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1. Introduction

For localized problems, many papers showed that the weak solution of elliptic and parabolic
equations can be obtained with a limit of approximations by regularizing the nonlinearities, see for
instance [1, 2, 4, 28, 29, 32]. However, as far as we are concerned, it was hard to find a suitable
reference for global problems which considered approximations on domains. In this paper, we will
show that the weak solution can be obtained with a limit of approximations by regularizing the
nonlinearities and approximating the domains for Dirichlet boundary value problems. Also we refer
to [19,20] which used regularization on the nonlinearities and approximation on the convex domains
for a class of nonlinear elliptic systems.
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For the interested readers, we briefly explain about the mentioned papers in the previous
paragraph, which are mainly related to the regularity of elliptic and parabolic problems. Acerbi and
Fusco [1] obtained local C'*” for local minimizers of p—energy density, where we refer to [35,52, 53]
for fundamental papers and [27] for generalized elliptic systems. Acerbi and Mingione [2] obtained
local C' regularity for local minimizers with variable exponents, where we refer to [54] for
fundamental paper and [3, 8, 16] for Calder6n-Zygmund type estimates. Esposito, Leonetti and
Mingione [32, 33] obtained higher integrability results for elliptic equations with p—g growth
conditions, where we refer to [10, 18, 24] for the related results and [46,47] for Lipschitz regularity.
Also we refer to [9,21-23,25] for double phase problems and [37] for a unified approach of p—g,
Orlicz, p(x) and double phase growth conditions. Acerbi and Mingione [4] obtained
Calder6on-Zygmund type estimate for a class of parabolic systems, and we refer to [11, 15, 17] for the
global results and [6] for Lorentz space type estimate. Duzaar and Mingione [28] obtained local
Lipschitz regularity for nonlinear elliptic equations and a class of elliptic systems. Also Cianchi and
Maz’ya [19, 20] obtained Lipschitz regularity for a class of elliptic systems in convex domains.
Duzaar and Mingione [29] obtained Wolff potential type estimate for nonlinear elliptic equations, and
we refer to [39-44, 49] for further references and [7] for nonlinear elliptic equations with general
growth. We remark that one of the authors obtained [14] based on the techniques of [29,48].

1.1. Parabolic equations

Suppose that a : R" x R*! — R” satisfies

a(&, x,t) is measurable in (x, ) for every € € R”", (1.1)
a(é, x,t) is C'-regular in & for every (x, 1) € R"1, ’
and the following ellipticity and growth conditions:
la(, x, 0l + IDzaé, x, DI(EP + 527 < A(EP + AT, (12)
p=2 :
(Dea(é,x,00,0) = AEF + s°) 2 1L,
for every (x,1) € R™!, for every &, ¢ € R" and for some constants 0 < A < A and s > 0.
To regularize the nonlinearity a, we define ¢ € C°(R") as a standard mollifier:
_fa exp () ifld < 1, 13
#(x) {o if [ > 1, (13)
where ¢; > 0 is a constant chosen so that
f d(x)dx = 1. (1.4)
R}’l
Under the assumptions (1.1) and (1.2), let a.(¢, x, t) be a regularization of a(é, x, 1):
aexn= [ [ ae-aux-ansop@ad:  ©0<e<. (15)
Rn Rﬂ
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Then a.(¢, x, t) satisfies the ellipticity and growth conditions and it is smooth enough, precisely,
ac(&, x, 1) is C”-regular in £ € R" for every (x,1) € R
ac(é, x,t) is C-regular in x € R" for every £ e R" and r € R,

and
|as(§’ X, t)l + |D§a€(§’ X, t)l('f'z + Si)% < CA(|§|2 + Si)pT_l,

IDYac(€x.0) + DY acé, x.0l < ¢ A (6P + )
(Deacé, x,D0.0) = c A(ER + )7 |22,

for s, = (s + 62)% > 0. Here, the constants ¢ are depending only on n and p. It will be proved in
Lemma 2.13.

As usual, we denote p’ as the Holder conjugate of p and by p* the Sobolev exponent of p. (Note that
p* can be any real number bigger than 1, provided that p > n.) We denote dy(X, Y) as the Hausdorff
distance between two nonempty sets X and Y, namely,

dy (X,Y) =sup{dist(x,Y): x € X} + sup{dist(y,X) : y e Y}.

Remark 1.1. As mentioned before, ai(&, x,t) is smooth with respect to & and x by Lemma 2.13. For
Neumann boundary value problems, we need to consider extensions to compare weak solutions defined
on different domains. In this paper, we consider Dirichlet boundary value problem with y € W'-P(Q)
to obtain the main theorem without using extensions.

We will only prove the parabolic case, because the elliptic case can be done in a similar way. To
consider parabolic equations, we denote Q, = Q X [0, 7] and R} = R" X [0, 7] for T € [0, T], where
T > 0. We write (-, Do = € Dy-10 w7y a8 the pairing between W% (Q) and Wol’p (Q), where

>0

W=LP(Q) is the dual space of Wé’p (Q). We carefully note that (-, -) stands for the inner product in R"
or R""!. We also note that for the consistency of the notation, we usually write WS”’ (R™) instead of
WLP(R"). Here, we remark that Wé’p R") = WHP(R™). For d,w, we mean d,w € LV (0,T; W7 (Q))
satisfying

T
f LOw, ) dt = —f w e, dxdt for any ¢ € C7°(Qr).
0 Qr

We consider a sequence of functions {u;};7, defined on the corresponding sequence of domains

{Q"},‘j’:l in this paper. So to use convergence on {u},-,, we consider the zero extension as in the

following definition. In this paper, ‘=’ means the strong convergence and ‘—’ means the weak
convergence.

Definition 1.2. For 1 < p < oo, we say v, € Ll”’(Q’}) (k € N) converges strongly-+ to v, € L”/(Q‘}"),
which is denoted by vy € LP (QF) 5 v € LP(Q), if

kankdxdt —>f Veolloo dXdt,
o oy

for any ny € LP(Q’}) (k € N U {co}) satisfying
e = T in L"(R7),

where Ty is the zero extension of ny from Q5. to R
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Remark 1.3. In Definition 1.2, if QF = Q for any k € N, then v — Vv, in Lf"(Q"T") is equivalent to
strong-* convergence, see Lemma 3.1.

We use a similar definition for W~'*". We remark that Wé’p (Q) is reflexive when 1 < p < 0.

Definition 1.4. For 1 < p < oo, we say that v, € W=7 (QX) (k € N) converges strongly-* to v, €
W1 (Q%), which is denoted by vi € W' (%) = v, € WL(Q®), if

i MNar = LVeos oo P »
for any n € Wé’p(Qk) (k € N U {oo}) satisfying
(s D7) = (floos Dijes) in LP(R", R™)
where ;. is the zero extension of 1y from QF to R".

Definition 1.5. For 1 < p < oo, we say that v € L” (0, T; W= (Q%)) (k € N) converges strongly-* to
Veo € L7 (0, T; W' (%)), denoted by vi € LY (0, T; WP (X)) 5 vy € L' (0, T; W1 (Q)), if

T T
f(; Vi Py dt —>j(; (Veor TN Dro d,

for any m € LP(0, T; Wy (QF)) (k € N U {oo)) satisfying
(s D) = (1o, Difes) in L"(R7, R™")
where i, € LP(0, T, Wol’p (R™)) is the zero extension of n.
For p > n% and an open bounded domain Q C R” (n > 2), assume that
Fel (Qr,RY,  fel’(0,T;W'7(Q)

and
y € C([0, T1; LA(Q)) N L0, T; W'P(Q))  with 8,y € LY (0, T; W (Q)).

Let u € C([0, T]; L>(Q)) N LP(0, T; W'P(€)) be the weak solution of

{ O —div a(Du, x,t) = f—div(F|P2F) inQy, (1.6)

u = v on aPQT-

Here, we say that u € y + LP(0, T; W(;’p(Q)) N C°([0, T]; L*(QY)) is the weak solution of (1.6), if

T
f (B, @) dt + f (a(Du, x, t), Dp) dxdt = f [(IFIP2F, Dg) + f | dxdt
0 Qr Qr

holds for any ¢ € C°(Q7). Also for the initial condition, it means that

1 h
lim — f f lu(x, 1) — y(x,0)]* dxdt = 0,
0 Q

N0 h

which is equivalent to u(x, 0) = y(x,0) when u € C([0, T]; L*(Q)).
Now, we introduce the main result in this paper.
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Theorem 1.6. Let QX C R" (k € N) be a sequence of open bounded domains with
lim d;;(6,6Q) = 0. (1.7)
For k € N, assume that & > 0, F € LP(QL,R"), fi € L7 (0, T; W=7 (Q%)) and
yi € C([0, T1; LA(Q5) N L7(0, T; Wy (%) with 9y € L7 (0, T; W7 (Q5))

satisfy that limy_,, €, = 0,

fee /(O T; W (@) S felV(0,T; W (Q), (1.8)
Oy € L7 (0, T; W (QY) 5 8,y € L7 (0, T; W' (Q)), '
and .
IFdP2F e LP(Q4,RY) —  |FIP°F € L7'(Qr,R"),
ner@) - y € L'(Qp), (1.9)
Dy, € LP(QF,R") N Dy € LP(Qr,R™).
Then for the weak solution u;, € C([0, T]; L>(Q%)) N LP(0, T; WhP(QY)) of
(9tl/lk —div ak(Duk, X, l) = fk —div (lelp_sz) in Ql;,
L (1.10)
U = Y on 9pL;.
where ai(&, x,t) = aq (€, x, t), we have that
1}1_)12 [||Duk - DM”Lp(QanQT) + ||Duk||Lp(QkT\QT) + ||DM||LP(QT\Q§)] =0, (L.1D)

where u is the weak solution of (1.6).

We refer to [13] for Calderon-Zygmund type estimates for a class of elliptic and parabolic systems
with nonzero boundary data in rough domains such as Reifenberg flat domains.

Remark 1.7. For the sake of convenience and simplicity, we employ the letters ¢ > 0 throughout this
paper to denote any constants which can be explicitly computed in terms of known quantities such as
n, p, A, A\ and the diameter of the domains. Thus the exact value denoted by c may change from line to
line in a given computation.

Remark 1.8. We usually denote g as the natural zero extension of g for such space as L’(Qr) and
L7 (0, T; W=7 (Q)) which depends on the situations.

1.2. Elliptic equations

We also have a result for elliptic equations which corresponds to Theorem 1.6. The proof is similar
to that of Theorem 1.6, and we will only state the result.
Suppose that a : R* x R" — R” satisfies

{ a(&, x) is measurable in x for every & € R”, (1.12)

a(¢, x) is C'-regular in & for every x € R”,
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and the following ellipticity and growth conditions:

laé, )| + 1Dl OI(EP + 577 < Al + 55T, (113)
(Dea(€, )¢, &) > AR + 5T I,
for every x, &, € R" and for some constants 0 < 4 < A and s > 0.
Under the assumptions (1.12) and (1.13), let a.(&, x) be a regularization of a(&, x):
aen= [ [ ae-enx-empow@rad:  ©0<e<n. (1.14)

Then a.(&, x) satisfies the ellipticity and growth conditions, such as (1.2), and it is smooth enough,
precisely,

ae(é,x) is C*-regular in ¢ € R" for every x € R”,

{af(f, x) is C™-regular in x € R" for every & € R".

We have the following approximation results for elliptic problems.

Theorem 1.9. For 1 < p < oo and an open bounded domain € C R" (n > 2), assume that F €
LP(QRY), fe L»Y(Q)andy € W'P(Q). Let u € y + Wé’p (Q) be the weak solution of

f—div ([FIP?F) inQ,

—div a(Du, x)
0% on 0Q.

u

Let QF c R" (k € N) be a sequence of open bounded domains with
lim d;;(6Q,6Q) = 0.
For k € N, assume that €, > 0, Fy € LP(Q*,R"), fi € LP(Q%) and y € W'P(QX) satisfy that
]}1_{1010 [”Fk = Fllzrtna) + 1 = flliow @ing) + lve — 7’||W14'(ka9)] =0,

and

]}LIEIO [Ek + IF i) + 1l @) + ”’)/k”WLP(Qk\Q)] =0.

Then for the weak solution u;, € y; + Wé’p Q5 of

div ay(Duy, x) —div (|FiP2Fp) + fi  in QF,
U, = 7Yk on an

where ay(&, x) = a. (&, x), we have that

lim {[1Dug = Dty + IDuellir@ive + 1Dullr@an| = 0.
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2. Preliminaries

2.1. Basic results about functional analysis

We use the following results related to weak convergence and weak* convergence.

Proposition 2.1. [12, Proposition 3.13 (iii)] Let {f;} be a sequence in E*. If f; = fino(E*, E) then
{ILf:|I} is bounded and ||f|| < liminf || f]|.

Proposition 2.2. [12, Theorem 3.16 (Banach-Alaoglu-Bourbaki)] The closed unit ball Bg- = {f €
E* . ||fll £ 1} is compact in the weak-* topology o(E*, E).

One can easily check that compactness in Proposition 2.2 implies sequential compactness for metric
spaces.

Proposition 2.3. If E* is a metric space then any bounded sequence {f;} in E* has a weakly-*
convergent subsequence.

To apply Proposition 2.1 and Proposition 2.3 to Sobolev space, we use Proposition 2.4.

Proposition 2.4. [12, Proposition 8.1] W'? is a Banach space for 1 < p < co. W' is reflexive for
1 < p < oo and separable for 1 < p < co.

To handle the dual space of WS”’ (Q), we use [45, Corollary 10.49].

Proposition 2.5. [45, Corollary 10.49] Let Q C R" be an open setand 1 < p < co. Then h € W17 (Q)
can be identified as

<ha ‘10>Q = L(Hv (‘10’ D90)> d-x7

with

1
n v
||h||W-1,p/(Q):[ f D IHP dx] ,
Q%0

for some H = (Hy, Hy,--- ,H,) € L" (Q,R™).
We have the following result from [51, Proposition III.1.2], [30, Lemma 2.1] and [50, Lemma 3.1].

Proposition 2.6. [51, Proposition I11.1.2] Let Q C R" be a bounded domain, t, < t, and p > 2%

n+2°

Assume that v € LF(t1,1; Wé’p (Q)) has a distributional derivative 6,y € L’ (t,t,; W (Q)). Then
there holds v € C([t,t:]; L*(Q)) and moreover, the mapping t — ||v(-, t)IIi2 @ is absolutely continuous
on [t;, ] with

d
E”V(" t)”iZ(Q) =2 «atv, V>>Q a.e. on [tl ’ IZ]’
where (-, -%q denotes the dual pairing between W='""' (Q) and Wé’p (Q).
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2.2. Basic inequalities on elliptic condition
We use the following basic inequality in this paper.

Lemma 2.7. [38, Lemma 3.2] For any q > 1 and s > 0, there exists k; = k1(n,q) € (0, 1] such that
1€ = 217 < ek + 72 + ek TP + 1P + Sz)nglf - P
for any k € (0, kq].

We would like to emphasis that the inequalities in Lemmas 2.8 and 2.9 are obtained for s > 0 even
when 1 < g < 2. We remark that a different proof for 1 < g < 2 was shown in [1, Lemma 2.1].

Lemma 2.8. Forany g > 1 and s > 0, we have that

1 ) 1 42 42
fo (E+7C - + )P dr = fo W +7E =P + DT dr < (el + 127 + T,

forany &, € R" \ {0}, where c depends only on q.

Proof. By changing variable, one can easily check that

1 2 1 42
fo (47 -OP + T dr = fo (7@ -0 + ) dr,

and without loss of generality, we may assume |£| > |{].
If g > 2, then the lemma follows from the fact that

€+ 7L~ 6P <8P + 1) (€0, 1]).

So it only remains to prove the lemma when 1 < g < 2.
Next, suppose that 1 < g < 2. We show the lemma by considering three cases:

(1. 2|8 - &l < ],

(2). 1€l < 218 = ¢] < 2,

(3)- 1€l <2|¢ = ¢l and s < |{ =&l
(1). If 2|¢ — €| < |€, then for any 7 € [0, 1] we have

eI P + e
2 4 4 ’

IE+7( Ol =l -7 -] =

because we assumed that |£| > |£], which implies
! -2 g-2
[ g e ric-0F + % dr < @ + kP + 7

and the lemma is proved for the first case.
(2). If |€] < 2|¢ — €| < 2s, then we obtain

E7 + 121 + 57 < IEP + 201€P + 14 — €P) + 57 < 3(EP + 10 — & + ) < 1857,
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which implies

1
[esrc-of + T dr < 5 < el e + 10+ D7
0

and the lemma is proved for the second case.

(3). Suppose that |£] < 2|7 — €] and s < | — &|. One can easily check that

£ -E6C-9
(- =m0 e
which implies
— 2 — —_ ?
- of = |- S0

Then by changing variables, we obtain

1 2
[ e +ric-of+% ar

L EZER g

(=686 -8)
& - &P

& - &P

)-

o , P OV )T
_L(g— SO (e S ke )
N , 2 T 2.1)
:~L§9 ==z | +ou-ees) a0 |
l+<{_£’5> -2
1¢-£2 ({ - §,§>({ - f) g
S“”jgg (le- e IO -+ ) do
<clg)U +1D),
where
2l w-en-o a2
szo ('g_ T +0|§—§|+s) do,
2l w-cow-o a2
e :fo ('g_ P RS s) do.
By changing variables, we discover that
=¥ o zs>| el L
|§ §| P fs‘)(( of, ’
-1 _ _ -1
) [|§—§I|1 n <|4;_g;|§>| " |§_ “if—?éﬂ " s]q 3 [|§— & Eigg §)| + s]q
(g — DI& =€

<@g — &l + el + ¢!
- (g —DIf=¢] '

Mathematics in Engineering
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Similarly, we have

‘- f‘|<,:—fs>| |§ (ST

1 g2 ci2 R
|€ 3 |g L=ED=E) f$>(£ o, k™ dk,

[lé §||<\if‘§f?|+|§—%Hs]q_l—ﬂf o) 4 |
(g— DI ¢

g+ e+ s
B (g - DI¢ = ¢l '

Since |£] < |€] < 2| — €] and s < | — &|, we have |£]> + |£]? + s* < 9|¢ — £]%, and

(-l +1gl+ 9" _ cl@lf =&

= @)L — €l < clq) (7 + P + )T

£ - &l - -él
By the above three inequalities and (2.1), we find that the lemma holds when |£| < 2|{—¢£| and s < |{—€]|.
This completes the proof. O

Lemma 2.9. Forany g > 1 and s > 0, we have that

1 =) 1 42 42
fo (E+7C-OP + T dr = fo W +7E =P + DT dr > (el + 1P + 'Z,

forany &, € R" \ {0}, where ¢ depends only on q.

Proof. One can easily check that
&+ 1 = OF + 5 < c(@)ér + 17 + %) (7 € [0, 1]).
If 1 < g <?2,then
1 2, NG : 2 2 2\42 ’ N =
[esrc-oP+ % dar>c) [ P+l + T dr> @ 4P+ 7
0 0
which prove the lemma for 1 < g < 2.
To prove the lemma for the case g > 2, we assume that || > || without loss of generality. Then for
7 € [0, 1/4], we have
€+ T = > ]~ Tl — €l = 1€l = 1L — €l/4 = |1/2 = c(q) (€7 + 122

So we obtain

! -2 % ) g-2
fo (€ + T - &P +5)7 dr > c(g) fo (P + 1P + 572 dt > clg) (€ + 1P + 57) 7,

which prove the lemma for ¢ > 2. This completes the proof. O

To compare a(é, x, t) and a(Z, x, t), we use the following lemma.
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Lemma 2.10. Under the assumptions (1.1) and (1.2), we have

P

la(€.x,1) = (. x OIFT < clé = C10EP + 1P + )7

forany &, € R".

Proof. We fix any &, € R". If |¢] = 0 or || = O then the lemma holds trivially from (1.1) and (1.2).

So we assume that &,/ € R" \ {0}. Since |£ — {Iﬁ < c(léP + 121> + sz)ﬁ, we have from (1.2) and
Lemma 2.8 that

P
p-1

la(é, x, 1) — a(l, x, DT =

1
f i[a(7§+(1—7){,x,t)]d7
0 dT

P
p-1

1
fo Dea(ré + (1 = 1), x, 0 - {) d

1 . 2
< g - a1 fo (€ + (1 =i + $9)'F ar)

< clé = (R + 12 + )5

<clé =R + 1P+ DT

Since &, € R" were arbitrary chosen, the lemma follows. i

We show the following well-known inequality. We remark that a different proof for 0 < g < 2 was
shown in [1, Lemma 2.1] and [36, Lemma 2.1].

Lemma 2.11. For any g > 0 and s > 0, we have that

2

<c(igl + 1P + 5%)

2

|(|§|2 +2) T e (P + 2T

g2
2

¢ €~ ¢P,

and
2 2 2

<(|§|2 + )T e (KP4 5) T Lk §> > c(l +1gP + ) © I - 2P
forany &, € R", where ¢ depends only on q.

Proof. We fix any &, € R”. If |¢] = 0 or |£| = O then the lemma holds trivially. So we assume that
&, e R\ {0}. Then

92 g2
4

(1P + ) "= (1P +57) " ¢

_fld
_odT

lg-2 o
_fho.(|Tg+(1—T)g|2+s2) (T + (A -1, E-HEE+ (A -1 dr

(Ir& + (1 =P + szﬁ (& +(1 - T)g)] dr

2

1 2
+f0 (et + =P +5) " = Ddr.
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By taking ‘5’ + 1 € (1, o) instead for g € (1, 00) in Lemma 2.8,

2

< (@ - ¢ f e+ (1P + 7)) dr

(67 + )% &~ (i + )" ¢
< c(@)le - £1(1el + 1P + s )%
Also we get
<(|§|2 + )T e (i + ) qT >

-2
—f‘]2 (g + (1= 0gF + )7 Keg+ (- D86~ OF dr
0

1 a2
+ f (e + (1 - +57) * =P dr.
0
If0<qs2then1:¥+%and74 > 0. Als01fq>2then—>0 Thus

-2

q 42 1 42
<(|g|2+s2)4g—(|§|2+s )t rE- §>>m1n{g 1}f0 (Ire+ (1 -0l +57) © 1= P dr.

By taking % + 1 € (1, o) instead for g € (1, 00) in Lemma 2.9,

<(|§|2+s2)qf§—(|§|2+s)q“§f z>>c(|§|2+|§|2+s) Tle-gp.

Since &, ¢ € R" were arbitrary chosen, the lemma follows.
We will use the following lemma.
Lemma 2.12. For any g > 1 and s > 0, we have that

92
2

47 <c(er +ih+ )T -2

=2
6+ )" &= (P + )

forany &, € R", where c only depends on q.

Proof. Fix any &, € R". By taking 2¢g — 2 > 0 instead of ¢ (> 0) in Lemma 2.11,

-2

(67 + )% &~ (i + )"

q
-1 9(q=2)

< c(q) (|EP + 127 + )7 g = 17,

'

1
By that |£ — §|q%1 <c (|§|2 + |{|2 + sz)zw—n’

(e + )% e~ (i + )" 4 < cta (g + i+ )" -2t

Since &, { € R" were arbitrary chosen, the lemma follows.

O
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2.3. Regularization on the nonlinearities

To find the ellipticity and growth conditions of a.(&, x,f) in (1.5), we follow the approach in the
proof of [31, Lemma 2] and [32, Lemma 3.1].

Lemma 2.13. For (1.5), we have

{ae(f, x,1) is C™-regular in & € R" for every (x,1) € R 22)

a(&,x,1) is C”-regular in x € R" for every ¢ e R" and t € R,

and
lac(&, x, | + |Dgac(&, x, DI(EP + Si)% < e A(IEP + sg)%,
IDYae(&, x, 0l + IDfac(&, x, )] < c Ae (1 + sg)%l, (2.3)

-2
(Deacé,x,0¢,0) > c AEP + 5D L,
for s = (s* + 62)%. Here, the constants c are depending only on n and p.

Proof. Fix a vector & € R". Since a(&, x, 1) is C'-regular in £ € R” for every x € R", we find that
a.(&, x,1) is C'-regular in £ € R" for every x € R". Also by changing variable, we have from (1.5) that

1 —
aexn=5 [ [ ae-enznome(*=)as

which implies

1
D.ac¢, %0 = —5 fR ,, fR ,, a(f—ey,z,t)gb(y)ng( *)dydz.

Moreover, from (1.2), the fact that supp ¢ C B; and

1

Diadé xn=—— f ,1 f alé - €y, 2,00(0)D"¢ ( )dydz

-5 [ [ ate- e~ exnoopnoc v
R JR"

for any m > 0, which implies that

D an(é, x, 0] < Ae™ f f (& - o + )5 60) ID"6()| dyd:
Rt JRr

p—1

27 Ae™ f (€% + € + s2)p7_l¢(y) |D"¢(2)| dydz
n Rn

IA

-1

<2T AP+ €+ )T f Dol &
RVL

for any m > 0. Similarly, by changing variable, we have from (1.5) that

au(é,x, 1) = fR n f aty,x—ee.00 (2 o) dv,
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and one can obtain that
IDFadé, %, 0l < 2T A€ (P + € + 5T f ID"$()| dz.
R’l

So a.(¢é, x,t) is C*-regular in € € R” for every (x,7) € R" and a.(¢, x,t) is C*-regular in x € R" for
every £ € R" and 7 € R. Also the second inequality in (2.3) follows.
From (1.2), (1.5) and the fact that supp ¢ C By, we have

(Deac(é %, 00, 0) = f (Dealé — €9, — €2, 0, OPWIO() dyd

n Rn

=4 fR Rn(lf — el + AT UPIGR) dydz

p-2
> | (6P + leyl + 266, €9) + )% PO dy
Bi\B 1 )N(,y)=0

p2

> ¢(n, p) ﬂ(lflz +—+5) TP $(y) dy
(B \B%)ﬂ<§,y>20

p=2

> c(n, p) A(EP + 5% + €) T |1,
and the third inequality in (2.3) holds.

It only remains to prove the first inequality in (2.3). In view of (1.5), we have

lacE,x, 0] < A f (£ - e + )T 6()o() dydz

R* JR
zAf f (|§|2 =+ 52 =+ sz)%¢(y)¢(z) dydz (24)
R® JR
=2 AR+ €+ sHT

If 16€? > |£ + 52, then by changing variables and (1.5), we obtain

Deaexol=|o [ [ aws ez,t)¢(§ Yooy

f B+ )5
R}l

.
_ Ae! fR n <|§—ey|2+s2)%|D¢<y>|¢<z>dydz

Rn

<

- Do) oo vz
<2T AP+ e+ DT 1Dl dy.
and from the fact that 16€> > |£?> + 5%, we have 17€ > |£]> + € + s and
Deacé,x,0 <527 AP + € + )T fR DY)\ dy. (2.5)
So we discover that the first inequality in (2.3) holds for the case 16€? > |£]> + 5.
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On the other-hand, if 16€*> < |£* + s, then we have

. P + 5% + €yl
= 2

& — ey + 5% = |E* = 2, y) + €y + 57 (v €B)),

and supp ¢ C B; implies

Deac(é, x, )| < \ f f Dea(é — ey, x — ez, 09()D() dydz

R

<A fR [ e+ 00060 v
<2A | (e~ o + )2 + 57 + €D o) dy,
which implies that
IDea (€. x.1) < ¢ fR (el + 52+ DT 60 dy: 2.6)
We claim that if 16€* < |£? + s? and |y| < 1 then
(P + 8 +EWP)'T <206 + 57+ )T @.7)
If p > 2, then the claim (2.7) holds trivially. If 1 < p < 2, then 16€ < |£]> + s? implies

|é:|2 + S2 + 62)";2
2

and we find that the claim (2.7) holds. Thus the claim (2.7) is proved. In light of (2.6) and (2.7), we
have that if 16€> < |£]> + s? then

(6P + 5+ EDP)T < (e + DT < <P + 8 + )T,

IDeac& x.0] < (P + 82+ )7 | 2.8)

Thus the first inequality in (2.3) follows from (2.4), (2.5) and (2.8). This completes the proof. O

Later, we will apply the gradient of the weak solution in Lemma 2.14 by considering a zero
extension from Q7 to R7.

Lemma 2.14. For any H € L?(Q7,R"), we have that
lim lla(H. ) ~ ac(H. |, 2, = 0.

Proof. Fix 6 > 0. From (1.5), we have

a(H(x, 1), %, 1) = a(H(x, 1), %, 1) = f

Rﬂ

f l[a(H(x,1), x,t) — a(H(x,t) — €y, x — €z, ) |p(y)p(z) dydz.
Rﬂ

Let Q. = {x € Q : dist (x,0Q) > €} and Q.7 = Q. x [0, T]. Since H € L’(Qr,R"), there exists ¢ > 0

such that if € € (0, ] then
f |H|P dx < 6,
Qr\Qcr
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which implies that

lla(H, ) — a.(H, )| » _ ‘

LPT(Qr\Qer)

f f [a(H(),-) —a(H() — €y, - — (€2, 0)¢(MPp(2) dydz|| ,
R" JR7 LT (Qr\Qe 1)
<c T

(HOP + 5%+ €)

_P_ ~
LP-1(Qr\Qer)

p-1

<clo+1Qr\ Qerl (P + €M) 7,
for any € € (0, €]. Thus

p-1
limsup ||la(H, ) — a(H,")|| = . <cohvr.
nsup laCH. ) = ad(Ho, oo

Since 6 > 0 was arbitrary chosen, we get

151{% lla(H, ) — a(H, ')HL%(QT\QGT) =0. (2.9)

We now estimate a(H, -) — a.(H, ) on Qgr. By the triangle inequality,

la(H, ) — a.(H, )|l

Lﬂ (Qe,T)

=\ [ ratzn - atei) - e - e omooivrdve| 2.10)
R JR7 L1 (Qer)
<I+11+111
where
=] [ [ tato. - acc - o, - @ omsomwarda] L
R Jrr LPT @)
n=| [ [ tatc - on. - .0y - attion - oo | L
rr Jpn LP-1(Qer)
11 = [a(HO), — (e2,0)) - alH() - e, - (€2, 0)$0)$@ dyde]| ,
R JR” LP=1(Qer)

We want to prove that the left-hand side of (2.10) goes to the zero as € \ 0.
To handle 7, we use the standard approximation by mollifiers, see for instance [34, C. Theorem 6],
to find that

lim f f [a(H(-), ") — a(H(- — (€2,0)), - — (€2, 0)]p(V)p(2) dydz|| , =0,
N0 Jpr e LT Q1)
where we used that a(H, -) € Lp[%l(QT) and fRn ¢(y)dy = 1, which implies that
lim/7 = 0. (2.11)

N0
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To handle /1, we apply Holder’s inequality and Lemma 2.10 to find that

l[a(H(x — €z,1), x — €z,t) — a(H(x, 1), x — €2,1)]p(2)dz
RV!

p-1
la(H(x — €z,1), x — €z, 1) — a(H(x, 1), x — ez, D|7T ¢(2) dz ’
R’l

f P(2)dz ’
Rn

p-1
P

<c f |H(x — €z,1) — H(x, D|(|H(x — €z, )* + |H(x, 1)|* + sz)pT_l(/)(z) dz
Rn

We apply Holder’s inequality to find that

jl; [a(H( = (€2,0)), - = (€2, 0)) = a(H(), - = (€2, 0))1$()dz

o
Lr=1(Qer)

(5

2

f |H(- - (e2,0)) — HO) ¢(Z)dz

f(IH( — (2. 0) + [HO) + 572 ¢(2) dz

L'(Qe1) L' (Qer)
and by using that H € L”(Q7,R"), we obtain that
lim f [a(H(- — (€z,0)), - — (€2,0)) — a(H(:), - — (ez,0))]d(2) dz|| |, =0,
6\,0 R? LE (QE,T)
which implies that
Iim/I = 0. (2.12)

e\
Last, to handle /711, we find from Lemma 2.10 that

Lﬂ Lﬂ l[a(H(x,t), x — €z,t) —a(H(x,t) — €y, x — €2,1)]¢(¥)p(z) dydz
<c f | el 0F +HO 0 - oF + )T p(0)() dydz
<ce | (H 0P +57 + T ¢(y) dy,

where we used that supp ¢ c By from (1.3). So by that [, ¢(y)dy = 1,

f f [a(H(x, 1), x — €z,1) — a(H(x, 1) — €y, x — €2, D]d(V)d(z) dydz < ce((H(x, D)|* + s* + 62)"%
R* JR”

So we again use Holder’s inequality to find that

[a(H (), = (€2,0)) —a(H() — ey, = (€2, 0)]¢(y)¢(2) dz

P

LT (Qer)
< cel|(HP + §* +e)2
L" 1(Qer)
By using H € L”(Q7,R"), we obtain that
lim f [a(H, - - (€2,0)) — a(H — €y, — (€2, 0)]p()p(2) dz|| , =0,
E\,O R2 Rn Lpfl (QEA,T)
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which implies that

lim 11 = 0. (2.13)
N0

By combining (2.10), (2.11), (2.12) and (2.13), we find from that

limla(H, ) = ae(H. ), gy o =0,

and the lemma holds from (2.9). O
3. Regularization of nonlinear parabolic equations

This section is devoted to the proof of our main result, Theorem 1.6. We start with proving our main
tools for convergence lemmas for the zero extensions, Lemmas 3.1-3.7. Then we apply these tools to
obtain the convergence lemmas, Lemmas 3.8-3.10. To conclude our main result, we apply an indirect
method. By negating the conclusion of Theorem 1.6, we show that (3.1) contradicts Lemma 3.9 and
Lemma 3.10.

Let ity € LP(0, T; W, ”(R")NL®(0, T; L*(R")) be the zero extension of uy—y; € L7(0, T; W, (€©))N
L(0, T; L*(€)) in Theorem 1.6. Also we define & € L”(0, T; W, (R™)) N L*(0, T; L*(R™)) as the zero
extension of u —y € LP(0,T; Wé’p (Q)) N L=(0,T; L*()) in (1.6). To prove Theorem 1.6, we will
assume that the conclusion of Theorem 1.6 does not hold. Then there exist p > 0 and a subsequence,
which will be still denoted as u; (k € N), such that

1wy = Dull iy + 1D o) + 1D > 0.

So by (1.7) and (1.9), it follows that

f |D17lk - Dljt|p dxdt > C(S(). (31)
Ry
Later, we will show that a contradiction occurs due to (3.1).

To prove Theorem 1.6, we first derive the energy estimates for regularized parabolic problems
in (1.10). We test (1.10) by ux — y, € L*(0, T; Wé”’(Qk)) N C([0, TT; L*(Q%)) to find that

f O, . — YiY oy dt + f (ar(Duy, x, 1), Dui — Dyy) dxdt
0 QF
= fk<|Fk|p_2Fk, Du; — Dyy) + filux — i) dxdt,
ok
for any 7 € [0, T'], which implies that

f 0 (ux — Yi)s U — ViNey dt + fk<ak(Duka x,t) — ap(Dyy, x, 1), Duy — Dyy) dxdt
0 ok

= fk<|Fk|p_2Fka Duy — Dyy) + filug — i) dxdt
ok

- fk<ak(D)’k, x, 1), Duy — Dryy) dxdt — f LOryis ur — YiDor dt,
ok 0
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for any 7 € [0, T]. So by Poincaré’s inequality and Lemma 2.7,

sup f | = YOG D dx + f |Duy — Dy, dxdt
Qt ok

0<7<T

S c |:||Fk||LF(Q]}) + ”‘f}(”L"/(O,T;W_]‘p/(Qk)) + ||D7k||L1)(Q’;) + ||atyk”Lp’(O’T;W—l,p/(Qk)) .

Here, the constant ¢ > 0 for Poincaré’s inequality only depends on the size of the domain and 1 < p <
oo, see [5, Theorem 6.30]. By taking it, = u; — y; € LP(0,T; Wé’p(Qk)) N L*(0, T; L*(QY)),

sup |l 0P dx+ f DL |” dxdr
0<7<T JQk Q’%

3.2)
-2
< [P Full ity + Uy o) * IPVsiaty 100y )|

The domain Q* depends on the function it (k € N). To deal with the convergence of the functions,
we need to consider the domain of the functions. It is the main reason why we adapted Definitions 1.2—
1.5.

To use the compactness method, we need to show that the right-hand side of (3.2) is bounded
uniformly. To do it, we use the zero extensions to R}, which makes the domain of the functions
independent of k € N.

Let v, € LP(0,T; Wé’p(R”)) (k € N U {o0}) be the zero extensions of v, € L?(0,T; Wé’p(Qk)) from
Qk to R%. Also for by € W' (QF) (k € N U {oo}), we define i, € W' (R") which corresponds to the
zero extension in Corollary 3.3. Under the assumption (1.7), we obtain the following results.

(1) [Lemma 3.1] If v, € LY(QL) = vo, € LYQY) (1 < g < o) then
Uy — Ve in LYRY).
(2) [Lemma 3.4] If b, € W=7 (QF) 5 hy, € W1 (Q%) then
B 5 he in WY R,
(3) [Lemma 3.5] If A € L' (0, T; W™ (Q%)) 5 he, € L7 (0, T; W' (Q*)) then
he = he in LY(0,T; W 7' (RY).

(4) [Lemma 3.6] If the sequence |[|vgl|
Veo € LP(0, T; W™I/(Q%)) with

L (071 @) (k € N) is bounded then there exists

Tr — Do in LP(0,T; W 7' (RY).

(5) [Lemma 3.7] If the sequence ||Vk”L°°(0 T200h) (k € N) is bounded then there exists
Voo € L™(0, T; L*(Q™)) with
Pr = P in L2(0, T; LA(RY)).
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We apply Lemmas 3.1-3.7 to (3.2) as follows. By using Lemma 3.1, we will show that the zero
extensions of |Fy|P~2Fy, vx and Dy, converge strongly-+. By using Lemma 3.5, we will show that
the zero extensions of f; and d,y; converge strongly-+. With Lemma 3.6, the existence of weakly-x
converging subsequence of d,ii; in L” (0, T; W='"'(R")) will be obtained. Also with Lemma 3.7, the
existence of weakly-* converging subsequence of it in L=(0, T; L>(R")) will be obtained.

We prove our main tools for convergence lemmas. From now on, we denote 1 as the indicator
function on the set E.

Lemma 3.1. With the assumption (1.7), suppose that 1 < g < oo and N > 1. If
Vie L7 Q5 RY) S V., e LY(QF,RY),
then
Vi —» Vo in LYR:,RY),
where Vi, € LY (R, RY) is the zero extension of Vi, € LY (QF, RY).
Proof. Suppose that V, € LY (Q%,RV) 5 V., € LY(Q%,RM). By (1.7),
lg — 7lay in LIRG,RY),

for any 77 € LY(R%,RY). So by Definition 1.2, we have that

(Vk,ﬁ>dxdt=f (Vio 7 1oy ) dxdt — (Vw,ﬁlg;o>dxdt=f(Vw,mdxdt,
n ok R

Ry Q7 T

which implies that
Vi = Vo in LY (R}, RY). (3.3)

Suppose the lemma does not hold. Then there exist 6 > 0 and a subsequence (which will be still
denoted as {V,};? ) such that

f Vi = Vool dxdt > 6 (k € N). (3.4)
R

Choose 7y = |V = Vool? 2(Vy — V) then

o
I7ill Lo mvy = IVie — Vall®) (k € N).

L4 (R2RN)

Since (V; — Vo) — 0 in LY (R%,R") and any weakly convergent sequence is bounded, we see that
{M}r=, 1s bounded in LY(R7., RY). So there exists a subsequence (which will be still denoted as mdiey)
such that

ik = i in LIRS, RY),

for some 7., € LY(R"%, RM). By (1.7) and that (V; — V,) — 0in L7 (R%,R"),

N =0 in R} \ Q7.
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Also we have that
7_7/( : 1Q1fr - 7_700 : IQ°T° in LP(RH’RN), (35)

because for any V € L7 (R, RV),

(V- Lag, i) dxdi + f Vgt = L), 7 dxdr — f (V.77 L) dixal,

Ry Ry

f (V.7 11 ) ddt =
R7

Ry

which holds from [Qf \ Q| — 0 and |Q \ Q| — 0 by (1.7). From (3.5) and that V, € L7 (Q%,R"N) 5
Ve € L7(Q2,RY), we use Definition 1.2 to find that

(Vi i) dxdt = f Vs i+ i ) dxdt — f (Veos Teo * L) dxdt = f (Veos Tleo) dxdt,
ok o RY

n
RT T

which implies that

f (Vi = Vo, i) dxdt = f Vi, i) dxdt — f Vo, ) dxdt — 0. (3.6)
Ry R} R..
On the other-hand, by (3.4), we find that
f (Vi = Voo, i) dxdt = f Vi = Vool dxdt > 6 >0 (k e N),
Rﬂ Rﬂ

T T

which contradicts (3.6). So the lemma follows. O
We have the following characterization for # € W=7 (Q).

Lemma 3.2. With the assumption (1.7), suppose that h € W=7 (Q) (1 < p < ). Then there exists
= Wé’p (Q) such that

fg; <(|V|P—2v’ |DV|p_2DV), (()Da D‘P» d-x = <<h’ ¢>>(W’1'FI(Q),W(§'1)(Q)) ’

p—1
W(;P(Q)

Proof. Since h € W= (Q), there exists H = (Hy, Hy,--- , H,) € L” (Q, R"*!) satisfying

forany ¢ € Wé’p(Q). In addition, we have that ||hl|y-1, ) = |IVIl

«h, 90))<W,1,,,f(9),wé,p(g» = f (H, (¢, D)) dx for any ¢ € W(;’p(Q),
Q

by Proposition 2.5. Let v € Wé”’ (Q) be the weak solution of

VIP~?v —div [Dv|P*Dv = Hy—div[(H,,--- ,H,)] in Q,
v = 0 on 0Q.

Then for any ¢ € WIP(Q), we get

fg ((MP2v, IDVIP2 D), (¢, D)) dx = fQ (H,(p, Dy)) dx

= (h, ‘)D»(thp’(ﬂ),wé’p(ﬂ)) ’
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So by the definition of || - |lyy-1. @)

— p-1
”h”W’lsP'(Q) - sup «h’ (’D»(W’I’I”(Q),Wé’p(ﬂ)) < ||v||W$,p(Q)'

el

By taking ¢ = —>— € Wé’p (Q), we get

VIl 1p
Wyt @

p-1
M0 g < Wil

By combining the above two estimates, we get ||Ally-1. ) = ||V||lv)‘;1iz(9)- O
0

We extend h € L7 (0,T; W= (Q)) to h € LP(0,T; W=*'(R") in Corollary 3.3, which can be
viewed as a natural zero extension because of (3.7).

Corollary 3.3. With the assumption (1.7), suppose that h € W=7 (Q) (1 < p < o). Then for v €
Wé’p (Q) in Lemma 3.2, one can define h € W=7 (R") as

<<}_” ¢>><W*1fp'(R"),W5"’(R")> - f <(|\7|”‘2\7, |DY"D v),(¢, D ¢)> dx, (.7)

R}’l
forany ¢ € Wé’p (R"), where v € Wé’p (R") is the zero extension of v € Wé’p (Q). Moreover, we have that
<<h’ ¢>>(W’l”” (Rn),Wé’p(R"» = <h, ‘)0><W—1,p’ (Q),Wg’p(Q)) (3.8)

forany ¢ € Wé’p (Q) and the zero extension p € WS”’ R of ¢ € Wé’p (Q). In addition,

p-1
WP ()

p-1

Wg,p(Rn = ”h”W*IsP'(Q)-

1Pllyw-1. ey = IV , = vl

In Definition 1.4, we defined a convergence for a sequence of the domains, say &, € W=7 (QF) 5
he € W2 (Q*). But this convergence implies strong convergence by considering the zero extension
in Corollary 3.3 as in the next lemmas.

Lemma 3.4. Under the assumption (1.7) and 1 < p < oo, if hy € W=7 (QY) 5 he, € W' (Q®) then
by = he in W7 R,

and

f (l‘_}k|2 + |\_}oo|2)pT_2|‘_}k - 1_"oo|2 d-x - 0,
= (3.9)

p=2

f (|ka|2 + |D\700|2)T |DV — DV |* dx — 0,
Rﬂ
for v, € Wé’p(R”) and hy, € W=7 (R") (k € N U {oo}) in Corollary 3.3.
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Proof. By using Corollary 3.3, define /i, € W=7 (R") (k € N U {oo}) as
y g y
. _ 25 e 121\ (4 e
() I fR (200 IDRI"2DR) . (@, D)) dx, (3.10)

for any @ € W,”(R"). Here, v, € W,"(Q¥) (k € N U {co}) is defined in Lemma 3.2 and 7 € W,"(R")
the zero extension of v, € Wé’p (©%). Moreover,
7 — -1 -1
-y = 0 ) = Il ) = Wil (k€N U foob.
For k € N U {oo}, let V; = (|vk|P—2vk, |ka|p—2ka) e LV (QF, R™1) and V, € L” (R",R™") be the zero
extension of V.

Suppose that (3.9) does not hold. Then there exist 6 > 0 and a subsequence, which will be still
denoted as {V};7 , such that

p-2
2

(el + 7P % [ = Pl dx + f (D% +|D%e?) * 1DV - Dvof?dx>6 (ke N). (3.11)

R" R"

. = = 11-1

) (k € N), such that

) is bounded in Wé’p (R™), there exists a subsequence, which will be still denoted as

S
Vk ||vk||W1,p(R"
0

S - 1,
VelVillyy ey = Vo in W, (R,
0

for some v, € Wé”’ (Q>) and the zero extension ¥, € Wé’p (R™) of vy € Wé’p (Q®). By taking ¢ =

e lIwell=h in (3.10), we find from Definition 1.4 that
Wy (R
1
— -1 - p=2— — 1p=2 \= — —-
Pl = f (19125, IDVPD¥y ), (Br, DY) dx
WO ®") ||vkllwévl’(Rn) R”

SR A >>
<< W@ -1y ey

= (vl >>
<< Wo @[ [ w1 i, w7 @y

k—o0

— <hoo’ V0><Wflvp’(Qw),Wé’p(Q”))'

So ¥y is bounded in W(;’p (R™), and there exist vy € Wé’p RM), Vo € L (R",R"") and a subsequence,
which will be still denoted as {v;};7,, such that

Dy, — Dv, in LP(R",RM),
Ve = Vo in LP(R"Y), (3.12)
Vk - VO in Lp,(Rn,RnH).
Recall that V, = (|vk|f’—2vk, |D\7k|”‘2D\7k) e L”@R"R"™) is the zero extension of

V, = (Ivklp‘zvk, |ka|1"2ka) € L7 (QF, R™"). Because of the assumption (1.7), one can also show that

%o=0 ae. in R"\Q® and V,=0 ae. in R"\ Q. (3.13)
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Also by (1.7),
there exists K € N such that supp ¢ cc QF (k > K) for any ¢ € C2(Q). (3.14)

From (3.13), (3.14) and Definition 1.4, we obtain that

[ (h@pp)dx= [ (Do) dx— [ (VoD dx
Rn ok S

for any ¢ € C°(Q2) and the zero extension ¢ € C.°(R") of ¢ € C°(Q2*). Also from (3.12), (3.13) and
(3.14), we obtain that

[ (h@op)dx— [ (Hu@.Dp)dr= [ Vot Do) dx,

00

for any ¢ € C°(2%) and the zero extension ¢ € C°(R") of ¢ € C°(Q%). Thus
[ (7= Vo0 dx=o0
R}'l

for any ¢ € C°(Q2*). For any ¢ € Wé’p(Q‘X’), there exists ¢, € C°(Q%) with [|¢ — goellwé,p(m) < €, which
implies that

| (7= Vo e.D0) o] < €(IWallrigr + 1l

Since € > 0 was arbitrary chosen, we find that
[ (7= VoDp) dx= [ (7= Vot )) dx=0 (3.15)
R" o

for any ¢ € Wé’p Q™).
Fix ¢ € C2(Q%). By (3.14), there exists K € N with

T = Veop € W, QYN W PRY (k2 K).
By a direct calculation, it follows that
fRn (Vi = Ve (34 = Vo, DIy — Po))) dlx
= fR (Ve = Veon (0 = 7). DI = Tesp)])) dlx (3.16)
- fR (Ve = Voo (31 = ). DIl = 9)D)) dlx.
for any k > K. By (3.12) and (3.14), (Vx — Vo) = (Vg — Veotp) In Wé’p(R”). So by Definition 1.4,

f (Vi (5 = Pectp), Dk = o)) dx — f (Veor (P9 = Psp), D(Fg = Vestp))) i,
n Rn
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and
f (Veor (5 = Peatp), DT = o)) dx — f (Veos (B0 = Vo), D(Fg = o)) dx,
R” Rn

which implies that
f <Vk = Voo (7 = Vootp), D(W — ngo))> dx — 0. (3.17)
Rn
By (3.12),

n

fn (Vi = Vo (o1 = ), D[Pl = 9)])) dx > f (Vo = Vo (o1 = ), D[Fes(1 — 9)])) dx. (3.18)

By combining (3.17) and (3.18), we use (3.15) to find that

f (Vie = Veor (04 = 000 D7 = 9D} dx = | (Vo = Voo (3ol = ), D[Fo(1 — 9)])) dx = 0, (3.19)
-

Rn

because of that V.,(1 — ¢) € Wol’p (Q%). Then by Lemma 2.11,

S p2
(Tal® + Pl 7 5 = eol? + (IDTP + IDF[?) * 1DV = Db dx — 0,
Rn

but this contradicts (3.11) and we find that (3.9) holds. So by Lemma 2.12,

1

2

b2 5
Vi — Vool dx < ¢ [ f (D% + |DPe?) * DV = Dol dx] [ IDV|” + |DVeol” dx]
Rll Rll

f (19 + Pol?)
Rn

Rﬂ

1
p=2 2
2

1
2
+c |vk—vm|2dx] [ |\7k|p+|\7m|pdx]

Rn

— 0.

This implies that

= sup <Vk — Vios (&, ng)) dx — 0,

=1 Jrr

1Ay _ljloo”Wfl»p’(Rn) = sup «ljlk — heo, @

el 1.y =1 >>W”J”(R"),W$"’<Rn>
Wy P &)

10,1
and the lemma follows. O

Lemma 3.5. Under the assumption (1.7) and 1 < p < oo, suppose that h, € L (0, T; W=7 (QF)) 5
he € L7 (0, T; W' (Q%)). Then
he = he in LF(0,T; W' (R"),

and

-2
(T + ) T [y = Peo* dx — 0,
R

~=

= (3.20)
(|D\7k|2 + |D\70<,|2) > |D¥, — Dvo|*dx — 0,
"

for v, € LP(0, T, Wé’p(R")) and hy, € LP (0, T; W=7 (R")) (k € N U {e0}) in Corollary 3.3.

=
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Proof. For any t € [0, T], by using Corollary 3.3, define 7 (-, 1) € W™ (R") (k € N U {co0}) as

<<}_lk(', 1), e(, t)»(W-lvP’(R"),Wé’p(R"»

(3.21)
= f ((19C, D250, 0, IDTC, D2 DT, 1)), (BC, 1), DE(-, 1)) dx,
Rl‘l

for any @(-, 1) € W,”(R"). Here, v(-,t) € W,"(Q") (k € N U {oo}) is defined in Lemma 3.2 and
V(- 1) € WS”’(R”) is the zero extension of v(-, 1) € Wé”’(Qk).
For any ¢ € [0, T], let Vi(-, ) € LP (R", R™") (k € N U {oo}) be the zero extension of

Vi, 1) := (s D20, 0, 1DV P> D, 1)) € L/ (@ R, (3.22)

Suppose that (3.20) does not hold. Then there exist 6 > 0 and a subsequence, which will be still

denoted as {V;}7 |, such that

P2 P2
f (|vk|2+|vw|2) 9y = Peo|? doxdt + f (|ka|2+|Dvw|2)2 DV, — Dy Pdxdt > 6 (k€ N). (3.23)
R,

Ry
: = 1= 11-1 : : p . Lp mn : p . Lp 0
Since v ”vk”LI’(O,T;Wé’”(R")) (k € N) is bounded in LP(0, T; W,"(R")), there exist vy € LP(0, T; W, (Q™))
and a subsequence, which will be still denoted as v, 5 (k € N), such that

L (0.7;w) 7 &)

— — — -1 (5 ~ . p(mn n+l
(VkaDVk)”Vk”l}](O’T;WS,p(Rn)) (Vo, DVg) in LP(R7,R™),

where 7y € L(0, T; Wy”(R™)) is the zero extension of vy € L?(0, T; W, ”(Q*)). By a direct calculation
and Corollary 3.3,
1

— -1
[7ell”

_ 5.1P"25, D7 2D%.) . (. DV
Porran) | fR : (17290, IDRPDP) (30, D)) dxt

|V’<”U(0,T;W(§'P(R';))

T
= ilk(" t)’ ‘_"k(" t) ”‘_/k”_l 1 >> dt
j(; << (015" E) ff g1 (R, Wy (R)

Since vk(~,t)||\7k||;(0T.W1,p(Qk)) € Wé’p(Qk) (k € N), we find from (3.8) in Corollary 3.3 and
o Wo

Definition 1.5 that
NG
B 1), 5 G, O 11! Ly >> dt
0 U:(O,T;WOI(Rn)) <W-1vl”(R"),WOI‘p(R”))

T
= G, 0, v, O 19l | >> dt
fo << (0w @) (W10 (@), WP (b))

T
- f «hoo(, t)’ VO('7 t)>><w—1,p’(Qm)’WévP(Qm» dt.
0

-1

By taking ¢ = v ||V
y gy k ” k”Ll’(O,T;Wé"p(R"))

in (3.21), we combine the above equality and limit to find that

T
- -1
”vk”p - L «hoo(’ t)’ VO(" l-)»(W’l*”,(Qm),W(i’p(Q‘”» dl

(0.7 WP ()
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So ¥ is bounded in L?(0, T} Wé”’ (R™)), and there exists a subsequence, which will be still denoted
as {V¢},-, such that
Dv, — Dvy, in  LP(RZ,R"),
Ve — Vo in LP(RY), (3.24)
Vi = Vo in LVRLR™,
where vy € LP(R}) is weakly differentiable in R7 with respect to x-variable. Because of the
assumption (1.7), one can also show that

Vo=0 ae. in R2\QF and V=0 ae. in R} \QF. (3.25)
Let [w],(-, 1) = % foh w(-, t + 7) dt be Steklov average of w. In view of (1.7),
there exists K € N such that supp ¢ cc QF (k > K) for any ¢ € C(Q™). (3.26)

By (3.21) and Definition 1.5, it follows that

_ 1 t+h
f <[Vk]h(-x9 t)7 (Sb(-x’ t)’ D(p(x’ t))> d-x = E f f <Vk(-x9 T)’ (SD(X, t)9 DQD(X’ t))> d-XdT
Y t Qk

t+h
— % f (Veo(x, T), (p(x, 1), Dep(x, 1)) dxdt
t Qe

= f (V. 1), (B(x. 1), Dp(x, 1) dx,

for any ¢(-, 1) € C2(Q2%). By (3.24) and (3.26),

_ 1 t+h B
fR (Va0 @(x.0), Dp(x. 1)) dx = & f fR (Ve 7). (o, 1), Dg(x, 1)) dxdz
t+h
1 f f (Vo(x, 7). (p(x, 1), Dg(x, 1)) dxdr
h t Rn
= f <[V0]h(x’ t)’ ((,_D(X, t)’ D()b(xa t))> d-x’
for any ¢(-, 1) € C°(Q2%). Thus

| (17 = Vabi . . D) =0
Rn

for any ¢(-, 1) € C°(Q*). For any ¢(-, 1) € Wé’p(Q‘x’), there exists ¢ (-, 1) € C(Q*) with |lo(-, 1) —
@e(s Dlly1r ey < €. So we find that
0

< € [NVl Dl oy + NTVOIC Dl |

fR (Ve = Volux.1). (@(x.1). Dp(x, 1)) dx

for any ¢(-,1) € Wé’p (Q*) and the zero extension @(-, 1) € W(;’p (R™) of ¢(-,1) € W(;’p (Q>). Since € > 0
was arbitrary chosen, we find from (3.25) that

O = f <[‘700 - VO]h(xa t), ((,_U(X, t)’ DQZ’(X, t))) dx = f <[Voo - VO]h(xa t)’ (QO(X’ t)7 D‘p(x7 t))) dX
Rll

I
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for any ¢(-,1) € Wé’p (€2*). We now integrate it with respect to time variable ¢ to find that

T—€
0= f ([Veo = Volu(x. 1), (¢(x, 1), Deg(x, 1)) dixdt
€ Q>

forany0 <h<e<Tandp € LP(0,T; Wé’p(Q)). Since V,, — V) € LP’(Q‘}"), we use [26, Lemma 3.2]
to find that

T—e€
0= f j;m ([Veo = Vol(x, 1), (¢(x, 1), Do(x, 1)) dxdt,

forany 0 < e < T and ¢ € LP(0,T; Wé’p(Q"")). Thus

T
0= f [V — Vol(x, 1), ((x, 1), Dp(x, 1)) dxdt, (3.27)
0 Jo=

for any ¢ € LP(0,T; Wé’p(Q"")).
Fix (-, 1) € C(Q%). By (3.26), there exists K € N with

(T = P@)(, 1) € W P(@Q) N WP (Q™) (k= K).

By a direct calculation,
f (Vic = Vo, (34 = Peos DIV — Pea))) dixdt
R}
= [ (T P Gh = 90, DI = 5o s (3.28)
R}

- f (Vi = Voo, (o1 = ©), DIFo(1 — 9)])) dixt.

Ry

Also by (3.24), (Vi = Ve, D[V — Veop]) = (Vo — Vo, D[Vg — Veop]) in LP(R7). So by Definition 1.5,

f <Vk, (Vi = Vootp, D[V — \70090])> dxdt — <‘700, (Vo — Veotp, D[Vg — 170090])> dxdt,
R. RI

and

f (Veos (Bi = Vootp, DIy = Vogp])) dixdt — f (Veos (B = Veotp, DIy — uugp])) dixcdt,
R)l

n
T RT

which implies that
f (Vic = Vo, (54 = Vootp, DIW — P} dixdt — 0. (3.29)

T

By (3.24),
f (Vi = Voo 01 = ). D1 = 9)])) dlxdt
: (3.30)
= | (Vo= Veor Gl = @), DIFes(1 = @)1)) dixdt.

R7
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By combining (3.28), (3.29) and (3.30), we use (3.27) to find that

f(m—%qumDm—mmth
o (3.31)
- f (Vo = Voo (Gesl(1 = @), D[Teo(1 = @)])) dxdt = 0,
RT

n

because of that v,(1 — ¢) € LP(0,T; W(;’p(Q“’)). So by Lemma 2.11 and (3.22),

fR’;

but this contradicts (3.23) and we find that (3.20) holds. Then by Lemma 2.12

=

P2 2
(19l + Feol?) = 170 = Vol dxdt + f (D%l + IDV) * 1DV — D dxdt — 0,

n
RT

f Vi — Vool dxdt — 0,
R

which implies that

T
e = h""”LP’(o,T;W—lvf’/(Rﬂ)) - fo I sup <<hk = heo, "_0>>(W*1¢P'(R"),Wé‘p(R”)) di

M(O,T;Wé‘p(R"))ZI
T — —
= f sup f (Vi = Vo). @. D)) dar
0 el =1 JRn
LP(O,T:Wé’p(R’l))
-0,
and the lemma follows. m|

To obtain a weak convergence for d,u; € LP’(O, T, W‘I*P'(Qk)) (k € N), we consider the zero
extension in Corollary 3.3. We remark that
T T
fo (h e di = fo (1), ar,

for any 1 € Wé’p (Q) and the zero extension 7j € Wé’p (R") of € Wé’p (Q), where £ is defined in
Corollary 3.3.

Lemma 3.6. Under the assumption (1.7) and 1 < p < oo, let Q% C R" (k € N) be a sequence of open
bounded domains. If v, € LP (0, T; W=7 (Q%)) (k € N) satisfy

IIvklle,(O,T;W_l,p,(gk)) <M (keN),

for some M > 0, then there exists vo, € L' (0, T; W=7 (Q®)) such that
Be — Ve in LP(0,T; W7 (RY)),

where vy (k € N U {oo}) is defined in Corollary 3.3, which implies that

T T
fo (T 0271 D d fo (s 1,7 ) e
foranyn € LP(0,T; Wé’p(R”)).
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Proof. Since v, € L” (0, T; WO_LP/(Q")) (k € N), for each ¢ € [0, T], there exists Vi(-, 1) € L’ (Q, R")
such that

i, 0, (Do = f (Vi(-,1), (@, D)(-)) dx for any ¢ € W, " (Q), (3.32)
Qk

by Proposition 3.2. Moreover,
VG Dllw-10 ) = inf{”Vk(', Ol @t gy = Vi, 1) satisfies (3-32)},
for any ¢ € [0, T]. So for ¢ € [0, T], choose Vi(-, 1) € LP (QF,R™") (k € N) so that

IVi(, t)”Lp/(Qk,RnH) < 2[n(s, t)”w—l,//(gk) (ke N),

which implies that

Vil 4 oery = ”V"”Lﬂ'(O,T;LP’(Qk,Rn”)) = 2”vk”Ll’/(O,T;W"*”'(Q")) <2M.

for any k € N.
Let Vi be the zero extension of V; from Qf to R%. Since ||Vk||Lp’(R;’Rn+I) < 2M (k € N), by

[

Proposition 2.3, there exists a weakly convergent subsequence, which will be still denoted by {V};2 |,

which converges to V., € L” (R, R"*), say

Vi = Ve in LV (R}, R™),
which implies that

jl;’;

for any 7 € LP(0, T; Wé”’(R")). Then one can check from (1.7) that V. = 0 a.e. in R} \ Q5. So define
Veo € L7 (0, T; WL (Q™)) as

(Vi (i1, D7)y dxdt — f (Vw, (i, D)) dxdt, (3.33)

Ry

T
L‘ <v0<>('5 t)’ 77(’ t))Q"O dt = L <‘700’ (77’ Dﬂ» d-th9

00
T

for any n € LP(0, T} WS”’ (Q)). Then by Corollary 3.3,

T
‘fo <‘_}00(" t)’ 7_7(’ t))R" dt = f <‘7007 (f]’ Dﬁ)> d-th,
Ry

and

T
f <‘_}k(" t)9 T_’(’ t))Qk dt = <Vk’ (T_]’ Dﬁ)) dth’
0

R7
for any 77 € LP(0, T WS”’(R”)). So the lemma follows from (3.33). O

Lemma 3.7. Under the assumption (1.7) and 1 < p < oo, let Q* ¢ R" (k € N) be a sequence of open
bounded domains. If vi € L*(0, T; L>(QY)) (k € N) satisfy

||Vk||Lm(O’T;L2(Qk)) <M (k e N),
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for some M > 0, then there exists vo, € L*(0, T; L*(Q)) such that
Tr — Do in L0, T; LX(R")
where Vy is the zero extension of vy to L¥(0, T; L*(R")) for k € N U {oo}.

Proof. L=(0,T; L*(Q)) is dual of L'(0, T; L*>(Q)) for k € NU{co}. We denote ¥, as the zero extensions
of vy to L*(0, T; L>(R")) for k € N U {oo}. Since

||Vk||L°°(O,T;L2(R")) = ”vk”L""(O,T;LZ(Ql‘)) S M (k E N)’

by Proposition 2.3 we find that there exists a weakly convergent subsequence, which will be still
denoted as {V;};7 |, which converges as
B = P in L2(0, T; LX(R")).

We remark that weak-* convergence was used instead of weak convergence, because (L*)* # L!.
One can easily check from (1.7) that V., = 0 a.e. in R% \ QF. So the lemma follows by taking
Voo = Voo * 19;0 O

Now recall the energy estimate (3.2).

SUPf|17k(‘,T)|2 dx+f |Dit | dxdt
0<r<T Jor ok (334

S c [lllelp_szllLl’,(Q];) + ||'fk||Lp,(O,T;W_l‘pl(gk)) + ”D')/k”LI’(Q’;) + ||alyk||Lp’(O,T;W—lyp’(gk)) .

Let Fy, ¥y, Dy € LP(R7) be the zero extension of Fy, v, Dy, € L”(Q’;), respectively. (We remark
that ¥, might not be weakly differentiable in R’,, but we abuse the notation for the simplicity of the
computation.) We apply Lemma 3.1 to (1.9). Then

|FP2Fy —  |FIP2F in L(R}, R,
Ye = ¥ in L7(R7), (3.35)
Dy, — Dy in LP(R2, R"),
which implies that

i p=2 soopy = i E AP 2E L o ooy = IIEPP72F)|,
l}l_)rglllel Fill (@) —gl_)n;”|Fk| Fill (R;‘.)—|||F| Fllp» ®2)

and
lim DYt = lim 1D%ullry) = 1DVl

Let f,, 0% f and 87 be the zero extension of f,d,yx € L”(0,T;W""(QF) and
f,0ry € L7 (0,T; W= (Q)) in Corollary 3.3 respectively. By Corollary 3.3 and Lemma 3.5, we find
from (1.8) that

{ i S F  inLPO,T; W' RY), (3.36)

0y — 8y inLP(0,T; W' (RM),
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which implies that

]}l—)r?o ”‘ﬁc”L", (O’T;W—l,p’ (Qk)) = ]}l—>nc>l<> ||f}€||Lp’ (O’T;W—l,p’(Rn)) = ||f||LP’ (O’T;W—l,p’ (Q))’

and

]}1—{1; ||817k||Lp' (O,T;W_l‘pl (Q)) = ]llm ||at7k||Lp' (O,T;W_l’p, (Q)) = ||817||L,,f (O,T;W_l’p, (Q)) .

So the right-hand side of (3.34) is bounded, and one can apply Aubin-Lions Lemma, Lemma 3.7 and

the zero extension to find that there exists a subsequence of {it};” ,, which will be still denote by {it;};? |,
and &g € LP(0,T; Wé’p(R”)) N L*(0, T; L>(R")) such that

Diuy, — Dy in LP(R%,RY),
e — g in LP(RY), (3.37)

*

i — @y in L=(0, T; LA(R™)).

Here, the compactness method is applied to some ball satisfying B > QF (k € N) and B O Q by using
the zero extensions.
By (1.10),

T

f (O, Phgy dit = f k<|Fk|p_2Fk’D‘P> + fip — (a(Duy, x, 1), Do) dxdt,
0 ok

for any ¢ € LP(0, T} Wé’p(Qk)). Then we see that [|9,udl, , (0w~ ()

extension of 0,u, € L' (0, T; W=7 (QF)) in Corollary 3.3 as 0, € L (0, T; W~"7"(R")). Then we find
from Corollary 3.3 that

) 1s bounded. We denote the zero

(10, 2| (k € N) is bounded. (3.38)

)74 (O,T;W—Lpl (Rn)) = ||6l‘uk||Lp/ (O,T;W_l*pl (Q]‘))

So by Lemma 3.6, there exist d,u in L ,T; W‘l*”'(Q)) and a subsequence of {i},” ,, which will be
still denoted by {it};> | such that

djiiy — iy in L7 (0, T; WP (R™)). (3.39)

Here, we denoted the zero extension of duy € L7 0, T, WL (Q)) in Corollary 3.3 as
Oiity € L (0,T; W-"P'(R")). Define uy = iip + y in Q7. Then we have that following lemma. We
remark that a different proof is shown in Step 4 in the proof of [30, Lemma 5.1].

Lemma 3.8. For uy = iy + v in Qr, we have that

1 h
}11{13% ) fg luo(x, ) — y(x, 0)* dxdt = 0.

Proof. Let i be the zero extension of i, from R” x [0, T'] to R* x [-T, T'], which means that ity = 0 in
R*"% [-T,TDH \ (R" x [0, T]). Also define d;ii, as

€Oty ©Npn = LOiitxs @ Xy Ngn Torany ¢ € LP(—T,T; WHP(R").
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Then we see that 0,i, € L”' (- T, T; W17 (R")), because

T T T T
-T 0 0 R” =T n

forany ¢ € CX(R" X [T, T]). Here, we used that ity = 0 on R" X {0}.
By (3.37) and (3.39), there exists a subsequence, which will be still denoted as i1, and d,ii; (k € N),
such that
Diyy, — Diy in LP(R" x (-T,T),R"),
iy, — iy inLP(R"X(-T,T)), (3.40)
iy — o inL>(=T,T;LAR")).
and
Oy, — B,y in L7 (=T, T; W7 (R"),
for some ity € LP( - T, T; WS”’(R”)) NL2(—=T,T; L*(R") and d,ity € L” (— T, T; W='*"(R")). Then by
Proposition 2.6, we have that ity € C([-T, T]; L>(R")), which implies that

1 (" 1 (" 1 ("
0 = lim - f fo|* dxdt = 1im — f 0o|* dxdt = lim — f f liio| dxdt,
o h Jy n ™NOh Jy Jgre m™NO R Jo Jge

where we used that iy = ity in R”., which holds from (3.37), (3.40) and that i is the zero extension of
ity from R7. to R" X [=T, T]. Since ity = up — 7y in Q, we get

1 h
}li{% i fg luo(x, 1) — y(x, t)|* dxdt = 0.

Since y € C([0, T]; L*(Q)), we find that

1 >
lim — fo fg ly(x, 1) = y(x, 0)F dxdt = 0,

and the lemma follows. O

Lemma 3.9. For the weak solutions u € y + LP(0,T; Wé’p(Q)) N C([0,T]; L*(Q)) of (1.6) and uy €
i + LP(0, T3 Wy P (@) 0 C([0, T1; LX(QY)) in (1.10), we have that

lim f |Dity, — Du|’¢” dxdt = 0 forany ¢ € Co(Q) with0 < ¢ <1,
Rn

k—o0
T

and
lim f |Duy, — Dul|? dxdt =0  forany U cc Q. (3.41)
Ur

k—oc0

Moreover, we have that

Diy — Di in LP(R:,RY),
w, — u inLP(RY),
i, — @ in L®(0,T; L2RM).
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Proof. Recall from (1.7) that

lim d (0t,60) = 0, (3.42)
which implies that
there exists K € N such that supp ¢ cc QF (k > K) for any ¢ € C.(Q). (3.43)

Fix ¢(x) € CX(Q) with 0 < ¢ < 1, which is independent of #-variable. Choose K € N in (3.43).
Test (1.10) by (itx — itg) ¢” to find that

T
f KOuk, (g — o) @ Ny dt + fk <ak(D”ka x,1), (Digy. — Diag)” + p(ity — ﬁ0)¢p_1D€0> dxdt
0 Q

T

= fk <|Fk|p_2Fk, (Dt — Diig)” + p(ily — a0)¢P‘1D¢> + filitx — tio)p” dxdt,
o

T

for any k > K. Recall that ity = wx — yx, ilp = up —y and ¢ € C(2) N Cf"(Qk) for any k > K. For
(supp @)r = supp ¢ X [0, T], we discover that

T
f €0, (i — o) , (it — o) " Py dt + f (ar(Dug, x,t) — ar(Dug, x, 1), (Dux — Dug)¢”) dxdt
0 R

TN(supp @)r

=0+ 1L + 11 + 1V,

where
I = f <ak(D”k’ x,1), (DY — Dy)¢? — p(ity. — io)¢” _1D<p> dxdt,
REN(supp o)1

1l = f (IFd7=Fr. (Dity — Ditg)g") dxdt
R7N(supp )1
+ f <|Fk|p_2Fk,P(ﬁk - ﬁo)‘PP_ID‘;D) + fility — ito)? dxdt,
RyN(supp o)1
111, = —f {ar(Duy, x, 1), (Duy, — Duy)¢”) dxdt,
RyN(supp ©)r

T
1V, = —f (0r¥x + Osio, (i — ) @ )gn dt,
0
for k > K. One can easily check from (3.35) and (3.37) that

lim I, = 0. (3.44)

k—o0

By a direct calculation, we have
II, = f <|F|P‘2F, (D, — Dﬁo)cp”> dxdt
R7N(supp o)1
+ f <|Fk|P-2Fk — |FIP°F, (D — Dﬁo)go”> dxdt
RyN(supp ©)r

+ f <|Fk|p_2Fk, p(ﬁk - ﬁo)QDp_lD(p> + ﬁ(ﬁk - ﬁo)QDp dxdt.
RyN(supp ©)r
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By (3.35)-(3.37),
limsup /1, = 0. (3.45)

k—o0

We handle /11;. By Lemma 2.14,

< lirg llax(Duy, -) — a(Dug, )| o,y = 0.

So by (3.37),
limsup /11 = 0. (3.46)
k— o0
By (3.36) and (3.37),
limsup IV, = 0. (3.47)
k—o0

Since ¢ = ¢(x) and 0 < ¢ < 1, one can easily show that

H(ﬁk — ilp) ¢§] (x, T)‘z

dx > 0.

T
f €0, (g — itp) , (it — o) @ Hga dt = f
0 -

because i, = 0 = ity on R" X {0}, which holds from Lemma 3.8. So by (3.44), (3.45), (3.46) and (3.47),
f (ar(Duy, x,t) — ay(Duy, x, t), (Duy — Dug)p”) dxdt — 0,
REN(supp @)t
because (a;(Duy, x, 1) — a(Duy, x, 1), (Dux — Dug)p”) > 0 in R7. N (supp )7, which implies that
f (IDw? + |Duo? + 52 |Duy — DugPPo?dxdt — 0.
R7N(supp o)1
For any « € (0, x;], we have from Lemma 2.7 that

f |Duy. — Duo|P¢? dxdt < CKpf (|Duo|? + SZ)ggo” dxdt
R7N(supp @)1

RyN(supp ©)r

p—2
+ CKP_Zf (1D + 1Duol + 5% |Duy, — DuolP¢"dxdt.
RzN(supp o)1

So we find that

0 < lim sup |Duy — Dug|P¢? dxdt < CKpf (|Dug)? + s2)g<,0” dxdt.
k—oo REN(supp )t REN(supp @)1

Since « € (0, k] and ¢ € C°(€2) were arbitrary chosen, we discover that

lim |Duy. — Duy|P¢” dxdt =0 forany ¢ € C;(Q) with0 < ¢ < 1.
k=eo Jrnn(supp o)r
So by (3.35),
]}im f |Dity, — Ditg|’¢” dxdt =0 forany ¢ € C;’(QQ) with0 < ¢ < 1. (3.48)
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For any U cc Q, there exists a cut-off function n € C°(Q2) suchthat0 < <1inQandn =1 on
U. Moreover, by (3.42), there exists K € N such that

UccQ (k=K. (3.49)
So by (3.48),

]}im f |Diiy — Diig|” dxdt =0 forany U cc Q. (3.50)

—00 Ur

By Corollary 3.3 and (3.39),

T . T T
f (Ostty, PPy dt — f (0.tto, gn dt = f (0o, @M dt, (3.51)
0 0 0

for any ¢ € C(Qr).

Now, we show that u is the weak solution of (1.6), which implies that u = u, by the uniqueness.
Fix ¢ € Cy(Qr) and choose U cC Q with supp ¢ C Uyr. By (3.42), there exists K € N such that
U cc QF (k > K). We have from (1.10) that

T
f Ok, PNy dt + f (ar(Duy, x,t), Do) dxdt = f (IFW P2 Fr, D) + frp dxdt,
0 ok o

T

for any k > K. So by Lemma 2.10, Lemma 2.14, (3.35), (3.36), (3.50) and (3.51),
T
f (Ouo, Y + f (a(Duy, x, 1), Do) dxdt = f (FIP2F, D) + fodxdt.
0 Qr Qr

We find from Lemma 3.8 that uy € L*(0,T;L*(Q)) n LP(0,T; Wé’p (Q)) is also the weak solution
of (1.6). By uniqueness of the weak solution, we find that uy, = u, and the lemma follows from (3.37),
(3.48) and (3.50). O

We next estimate the concentration of Dii;, near the boundary 0Q X [0, T'].

Lemma 3.10. For any ¢ € C°(Q) with 0 < ¢ < 1, we have that

k—oc0

lim supf |Dui|? (1 — @) dxdt
Ry

a1 = ¢”)*1(x, TP p
2 X

< Cl (IDuf? + 1Dy + 55 (1 — ¢") dxdt + f
Qr Q

Proof. Fix ¢ € C(€2) with 0 < ¢ < 1. We have from (1.7) that
there exists K € N such that supp ¢ cC QF (k > K) for any ¢ € C.(Q). (3.52)

We next take « = «;(n, p, 4, A) in Lemma 2.7 to find that
fg Dug = Dyyl? (1 = ") dxdr < ¢ fg Dy + 57 (1 = ¢") dudt

) (3.53)
+ CI (D> + Dy * + s2)'7 |Duy — Dyil? (1 — ¢P) dxdt,
Qf
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for any k > K. In view of (1.2), we discover that

f (IDw* + |Dyl* + Sz)Lleuk — Dy > (1 — ¢P) dxdt

k

. (3.54)

<c f (a(Duy, x,t) — a(Dyy, x, 1), (Du — Dyy)) (1 — ¢”) dxdt,
o

for any k > K.

We will estimate the limit superior of the right-hand side of (3.54). We test (1.10) by
(ur — vi) (1 — ¢P) to find that

fk (ar(Duy, x, 1) — ar(Dy, x, 1), (Du — Dyy) (1 = o)) dxdt = Iy + Iy + 111 + 1V, (3.55)
QT

where
I = fk (ar(Duy, x, 1), (uy — yi) pe”~' Do) dxdt,
Q

T

Il = - f (ar(Dy, x, 1), (Duy — Dyy) (1 — ¢")) dxdt,
o
1= [ (IR Fe Dl = 70 (1= 1) + flie = ) (1 = ¢7) di,
o

T
IV, = — f Gty (=70 (1 = @)ex
0

for any k > K.
We estimate the limit of the right-hand side as k — oco. Without loss of generality, assume that
k > K. Then we have from (3.52) that

@ € CX(Q) N C(QY.
We first compute the limit of /;. By the triangle inequality,

ay(Duy, x,t) — a(Du, x,t)| |D r
(D, . 1) = a(Du, 01Dl e

< lllax(Dug, x, 1) — ax(Du, x, )l |Dell| +lllax(Du, x, 1) = a(Du, x, DI 1D¢l|l

P _P_ .
Lr=V(REN(supp o)1) P=1(RE.N(supp ©)1)

Since ¢ € C(2) N C?(Qk), we have from Lemma 2.10, Lemma 2.14 and (3.41) in Lemma 3.9 that

lim llax(Duy, x, 1) — a(Du, x, D] ID@ll| 2, ®urp o) 0. (3.56)

By Lemma 3.9, we have that ity — # in LP(R?). Since uy — yx = ity in Q’; and u —y = & in Qf, we find
from (3.50) that

I = f Aar(Dug, x, 1), (u = yOpg”™ D) dxdt — f (a(Du, x,1), (=) pg" ' Dp) dxdt.  (3.57)
Q Qr

T
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Similarly, by the triangle inequality,

Hak(DVk, X, t) ' IQI;W - a(D’)/’ X, Z) ' IQT U’,(R’})

< ||axDyi 2.0+ 108 - @Dy, x,0 - 10,

LY (RY)

So we get from (3.35), Lemma 2.10 and Lemma 2.14 that

’ 2
LY ®)

lim [|ax(Dyi, x,0) - 10 = a(Dy, x0) - 1o,
and it follows from Lemma 3.9 that
I, = - fk (ax(Dyx, x, 1), (Dui — Dyi) (1 — ¢)) dxdt
QT

= - (ar(Dyy, x, t) - lgl;, Diy (1 — ¢")) dxdt

+ ||ak(Dy, x,t) - lg, —a(Dy, x,1) - 1QT||L],,(R,;) .

fr (3.58)
- | (a(Dy, x,1) - 1q,, Dii (1 — ")) dxdt
- _ fg (a(Dy, x,1),(Du — Dy) (1 — ¢")) dxdt.
r
Recall that
111 = fg IR Dl =70 (1= ¢01) + filin = 72 (1= @) dar.
£
Then one can easily check from (3.35), (3.36) and Lemma 3.9 that
I — | (IFP2F.Diw-y)(1-¢")])+ fu—y) (1 —¢) dxd. (3.59)

Qr

Now, we estimate /V;.
T
IV, = —f O, (ug — yi) (1 — ")y dt
0

T
= - f €Ot = Oryi (e = vi) (1 = @)D = €0y, (e = vi) (1 = @)y dt.
0

Since ¢ = ¢(x), 0 < ¢ < 1 and uy — v, = 0 on QF x {0}, we find that

[ — v (1 — @P)21(x, T)P p
X

> 0.
Qk 2 -

T
f 0wy — Oryi, (U — yi) (1 — ")) dt =
0

Since uy — y; = i in Q’; and u —y = it in Qr, we find from (3.36) and Lemma 3.9 that

T T
fo €9rvie> (i = vi) (1 = ")y dt — fo Oy, (u—y) (A —¢"))hq dt.
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Thus ,
limsup IV, < — f 0y, (u—7y) (1 —¢"))g dt. (3.60)
0

k—o0

In view of (3.55), we find from (3.57), (3.58), (3.59) and (3.60) that

lim Squ (ar(Duy, x,t) — ar(Dyx, x, 1), (Dux — Dy;) (1 — ¢)) dxdt
o

k—o0

< | (a(Du,x,1t),(u —y) pp"' Dp) — (a(Dy, x,1),(Du — Dy) (1 — ¢")) dxdt
Qr

+ f (IFIF, Dl = y) (1 = ")) + fu—y) (1 - ¢") dxdt
Qr

- (@ =) (1 = g dr.
By taking (« — y) (1 — ¢”) in (1.6), we get that
 (@Du,x.0.(u =) pg™'Dy) = (aDy. x.0).(Du = Dy) (1 = ¢)) dxdi
+ fg T (IFIP2F, Dl = y) (1 = ")) + gu = y) (1 = ) dxdt
= . (a(Du, x,t) — a(Dy, x,t),(Du — Dy) (1 — ¢")) dxdt + j;T O, (u—7y)(1 — ")) dt.

Thus

k—o0

lim sup f (ar(Duy, x,t) — ar(Dyy, x, 1), (Du;, — Dy;) (1 — @)y dxdt
Q;

T
< (a(Du, x,t) — a(Dy, x,t), (Du— Dy) (1 — ¢”)) dxdt + f (O — Oy, (u —y) (1 — ") dt.
0

Qr
Since it = u — 7y, we find that

lim sup fk (ar(Duy, x,t) — ap(Dyy, x, 1), (Duy — Dyy) (1 — o)) dxdt
Q7

k—o0

(1l —sof’z)%](x, e

< f (a(Du, x,t) — a(Dvy, x,t),(Du — Dy) (1 — ¢")) dxdt + f I
Qr Q
Since i, = uy — yx, by (3.35), (3.53) and (3.54),

lim sup |Dui|? (1 — @) dxdt

k—o0 R%

a1 — ¢”)21(x, TP dl
X,

<c (Dul? + |DyI* + )% (1 — ¢P) dxdt + f
Qr Q 2

and the lemma follows. O
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3.1. Proof of Theorem 1.6

We are ready to prove Theorem 1.6.

Proof of Theorem 1.6. By Lemmas 3.9 and 3.10,

lim sup |Dit;, — Dul|? dxdt

k— o0 RY

= lim sup l f \Dii, — Dl ¢” dxdt + f \Dii, — Dl (1 - (pp)dxdt]
Ry R}

k—o0

[a(1 — ¢”)? 1(x, T)P dxl’

SC[ (IDul + Dy + )% (1 — ¢") dxdt + f |
Qr Q 2

for any ¢ € C°(Q) with 0 < ¢ < 1. Since ¢ € C’(Q) with 0 < ¢ < 1 can be arbitrary chosen in
the above estimates, one can choose a sequence of monotone increasing functions in C.°(€2) which
converges to 1 a.e. in Q. Then by Lebesgue’s dominated convergence theorem, we get

lim sup |Dit, — Dal? dxdt < 0.

k—o0 R2

This contradicts (3.1). So we find that (1.11) holds. O
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