example 1.3. (i) Quaternion, denoted by Q, is a

numerical algebra, because F = R is one dimensional

subspace of Q.

(ii) Cross product over R3, denoted by Cr = (R3, ~×), is a

non-numerical algebra.
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From another point of view: an algebra extension of F
can also be considered as an extension of (V, ∗) ∈ VA by
adding F to it. From this perspective, this paper investigates
the algebra extensions of a field by studying the relationship
between VA and NA.

The following fundamental problems about an algebra
over a given field are considered in this paper:

(i) How to convert a numerical algebra to a non-numerical
algebra by removing the “number” dimensional
subspace, and how to convert a non-numerical
algebra to a numerical algebra by adding a “number”
dimensional subspace.

(ii) Some properties of finite algebras, such as
commutativity, associativity, invertibility, etc.

(iii) Check whether a numerical algebra is a field.
(iv) Find the set of non-invertible elements of a

commutative quaternion QS , and investigate the
solutions of linear systems over QS .

Finally, as an application we apply the above approach to
investigate a commutative quaternion QS , which was firstly
proposed by Segre [20] and received many applications
recently [3, 18].

Recently, the semi-tensor product (STP) of matrices
has been proposed and used to investigate some algebraic
properties, such as cross-dimensional general linear algebra
gl(R) = ∪∞i=1gl(n,R) [8, 9], Boolean-like algebras [11], etc.
The basic tool used in this paper is also STP. Using it,
the product structure matrix (PSM) of a given algebra is
constructed. The PSM, which completely determines the
algebra, is the key issue in our investigation.

The rest of this paper is organized as follows: Section
2 reviews some necessary preliminaries, including (i) STP
of matrices; (ii) Structure matrices of binary operators,
particularly, PSM of finite dimensional algebras. In
Section 3 the numeralization and dis-numeralization of
algebras are proposed, algorithms are developed. Section 4
considers base transformation, which provides an essential
numerically separable algebra. Some properties of an
algebra are investigated via its PSM. In Section 6 we
consider when a numerical algebra is a field. Necessary
and sufficient conditions are obtained. In Section 7 a
commutative quaternion, QS is investigated. The set of

non-invertible elements is revealed, which is shown to be
a zero-measure set. The solution of linear systems over QS

is discussed. Section 8 gives some brief concluding remarks.
Before ending this section, a list of notations is presented

as follows:

1. A: an algebra; F: a field; R(C,Q): field of real
(complex, rational) numbers.

2. Fm×n: the set of m × n matrices with all entries in F.
3. Col(M) (Row(M)): the set of columns (rows) of matrix

M. Coli(M) (Rowi(M)) is the i-th column (row) of
matrix M.

4. δi
n: the i-th column of identity matrix In.

5.
⊎

: direct sum of vector spaces.

2. Preliminaries

2.1. STP of matrices

This subsection provides a brief survey on semi-tensor
product (STP) of matrices. We refer to [6,7] for more details.

Definition 2.1. [5, 6]: Let M ∈ Fm×n and N ∈ Fp×q

where F ∈ {Q,R,C}, and t = lcm{n, p} be the least common

multiple of n and p. The STP of M and N, denoted by MnN,

is defined as

(
M ⊗ It/n

) (
N ⊗ It/p

)
∈ Fmt/n×qt/p, (2.1)

where ⊗ is the Kronecker product.

Remark 2.2. (i) When n = p, M n N = MN. That is, the

semi-tensor product is a generalization of conventional

matrix product. Moreover, it keeps all the properties of

conventional matrix product available [6].

(ii) Throughout this paper the matrix product is assumed to

be the STP and the symbol n is mostly omitted.

(iii) For statement ease, the field F in this paper is assumed

to be of characteristic 0. Particularly, the reader, who

is not familiar with abstract algebra, may consider F ∈

{Q,R,C}. In fact, the results in this paper are mostly

applicable to Galois fields.

We briefly review some basic properties of STP:

Proposition 2.3. [5, 6]

1. (Associative Law) (F nG) n H = F n (G n H).

Mathematical Modelling and Control Volume 1, Issue 1, 1–11
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2. (Distributive Law)

F n (aG ± bH) = aF nG ± bF n H,

(aF ± bG) n H = aF n H ± bG n H, a, b ∈ R.

Define a swap matrix W[m,n] ∈ Mmn×mn as follows:

W[m,n] :=
[
In ⊗ δ

1
m, In ⊗ δ

2
m, · · · , In ⊗ δ

m
m

]
∈ Mmn×mn. (2.2)

Proposition 2.4. [5, 6] Let x ∈ Rm and y ∈ Rn be two

column vectors. Then W[m,n]x n y = y n x.

Proposition 2.5. [5, 6] Let x ∈ Ft be a column vector, and

A be an arbitrary matrix over F. Then x n A = (It ⊗ A) n x.

2.2. PSM of a finite dimensional algebra

Let A = (V, ∗). Assume a basis of V is B =

(e1, e2, · · · , en). Then it is clear that the properties of A is
completely determined by the binary operator ∗, which is
briefly called “product”. For a fixed basis B, a vector X ∈ V

can be expressed as a vector X = (x1, x2, · · · , xn)T , which

means X =
n∑

i=1
xiei. We introduce a matrix, called the PSM,

which is a complete description of the product ∗.

Proposition 2.6. Let A = (V, ∗) be a finite dimensional

algebra over F with a fixed basis B = (e1, e2, · · · , en). Then

there exists a unique matrix MA ∈ Fn×n2 , called the PSM of

A, such that X ∗ Y = MAXY, X,Y ∈ V.

Proof. Assume eα ∗ eβ =
n∑

k=1
λ
αβ
k ek, and set

j = (α − 1)n + β, 1 ≤ α ≤ n, 1 ≤ β ≤ n. (2.3)

Then we define

MA(i, j) := λ
αβ
i , i = 1, 2, · · · , n, j = 1, 2, · · · , n2. (2.4)

It is easy to verify that for 1 ≤ j ≤ n2, there exists a
unique pair (α, β), with 1 ≤ α ≤ n, 1 ≤ β ≤ n, such that
(2.3) holds. Hence, MA is completely constructible by (2.4).
Straightforward computation shows that X ∗Y = MAXY. �

Using PSM, we can transform the complex form of
an operation into algebraic form. In addition, PSM
can transform some qualitative properties into quantitative
expressions, which will be mentioned in Section 5.

Example 2.7. Consider the following algebras:

(i) Quaternion, Q. Consider the classical (i.e.,

Hamiltonian) quaternion. Let (1, i, j, k) be its classical

basis. Then it is easy to calculate that its PSM is

MQ =

[
1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 −1
0 1 0 0 1 0 0 0 0 0 0 1 0 0 −1 0
0 0 1 0 0 0 0 −1 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 −1 0 0 1 0 0 0

]
. (2.5)

(ii) Cross product over R3 (denoted by Cr): Let (I, J,K) be

its classical basis. Then its PSM is

MCr =


0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0

 (2.6)

3. Numeralization and dis-numeralization

Definition 3.1. Assume A = (V, ∗) is a non-numerical

algebra over F with a basis as (e1, e2, · · · , en). Then we

can add a numerical dimension to it to make it a numerical

algebra. Precisely speaking, we define a new operator ⊕ as

X ⊕ Y =



X ∗ Y + ci, j, X = ei, Y = e j, ci, j ∈ F,

Y, X = 1,

X, Y = 1,

1, X = Y = 1.

(3.1)

ThenAa := (V
⊎
F,⊕) is called a numeralization ofA.

If the ci, j = 0, ∀i, j. Then the numeralization is called a

numerically separable numeralization.

Remark 3.2. (i) In the enlarged vector space, we assume∑n
i=1 0ei = 0, that is, the zero element in V is identified

with 0 ∈ F.
(ii) By definition, in the enlarged vector space we also have

1 ⊕ X = X, X ∈ V.

Example 3.3. (i) Consider Cr, denote a basis of V = R3

as B = {e1, e3, e3}. It is a non-numerical algebra. Now

we add R to it and define a new operator as

X ⊕ Y =



X~×Y + ci, j, X = ei, Y = e j,

Y, X = 1,

X, Y = 1,

1, X = Y = 1,

Mathematical Modelling and Control Volume 1, Issue 1, 1–11
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where ci, j = −1, if i = j, otherwise, ci, j = 0.

Then it is easy to verify that the numeralized algebra

(R3 ⊎
R,⊕) is exactly the quaternion Q.

(ii) Consider special linear algebra sl(2,R), which is the

set of 2×2 real matrices with their trace equal to 0 [2].

Choose a basis as

e1 =

0 1
0 0

 ; e2 =

1/2 0
0 −1/2

 ; e3 =

0 0
1 0

 .
Its PSM is

Msl(2,R) =


0 −1 0 1 0 0 0 0 0
0 0 2 0 0 0 −2 0 0
0 0 0 0 0 −1 0 1 0

 .
Now we add R to it and define

X ⊕ Y =



[X,Y], X,Y ∈ sl(2,R),

rY, X = r ∈ R,

rX, Y = r ∈ R,

rs, X = r ∈ R,Y = s ∈ R.

Then we have the numericalized algebra

(sl(2,R)
⊎
R,⊕). We calculate its PSM under the

basis of (1, e1, e2, e3)

Msl(2,R)
⊎
R =

[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 −1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 2 1 0 0 0 0 −2 0 0
0 0 0 1 0 0 0 0 0 0 0 −1 1 0 1 0

]
. (3.2)

It is a numerically separable numericalization.

Remark 3.4. In [9] a cross-dimensional general linear

algebra is defined as gl(R) := ({A | A is square}, [·, ·]) ,
where [A, B] := A n B − B n A, which is also applicable

to 1 × 1 matrix, that is A ∈ R or B ∈ R. But it is completely

different from ⊕ defined in previous example.

Definition 3.5. Assume A = (V, ∗) is a numerical algebra

over F.

(i) The subspace V\F is called the non-numerical subspace,

denoted by Va. It is clear that if dim(V) = n, then dim(Va) =

n − 1.

(ii) If Aa := (Va, ∗) is a sub-algebra, A is said to be

numerically separable.

Example 3.6. [17]

Let A = (V, ∗) be a numerical algebra on R, where V =

{a + bi | a, b ∈ R}.

(i) Complex Numbers (C): The product is defined by 1 ∗
i = i ∗ 1 = i; i ∗ i = −1. Then we have C as a two

dimensional algebra over R.

(ii) Dual Numbers (D): Assume the product is defined by

1 ∗ i = i ∗ 1 = i; i ∗ i = 0. Then we have D as another

two dimensional algebra over R. It is easy to see that

D is numerically separable.

(iii) Hyperbolic Numbers (H): Assume the product is

defined by 1 ∗ i = i ∗ 1 = i; i ∗ i = 1. Then we know

that H is also a two dimensional algebra over R.

(iv) e1 − e2 algebra [17] is a numerical algebra, which

is defined as A = (V, ∗), where V = {a + be1 +

ce2, | a, b, c ∈ R}, with the product defined by e2
i =

ei, i = 1, 2; and e1 ∗ e2 = e2 ∗ e1 = 0.
It is easy to verify that e1 − e2 is numerically separable.

(v) Consider a numerical algebra A = (V, ∗) over R, with

a basis B = (e1 = 1, e2, e3, e4). Corresponding to this

basis its PSM is

MA =

[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

]
. (3.3)

It is ready to verify that this is a numerically separable

algebra.

Definition 3.7. Let A = (V, ∗) be a numerical algebra.

Define a new algebraic structure on Va = V\F as

X 	 Y := ΠaX ∗ Y, X,Y ∈ Va, (3.4)

where Πa is the projection from V to Va.

Proposition 3.8. Let A = (V, ∗) be a numerical algebra.

Then Aa := (Va,	) is an algebra, which is called the dis-

numeralized algebra ofA.

Proof. It is enough to show that 	 is distributive. Since the
projection Πa is linear, the conclusion is obvious. �

The process from a numerical algebra to its dis-
numeralized algebra is called the dis-numeralization.

Definition 3.9. A subspace Vs ⊂ V is a closed subspace, if

it is closed under ∗. That is, X ∗ Y ∈ Vs, ∀X,Y ∈ Vs.

The following proposition comes from Definition 3.9.

Proposition 3.10. Let A be a numerical algebra. Then the

following are equivalent:

Mathematical Modelling and Control Volume 1, Issue 1, 1–11
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(i) A is numerically separable;

(ii) Va is a closed subspace;

(iii) Aa = (Va, ∗) is an algebra.

Example 3.11. Let F = Q be the field of rational numbers.

Consider the extended field A := Q(
√

2,
√

3), which is a

numerical algebra. Set its basis as (e1 = 1, e2 =
√

2, e3 =
√

3, e4 =
√

6). Then its PSM is calculated as in Table 1.

Expressing the table into matrix form yields

MA =

[
1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 6
0 1 0 0 1 0 0 0 0 0 0 3 0 0 3 0
0 0 1 0 0 0 0 2 1 0 0 0 0 2 0 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

]
. (3.5)

It is obvious that this algebra is not numerically

separable. A simple computation shows the PSM of Aa =

(Va, ◦) is

MAa =


0 0 0 0 0 3 0 3 0
0 0 2 0 0 0 2 0 0
0 1 0 1 0 0 0 0 0

 .
It is obvious that MAa can be obtained from MA by

deleting rows and columns of MA, which are related to e1.

Example 3.12. Recall theAa in Example 3.11. If we choosec1,1 = 2, c2,2 = 3, c3,3 = 6,

ci, j = 0, i , j,

then (Aa)a = A, where (Aa)a is a numeralization of non-

numerical algebraAa.

Next, we consider numeralization of vector spaces. A
vector space V over F, such as Rn over R, is not an algebra,
because there is no product. A simple way to turn it into an
algebra is to add a trivial product, called zero product, to it.
That is, define X ∗ Y = 0, ∀X,Y ∈ V. It is ready to verify
that (V, ∗) is a non-numerical algebra.

Definition 3.13. Let V be a vector space over F. A

numeralization of V is a numeralization of (V, ∗), where ∗

is zero product on V.

Example 3.14. Let V = Rn (or V = Cn). Consider algebra

(V, ∗), where ∗ is the zero product. Defineci,i = 1, i = 1, 2, · · · , n,

ci, j = 0, i , j.
(3.6)

Then (V
⊎
F,⊕) is a numerical algebra.

Table 1. MA.

X ∗ Y e1 ∗ e1 e1 ∗ e2 e1 ∗ e3 e1 ∗ e4

e1 1 0 0 0

e2 0 1 0 0

e3 0 0 1 0

e4 0 0 0 1

X ∗ Y e2 ∗ e1 e2 ∗ e2 e2 ∗ e3 e2 ∗ e4

e1 0 2 0 0

e2 1 0 0 0

e3 0 0 0 2

e4 0 0 1 0

X ∗ Y e3 ∗ e1 e3 ∗ e2 e3 ∗ e3 e3 ∗ e4

e1 0 0 3 0

e2 0 0 0 3

e3 1 0 0 0

e4 0 1 0 0

X ∗ Y e4 ∗ e1 e4 ∗ e2 e4 ∗ e3 e4 ∗ e4

e1 0 0 0 6

e2 0 0 3 0

e3 0 2 0 0

e4 1 0 0 0

Remark 3.15. Note that an interesting fact is: in the above

example ⊕|V is exactly the inner product on V. That is, in

the numeralized vector space, the inner product becomes a

standard vector product.

Example 3.16. Let V = R3, and consider (R3, ∗) as an

algebra with zero product. Now we defineci,i = −1/c, i = 1, 2, 3,

ci, j = 0, i , j,
(3.7)

where c is the speed of light. Then numeralized algebra

(R3 ⊎
R,⊕) is the four dimensional spacious-time space in

general relativity, consisting of real world R3 and time t ∈ R.

In fact, (3.7) represents the Riemannian coefficients used for

general relativity [10]. ∗

4. Basis transformation

AssumeA = (V, ∗) is an algebra with B = (e1, e2, · · · , en)
as a basis of V . Moreover, its PSM is M. It is clear that

∗The idea comes from a private talk with a Physician friend.
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M depends on the choice of B. Let B′ = (e′1, e
′
2, · · · , e

′
n) be

another basis. Under this basis, the PSM is M′. Then their
relationship is easily obtained as follows.

Proposition 4.1. Assume B′ = BT, where T ∈ Fn×n is non-

singular. Then

M′ = T−1MT (In ⊗ T ) = T−1M(T ⊗ T ). (4.1)

Proof. Let B = (e1, e2, · · · , en) and B′ = (e′1, e
′
2, · · · , e

′
n).

Then

Vx = (e1, e2, · · · , en)X = (e′1, e
′
2, · · · , e

′
n)X′,

Vy = (e1, e2, · · · , en)Y = (e′1, e
′
2, · · · , e

′
n)Y ′.

Hence Y ′ = T−1Y, X′ = T−1X. It follows that

Vx ∗ Vy = (e1, e2, · · · , en)MXY = (e′1, e
′
2, · · · , e

′
n)M′X′Y ′

= (e1, e2, · · · , en)T M′T−1XT−1Y

= (e1, e2, · · · , en)T M′T−1(In ⊗ T−1)XY.

Since X,Y ∈ Fn are arbitrary, it follows that

M = T M′T−1(In ⊗ T−1) = T M′
(
T−1 ⊗ T−1

)
. (4.2)

It is ready to verify that (4.1) and (4.2) are equivalent. �

Recall the numerically separability. It is obvious that the
definition is basis-depending. A natural question is: If a
numerical algebra is not numerically separable, is it possible
to turn it into a numerically separable algebra by a proper
basis transformation? We give an example for this.

Example 4.2. Consider a numerical algebra A = (V, ∗)
over R with a basis as B = (e1 = 1, e2, e3, e4). Assume its

PSM is

M =

[
1 0 0 0 0 6 5 5 0 5 −2 2 0 5 2 0
0 1 0 0 1 1 3 1 0 3 1 1 0 1 1 1
0 0 1 0 0 −2 −2 −2 1 −2 3 −1 0 −2 −1 0
0 0 0 1 0 2 1 1 0 1 0 2 1 1 2 −1

]
. (4.3)

It is easy to see that this is not a numerically separable

algebra. For instance, let x = e3. Then x∗x = −2+e2 +3e3 <

Va. Hence Va is not closed.

Now we consider a basis transformation B′ = BT, where

T =


1 2 −2 3
0 1 0 0
0 −1 1 −1
0 0 0 1

 .

Under this new basis, the PSM becomes

M′ = T−1M(T ⊗ T ) =

[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

]
,

which is exactly the matrix of (3.3) in Example 3.6. Hence,

it is numerically separable.

From above example one sees that the definition of
numerically separable needs to be modified. We give the
following one.

Definition 4.3. A numerical algebra is essentially

numerically separable, if there exists a basis such that

under this basis it is numerically separable.

The following proposition is obvious.

Proposition 4.4. A numerical algebra is essentially

numerically separable, if and only if, there exists a closed

subspace Va such that

V = Va

⊎
F.

Definition 4.5. Given two algebras Ai = (Vi, ∗i), i = 1, 2
over same F.

1. A1 is said to be homomorphic to A2, if there exists a

mapping π : V1 → V2 such that

(i) π(a1X1 +1 a2X2) = a1π(X1) +2 a2π(X2);
(ii) π(X1 ∗1 X2) = π(X1) ∗2 π(X2).

2. A1 is said to be isomorphic to A2, if A1 is

homomorphic toA2, and the homomorphism π : V1 →

V2 is bijective.

3. If A1 = A2, and π : V → V is an isomorphism, then π

is called an automorphism.

We have the following result.

Proposition 4.6. (i) LetAi = (Vi, ∗i), where dim(Vi) = ni,

i = 1, 2. π : V1 → V2 is a homomorphism, if and only

if, there is a matrix Tπ ∈ Fn2×n1 such that

TπMA1 − MA2 (Tπ ⊗ Tπ) = 0. (4.4)

(ii) Let Ai = (Vi, ∗i), where dim(Vi) = n, i = 1, 2. π :
V1 → V2 is an isomorphism, if and only if, there is a

non-singular matrix Tπ ∈ Fn×n such that

TπMA1 − MA2 (Tπ ⊗ Tπ) = 0. (4.5)
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(iii) Let A = (V, ∗), where dim(V) = n. π : V → V is an

automorphism, if and only if, there is a non-singular

matrix Tπ ∈ Fn×n such that

TπMA − MA (Tπ ⊗ Tπ) = 0. (4.6)

Proof. We prove (4.6) only. Proofs for (4.4) and (4.5) are
similar.

(Necessity) To meet the requirement of (i) of Definition
4.5, it is clear that π must be a linear mapping. Hence there
exists a matrix Tπ ∈ Fn×n such that π(X) = TπX, X ∈ V.

Since π is bijective, Tπ must be non-singular.

Now for any X,Y ∈ V we have

TπMAXY = MATπXTπY

= MATπ (In ⊗ Tπ) XY = MA (Tπ ⊗ Tπ) XY .

Since X,Y ∈ V are arbitrary, (4.6) follows immediately.

(Sufficiency) Verifying the proof of necessity, it is easy to
see that each step is necessary and sufficient. The conclusion
follows. �

Example 4.7. Consider a two dimensional NA over R as

V = {a + be | a, b ∈ R}, where 1 ∗ e = e ∗ 1 = e; e ∗ e = e.

It seems that we have a new two dimensional algebra over

R. But if we let i = 1 − 2e, then it is easy to see that i2 = 1.

That is, this new two dimensional algebra is isomorphic to

the hyperbolic algebra H.

Using STP, [4] has proved that there are only three two

dimensional algebras overRwith their isomorphic algebras.

5. Properties via PSM

Definition 5.1. A = (V, ∗) is a finite dimensional algebra.

(i) A is commutative, if ∗ is symmetric. That is, X ∗ Y =

Y ∗ X, X,Y ∈ V.

(ii) A is anti-commutative, if ∗ is skew-symmetric. That is,

X ∗ Y = −Y ∗ X, X,Y ∈ V.

(iii) A is associative if

X ∗ (Y ∗ Z) = (X ∗ Y) ∗ Z, X,Y,Z ∈ V. (5.1)

Proposition 5.2. Let A = (V, ∗) be a given finite

dimensional algebra, and MA is its PSM.

(i) A is symmetric if and only if,

MA
(
In2 −W[n,n]

)
= 0. (5.2)

(ii) A is skew-symmetric, if and only if,

MA
(
In2 + W[n,n]

)
= 0. (5.3)

(iii) A is associative, if and only if,

MA (In ⊗ MA) = M2
A. (5.4)

Proof. (i) Using PSM, it is clear that X ∗ Y = Y ∗ X can be
expressed as MAXY = MAYX. Using swap matrix, the right
hand side can be expressed as MAXY = MAW[n,n]XY. Since
X,Y ∈ V are arbitrary, (5.2) follows. (ii) The proof is similar
to (i). (iii) Using PSM, (5.1) can be expressed as

MAXMAYZ = MA (MAXY) Z.

It becomes MA (In ⊗ MA) XYZ = M2
A

XYZ using
Proposition 2.5 . Thus (5.4) follows. �

6. From numerical algebra to field

Assume A = (V, ∗) is a numerical algebra over F, we ask
when A is a field? In other words, when A ⊃ F is a finite
extension of F (with [A : F] = n) [16]?

Since V is a vector space, of course, (V,+) is an abelian
group. As for the distribution, it is also ensured by the
properties of algebra. Hence we have the following obvious
fact.

Lemma 6.1. If A = (V, ∗) be a numerical algebra over F,

thenA is a field if and only if, (V\{0}, ∗) is an abelian group.

According to Lemma 6.1, we have only to check (i)
commutativity? (ii) associativity? (iii) invertibility? (i) can
be verified by (5.2), and (ii) by (5.4). Hence, we have only to
find a way to verify when a numerical algebra is invertible.
To this end, we need some preparations.

Definition 6.2. Let F be a given field, A ∈ Fk×k2 . A is said

to be jointly non-singular, if for any 0 , x ∈ Fk, Ax is

non-singular.
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Split A into k square blocks as A = [A1, A2, · · · , Ak],
where Ai = Aδi

k ∈ Fk×k. Denote by

µi1,i2,··· ,ik := det
[
Col1(Ai1 ) Col2(Ai2 ) · · ·Colk(Aik )

]
,

i1, · · · , ik = 1, 2, · · · , k.

Then we have the following result:

Proposition 6.3. A ∈ Fk×k2 is jointly non-singular, if and

only if, the following homogeneous polynomial

p(x1, · · · , xk) = det(Ax)

=
k∑

i1=1
· · ·

k∑
ik=1

µi1,··· ,ik xi1 · · · xik , 0, ∀x , 0.
(6.1)

Proof. Expanding the determinant det(Ax) yields this. �

Example 6.4. (i) Consider C. Using {1, i} as a basis of

C over R, it is easy to verify that the PSM of C is

MC =

1 0 0 −1
0 1 1 0

 (6.2)

(ii) Calculating right hand side of (6.1) for MC, we have

µ11 = det

1 0
0 1

 = 1; µ12 = det

1 −1
0 0

 = 0;

µ21 = det

0 0
1 1

 = 0; µ22 = det

0 −1
1 0

 = 1.

It follows that p(x1, x2) = x2
1 + x2

2. Hence, p(x1, x2) = 0,

if and only if, x1 = x2 = 0. It follows that MC is jointly

non-singular.

From above arguments, we have the following result.

Theorem 6.5. Assume A = (V, ∗) is a numerical algebra

over F, where V is an n-dimensional vector space with a

basis (e1 = 1, e2, · · · , en). Moreover, assume the PSM is

MA. ThenA is a field, if and only if,

(i) M2
A

= MA (In ⊗ MA) ;
(ii) MA = MAW[n,n].

(iii) MA is jointly non-singular;

Proof. It was shown in Proposition 5.2 that condition (i) is
equivalent to associativity, and condition (ii) is equivalent to
commutativity.

Now we consider condition (iii). In fact, it is equivalent
to that each x , 0 has unique inverse.

Let x0 , 0. Then we consider the algebraic equation
MAx0y = δ1

k . To get unique solution, MAx0 should be non-
singular. The conclusion is obvious. �

Example 6.6. Consider E = Q(
√

2,
√

3).

It is easy to see that a basis of E over Q is:

(1,
√

2,
√

3,
√

6). Using this basis, the PSM is calculated

as in Example 3.11, (see (3.5)).

We verify three conditions in Theorem 6.5. Verifications of

conditions (i) and (ii) are straightforward calculations. We

verify condition (iii) only. Let x = (a, b, c, d)T . It is easy to

calculate that

det(MAx) = a4 + 4b4 + 9c4 + 36d4 − 4a2b2 − 6a2c2

− 12a2d2 − 12b2c2 − 24b2d2 − 36c2d2 + 48abcd.

Factorizing the above polynomial yields

det(MAx)
= (a +

√
2b +

√
3c +

√
6d)(a +

√
2b −

√
3c −

√
6d)

(a −
√

2b +
√

3c −
√

6d)(a −
√

2b −
√

3c +
√

6d).

Since each factor is a linear combination of the basis

elements {1,
√

2,
√

3,
√

6}, we conclude that det(MAx) , 0,

∀(a, b, c, d)T , 04.

Assume E is a Galois extension over F, [E,F] = k. As a
convention, we assume the basis of E is (e1 = 1, e2, · · · , ek).
Then we have the following result:

Proposition 6.7. Let E be a Galois extension of F, and [E :
F] = k. Denote the PSM of E by ME = [M1

E ,M
2
E , · · · ,M

k
E] ∈

Fk×k2 . Then ME satisfies the following conditions:

(i) M1
E = Ik.

(ii) Col1(Ms
E) = δs

k, s = 1, 2, · · · , k.

Proof. It is clear that in vector form we have ei = δi
k. By

definition, Coli(M1
E) = δ1

k ×E δ
i
k = δi

k, i = 1, · · · , k. Hence
M1

E = Ik. The reason for the other condition is the same. �

Since we can add i to R to generate another field C, it is a
natural question: Is it possible to add some new numbers to
C to generate a new field F such that F is a Galois extension
of C? The answer is “No” †.

As an application of the PSM of finite extension, we prove
the following result:

Theorem 6.8. There is no Galois extension over C.
†W. Li [15] mentioned that in 1861 Weierstrass proved that C

is the only finite field extension over R.
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Proof. We prove it by contradiction. Assume there exists a
Galois extension [E : C] = k, and let ME be the PSM of
E. Choose x∗ = [a 1k−1]T. Using equation (6.1) and the first
requirement of Proposition 6.7, we have

det(ME x∗) = ak + LOT (a) := 0, (6.3)

where LOT (a) stands for lower order terms. According to
fundamental algebraic theorem, (6.3) has solution a0. That
is, x∗ has no unique inverse, which is a contradiction. �

Remark 6.9. Using similar argument, it is easy to show that

there is no k = 2s+1 dimensional extension over R, because

equation (6.3) surely has real solution. But this method is

not applicable to the case of k = 2s.

7. Numerical algorithm for Segre quaternion

7.1. Invertibility of Segre quaternion

The Segre quaternion, denoted by QS , is
commutative. It is defined as follows: QS =

{x1 + x2I + x3J + x4K | x1, x2, x3, x4 ∈ R} . The product
is multi-linear over R and determined by the following
rules:

I2 = −1; J2 = 1; K2 = −1
I ∗ J = J ∗ I = −K, I ∗ K = K ∗ I = J, J ∗ K = K ∗ J = −I.

Then the PSM of QS is easily calculated as follows:

MQS :=
[

1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 −1
0 1 0 0 1 0 0 0 0 0 0 −1 0 0 −1 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 1 0 0 −1 0 0 −1 0 0 1 0 0 0

]
. (7.1)

A straightforward computation shows that MQS satisfies
the first two requirements of Theorem 6.5. Therefore, QS is
commutative and associative. Calculating

p(x1, x2, x2, x4) = det(MQS x)
=(x2

1 − x2
3)2+(x2

2 − x2
4)2 + 2(x1x2 + x3x4)2+2(x1x4 + x2x3)2.

Hence, x = x1 + x2I + x3J + x4K is invertible, if and
only if, [x1 x2]T , ±[x3 − x4]T . Then we know that QS

is almost invertible except a zero-measure set Ω, where
Ω =

{
xT ∈ R4

∣∣∣ (x1, x2) = ±(x3,−x4)
}
.

From above argument, we obtain the following result:

Proposition 7.1. The commutative quaternion QS is: (1)

commutative; (2) associative; and (3) invertible over

QS \{Ω}.

Next, we consider the dis-numeralization of QS , the
following is obvious:

Proposition 7.2. The dis-numeralization of QS is a

symmetric cross product, denoted by ×̄, over R3, which has

PSM as

M×̄ =


0 0 0 0 0 −1 0 −1 0
0 0 1 0 0 0 1 0 0
0 −1 0 −1 0 0 0 0 0


7.2. Linear systems over QS

Denote by QS
m×n the set of matrices, which have its

entries in QS .

Definition 7.3. Let M ∈ QS
n×n. M is said to be non-singular

(or invertible), if det(M) < Ω.

Proposition 7.4. If M ∈ QS
n×n is invertible, there exists a

matrix M−1 ∈ QS
n×n, such that M ∗ M−1 = M−1M = In.

Proof. The M−1 can be constructed exactly the same as
matrices over R or C. The uniqueness is also trivial. �

In numerical computation it is important to verify if an
element in an algebra has inverse. If the answer is “yes”,
how to calculate it. Recalling the proof of Theorem 6.5, the
following result is obvious:

Proposition 7.5. Assume A = (V, ∗) is a k dimensional

commutative algebra with MA as its PSM. Then x ∈ V

is invertible, if and only if, MAx is invertible. Moreover,

x−1 = (MAx)−1 δ1
k .

Example 7.6. Recall Example 6.6 again. Then MA can

be used to calculate the inverse of any x , 0 using the

proposition above. For example, let x = 1 +
√

2−
√

3−
√

6.

In vector form it becomes x = (1, 1,−1,−1)T . Then

x−1 = (MAx)−1δ1
4 = (0.5,−0.5, 0.5,−0.5)T .

Back to scalar form, we have x−1 = 0.5(1−
√

2 +
√

3−
√

6).

Now we can calculate the inverse of a matrix on QS .

Mathematical Modelling and Control Volume 1, Issue 1, 1–11



10

Example 7.7. [13] Given

M =

−I 1 − K

J I

 ,
in vector form we have

m11 = −I ∼ [0,−1, 0, 0]T , m12 = 1 − K ∼ [1, 0, 0,−1]T

m21 = J ∼ [0, 0, 1, 0]T , m22 = I ∼ [0, 1, 0, 0]T .

It is ready to calculate that

det(M) = 1 − I − J ∼ [1,−1,−1, 0]T < Ω.

1
det

(M) = (MQS det(M))−1δ1
4

= [0.2, 0.6,−0.2,−0.4]T∼0.2 + 0.6I − 0.2J − 0.4K.

M∗ =

 I −1 + K

−J −I

 .
Then M−1 = 1

det (M)M∗ := B = (bi j),

b11 ∼ [−0.6, 0.2,−0.4, 0.2]T , b12 ∼ [0.2,−0.4, 0.8, 0.6]T ,

b21 ∼ [0.2,−0.4,−0.2, 0.6]T , b22 ∼ [0.6,−0.2, 0.4,−0.2]T ,

which are the same as in [13].

Finally, we consider a linear system Ax = b, where A ∈

QS
n×n, b ∈ QS

n×1. We have the following result.

Proposition 7.8. Assume A is non-singular, then system

Ax = b has unique solution x = A−1 ∗ b.

Example 7.9. Consider a linear system Ax = b, where A =(
ai, j

)
∈ QS

3×3 with

a11 ∼ [1, 0, 0, 1]T ; a12 ∼ [0,−1, 0, 0]T ; a13 ∼ [0, 0,−1, 0]T ;
a21 ∼ [−1, 0, 0, 0]T ; a22 ∼ [1, 0, 0,−1]T ; a23 ∼ [0,−1, 1, 0]T ;
a31 ∼ [−1,−1, 0, 0]T ; a32 ∼ [0, 2, 0, 1]T ; a33 ∼ [1, 1,−1,−1]T .

b = (b1, b2, b3)T ∈ QS
3×1 with

b1 ∼ [2, 0,−1,−1]T ; b2 ∼ [−2, 0, 0, 1]T ; b3 ∼ [0,−1,−1, 1]T .

Then it is easy to calculate that

det(A) ∼ [1, 0,−1,−5]T < Ω,
1

det (A) ∼ [0.0345,−0.0138,−0.0345, 0.1862]T .

The conjugate matrix of A is A∗ = (bi, j), where

b11∼[−2, 1,−1, 0]T ; b12∼[−1, 2,−1, 3]T ; b13∼[−1, 1, 1, 1]T ;
b21 ∼ [0, 2,−2, 0]T ; b22 ∼ [2, 2,−1, 1]T ; b23 ∼ [0, 2, 1, 0]T ;
b31∼[1,−1,−1,−2]T; b32∼[0,−1,−2,−1]T; b33∼[2,−1, 0, 0]T.

Finally, the solution is x = 1
det(A) A∗b = (x1, x2, x3)T , where

x1 ∼ [0.2345,−0.8138, 0.1655,−1.0138]T ,

x2 ∼ [−1.0276, 0.1310,−0.3724,−0.2690]T ,

x3 ∼ [0.6207, 0.1517,−0.6207,−0.0483]T .

A direct computation shows that the solution is correct.

8. Conclusions

Two classes of algebras called numerical and non-
numerical ones, were proposed and investigated. The
conversions between these two kinds of algebras were
established. Particularly, it was pointed out that the cross
product on R3 (Cr) and the quaternion (Q) are a couple of
representatives. That is, Cr is a non-numerical algebra and
Q is a numerical algebra. Properly numeralizing Cr yields
Q and dis-numeralizing Q yields Cr. Then numerization
of vector space was also investigated. It was pointed
out that Einstein four dimensional special-time space is
of this kind of numerizations. Then the condition for a
numerical algebra to be a field is investigated. Finally,
as a commutative quaternion, the Segre quaternion QS is
considered. Its set of non-invertible elements is revealed.
Non-singular matrices and solutions of linear systems over
QS were investigated.

The basic tool in this investigation is STP. Using STP
the PSM of an algebra was proposed, which contains all
the information about an algebra. In fact, PSM provides a
convenient framework for the investigation.

In one word, this paper established a bridge to connect a
field with algebras (including vector spaces) over it.
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