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Abstract: Let us consider continuous minimizers u : Ω̄ ⊂ Rn → Rn of

F (v) =

∫
Ω

[|Dv|p + |det Dv|r]dx,

with p > 1 and r > 0; then it is known that every component uα of u = (u1, ..., un) enjoys maximum
principle: the set of interior points x, for which the value uα(x) is greater than the supremum on the
boundary, has null measure, that is, Ln({x ∈ Ω : uα(x) > sup∂Ω uα}) = 0. If we change the structure of
the functional, it might happen that the maximum principle fails, as in the case

F (v) =

∫
Ω

[max{(|Dv|p − 1); 0} + |det Dv|r]dx,

with p > 1 and r > 0. Indeed, for a suitable boundary value, the set of the interior points x, for
which the value uα(x) is greater than the supremum on the boundary, has a positive measure, that is
Ln({x ∈ Ω : uα(x) > sup∂Ω uα}) > 0. In this paper we show that the measure of the image of these bad
points is zero, that is Ln(u({x ∈ Ω : uα(x) > sup∂Ω uα})) = 0, provided p > n. This is a particular case
of a more general theorem.
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1. Introduction

Let us consider the functional

F (v) =

∫
Ω

[
|Dv|p + | det Dv|r

]
dx,

where v : Ω ⊂ Rn → Rn, n ≥ 2, Ω a bounded open set, p > 1, r > 0.
It is well known that, if u is a minimizer for F (v), the maximum principle holds, namely, each

component uα of u = (u1, ..., un) satisfies the following condition

uα(x) ≤ sup
∂Ω

uα, α ∈ {1, 2, . . . , n}.

Indeed, maximum principle holds true, in general, for minimizers of the class of functionals

F (v) =

∫
Ω

Ψ(|Dv|, | det Dv|) dx, (1.1)

where the integrand Ψ(s, t) is such that s → Ψ(s, t) strictly increases, and t → Ψ(s, t) is increasing
(see [39]).

What happens when we only have that s → Ψ(s, t) is increasing and not necessarily strictly
increasing? Two examples are Ψ(s, t) = |t| that gives

F (v) =

∫
Ω

| det Dv| dx , (1.2)

and Ψ(s, t) = max{|s|p − 1; 0} + |t|r that gives

F (v) =

∫
Ω

(
max{|Dv|p − 1; 0} + | det Dv|r

)
dx, (1.3)

with p > 1 and r > 0. Maximum principle fails. Namely, consider n = 2, Ω ⊂ R2 is the ball B(0; π)
centered in the origin and with radius π.

The map u := (1, 1 + sin |x|) has gradient

Du =

[
0 0

x1
|x| cos |x| x2

|x| cos |x|

]
,

det Du = 0, and |Du|2 = cos2 |x| ≤ 1. It minimizes both the functionals (1.2) and (1.3). Moreover,
the second component u2 = 1 + sin |x| equals 1 on the boundary of Ω, and is strictly greater than 1
inside. Therefore, the second component of the minimizer u does not satisfy the maximum principle.
This example was given to the last author by V. Sverak a few years ago. F. Leonetti gladly takes the
opportunity to thank V. Sverak for his kindness.
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Furthermore, regarding the previous example, it is worth pointing out that the level set {x ∈ Ω :
u2(x) > 1 = u2

∂Ω
} has positive measure

L2({x ∈ Ω : u2(x) > 1 = u2
∂Ω}) = L2(Ω) > 0 , (1.4)

on the other hand, the measure of the image of the same level set, by means of u, is zero

L2(u({x ∈ Ω : u2(x) > 1 = u2
∂Ω})) = 0 , (1.5)

see Figure 1.

x2

x1

u2

u1

u

u({u2 > 1})
{u2 > 1}

Figure 1. Image of the level set.

We ask ourselves whether the previous example shows a common feature to all minimizers when
t → Ψ(s, t) strictly increases.

In this paper, we give a positive answer to previous question obtaining a modified version of
maximum principle in the case the integrand Ψ(s, t) of the functional (1.1) strictly increases only with
respect to the second variable t.

We will suppose p > n in order to ensure semicontinuity property and consequent existence of
minimizers (see [17]), and also to apply the area formula, that reveals to be a key tool in our proof.

In addition, we can still get a similar maximum principle by using a version of the area formula
for u ∈ W1, 1(Ω, Rn), see [34, 35], provided a suitable negligible set S = Ω \ AD is removed (see
definition 2.1).

Let us come back to the functional (1.3): coercivity holds true with exponent p and growth from
above with exponent q =: nr that could be different from p. When we deal with functionals with
different growth, regularity for minimizers is usually obtained when the two exponents of growth and
coercivity are not too far apart, see [3,6,10–13,18,32,49,50]. In our case, we do not assume anything on
the distance between the two exponents p and q. This is not in contradiction with the counterexamples
in the double phase case [22, 25], since our functional (1.3) is autonomous, neither is in contrast with
counterexamples in the autonomous case [33, 38, 47, 48], since they show blow up along a line that
intersects the boundary of Ω while, in our case, minimizers are bounded on ∂Ω.
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With regard to the regularity of minimizers u of (1.1), let us mention partial regularity results in
[9, 23, 26–28, 30, 36, 52]. Everywhere regularity results can be found in [7, 19, 29, 31], for n = 2
. We also mention global L∞ bounds in [4, 5, 21, 39–44], and local L∞ regularity in [8, 14–16, 20].
Furthermore, concerning nonlinear elasticity, we cite, in particular, the results in [1, 37, 45, 46, 51].

In the next section 2 we write some preliminaries. In section 3 we state our result and we give the
proof.

2. Preliminaries

In order to obtain our result, we need that the area formula holds. Therefore, let us recall the
following

Definition 2.1. Let u : Rn → Rn be a map which is almost everywhere approximately differentiable
and let A be a measurable subset of Rn. We define the Banach indicatrix of u by

N(u, A, y) := ]{x : x ∈ A ∩AD(u), u(x) = y}

where
AD(u) = {x : u is approximately differentiable at x},

and the theorem

Theorem 2.2. (see Theorem 1 in section 1.5, chapter 3, at page 220 of [35]) Let Ω be an open subset of
Rn and u be an almost everywhere approximately differentiable map, in particular let u ∈ W1,1(Ω;Rn).
Then for any measurable subset A of Ω we have that N(u, A, ·) is measurable and∫

A
| det Du(x)|dx =

∫
Rn

N(u, A, y)dy (2.1)

holds.

Furthermore, a related condition we will refer to is the Lusin property (N) that is so defined

Definition 2.3. (Lusin property (N)) Let Ω ⊂ Rn be an open set and f : Ω → Rn a mapping. We say
that f satisfies Lusin property (N) if the implication

Ln(E) = 0 =⇒ Ln( f (E)) = 0

holds for each subset E ⊂ Ω.

3. Main results

Let Ψ : [0,+∞) × [0,+∞)→ R be a continuous non negative function such that

s→ Ψ(s, t) is increasing for every t ∈ [0,+∞) (H1)
t → Ψ(s, t) is strictly increasing for every s ∈ [0,+∞), (H2)

and let us denote Ω ⊂ Rn a bounded open set. We will consider integral functional of the type

F (u) :=
∫

Ω

Ψ(|Du|, | det Du|) dx. (3.1)
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Definition 3.1. Let p ≥ 1 and u ∈ W1,p(Ω;Rn) such that F (u) < ∞. We will say that u is a minimizer
of F in Ω, if and only if

F (u) ≤ F (v) ∀v ∈ u + W1,p
0 (Ω;Rn). (3.2)

The main result is the following

Theorem 3.2. Let u ∈ W1,p(Ω;Rn), p > n, be the continuous representative of a minimizer of the
functional (3.1), under assumptions (H1) and (H2). Fix α ∈ {1, . . . , n}, and let us denote

Lα := sup
x∈∂Ω

uα(x) < +∞, BLα := {x ∈ Ω : uα(x) > Lα} ,

BLα is the set of points in Ω where the maximum principle is violated, then

Ln(u(BLα)) = 0. (3.3)

Proof. Let us define

vβ(x) :=

uβ(x) if β , α

min{uα(x); Lα} if β = α.

It results that v is a good test function in (3.2), namely u − v ∈ W1,p
0 (Ω;Rn), then we deduce that

F (u) =

∫
Ω

Ψ(|Du|, | det Du|) dx ≤
∫

Ω

Ψ(|Dv|, | det Dv|) dx = F (v). (3.4)

Let us denote

GLα := {x ∈ Ω : uα(x) ≤ Lα} , then BLα = Ω \GLα = {x ∈ Ω : uα(x) > Lα} ,

and let us split the integrals in (3.4) on the sets GLα and BLα . Observing that Du ≡ Dv on the set GLα

we can get rid of the common part in (3.4) thus obtaining∫
BLα

Ψ(|Du|, | det Du|) dx ≤
∫

BLα

Ψ(|Dv|, | det Dv|) dx.

Now we observe that on BLα , Dvα = 0 and det Dv = 0, then

∫
BLα

Ψ(|Du|, | det Du|) dx ≤
∫

BLα

Ψ(|Dv|, 0) dx

Now, argue by contradiction, by assuming that

Ln(BLα ∩ {| det Du| > 0}) > 0. (3.5)

At this stage, we recall that |Dv| ≤ |Du| on BLα , and we use the strict monotonicity of Ψ with respect to
the second argument (H2), and hypothesis (H1), to deduce∫

BLα

Ψ(|Du|, | det Du|) dx ≤
∫

BLα

Ψ(|Dv|, 0) dx (3.6)
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<

∫
BLα

Ψ(|Dv|, | det Du|) dx ≤
∫

BLα

Ψ(|Du|, | det Du|) dx,

thus reaching a contradiction. The previous argument shows that

Ln(BLα ∩ {| det Du| > 0}) = 0.

Using the area formula (2.1) we conclude

Ln(u(BLα ∩AD(u))) =

∫
u(BLα∩AD(u))

1 dy ≤
∫

u(BLα∩AD(u))
N(u, BLα , y) dy ≤ (3.7)∫

Rn
N(u, BLα , y) dy =

∫
BLα

| det Du| dx = 0.

To conclude the proof we recall that the condition p > n ensures that u : Ω → Rn satisfies the Lusin
property (N), that is Ln(u(E)) = 0 whenever E ⊂ Ω and Ln(E) = 0. In particular Ln(BLα \ AD(u)) = 0
and this implies that

Ln(u(BLα \ AD(u))) = 0. (3.8)

Connecting (3.7) and (3.10) we get (3.3). �

It is worth pointing out some comments concerning the hypotheses in Theorem 3.2.
As a matter of fact, assuming u ∈ W1,p(Ω;Rn) for p > n ensures some fundamental conditions.
The first point concerns the existence of minimizers of the functional (3.1). Assuming that p > n

guarantees not only that det Du ∈ L1, but more that the map

u ∈ W1,p(Ω;Rn)→ det Du ∈ L
p
n

is sequentially continuous with respect to the weak topology (see Theorem 8.20 in [17]). The
aforementioned property, that is no longer true for p < n, see [2], is one of the main ingredients to
prove the lower semicontinuity of the functional (3.1). The second main ingredient to deduce the
existence of minimizers of the functional (3.1) is a kind of convexity assumption on the function Ψ.
Precisely, we have that if the function

(X, det X) ∈ Rn×n × R→ Ψ(|X|, | det X|) ∈ R

is convex and
C|X|p ≤ Ψ(|X|, | det X|) ∀X ∈ Rn×n,

then the functional (3.1) is weakly lower semicontinuous and coercive in W1,p(Ω;Rn). The existence
of minimizers of the functional (3.1) follows for any fixed boundary datum u ∈ W1,p(Ω;Rn) such that
F (u) < +∞ (see Theorem 8.31 in [17]; see also [24]).

The second main point, where the assumption p > n is crucial, concerns the Lusin property (N)
quoted in the Definition 2.3. It is known that the Lusin property (N) still holds true for u ∈ W1,n(Ω;Rn),
if u is a homeomorphism. Moreover, there are also other results about the validity of the Lusin property
(N) for suitable p < n, or with integrability rate close to n under particular assumptions, but, beyond
that, the Lusin property (N) is no longer true, in general, for u ∈ W1,p(Ω;Rn) with p ≤ n. In this case
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we can carry on the proof of Theorem 3.2 as before, but we can not conclude in the same way because
we do not have any information regarding the set Ln(u(BLα \ AD(u))). Nevertheless we can state the
Theorem 3.2 in a weaker form. We need to stress the dependence of the level set BLα = {x ∈ Ω :
uα(x) > Lα} = BLα(u) on the considered representative u of the minimizer.

Theorem 3.3. Let u ∈ W1,p(Ω;Rn), p ≥ 1, be a minimizer of the functional (3.1) under assumptions
(H1) and (H2). Fix α ∈ {1, . . . , n}, then

Ln(u(BLα(u) ∩AD(u))) = 0. (3.9)

Remark 3.4. We note that (3.9) holds true for every representative u of a W1,p- minimizer (see
section 1.5, chapter 3 of [35]). Moreover, in accordance with Corollary 1, chapter 3 of [35], if we
consider a Lusin representative u, it satisfies Lusin property (N) in whole Ω so that

Ln(u(BLα(u) \ AD(u))) = 0 (3.10)

holds, and for such a representative we come to the conclusion that

Ln(u(BLα(u))) = 0. (3.11)
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