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1. Introduction

The∞ - Laplace operator

∆∞u ≡
∑

i, j

∂u
∂xi

∂u
∂x j

∂2u
∂xi∂x j

is formally the limit of the p - Laplace operator

∆pu ≡ ∇·(|∇u|p−2∇u) as p→ ∞.
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The two-dimensional equation

( ∂u
∂x1

)2∂ 2u
∂x 2

1

+ 2
∂u
∂x1

∂u
∂x2

∂ 2u
∂x1∂x2

+
( ∂u
∂x2

)2∂ 2u
∂x 2

2

= 0

was introduced by G. Aronsson in 1967 as a tool to provide optimal Lipschitz extensions, cf. [1, 2]. It
has been intensively studied ever since; some highlights are

• Viscosity solutions for ∆∞ were introduced by T. Bhattacharya, E. DiBenedetto, and J. Manfredi
in [3].
• R. Jensen proved uniqueness in [12].
• Differentiability was proved by O. Savin and L. Evans. See [8, 24].
• The connexion with stochastic game theory (“Tug-of-War”) was discovered by Y. Peres, O.

Schramm, S. Sheffield, and D. Wilson, cf. [23].

By examples we shall shed some light on two problems in the plane. The problems are related but
not identical. In convex domains so similar methods often work for both problems that it is optimal to
treat them simultaneously. —We remark that the main difficulty is the lack of second derivatives. The
solutions are to be interpreted as viscosity solutions. The reader may consult [7, 17].

The first one is the boundary value problem
∆∞u = 0 in G

u = 0 on ∂Ω

u = 1 on ∂K

(1.1)

in a convex ring G = Ω \ K, where Ω is a bounded convex domain in R2 and K ⊂ Ω is a closed convex
set. The unique solution, say u∞, belongs to C(G) and always takes the boundary values; K is often
only an isolated point. We say that u∞ is the ∞-potential. In [18] the term “capacitary function” is
used.

The second object is the∞ - Eigenvalue problem max
{

Λ −
|∇v|

v
, ∆∞v

}
= 0 in Ω

v ∈ C(Ω), v|∂Ω = 0, v > 0.
(1.2)

Solutions are called∞ - Ground States. Problem (1.2) is the asymptotic limit as p→ ∞ of the equation

∇·
(
|∇vp|

p−2∇vp
)

+ λp|vp|
p−2vp = 0, (1.3)

where vp ∈ W1,p
0 (Ω), vp > 0. Problem (1.2) has a solution if and only if

Λ = lim
p→∞

p√
λp,

but uniqueness (= simplicity of Λ) is not known to hold even in convex domains.∗

∗In more general domains this fails, cf. [10].
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We shall restrict ourselves to those∞ - Ground States that come as limits of sequences of solutions
to (1.3). Such a limit v has the advantage that log v is concave. This valuable property is the reason for
why we prefer these so-called variational∞ - Ground States. See [13, 28].

The main achievement of this paper is to complement our study in [20, 21]. There the crucial
assumption that |∇u∞| (or |∇v∞|) has only a finite number of maxima and minima on the boundary
∂Ω was properly verified merely for convex polygons. Smooth domains were out of reach.† Our
contribution now is to provide a class of explicit smooth domains having the desired property: for
example, the ellipse is included. We are grateful to B. Kawohl, who informed us about [15] and
suggested Alexandroff’s moving plane method.

Despite sharing similar properties, solutions of (1.1) and (1.2) may not coincide even under the
(necessary) condition that K be chosen as the High Ridge

K = {x ∈ Ω| dist(x, ∂Ω) = R}, R = max
x∈Ω

dist(x, ∂Ω). (1.4)

(Here R is the radius of the largest inscribed ball in Ω.) Nevertheless, it is shown in Theorem 3.3 in [28],
that in a certain class of domains, which includes the stadium–like domains, the distance function is
the unique solution to both (1.1) and (1.2). In general, coincidence is a difficult problem.

We conclude the work by noticing a recent result in a punctured square: the ring domain is a square
with its center removed. It has been predicted that the∞-Potential would coincide with the∞ - Ground
State, cf. [14]. Brustad’s explicit formula in [5] reveals that the functions do not coincide. However,
the maximal difference between the functions is < 10−3 for a square of area 4, according to numerical
calculations in [4].

2. Preliminaries

We use standard notation. Here Ω ⊂ R2 will always denote a bounded convex domain with smooth
boundary, say at least of class C2,α. We shall denote the ∞ - Ground State by v∞, and the solution of
(1.3) by vp. Analogously, the solution of (1.1) is u∞, and up will denote the solution of problem (3.1),
see Section 3.1. Thus

v∞ = lim
p→∞

vp, u∞ = lim
p→∞

up,

perhaps via a subsequence. We will also use the normalization

max
x∈Ω

v∞ = 1. (2.1)

According to Theorem 2.4 in [28], the High Ridge (see (1.4)) is also the set where v∞ attains its
maximum 1.

The contact set The contact set Υ plays a central role. To define it, following Y. Yu we use the
operator

S −(x) = lim
r→0

{
− min

y∈∂B(x,r)

v∞(y) − v∞(x)
r

}
.

†We think that every bounded convex domain with C3 - boundary will do.
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According to Theorem 3.6 in [28], S − is continuous in Ω and at points of differentiability S −(x) =

|∇v∞(x)|. The contact set
Υ =

{
x ∈ Ω | S −(x) = Λv∞(x)

}
is closed and has zero area, see Corollary 3.7 in [28]. In addition, by Corollary 7 in [21], Υ does not
reach ∂Ω. The set where v∞ is not differentiable is contained in Υ, cf. Lemma 3.5 in [28]. In the open
set Ω \ Υ, v∞ is C1 and ∆∞v∞ = 0, by Theorem 3.1 in [28].

Streamlines For the benefit of the reader, we describe the role of the streamlines. All this can be
found in [20, 21]. We begin with the ∞-potential u∞. From each boundary point ξ ∈ ∂Ω a unique
streamline α = α(t) starts and reaches K in finite time:

dα(t)
dt

= +∇u∞(α(t)), α(0) = ξ ; 0 ≤ t ≤ T.

It may meet and join other streamlines, but streamlines do not cross. Suppose now that‡

Along ∂Ω the speed |∇u∞(ξ)| has only a finite number of local minima.

More exactly we allow a finite number of strict local minimum points and a finite number of boundary
arcs along which strict minima are obtained. It is problematic to deduce this from the shape of the
domain. Polygons were treated in [20], and for a family of smooth domains the above assumption will
be verified in Section 5. — This is our achievement in the present work.

The streamline starting at a strict local minimum point is called an attracting streamline. If a local
minimum is attained along a whole closed boundary arc (there |∇u∞| is constant), then this minimum
produces two attracting streamlines: the two streamlines emerging from the endpoints of the arc. The
attracting streamlines are special, indeed. We cite the main theorem from [20].

Theorem 1. Let α be a streamline of u∞ that is not an attracting one. Then it cannot meet any
other streamline before it either meets (and joins) an attracting streamline or reaches K. The speed
|∇u∞(α(t))| is constant along α until it joins an attracting streamline, after which the speed is non-
decreasing.

The corresponding theorem for the streamlines of v∞ is similar; we only have to replace K by the
High Ridge of Ω; see (1.4). The High Ridge is also the set of points at which v∞ attains its maximum.
Suppose that γ1,γ2, · · · ,γN are the attracting streamlines. It is spectacular that outside the closed set

Γ = γ1 ∪ γ2 ∪ · · · ∪ γN

the ∞ - Ground State is ∞ - harmonic. This explains how the two problems are connected! (The
corresponding statement is false for a finite p.) Indeed, from [21] we have:

Theorem 2. Let β be a streamline of v∞ that is not an attracting one. Then it cannot meet any other
streamline before it either meets (and joins) an attracting streamline or reaches the High Ridge. The
speed |∇v∞(β(t))| is constant along β until it joins an attracting streamline.

In the open set Ω \ Γ the∞ - Ground State satisfies the∞-Laplace Equation ∆∞v∞ = 0.

We mention that area(Γ) = 0.
‡We do not know of any convex plane domain for which this is not valid!
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3. Gradient convergence up to the boundary

For our purposes, we need the convergence of the modulus of the gradient ∇vp up to the boundary
of Ω, as p→ ∞. A similar result is needed for the p-Potential. We split the proof for the two problems
(1.1) and (1.2).

3.1. The p - potential function

We shall use the p-harmonic approximation up → u∞ where
∆pup = 0 in G = Ω \ K

up = 0 on ∂Ω

up = 1 on ∂K.

(3.1)

As usual, ∆pu = ∇·(|∇u|p−2∇u). For p > 2 (in two dimensions) it is known that up ∈ C(G) and that it
takes the correct boundary values at each point. (This valuable property holds in arbitrary domains, be
they convex or not.) We recall the following results of J. Lewis in [18]; see also [11]:

• up ↗ u∞ in G.
• ∇up , 0 in G.
• up is real-analytic in G.
• up has convex level curves.
• up is superharmonic in G.

We shall need continuous second derivatives on the boundary ∂Ω. If ∂Ω is of class C2, then |∇up| ≥

cp > 0 in Ω \K according to Lemma 2 in [18]. It is known that up ∈ C1(Ω \K). By classical theory for
the equation ∑

i, j

(
δi j|∇up|

2 + (p − 2)
∂up

∂xi

∂up

∂x j

) ∂2w
∂xi∂x j

= 0

with “frozen coefficients” we can conclude, using the Calderon-Zygmund theory, that the particular
solution w = up ∈ C2,α(Ω \ K) provided that ∂Ω is of class C2,α. See Theorem 6.14 in [9]. This is
sufficient for our purpose.

When p = ∞ we have that u∞ ∈ C1(Ω \ K) if ∂Ω is of class C2, according to Theorem 1.1 in [27].
By results in [16], the convergence |∇up| → |∇u∞| holds locally uniformly in G. Notice the absolute
values! See Section 5 and Theorem 7 in [20] for a clarification. We shall need the convergence also at
the outer boundary.

Lemma 3. Let ∂Ω be of class C2. Then

lim
p→∞
|∇up(ξ)| = |∇u∞(ξ)|, ξ ∈ ∂Ω.

Proof. Let n denote the outer unit normal at ξ. By Theorem 1.1 in [27] ∇u∞ ∈ C(Ω \ K). We see that

−
∂up(ξ)
∂n

= |∇up(ξ)|
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for 2 < p ≤ ∞. Since up ↗ u∞ and up(ξ) = u∞(ξ), we can for h > 0 write

u∞(ξ − hn) − u∞(ξ)
h

≥
up(ξ − hn) − up(ξ)

h

and let h→ 0 to obtain

−
∂u∞(ξ)
∂n

≥ −
∂up(ξ)
∂n

, −
∂u∞(ξ)
∂n

≥ lim
p→∞

(
−
∂up(ξ)
∂n

)
.

The limit exists by monotonicity.
For the reverse inequality, choose an interior disk |(ξ − εn) − x| < ε tangent to ∂Ω at the point ξ. By

the comparison principle in the ring

0 < |(ξ − εn) − x| < ε

we have

up(x) ≥
ε(p−2)/(p−1) − |x − (ξ − εn)|(p−2)/(p−1)

ε(p−2)/(p−1) up(ξ − εn),

where the fraction in the minorant is the fundamental solution of the p-Laplace equation. At the point
ξ this inequality can be differentiated in the normal direction. It follows that

−
∂up(ξ)
∂n

≥
p − 2
p − 1

up(ξ − εn)
ε

and hence

lim
p→∞

(
−
∂up(ξ)
∂n

)
≥

u∞(ξ − εn)
ε

=
u∞(ξ − εn) − u∞(ξ)

ε
→ −

∂u∞(ξ)
∂n

,

as ε→ 0. This concludes the proof. �

3.2. The p-eigenvalue problem

The boundary convergence for |∇vp|, where vp is the p-eigenfunction in Eq (1.3) has a slightly
different proof.

We shall later need continuous second derivatives on the boundary. Again, in a boundary zone,
say 0 < dist(x, ∂Ω) < δ, there holds |∇vp| ≥ c̃p > 0, when p is large. Indeed, since 2vp ≥ up on K
for large p by (2.1), where up is the p-Potential with K chosen to be the High Ridge (see (1.4)), the
comparison principle implies that 2|∇vp| ≥ |∇up| ≥ cp at the boundary. By continuity it follows that
near the boundary |∇vp| ≥ c̃p > 0 for some c̃p. Therefore, we may as in Section 3.1 conclude that vp

has continuous second order derivatives on the boundary, provided that ∂Ω is of class C2,α.
Near the boundary, v∞ is a solution to ∆∞v∞ = 0, see Corollary 7 in [21]. In particular, ∇v∞ is

continuous up to the boundary in this zone, see Theorem 1.1 in [27].

Lemma 4. Let ∂Ω be of class C2. Then

lim
p→∞
|∇vp(ξ)| = |∇v∞(ξ)|, ξ ∈ ∂Ω.

Mathematics in Engineering Volume 5, Issue 4, 1–16.
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Proof. The inequality
lim inf

p→∞
|∇vp(ξ)| ≥ |∇vp(ξ)| (3.2)

comes from a similar comparison as in Lemma 3. Now

∆pvp = −λpvp−1
p < 0

so that vp is a supersolution of the p-Laplace equation. Let n denote the outer unit normal at ξ. Using
the comparison principle in the interior ring 0 < |x − (ξ − (εn)| < ε we have

vp(x) ≥
ε(p−2)/(p−1) − |x − (ξ − εn)|(p−2)/(p−1)

ε(p−2)/(p−1) vp(ξ − εn),

where the fraction in the minorant is the fundamental solution of the p-Laplace equation. Now the
inequality (3.2) comes as in the previous subsection.

The reverse inequality requires some tinkering, because we do not know whether v∞ ≥ vp. Consider
the ascending streamline βp = βp(t) for the p-eigenfunction vp starting at ξ:

d
dt
βp(t) = +∇vp(βp(t)), βp(0) = ξ.

(The ascending streamlines are unique.) According to the end of Section 4 in [21] we have

d
dt

(
|∇vp(βp(t))|2 +

1
2
κpt2

)
≥ 0, t > 0,

where the constant κp → 0+ as p→ ∞. It follows that

|∇vp(βp(t))|2 +
1
2
κpt2 ≥ |∇vp(βp(0))|2 = |∇vp(ξ)|2.

By the results in [21] (see the proof of Theorem 10) we know that ∇vp → ∇v∞ locally uniformly and
that βp → β∞ pointwise§, where β∞ is the streamline of v∞ emerging at ξ. We conclude that

|∇v∞(β∞(t))| ≥ lim sup
p→∞

|∇vp(ξ)|, t > 0.

Since ∇v∞ is continuous up to the boundary, by sending t to 0+ we finally arrive at

|∇v∞(ξ)| ≥ lim sup
p→∞

|∇vp(ξ)|.

Thus the lemma is proved. �

§In particular, the bound for ‖∇vp‖∞ in Lemma 5 in the arXiv version of [21] yields

|βp(t2) − βp(0)| =

∣∣∣∣∣∣
∫ t2

0
∇vp(βp(t)) dt

∣∣∣∣∣∣ ≤ (λpdiamΩ)
1

p−1 ‖vp‖∞ · (t2 − 0)

and it follows that
|β∞(t) − ξ| ≤ Λ‖v∞‖∞ · t.
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4. Assumptions for the moving plane method

In the plane, Alexandroff’s method is about a moving line, across which solutions are reflected. For
simplicity, we immediately make the following assumptions.

Assumptions: Suppose from now on that

1) Ω is a bounded convex domain in the xy-plane.

2) Ω is symmetric with respect to the x-axis and y-axis.

3) ∂Ω is of class C3,α.

4) The curvature of ∂Ω is non-decreasing in the first quadrant when x increases.

5) K is the origin.

See [6, 15, 25]. We note that the above assumptions are valid for the case when Ω is an ellipse in
proper position.

We restrict our description to the first quadrant and consider a non-horizontal line `. The line divides
the plane in two open half-planes T+ and T−, where T− is chosen so that T− lies to the right of `. Let
x∗ denote the reflexion of the point x ∈ T− across the line `. The above assumptions are designed to
guarantee that

(Ω ∩ T−)∗ ⊂ Ω,

when ` is a normal to ∂Ω. In other words, reflexion in the normals is possible. See Figure 1.

ξ

`

Ω (T− ∩Ω)∗

T− ∩Ω

t n

Figure 1. The reflection illustrated in the case when Ω is an ellipse.

Lemma 5. If the above assumptions are valid, then reflexion in the normals is possible. In the first
quadrant, the orientation is chosen so that Ω ∩ T− is to the right of the normal through a boundary
point.

Proof. See Lemma 4.2 in [6]. �
We define the reflected function of f ∈ C(Ω) as

f ∗ : (Ω ∩ T−)∗ → R, f ∗(x∗) = f (x).

Mathematics in Engineering Volume 5, Issue 4, 1–16.
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The p-eigenvalue problem. We use the p-eigenfunctions vp in Eq (1.3) and recall that they are
continuous up to the boundary.

Lemma 6. The reflected function v∗p satisfies vp ≥ v∗p in (Ω ∩ T−)∗.

Proof. Obviously v∗p satisfies the same Eq (1.3) as vp. Now vp ≥ v∗p on the boundary ∂(Ω∩T−)∗. Indeed,
vp = v∗p on the line ` and vp ≥ 0 = v∗p on (∂Ω)∗. By the comparison principle vp ≥ v∗p in (Ω ∩ T−)∗. The
proof in [22] works for the comparison principle. �

Proposition 7. Let n denote the outer unit normal at the boundary point ξ ∈ ∂Ω. Let t be the unit
vector orthogonal to n and pointing from T− to T+. Then we have at all points η = ξ − εn lying on the
normal line in Ω that

∂vp(η)
∂t

≥ 0.

Proof. Take h > 0. By the previous lemma

vp(η + ht) − vp(η)
h

≥
v∗p(η + ht) − v∗p(η)

h
=

vp(η − ht) − vp(η)
h

and as h → 0 we see that
∂vp(η)
∂t

≥ −
∂vp(η)
∂t

.

This proves the desired inequality. �
For the next theorem we recall that vp is of class C1(Ω) and that vp is of class C2 in a boundary zone

Ω ∩ {x| 0 < dist(x, ∂Ω) < δ}. See Section 3.2. At boundary points ξ ∈ ∂Ω we naturally have
∂vp(ξ)
∂t

= 0 and
∂vp(ξ)
∂n

= − |∇vp(ξ)|.

Theorem 8. At the boundary point ξ
∂

∂t
|∇vp(ξ)| ≥ 0,

where the tangent t at ξ points from T− to T+.

Proof. We first claim that
∂

∂n
(∂vp

∂t
)
≤ 0

at ξ. To see this, let ε → 0+ in the difference quotient
∂vp(ξ − εn)

∂t
−
∂vp(ξ)
∂t

ε
≥ 0,

which follows from Proposition 7, since ∂vp

∂t = 0 at the boundary. To conclude the proof, use

∂

∂t
|∇vp| = −

∂

∂t
(∂vp

∂n
)

= −
∂

∂n
(∂vp

∂t
)
.

The mixed partial derivatives do not commute in general, but here they do, again due to ∂vp

∂t = 0, so that
the last term disappears from the general formula

∂

∂t
(∂vp

∂n
)

=
∂

∂n
(∂vp

∂t
)

+ κ(ξ)
∂vp

∂t
in differential geometry. See Eq (10) in [15] or page 45 in [26]. �

Mathematics in Engineering Volume 5, Issue 4, 1–16.
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The p - potential function. For the p – potential function up solving problem (3.1) we encounter an
extra problem caused by the inner boundary ∂K, which might hinder reflexion in some normals. Even
if (Ω ∪ T−)∗ ⊂ Ω, it is difficult to control K: often it happens that (K ∪ T−)∗ contains points in Ω \ K,
when the line ` of reflexion is a normal to ∂Ω. In order to avoid a detailed geometric description, we
have therefore chosen to assume that K is the origin.

Theorem 9. Assume that Ω satisfies the assumptions in Section 4 and that K = {(0, 0)}. Then the
inequality

∂

∂t
|∇up(ξ)| ≥ 0

is valid when ξ ∈ ∂Ω, where the tangent t at ξ points from T− to T+. (That is, in the direction of
decreasing curvature.)

Proof. We follow the same steps as in the proof for vp. First, the counterparts to Lemmas 5 and 6 follow
as before, when one notices that the presence of K does not spoil the comparison up ≥ u∗p. Indeed, if
ξ2 = f (ξ1) is the equation of the boundary ∂Ω in the first quadrant ξ1 > 0, ξ2 > 0, then the normal
through (ξ1, ξ2) ∈ ∂Ω intersects the x-axis at the point(

f (ξ1) f ′(ξ1) + ξ1, 0
)
.

By Lemma 4.3 in [6], the assumptions imply that f (ξ1) f ′(ξ1) + ξ1 ≥ 0. In other words, K (the origin)
is not reflected at all. Thus nothing hinders the comparison up ≥ u∗p. This yields Lemma 6 for up. The
counterpart to Proposition 7 follows. So does Theorem 8 for up. �

5. The passage to u∞ and v∞

Assume again that the assumptions on the domain in Section 5 are fulfilled and that K is the origin.
By Theorems 8 and 9

d
dt
|∇up(ξ)| ≥ 0,

d
dt
|∇vp(ξ)| ≥ 0

where the tangent t points in the direction of non-increasing curvature. That is to the left in the first
quadrant. If now ξ and ζ belong to ∂Ω in the first quadrant and are ordered so that ξ is to the left of ζ,
then

|∇up(ξ)| ≥ |∇up(ζ)| and |∇vp(ξ)| ≥ |∇vp(ζ)|

i.e., |∇up| and |∇vp| increase when the curvature decreases.
On the boundary, Lemmas 3 and 4 assure that we can proceed to the limits. We arrive at

|∇u∞(ξ)| ≥ |∇u∞(ζ)| and |∇v∞(ξ)| ≥ |∇v∞(ζ)|. (5.1)

This monotonicity enables us to conclude that |∇u∞| has only two maxima and two minima on the
boundary ∂Ω, viz. at the four intersections with the coordinate axes: the maxima are on the y-axis, the
minima on the x-axis. —The same goes for |∇v∞|.

We want to show that this monotonicity is strict. To see this, assume that |∇u∞(ξ)| = |∇u∞(ζ)| for two
different boundary points in the first quadrant. Then |∇u∞| would be constant along the boundary arc
between the points. According to Lemma 12 and Lemma 16 in [20] this means that all the streamlines

Mathematics in Engineering Volume 5, Issue 4, 1–16.
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emerging from this arc are straight line segments that cannot intersect each others, except at K, which
now is the origin. But this forces the boundary arc to be an arc of a circle centered at the origin.

The minimum of |∇u∞| on the boundary is attained at the x-axis. We claim that the minimum is
strict. If not, we would have |∇u∞| = c on a circular arc. The above mentioned Lemmas 12 and 16
in [20] also imply that the eikonal equation |∇u∞(x, y)| = c is valid in the whole closed circular sector.
Assuming that Ω is not a disk, which case is trivial, we choose a boundary point ξ not on the circular
arc. Then |∇u∞(α(0)| = C > c.

Recall that the (ascending) streamlines α = α(t) are defined through

dα(t)
dt

= +∇u∞(α(t)), α(0) = ξ.

They start at the boundary and reach the origin. Always, the speed |∇u∞(α(t)| is non-decreasing. We
see that

lim sup
(x,y)→(0,0)

|∇u∞(x, y)| ≥ C, lim inf
(x,y)→(0,0)

|∇u∞(x, y)| ≤ c.

This contradicts Proposition 10 in [19] according to which the full limit exists at the origin. Therefore
the minimum is strict.

The two streamlines starting at the intersection of ∂Ω with the x-axis are attracting streamlines in
the terminology of [20]. By symmetry, they are line segments on the x-axis. Now Theorem 1 can be
stated in the following form.

Proposition 10. Suppose that the assumptions in Section 4 are valid and assume that the domain is
not a disk. Let α be a streamline whose initial point is not on the x-axis. It cannot meet any other
streamline before it meets and joins the x-axis. The speed |∇u∞(α(t)| is constant along α until it meets
the x-axis, after which the speed is non-decreasing.

Proof. Equation (5.1) and the above discussion allows us to conclude this from Theorem 3 in [20].
�

A similar version of Theorem 2 holds for v∞. Now circular boundary arcs where |∇v∞| is constant
are not excluded. In addition, we can infer the following interesting property.

Proposition 11. Suppose that the assumptions in Section 4 are valid. Then the ∞ - Ground State
satisfies the equation

∆∞v∞ = 0 in Ω except possibly on the x−axis.

Streamlines cannot meet outside the x-axis.

Proof. This essentially follows from Theorem 2. To see this, we first claim that the minimum boundary
speed |∇v∞|, which is attained at the x-axis, is either strict or is attained along a circular arc. The strict
case is immediately clear by Theorem 2.

In order to treat the other case, we need the contact set Υ, see Section 2. It is closed, has zero area
and v∞ is C1 and satisfies ∆∞v∞ = 0 outside Υ. Moreover, Υ does not touch ∂Ω.

Suppose now that we have a closed boundary arc C which is symmetric about the x-axis and that
the speed is constant along it. We can assume that it is of maximal length: the boundary speed outside
is strictly larger. By symmetry, the two streamlines γ1 and γ2, starting at its endpoints, intersect at a
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point P on the x-axis. We shall now argue that P is the only point of the contact set Υ lying in the
closed region bounded by γ1, γ2 and the boundary arc C. Suppose, towards a contradiction, that the
lowest level curve ω that in this closed region reaches Υ does not contain P. (Thus P is at a higher
level.) So v∞ is of class C1 and satisfies ∆∞v∞ = 0 in the open region bounded by ω, γ1, γ2 and C.
Therefore, we can apply Lemma 12 in [20] to conclude that the

eikonal equation |∇v∞| = c

is valid in this region.
Along any lower level curve, say ω−, we now have that

|∇v∞(ω−)|
|v∞(ω−)|

=
c

v∞(ω−)
= constant.

The approximation ω− → ω of the level curve from below implies, by the continuity of S − operator,
that the whole arc of the level curveω between γ1 and γ2 belongs to Υ. By Lemma 9 in [21], the whole
sector between ω, γ1 and γ2 (with apex at P) belongs to Υ. This contradicts the fact that Υ has zero
area.

Hence, the first point in Υ is P. In particular, the streamlines γ1 and γ2 do not contain any points
of Υ below P. Hence, v∞ is of class C1 and satisfies ∆∞v∞ = 0 in the whole region bounded by γ1, γ2

and C. Again by Lemma 12 in [20], the eikonal equation holds here. It follows from Lemma 1 in [2]
that the streamlines emerging from the arc C are non-intersecting straight lines intersecting only at the
point P. This implies that the arc C has to be circular.

Moreover, since |∇v∞| is constant along γ1 and γ2 until they meet at P, no streamline emerging from
the part of ∂Ω that is outside of C can meet γ1 or γ2 below P, because the emerging streamline has too
high an initial speed.

In conclusion, if the minimum is not strict we have a circular boundary arc with constant speed,
and the streamlines are rays joining at a point on the x-axis. �

In fact, one can extract more, but we are content to provide one good example.
Example: The ellipse

x2

a2 +
y2

b2 = 1, 0 < b < a,

fulfills all our assumptions. Given the standard parametrization x(t) = a cos t and y(t) = b sin t, the
curvature at (x(t), y(t)) is given by

ab(
a2 sin2 t + b2 cos2 t

) 3
2

.

Clearly the curvature is decreasing from t = 0 to t = π/2. The rest of the assumptions in Section 4 are
obviously satisfied. —See also page 215 in [6].

6. The∞ - Potential in a square

The remarkable formula

u∞(x, y) = min
0≤ψ≤ π2

max
0≤ρ≤1

{x ρ cos(ψ) + y ρ sin(ψ) −W(ρ, ψ)}
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where the function W(ρ, ψ) has the explicit representation

W(ρ, ψ) =
8
π

(ρ4

6
sin(2ψ) +

ρ36

210
sin(6ψ) +

ρ100

990
sin(10ψ) + · · ·

)
was discovered in [5] for the ∞-Potential u∞ of the punctured square 0 < |x − 1| < 1, 0 < |y − 1| < 1.
Here the center (1, 1) is removed from the square. The formula is valid in the subsquare 0 ≤ x ≤ 1, 0 ≤
y ≤ 1 and is extended by symmetry. The resulting function is of class C1 up to the sides (but not at the
center) and it is real-analytic outside the diagonals y − 1 = ±(x − 1). See Figure 2.

Figure 2. The∞-Potential in the square.

This function is not equal to the ∞-Ground State v∞. See Section 5 in [5] for the original proof of this
fact. Below, we briefly explain why they do not coincide.

Observe that if the functions would coincide, then also v∞ should be of class C1. By (1.2), this
implies that

|∇v∞|
v∞

≥ 1 and hence
|∇u∞|

u∞
≥ 1

in the punctured square. (Here Λ = 1.) In particular, the last inequality should hold on the diagonal. A
numerical calculation below will show that this is not the case.

From [5] we have, using the variables

t =
8
π

∞∑
n=1

(−1)n−1 mn

m2
n − 1

ρm2
n−1, mn = 4n − 2, (6.1)

that on the diagonal the so-called Rayleigh quotient takes the form

R(t) =
|∇u∞(t/

√
2, t/
√

2)|

u∞(t/
√

2, t/
√

2)
=

ρ

ρWρ(ρ, π4 ) −W(ρ, π4 )
.

Here 0 ≤ t ≤
√

2 and 0 ≤ ρ ≤ 1. The quantities involved are

W(ρ,
π

4
) =

8
π

∞∑
n=1

(−1)n−1

(m2
n − 1)mn

ρm2
n
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ρWρ(ρ,
π

4
) =

8
π

∞∑
n=1

(−1)n−1mn

m2
n − 1

ρm2
n

ρWρ(ρ,
π

4
) −W(ρ,

π

4
) =

8
π

∞∑
n=1

(−1)n−1

mn
ρm2

n

and so we arrive at the simple expression

1
R

=
8
π

∞∑
n=1

(−1)n−1

mn
ρm2

n−1 (6.2)

for the reciprocal value of the Rayleigh quotient. The series converges for 0 ≤ ρ ≤ 1, and its sum is 1
when ρ = 1. To conclude, we only have to exhibit a value of ρ for which R > 1. When ρ = 0.97 we
have by (6.2)

1
R

=
8
π

(
1
2

0.973 −
1
6

0.9735 +
1
10

0.9799 − · · ·

)
>

8
π

(
1
2

0.973 −
1
6

0.9735
)

≈ 1.01590 > 1.

Here we have used Leibniz’s rule for alternating series. By (6.1), ρ = 0.97 corresponds to t ≈ 1.4112.
The corresponding point (0.9979, 0.9979) on the diagonal is at the distance 0.0030 from the center.

We can extract further information about the “unknown” variational¶ ∞ - Ground State v∞, be it
unique or not, using the fact that it is not the ∞ - Potential. First, it cannot be of class C1 in the whole
punctured square, because Theorem 3.1 in [28] would then imply that the functions coincide. Second,
using Theorem 2 we can deduce that the variational ∞ - Ground State v∞ is ∞-harmonic except on a
portion of the diagonals lying in a symmetric neighbourhood around the center. In other words, the
contact set looks like the letter X, where the crossing line segments have length at most 2(

√
2 − 1);

probably much shorter.

7. Epilogue

The described results are based on a fairly recent theory. So several immediate questions seem to
be open problems. A few of them are

• For which convex domains do |∇u∞(ξ)| or |∇v∞(ξ)| have only a finite number of minima on the
boundary?
• Are u∞ and v∞ twice differentiable or even real-analytic outside the attracting streamlines?
• Is log(v) concave for all solutions v of the ∞ - Eigenvalue problem (1.2), be they variational or

not?
• Are there other domains than the stadiums in which we have u∞ ≡ v∞?
• How do the streamlines run in non-convex domains?
• What about several dimensions?

There are many more interesting questions, but we must stop here.
¶Recall that this is obtained as the limit of vp. It is not known to be unique, but it inherits the symmetries of vp.
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