Mathematics in Engineering, 5(3): 1-38.
DOI:10.3934/mine.2023056

.
)')' Received: 16 October 2021
ANA

M iNg """ Revised: 06 September 2022

Accepted: 02 October 2022
http://www.aimspress.com/journal/mine Published: 25 October 2022

Research article

On symmetry of energy minimizing harmonic-type maps on cylindrical
surfaces

Giovanni Di Fratta'*, Alberto Fiorenza>® and Valeriy Slastikov*

! Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Universita degli Studi di Napoli

“Federico II”, Via Cintia, Complesso Monte S. Angelo, 80126 Napoli, Italy
2 Dipartimento di Architettura, Universita di Napoli Federico II, Via Monteoliveto, 3, [-80134
Napoli, Italy
Istituto per le Applicazioni del Calcolo “Mauro Picone”, sezione di Napoli, Consiglio Nazionale
delle Ricerche, via Pietro Castellino, 111, I-80131 Napoli, Italy

* School of Mathematics, University of Bristol, University Walk, Bristol BS§ 1TW, United Kingdom

* Correspondence: Email: giovanni.difratta@unina.it.

Abstract: The paper concerns the analysis of global minimizers of a Dirichlet-type energy functional
in the class of S?-valued maps defined in cylindrical surfaces. The model naturally arises as a curved
thin-film limit in the theories of nematic liquid crystals and micromagnetics. We show that minimal
configurations are z-invariant and that energy minimizers in the class of weakly axially symmetric
competitors are, in fact, axially symmetric. Our main result is a family of sharp Poincaré-type
inequality on the circular cylinder, which allows for establishing a nearly complete picture of the energy
landscape. The presence of symmetry-breaking phenomena is highlighted and discussed. Finally,
we provide a complete characterization of in-plane minimizers, which typically appear in numerical
simulations for reasons we explain.
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1. Introduction

The interplay between geometry and topology plays a fundamental role in many fields of applied
science. The most basic examples include thin nematic liquid crystal shells [32,36,39] and curvilinear
magnetic nanostructures [22, 44]. Curvature effects and topological constraints lead to unusual
properties of the underlying physical systems and promote the appearance of novel microstructures,
providing a promising way to design new materials with prescribed properties.
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In the last decade, magnetic systems with curvilinear shapes have been subject to extensive
experimental and theoretical research (cf. [9, 14, 19, 25, 41, 42, 44]). Recent advances in the
fabrication of magnetic spherical hollow nanoparticles and rolled-up nanomembranes with a cylindrical
shape lead to the creation of artificial materials with unexpected characteristics and numerous
applications in nanotechnology, including high-density data storage, magnetic logic, and sensor devices
(cf. [24,37,44]). Embedding planar structures in the three-dimensional space permits altering their
magnetic properties by tailoring their local curvature. The interplay between geometry, topology, and
Dzyaloshinskii—Moriya interaction (DMI) leads to the formation of novel magnetic spin textures, e.g.,
chiral domain walls and skyrmions [7, 10, 11, 15, 20, 35]. The curvature effects have been shown
to play a crucial role in stabilizing these chiral spin-textures. Spherical and cylindrical thin films
are of particular interest due to their simple geometry and capability to host spontaneous skyrmions
(topologically protected magnetic structures) even in the absence of DMI [22, 30, 44].

In what follows, occasionally, we are going to use the language of micromagnetics. However, our
mathematical results apply to other physical systems (e.g., the Oseen-Frank theory of nematic liquid
crystals).

1.1. State of the art

It is well established that, when the thickness of a thin shell is very small relative to the lateral
size of the system, the demagnetizing field interactions behave, at the leading order, as a local shape-
anisotropy, see [9,14,17,23]. In the context of a thin curvilinear shell (generated by extruding a regular
surface M in R? along the normal direction), the leading-order contribution to the micromagnetic
energy functional reads as [14, 17]:

&:me H'(M.S) - fM [Vem@)[" dé +a fM (m(€) - n(&))dé, (1.1)

where n is the normal field to the surface M, @ € R is an effective anisotropy parameter accounting for
both shape and crystalline anisotropy, and V. is the tangential gradient on M.

The role of «a is easy to understand qualitatively. Uniform states are the only local minimizers
of & when @ = 0. For large @ > 0, tangential vector fields are energetically favored; for large @ < 0,
i.e., when shape anisotropy prevails over perpendicular crystal anisotropy, energy minimization prefers
normal vector fields.

An exact characterization of the minimizers of this problem is a nontrivial task with far-reaching
consequences for modern magnetic storage technologies [40]. Recently, a partial answer about the
structure of minimizers of & has been given for the case M = S2. It has been shown that (see [19])

1) for any @ € R, the normal vector fields +n are stationary points of the energy functional & on the
space H 1(S?, S?); moreover, they are strict local minimizers for every @ < 0 and are unstable for
a > 0.

2) When a < —4, the normal vector fields +n are the only global minimizers of &.

Also, in [31] it is shown that for @ <« -1, skyrmionic solutions topologically distinct from the
ground state emerge as excited states.

For @ > 0, the energy landscape of & is challenging to describe. Indeed, topological obstructions
(hairy ball theorem) prevent the existence of purely tangential vector fields in H'(S?, S?). Numerical
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simulations suggest that when a > 0, the energy & can exhibit magnetic states with skyrmion number
0 or +1 (see, e.g., [30,40,43]). Also, within the homotopy class {deg m = 0}, the energy & favors the
so-called onion state if « is sufficiently small, and the vortex state otherwise.

Classifying the ground states in spherical thin films in the regime @ > 0 is demanding. However,
many of the difficulties one faces and the emerging symmetry-breaking phenomena are already present
in the analysis of ground states and axially symmetric solutions in the more tractable geometry of a
cylinder. This observation triggered our interest in the questions addressed in this paper and led to
developing some techniques that we believe can be further improved to tackle ground states’ analysis
in more complex geometries.

1.2. Contributions of present work

Let I' C R? be the image of a smooth Jordan curve  : [0,27] —» I, andlet C := I xT, I := [-1,1],
be the cylindrical surfaces generated by I (see Figure 1). Given that m is S?-valued, we have that up to
the constant term —a|C|, with |C| being the area of C, the minimization problem for (1.1) is equivalent
to the minimization of the energy functional

me H'(C,$%) j; |V§m(§)|2 dé - a fc Im(&) x n(&)Pdé. (1.2)

The previous expression (1.2) is more convenient for the following reason. When @ = 0, any constant
S2-valued vector field is a minimizer with zero minimal energy. The scenario is still trivial when a > 0.
There are only two minimizers in this regime, and these are the constant vector fields +e; = +(0,0, 1)
whose associated minimal energy is —a|C|. However, the situation suddenly becomes engaging when
a < 0. This is the regime this paper is devoted to, and working with (1.2) allows dealing with
nonnegative energies whereas (1.1) does not. Therefore, we set @ := —«%, with ¥* # 0, and, from
now on, we focus our investigations on the energy functional

E(m) := f |V§m|2 d¢ + K f lm x n*dé, me H'(C,S?). (1.3)
C C

Here V. stands for the tangential gradient on C, and «* is a positive constant that controls the
perpendicular anisotropy’s strength. Note that, equivalently, the value of x* controls the size of the
sample C. Indeed, simple rescaling allows reducing the analysis of (1.3) to a scaled cylinder and a
different value of «*>. This is why when we later analyze the minimizers & on circular cylinders, we
focus only on C := I x S'.

This paper’s main aim concerns the analysis of global minimizers of the energy functional (1.3)
in the class of S2-valued maps defined in the circular cylinder C = I x S'. The analysis we perform
involves several steps.

First, for any x> > 0, we show that minimizers of the energy & defined in (1.3) are z-invariant. In
Proposition 1 we prove the result holds under the more general framework of cylindrical surfaces of the
type C := I x I" where I := [—1,1] and I" C R? is the image of a smooth Jordan curve ¢ : [0,27] — T
(see Figure 1). Also, we prove that when C = [ X S!, z-invariance of the minimizers holds in the
restricted class of weakly axially symmetric configurations which are defined by the condition that

f mi(zydy =0 Vzel, (14)
Sl
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where m, := m—(m-e;)es. Itis simple to show that every axially symmetric configuration satisfies (1.4)
(cf. Remark 3). In Theorem 1, we prove that every minimizer of & in the class of weakly axially
symmetric competitors is, in fact, axially symmetric. The proof is based on a symmetrization argument
in conjunction with the classical Poincaré-Wirtinger inequality for null average and periodic functions.

Second, we focus on the analysis of global minimizers of the energy & in the unrestricted class
H'(I x S!,§?), 1i.e., when no weak axial symmetry is assumed on the competitors. Our main result is a
family of sharp Poincaré-type inequalities (see Theorem 2), which allows us to establish the following
picture of the energy landscape of & (see Theorem 3).

1) If ¥* > 3, the normal vector fields +n are the only global minimizers of the energy functional &
in H'(C, $?).

2) Moreover, they are strict local minimizers for every «
constant vector fields +e; are unstable for all > > 0.

2 > 1 and unstable for 0 < k* < 1. The

The sharp Poincaré-type inequality is stated in Theorem 2 and states that for every * > 0 there holds
f IV, ul* dy + f u x nf*dy > cff uPdy Vue H'(S',R?). (1.5)
st st st

with ¢ = 1if K> 2 3, ¢2 = 1(* — w2 +4) if 0 < ¥* < 3, and w? := Vk* + 16. Our result also includes
a precise characterization of the minimizers for which the equality sign is reached in (1.5). For the
proof, we work in Fourier space. While the frequencies decouple nicely, the vector-valued nature of
H'(S!,R?) elements, as well as the presence of the anisotropic constant «2, has the effect that different
space directions strongly interact, and this requires careful analysis (see [19]).

z=+1

R3

Figure 1. The paper analyzes ground states of the energy functional & in the admissible class
of S?-valued maps defined on cylindrical surfaces C = I x I'. After a general result on the
z-invariance of the minimizers of & in H'(C, S?), we look for the analytic expression of the
minimizers in circular cylinders (i.e., in the case I = S!).

Third, motivated by their importance in numerical simulations (see Section 4 for a detailed
discussion), we investigate global minimizers of & in the class of in-plane configurations. We show
thatif m, € H'(S!,S") is the profile of a minimizer in H'(C, S') of the energy functional &, then either
degm, = 0 or degm, = 1. Indeed, among other things, in Theorem 4 we show the existence of a
threshold value «? of the anisotropy parameter for which the following energetic implications hold:
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1) If k¥* > &2, then any global minimizer has degree one and, moreover, for every «*> > 0, the normal
fields +n are the only two minimizers in the homotopy class {deg m, = 1}.

2) If k> < &2, then any global minimizer has degree zero, and an accurate analytic description is
given in terms of elliptic integrals.

The previous two points allow for a complete characterization of the energy landscape of in-plane
minimizers. The normal vector fields +n are the only two in-plane energy minimizers when «* > «2
and the common minimum value of the energy is 2. Instead, when x> < &2, the minimal energy
depends on «*, and the precise minimal values, as well as the analytic expressions of the minimizers,
are given in terms of elliptic integrals (see (4.8)—(4.9)).

1.3. Outline

The paper is organized as follows. In Section 2 we prove that minimal configurations are z-invariant
(cf. Proposition 1) and that every minimizer of & in the class of weakly axially symmetric competitors
is, in fact, axially symmetric (cf. Theorem 1). Section 3 is devoted to the analysis of global minimizers
of the energy & in the unrestricted class H'(I x S', §?). Our main result is a family of sharp Poincaré-
type inequalities (cf. Theorem 2), which allows for establishing a nearly complete picture of the energy
landscape of & (cf. Theorem 3). Finally, in Section 4, we provide a complete characterization of the
energy landscape of in-plane minimizers of &.

1.4. Notation

In what follows, for a given embedded submanifold M of R3, we indicate by H "MR™), m > 1,
the Sobolev space of vector-valued functions defined on M, endowed with the norm (cf. [1])

iz = [ @R+ [ (Vo] ce. (1.6)
M M

where Vu is the tangential gradient of u on M. We write H'(M,S?) for the metric subspace of
H'(M,R?) consisting of vector-valued functions with values in the unit 2-sphere of R?. When M :=
S! is the unit 1-sphere, H'(S!,R™) identifies to the Sobolev space H;([—ﬂ, n],R™) consisting of 27-
periodic vector-valued functions and endowed with the norm

T f ju(r)Pdr + f Du(r)Pdr (17)

Finally, we denote by Hﬂl([—n, n],S') and Hﬂl([—n, ], S?) the metric subspaces of the Sobolev space
H ﬁl([—n, n],R™) consisting, respectively, of S!-valued and S2-valued periodic functions.

2. Symmetry properties of the minimizers

Our first result, stated in the next Proposition 1, shows that for any > > 0 every minimizer m(z, t)
of the energy & in (1.3) is z-invariant. We state the result in the more general framework of cylindrical
surfaces of the type C := I x I where I := [-1,1] and I C R? is the image of a smooth Jordan curve
{ :10,2n] — T'. Note that, by parameterizing the cylinder C through the map

Y(z, 1) = (2, (1), (2.1)
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we can rewrite the energy functional (1.3) in the form

1 1
E(m) = f f IVom(z, O + 10.m(z, OPdZdz + &2 f f im0 x nOPdZdz. (22)
-1Jr -1 JrI'

This equivalent expression of the energy in (1.3) is used in the proof of the following result on the
z-invariance of energy minimizers.

Proposition 1 (z-invariance of energy minimizers). Let m € H'(C, S?) be a (global) minimizer of the
micromagnetic energy functional (1.3) with C := I xT and T’ C R? the image of a smooth Jordan curve
{1 [0,27] — T. Then there exists a minimizer m, € H'(C,S?) of & in (2.2), built from m, which is
z-invariant, i.e., such that

m.(z,{) = u.({) (2.3)

for some u, € H'\(T', S?). Actually, every minimizer of & has the form (2.3) for some minimizer u, €
H'(T, S?) of the reduced energy

¥ (u) ::fF|V;u(§)|2d§ + Kzfrlu@)Xn({)lzdé- 2.4)

Remark 1. In general, z-invariance does not hold for critical points of the energy. In fact, when C :=
I x S' and «¥* = 1, the helices satisfy the Euler-Lagrange equations associated with & and are not
z-invariant (cf. Proposition 3). The observation implies that the helical configurations predicted in [44]
are critical points of the energy, but not ground states.

Proof. We use a symmetrization argument. Let m be a minimizer of &, and let us consider the function
(note that, n(z, {) = n({) is z-invariant)

O:zel:=[-1,1]1m f |V m(z, §)|2 ds +«* f lm(z, &) X n()|*d¢. (2.5)
r r

In terms of ® the energy functional (1.3) reads as

1
&(m) = f (q)(z) + f 10.m(z, HIPd¢ ) dz. (2.6)
-1 r
Note that since m minimizes & on the two-dimensional surface C, m is smooth in C. Indeed, the
Euler-Lagrange equations for m fit into the class of almost harmonic maps treated in [34, Chapter 4].
In particular, (cf. [34, Theorem 4.2]), m is Holder continuous and, therefore, by the usual bootstrap
argument, smooth in the interior of C. Moreover, through a classical reflection argument (across any
of the two boundary components in dC = dI X I') one can easily show that minimizers are smooth up
to the boundary. In particular, @ is continuous on [-1, 1] and argmin,_, ;; ®(z) # 0. We arbitrarily
choose a point z. € argmin,_; ; P(z) and, with that, we define the z-invariant configuration

m.(z,() == m(z.,{) forevery (z,{) el XxT. 2.7

Note that, since m is smooth in C, m, is well-defined. Taking into account that for every & := (z,{) €
I X T we have 5 )
Vem(z,0)|" = [Vem(z, Of +10.m(z, OF (2.8)
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with V. m the tangential gradient on ¢, from (2.2) and (2.5) we get that
1 ) 1
em)= [ [[Wemof etz [ [ im0 xnoPaes
-1Jr -1 JrI'

1 1
= f f|V§m(Z*,§)|2d§dZ+K2f flm(z*,Z)Xn@)lzd{dZ
1.Jr -1JT
1
:fd)(z*)dz
i 1
< f (D(z)dz+f fl@zm(z,{)Fd{dz
-1 -1 JT

= &(m). (2.9)
Hence, if m is a minimizer in H'(C, S?) of (1.3) then so is the z-invariant configuration m,(z,() :=

m(z., ). Moreover, if m is any minimizer in H'(C, S?), then, with m, defined as in (2.7), we get that
&E(m,) = E(m). This entails that all the inequalities in (2.9) are, in fact, equalities. Therefore,

1
[ [omeoraca: o @.10)
-1 JT

from which we conclude that m is z-invariant. This completes the proof. O

Since we are interested in the symmetry-breaking phenomena of minimizers, we want to focus on
the symmetric case when I is unit circle S'. Parameterizing the cylinder C := I x S! through the map

v(z,1) := (cost)e; + (sint)e, + ze3, t€[—nm, ) 2.11)

with e, e,, e3 the standard basis of R?, we can rewrite (2.2) in the following form
1 T 1 T
E(m) = f f 10,m(z, O)I> + 18, m(z, t)|*drdz + «* f f lm(z, ) x n(t)[*dzdt (2.12)
-1 J-r -1 J-r
where we made the common abuse of notation

m(z,t) ;= (movy)(z,1), n(t) := (novy)(z,t) = (cost,sint,0). (2.13)

According to Proposition 1, the energy landscape associated with (1.3) is completely characterized as
soon as one describes the minimizers in H'(S!, S?) of the energy functional (cf. (2.4))

Fu) = f |Vyu()/)|2dy + & f lu(y) x n(y)|*dy. (2.14)
st Sl

Note that, in terms of the standard (conformal) parameterization of S! given by y : t € [-m, 7]
(cost)e; + (sint)e,, the energy functional F reads as

F(u) = f " |0,u(t)*dt + «* f ) lu(t) x n(r)|*dt (2.15)
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with, again, the convenient abuse of notation
u(t) ;== (uoy)t), n(t) := (novy)(t) = (cost,sint,0). (2.16)

For the next result, stated in Proposition 3, we introduce further notation. For each u € H'(S', S?) we
denote by u, the projection of u on R? x {0}, namely, u, := (uj,u,,0) if u = (uy,up, u3). Also, we
denote by

1 T
(u,) = —f u, (ryde 2.17)
2 J_,
the average of u, on St and, for any 6 € [—m, ], we set
sin 6 cost —sint O
uy)(t) := R(@) 0 = (sin@)n + (cos H)es, R(@) :=]| sint cost O |. (2.18)
cos 0 0 1

For every ¢ € [—nm, ] the action of R() is a rotation through an angle ¢ about the z-axis.

In order to prove Proposition 3 we need the sharp form of the Poincaré-Wirtinger inequality on
S! that we recall here; its proof is a trivial application of Parseval’s theorem for Fourier series and is
therefore omitted.

Proposition 2 (Poincaré-Wirtinger inequality). Ifu € Hﬂl([—n, 7], R?) is null-average (i.e., {u,) = 0)

then i .
f (P < f AP, (2.19)

The minimizer is reached when u(t) = ¢, cost + ¢, sint, for arbitrary constant vectors ¢, ¢, € R>.

We can now state Proposition 3 and Theorem 1, which are our main results about axially symmetric
minimizers. Their proof is given at the end of this section.

Proposition 3 (axially symmetric energy minimizers). In the class of configurations u € H'(S',S?)
such that {u,) = 0, the only global minimizers of (2.14) are given by

u = +e; if0<k®<l,
u = u ifk> =1, (2.20)
u = +n  ifK>>1,

with ug given by (2.18). Thus, if 0 < k* < 1 or k* > 1, there exist only two minimizers, while when
k* = 1 there exist infinitely many minimizers described by ug with 6 chosen arbitrarily in |-, nt]. The
corresponding values of the minimal energies are given by

2 s 2<
{27n< if0 < i® < 1, 2o

2r ifk* > 1.

Remark 2. Note that at k> = 1 a symmetry-breaking phenomenon appears. The minimizers suddenly
pass from the in-plane configurations +n for x> > 1, to the purely axial configurations +e3 for ¥* < 1.
Also, note that if e € S! x {0} is in-plane, then ¥ (e) = nx>. Therefore, for 0 < «* < 1, the configurations
+e3 are never global minimizers outside of the restricted admissible class of weakly axially symmetric
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configurations (i.e., maps u € H'(S',S?) such that (u,) = 0). A similar observation applies to the
configurations +n when 0 < k*> < 2 (because of F(e) = n«?); in this range of parameters +n cannot
be global minimizers unless we restrict the minimization problem to the class of axially symmetric
configurations.

Before stating our main result on axially symmetric minimizers, we give the following definition.
We say that m € H'(C, S?) is weakly axially symmetric (with respect to the z-axis) if

(m,(z,"))s = if m,(z,y)ddy=0 Vzel (2.22)
27T sl

Remark 3. It is important to stress that every axially symmetric configuration satisfies (2.22). Indeed,
if m is axially symmetric with respect to the z-axis then, in local coordinates, i.e., through the
parameterization of S' given by y : t € [-m, ] = (cost)e; + (sint)e,, we have that

m(z,t) = R()im(z) Y(z,t) € I X [-nm, 7] (2.23)

for some profile i € H'(I,S?). Hence, (m(z,-))s1 = (i(z) - e3)es for every z € I, and this implies that
(my(z,-))st = 0 for every z € 1. Also, note that the class of weakly axially symmetric configurations it
is not directly related to the class of null-average configurations in H'(C, S?). Even if m is z-invariant,
(2.22) does not imply that m is null average, but only that its projection m, is null average.

Theorem 1 (axially symmetric energy minimizers). Let C := I x S!, with [ = [-1,1). Assume that
m is a (global) minimizer of the micromagnetic energy functional (1.3) in the class of weakly axially
symmetric configurations. Then, m is z-invariant and, more precisely, the following assertions hold:

i. If0 < k* < 1 then necessarily m € {+es).
ii. If k¥* > 1 then necessarily m € {+n)}.
iii. When k> = 1, there are infinitely many axially symmetric minimizers; they are all z-invariant and
given by m(z,t) = uy(t) with 0 € [—n, ] and uq given by (2.18).

The values of the minimal energies are given by 4nk* if 0 < k* < 1 and by 4 if &> > 1.

Remark 4. Note that, due to Remark 3 and the fact that +n and +e; are axially symmetric (with respect
to the z-axis), the conclusions of Theorem 1 still hold in the class of axially symmetric minimizers.

Remark 5. We stress that Theorem 1 does not look for axially symmetric minimizers in the class of
minimizers of &. In other words, axially symmetric minimizers do not need to be global minimizers.
In fact, Theorem 1 characterizes the minimizers of (2.22) and shows that, in this class, the minimizers
are necessarily z-invariant and axially symmetric.

We first give the proof of Proposition 3, then we prove Theorem 1 as a consequence of Proposition 1,
Proposition 3, and Remark 3.

Proof. Proof of Proposition 3. For every ¢ € [—x, ] we denote by R(¢) the rotation through an angle
t about the z-axis which appears (cf. (2.18)). Clearly, n(t) = R(t)e,. Next, let u € H'(S',S?) be a
minimizer of (2.15) and let us choose ¢, € [—m, 7] such that

t. € arg min (ju () + Clu(@) X n(1)) (2.24)

te[-n,m]
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with u, () := (u;(¢), uy(7),0). Here, we are identifying u with its Holder continuous representative so
that 7. is well-defined. Define the new configuration

u*(t) := ROR" (t.)u(t.). (2.25)

We then have |u*(7)| = 1 and (u* ) = 0 because (R(H)R™ (t.)u(t.)) = (u(t.) - e3)e;. Moreover,

du"@OF = |[RTOROR (t.)u(t,) ? = les x (R™ (t.)u(t.)) 2= juL ()P (2.26)
and
@) xn@f = R cu) xe| = ) x n()? (2.27)
It follows that
Fu*) = f ' 100" (1)*dt + K* f " lu* (1) x n(0)]* dt (2.28)
= f ' ey ()1 + Plu(t) x n(z)f dt (2.29)
< f ' lu, (O + KClu(t) x n())? dr. (2.30)

After that, the sharp Poincaré-Wirtinger inequality on S' (cf. Proposition 2) assures that for every
u, € H'(S',R?) such that (u, ) = 0 one has

f ' e, (0] dr < f ' |0 ()|dt. (2.31)
Combining (2.30) and (2.31) we conclude that
Fu*) < f ' 0, (O + Clu(t) X n()* dt < F (). (2.32)
Thus u* and u are both minimizers. This implies that
F(u) = f ' 10, (D + Plut) x n@))* dt = FW*). (2.33)

It follows that whenever (u,) = 0, then necessarily d,(u(?) - e3) = 0 on S'. On the other hand, the
equality ¥ (u*) = ¥ (u) also entails that the equality sign is reached in the sharp Poincaré-Wirtinger
inequality (2.19), i.e., that

f (o = f O (Rt 2.34)

whenever u is a minimizer with (u,) = 0. However, the equality sign in the Poincaré-Wirtinger
inequality is achieved if, and only if, u, = (cos?)a; + (sint)a, for some a;, a, € R? x {0}. Combining
this observation with the conditions d,(u(t) - e3) = 0 and |u| = 1 we conclude that if (#,) = 0 then
necessarily

sin @ cos t
(2.35)

u(t) = up(t) := [ sin @sin ¢
cos 6
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for some 6 € R. Finally, we note that with u(¢) given by the previous expression, we have
B =sin® 0,  |ug(t) X n(t)]* = 1 —sin 6.

Therefore .
F (ug(t)) = f sin? 0 + K*(1 —sin® @)dr = 2x[k* + sin® (1 — «2)]. (2.36)

ys

Minimizing (2.36) with respect to 6 € [—m, 1] we get that § = +r when 0 < k* < 1 and, in this case,
F(uo(1)) = F(+e3) = 2’ (2.37)
Also, we get that the angle 6 can be arbitrarily chosen when x> = 1, and in this case,
F(uyg(t)) =2n VO e [-nn]. (2.38)
Finally, we obtain that 8 = +7/2 when k* > 1 and, in this case,
F (uo(n)) = 2r. (2.39)
This gives (2.20) and completes the proof. O

Proof. Proof of Theorem 1. The proof is a consequence of Proposition 1, Proposition 3, and Remark 3.
The only point is to realize that the proof of Proposition 1 is not affected by the introduction
of the additional weakly axially symmetric constraint (2.22). Indeed, the only place where the
constraint (2.22) impacts the proof of Proposition 1 is in the regularity of minimizers which we based
on [34, Theorem 4.2], and one can show that the linearity of the constraint (2.22) makes the arguments
in [34, Theorem 4.2] still work. However, for the reader’s convenience, we give here an alternative
proof of Proposition 1 that does not rely on the theory developed in [34, Chapter 4] and immediately
adapts to the presence of the additional constraint (2.22). This will complete the proof of Theorem 1.

Proof of Proposition 1 under the additional constraint (2.22). We assume that S' = ([0, 2n]) is
parameterized by arc-length. Let m, be a minimizer of

1 27
E(m) = f f IVm(z, ) + K|m(z, 1) X n(t)|*dzdz,
-1 Jo

and let m, € C*® (I x T, Sz) be such that m, — my in H' (1 xT, Sz) (see [38, p.267]). Forevery £ > 0
we consider the function (which now depends on &)

21
O,:zel:=[-1,1]— f 10,m.(z, 1)|* dt + K*|m.(z, 1) X n(r)*ds. (2.40)
0

In terms of @, the energy reads as

1 27
E(m,) = f ((Da(z) + f |0, m(z, t)|2dt) dz. (2.41)
- 0

1
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For every & > 0, @, is continuous on [—1, 1] and argmin,_; ;; P.(2) # (. We arbitrarily choose a point
Ze € argmin_; ;; D.(z) and, with that, we define the z-invariant configuration u.(f) := mg(z.,1). We
then have

1 27
Eu,) = f f 10,m(ze, DI dt + Pz, 1) X n(HPdrdz
-1J0

1 1 1 2
= f D (z.)dr < f D, (7)dz < f (CDS(z)+ f |0.m(z, t)|2dt)dz
-1 -1 -1 0

= &(m,). (2.42)

Since &(m,) is bounded, we have that u, is bounded in H' (I, R?), I, := (0, 27), and, therefore, there
exists uy € H'(I;, R?) such that u, — uy weakly in H'(I,,,R?) and, up to a subsequence, |ug| = 1 (this
is because of u.(t) := m.(z., t) with [m.| = 1). Passing to the limit, we then have that

1 1 27
Egp) < lim ionf Eu,) < f Dy(z)dz < f ((DO(z) + f |0.my(z, ;)|2dt) dz = E(my).
&= 1 - 0

1

Hence, by the minimality of my we have that E(uy) = E(my) and, therefore,

1 27
f f 10.my(z, D) drdz = 0, (2.43)
-1J0

from which we conclude that my is z-invariant. This completes the proof when constraint (2.22) is not
present. Note that although we assumed that I' = S!, the proof works for general smooth Jordan curves
I' with minor notational modifications.

The same proof now works even if we assume the weakly axially symmetric constraint (2.22).
Indeed, if my is a weakly axially symmetric minimizer, then also uy is weakly axially symmetric. To
see this, we observe that

2
m (z., 1) — m (z, t)dt

0
27 Ze Ze 27
= f f 0.m; (s, 1)dsdr — f 0. ( my (s, t)ds) dt
0 z z 0
2 e 2T (e
= f f 0,m; (s, )dsdt — f f d,my (s, )dsdt
0 b4 0 z

27 1
< f f 0. (m — mt)| dsdr, (2.44)
0 -1

27
f u;(t) — my(z,t)de
0

and, therefore, passing to the limit for £ — 0, we get that

2
f uy () — my(z, de| = 0, (2.45)
0

ie., (uy)s = <m3(z, -)>Sl = 0. This completes the proof. O
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3. Global minimizers. A sharp Poincaré-type inequality on the cylinder

An exact characterization of the minimizers of the energy functional (1.3) is a nontrivial task.
Qualitative aspects of the energy landscape have been investigated in [44] through numerical
simulations. However, sometimes it is enough to obtain a meaningful lower bound on the energy
to gain information on the ground states. For that, we relax the constraint from m being S?-valued to

the following energy constraint:
1 2
m|* =1, 3.1
4dr j;l | G-b

with C := I x S! and I := [—1, 1]. From the physical point of view, this type of relaxation corresponds
to a passage from classical physics to a probabilistic quantum mechanics perspective, and it has been
proved to be useful in obtaining nontrivial lower bounds of the ground state micromagnetic energy
(see, e.g., [8,13,19]). From the mathematical perspective, replacing the pointwise constraint |m| = 1
a.e. in C with (3.1) frames the minimization problem in the context of Poincaré-type inequalities,
where sometimes the relaxed problem can be solved exactly, and the dependence of the minimizers on
the geometrical and physical properties of the model made explicit. This relaxation can help to obtain
sufficient conditions for minimizers to have specific geometric structures (see, e.g., [8, 13, 19]). We
note that the pointwise constraint |[m| = 1 a.e. in C is equivalent to the following two energy constraints
in terms of the L? and L* norms:

1 , 1 A
— =1, — =1 32
4ﬂj;lml 4ﬂj;lml (3.2)

Indeed, by Cauchy—Schwarz inequality 47 = (jm/|?, D2y < [llm2)?| 2oz = 4m, which assures
that the equality sign in the previous estimate is reached only when |m|? is constant and, therefore,
necessarily equal to 1. It follows that the relaxed problem can also be interpreted as the one obtained
by forgetting about the L* constraint.

Our results include the precise characterization of the minimal value and global minimizers of the
energy functional & defined in (1.3) on the space of H'(C,R?) vector fields satisfying the relaxed
constraint (3.1). Thanks to Proposition 1, we can focus on the analysis of the minimizers in H'(S!, R?)
of the normalized energy functional

1 2 K2 )
Gu) := ngI |V,ul dy + ngI lu x nf*dy, (3.3)

subject to the L*>-constraint

L lul*dy = 1. (3.4)
2n s!
Clearly, every minimizer of (3.3) in H'(S!,S?) satisfies the constraint (3.4) and provides an upper
bound to the minimal energy associated with the problem (3.3)—(3.4). Thus, problem (3.3)—(3.4) is
a relaxed version of the minimization problem for G in H'(S!, S?). Although the expression of the
energy functional (3.3) is, up to the constant factor %, the same as of ¥ in (2.14), we denoted it by G
to stress that it is part of the relaxed minimization problem.
The existence of minimizers of the problem (3.3)—(3.4) quickly follows by direct methods in the
Calculus of Variations. However, uniqueness is out of the question due to the energy’s invariance
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under the orthogonal group and reflections. Indeed, for every x*> > 0, at least two minimizers always
exist because if u is a minimizer of G, also —u minimizes G. We only focus on the nontrivial case
k> # 0; otherwise, constant configurations o € S? are the only minimizers.

In what follows, we denote by n the outward normal vector field to S' and by 7 := V, n the tangential
one. When we refer to the local coordinates representation of a configuration u, € H'(S',RY), it is
always meant the curve u, oy, withy : t € [-m, 7] — (cost)e; + (sint)e,, and ¢t € [—nx, xr]. Thus, e.g.,
in local coordinates, we have that 7(#) = (—sint, cost) and n(t) = (cost,sint).

Our main result includes the precise characterization of the minimal value and global minimizers
of the relaxed problem (3.3)—(3.4) on the space of H'(S!,R?). In fact, we establish the following sharp
Poincaré-type inequality in H'(S!, R?).

Theorem 2 (sharp Poincaré-type inequality in H'(S!,R%)). For every «¥* > 0 the following sharp
Poincaré-type inequality holds,
f |Vyu|2 dy + & f lu x n*dy > c? f uPdy Yue H'(S',R?), (3.5)
51 5! 51

where the best Poincaré constant c* is the continuous function of  given by

(3.6)

K *

2_{1 l‘f K2>3a

c, .= 1 .
s —wr+4) if 0<k*<3,

with w? := Vk* + 16. Moreover; the equality sign in the Poincaré inequality (3.5) is reached if, and
only if. u € H'(S',R?) has the following expressions:

i. If k¥* > 3, the equality sign in (3.5) is reached only by the normal vector fields +n.
ii. If k¥* = 3, the equality is reached if, and only if. u is an element of the family represented in local
coordinates by

u, (1) = V2p; cos(8 + N7(t) + [i 1 =302 +2V2p, sin(8 + )| n(r) (3.7)

for arbitrary 0 € [-n, 7] and 0 < p; < 1/ V5. In particular (p, = 0), the normal vector fields +n
persist as minimizers for k* = 3.

iii. If 0 < k*> < 3, the equality sign in (3.5) is reached by any element of the family represented in
local coordinates by

u, (t) = V2(sin ¢,) cos(d + H)7(t) + V2(cos ¢,) sin(6 + H)n(?), (3.8)

with 0 € [—n, nr] arbitrary, and ¢, € [0, /2] given by
1 2
O = 3 arctan(4/«°). 3.9

Moreover, there are no S*-valued configurations for which the equality sign is achieved in (3.5).

The normal fields +n are universal configurations as their energy does not depend on k*.
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Remark 6. In view of our original problem concerning S?-valued minimizers, we note that setting
p1 = 0in (3.7) we recover the normal vector fields +n, and these are the only S?-valued minimizers of
the problem (3.3)—(3.4) when «*> = 3. Instead, when 0 < k* < 3, there are no S?-valued configurations
for which the equality sign is achieved in (3.5).

A graph of the optimal Poincaré constant ¢? as a function of «* is depicted in Figure 2. Figure 3
represents a plot of the minimal configurations in (3.7) for which the equality sign is attained in the
Poincaré inequality when k* = 3. Also, a plot of the minimal vector fields in (3.8) is given in Figure 4
for different values of 0 < «* < 3.

-%

1 2 3 4 K2

Figure 2. The graph of the optimal Poincaré constant ¢? as a function of the parameter «>.
The optimal constant cZ increases until the saturation value ¢ = 1 is reached at «* = 3.

Sl

Y &

/
— S-S !
////J\\\\ et HHHI

p1=0.10 p1=0.17 p1=0.27

Figure 3. A plot of the minimal configurations in (3.7) for which the equality sign is attained
in the Poincaré inequality when x> = 3. The optimal vector fields are represented for three
different values of p;. From left to right, we plot (3.7) for p; = 0.10, p; = 0.17 and p; = 0.27.
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(y N\ e \\\\\\ | f/////25

Figure 4. A plot of the minimal vector fields in (3.8) for which the equality sign is attained
in the Poincaré inequality when 0 < x* < 3. From left to right, we plot (3.8) for «* = 0.1,
k¥ =1,and ¥* = 2.5.

Before giving the proof of Theorem 2, we want to point out some of its consequences.

Proposition 4. For every k* > 0, the map
) 1/2
ueH' S R) o (f [V, u|" dy + klu x n|2dy)
sl

is a norm on H'(S',R?) equivalent to the classical norm

1/2
2
el 51 25) :(fl |V, dy+|u|2d7) .
S

Next, by Theorem 2 we get that for k> > 3 the relaxed minimization problem (3.3)—(3.4) admits
S2-valued minimizers. Thus, as a byproduct of Theorem 2, we obtain the following characterization of
micromagnetic ground states in thin cylindrical shells.

Theorem 3 (Micromagnetic ground states in thin cylindrical shells). For every value k* > 0 of the
anisotropy, the normal vector fields +n, as well as the constant vector fields +e; are stationary points
of the micromagnetic energy functional (cf. (1.3))

&(m) = f Vem|* d¢ + f mx n’d¢, me H'C,S?),
C C

and the following properties hold:

i. Ifk* > 3, the normal vector fields +n are the only global minimizers of the energy functional & in
HY(C,S?). Also, they are locally stable for every k* > 1 and unstable for 0 < k* < 1. Moreover,
when k* > 1, the normal vector fields +n are local minimizers of the energy &.

ii. The constant vector fields +e3 are unstable for all k* > 0.

Remark 7. Although the constant vector fields +e; are unstable for all > > 0, they are stable in the
class of axially symmetric minimizers, as has been shown in Theorem 1.
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Proof. In coordinates, the energy functional (cf. (2.4)) reads as

1 T
F(m) = f f \Vm|* + * |m x n* dtdz, (3.10)
-1 J-r

with m € H'(C,S?) and V = (0,, ;). The Euler-Lagrange associated with ¥ read as
— Am — *(m - n)n = A(H)m, AP = |[Vm|* - K*(m - n)*. (3.11)

It is therefore clear that m(¢) = +e3; and m(t) = +n(t) are critical points of the above energy. Let us
investigate their stability. The second variation of ¥ is given by

1 T
F'(m)(p) = f f IVol* = (- n)* = (IVml* - *(m - n)*)|p[*dr dz, (3.12)
-1 J-r

and is defined on all ¢ € H' N L®(C,R?) such that ¢ - m = 0 in C.

Proof of i. It is clear from Theorem 2 that +n are the only global minimizers of # whenever «* > 3. It
remains to analyze their stability in the range 0 < x> < 3. For that, it is sufficient to evaluate the second
variation at m = +n, which reads as

1 T
F(2n)(p) = f f Vol + (2 = DipPdr dz. (3.13)
-1J-r

Setting ¢ = e3; we obtain that " (+n)(e3) = 4m(k*> — 1). Therefore the normal vector fields +n are
unstable critical points of # when k> < 1.

However, (3.13) shows that for k> > 1 we have uniform local stability of the critical points +n.
We want to show that +n are, in fact, local minimizers of the energy functional ¥. We focus on
+n, the argument for —n being the same. Following [19], first, we compute the finite variation of F
corresponding to an admissible increment v of n, i.e., v € H'(C,R?) such that [n+v| = 1in C. A
simple computation gives

1 T
F(n+v)—F(n) = f f VP + & (v = v - m)*) = b drdz. (3.14)
-1 J-r

Next, we define ¢ = v — (v - n)n and want to rewrite the previous expression in ¢. Since v = ¢ + (v -n)n
we have 9,y = 0,0+ (v-n)T+(9,(v - n)) n with T := 9,n. Using that d,¢-n = —¢- T because of ¢-n = 0,
we obtain

0 = 100> + v - n)* + (8,0 - m)* + 2B, - )V - 1) = 2(p - T)O,(v - ). (3.15)

Integrating by parts the previous relation, we infer that

1 T 1 T
f f 10,v|>drdz = f f 100> + v - n)* +10,(v - n)]* + 4B, - T)(v - m)dt dz. (3.16)
-1 J-r -1 J-n

Similarly, we have
00> = |0,y — @y - myn|* = 10> — 10, (v - ). (3.17)

Mathematics in Engineering Volume 5, Issue 3, 1-38.



18

Hence, plugging the previous expression into (3.14), using that |p> = [v[> — (v - n)?, and taking into
account (3.13), we obtain

1 T
Fn+v)-F(n) = f f IVv? + i — v* drdz
-1 J-n
(3.16) bopr
= f f IVol* + (& = Dlgl® + IV - n)* + 40, - T)(v - m)dr dz
-1 J-r
(3.13)

1 T
= F(n)(p) + f f IV - m)P + 40 - T)(v - m)dt dz. (3.18)
-1 J-r

Note that since =2v - n = [y and v = ¢ + (v - n)n we have that [v|* = |[* + 1[v|*. Overall, from the
previous considerations and (3.18), we obtain that

F(n+v)—F(n)

1 T
F(m)(p) + f f V- ) = 20 - DpPdr dz
-1J-r

1 T
F (n)(p) — f f (2|v|4+%|8,<p|2)dtdz
-1J-r

1 2 2 2 K =1 4
E”VQD”LZ(C) + (K - 1)||v||L2(C) - (2 + T ||v||L4(C)' (319)

\Y%

\%

Now we use Gagliardo—Nirenberg inequality (see, e.g., [21]), i.e., the existence of a positive constant

¢, > 0 such that ||v||4L4(C> < CL||V||§11(C)||V||22(C) for every v € H'(C, R?). Therefore

1 2

=1
(K2 - 1) —CL (2 + —) ”v”;{l(c)] ”v”?}(c) (320)

To conclude, we observe that for a given k*> > 1 the previous right-hand side is nonnegative as soon as
||v||1%7[1 © is chosen small enough.
Proof of ii. Testing the second variation at m = +e3 against v = e; we obtain

1 T
F'(+es)(e)) = —k* f f (e, - n)*drdz = —27k* < 0. (3.21)
-1 J-r

Therefore we know that the constant S?-valued vector fields m = +e; are unstable for all x> > 0. O

Remark 8. As already pointed out in the introduction, there are several analogies in the behavior of the
minimizers of the micromagnetic energy in cylindrical and spherical surfaces. However, there are also
remarkable differences. Indeed, in both cases, the normal vector fields are the unique global minimizers
of the energy functional in a wide range of parameters [19]. However, the topological consequences
are very different. On the one hand, the normal vector fields +ns> to S? carry a different skyrmion
number because deg (+ng:) = +1, and, by Hopf theorem [33], they cannot be homotopically mapped
from one to the other. This translates into the so-called topological protection of the ground states. On
the other hand, due to the odd dimension, the two normal vector fields +n to S! have the same degree,
and therefore, they can be “easily” switched from one to the other through appropriate external fields.
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Remark 9. The result of Theorem 3 can be interpreted in terms of the size of the magnetic particle.
Indeed, a simple rescaling of the energy functional (1.3) shows that the range x> > 3 corresponds to the
geometric regime of cylindrical magnets with a large radius. This is the dual version of Brown’s
fundamental theorem on 3d fine ferromagnetic particles, which shows the existence of a critical
diameter below which the unique energy minimizers are the constant-in-space magnetizations [4,8,13].

3.1. Proof of the sharp Poincaré inequality (Theorem 2)

To prove Theorem 2, we need the following result which, in particular, shows that the constant
vector field e; € S? is never a global minimizer of the relaxed minimization problem (3.3)—(3.4). In
fact, any critical point of G with energy strictly less than x* (in particular, any minimizer) is in-plane.

Lemma 1. Let k> # 0. Any critical point u € H'(S',R?) of the relaxed problem (3.3)-(3.4) satisfying
the energy bound G(u) < Kk* is in-plane, i.e.,

u(ty)-es=0 VYyeS' (3.22)

Moreover, the minimal energy satisfies the energy bounds

2
0<G) < min{%, 1}. (3.23)

In particular, every minimizer of the relaxed problem (3.3)—(3.4) is in-plane.

Proof. In terms of the standard parameterization of the unit circle S!, the problem reduces to the
minimization, in the Sobolev space of periodic functions Hﬁ1 ([-m, x], R?), of the energy functional

1 T 2 T
Gu) = — f Oufdr + — f u X n’dr, (3.24)
2r J_, 2r J_,

subject to the constraint

l T
> f lu*dr = 1. (3.25)

We start observing that as soon as k> # 0 the minimal energy is strictly positive. Indeed, if G(u) = 0,
then one gets at the same time # = n and u := o for some o € S? (because of the constraint (3.25)).
Thus G(u) > O for every u € Hﬁl([—n, 7], R3) satisfying the constraint (3.25). In fact, the minimum
in the class of constant S*-valued configurations is reached by any element of the class of in-plane
uniform fields, i.e., by any configuration o € S? such that o - e3 = 0. The common minimum value in
this class being

K2 T 5 5 KZ
Glo) = Ef lor|” = (o - n)=dt = 5 > 0. (3.26)
Also, note that since |9,n/*> = 1 we have G(n) = 1 regardless of the value of x. Therefore, if u is a

minimum point of the relaxed minimization problem (3.24)—(3.25) then

2
0<G) < min{%, 1} . (3.27)
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This proves (3.23).

Next, we consider the Euler—Lagrange equations associated with the relaxed minimization problem
(3.24)—(3.25). A direct computation yields that if u € Hé([—ﬂ', x], R?) is a minimizer, then it satisfies
the equations

’ 1 d
—@m+#m—m®mmzﬂuin@ﬁmwmu@», 5}[“ﬁﬂ:h (3.28)
7T -

for some Lagrange multiplier A € R. To ease notation, we write the Euler-Lagrange equations (3.28)
in their (distributional) form; however, behind the scenes, we always mean the associated weak
formulation in H é([—n, 7], R3). To get (3.28) it is sufficient to note that in Hﬁl([—n, 7], R?) one has

lux n+epxnl*—|uxn?+0E*) =2 X n) - (¢ X n) (3.29)
=2sp - (u— (n® nu). (3.30)

To get an explicit expression of the Lagrange multiplier 4 € R we dot multiply by # both members
of (3.28). Taking into account the constraint (3.25), we get that

1 (" A (7
Egj‘wMP+ﬁmM—au-m%m:§;f‘MHL (3.31)

from which the relation A = G(u) follows. Combining this observation with (3.23), we get that if u is
a minimizer of the constrained minimization problem (3.24)—(3.25) then necessarily

2
O<AEQW)<mm{%J}. (3.32)
To conclude the proof it is sufficient to prove that every solution u of the Euler—Lagrange
equations (3.28) such that G(u) < «* is an in-plane configuration. For that, we dot multiply by e;
on both sides of (3.28) to get the relation

Ouuz = pt-u3,  with u = K —|A. (3.33)

Note that 4 = |u| > 0 whenever u satisfies the energy bound G(u) < «*. In this case, the general
solution of the previous equation is given by

us(@) = 1@ V¥ 4+ e VH ¢ ) € R (3.34)

The only periodic solution of the previous equation is the zero solution. Therefore, any critical point
uc Hﬁ1 ([-m, x], R?) of the problem (3.24)—(3.25) satisfying the energy bound G(u) < «* is in-plane. In
particular, because of (3.32), any minimizer of the problem (3.24)—(3.25) is in-plane. This concludes
the proof. O

Proof. Proof of Theorem 2. To deduce the sharp Poincaré inequality (3.5) one has to solve the
minimization problem for G given by (3.3)—(3.4). Indeed, let u, € H'(S!,R?) be a minimizer of G
in the class of vector fields u € H'(S',R¥) that satisfy the L>-constraint ||u||iz(sl’R3) = 2m, and set
c? := G(u.). For every v € H'(S!,R%) \ {0} the configuration

wo= \N2on—r (3.35)

||V||L2(SI,R3)
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is an admissible competitor of the minimization problem for G in (3.3)—(3.4). Therefore

1
Gu)= ——— ( f |vyv|2 dy + & f v x n|2dy) > Gu,) = . (3.36)
||v||L2(Sl,R3) St N

2
L2(S!R3
with ¢? being the minimal energy of G subject to (3.4). The equality sign is achieved by any minimizer
of the relaxed problem for G in (3.3)—(3.4).

According to Lemma 1, it is possible to restrict our attention to the class of vector fields in u, €
H'(S!,R?) satisfying the L*-constraint

Multiplying all sides of the previous relation by ||v|| , we get the sharp Poincaré inequality (3.5)

1
> f 1 u, Pdy = 1, (3.37)
S

and the minimization problem (3.3)—(3.4) reduces to the minimization of

1 2
Gu,) = oy ﬁl |V7ul|2 dy + ;{_7( £|(|u¢|2 — (uy - n)’)dy (3.38)

in Hﬁl(Sl,RZ) subject to the constraint (3.37). To solve this minimization problem, we use Fourier

analysis, and we work in local coordinates, i.e., in Hﬁl([—n, n], R?). Note that, in local coordinates, the
Euler—Lagrange equations (3.28) simplify to

2

Oty + K (n@mu, = |ulu,, lul == & = |A] > % (3.39)
We consider the moving orthonormal frame of R? given by (r,n), with both 7 := d,n and n €

Cg"([—n, n],R?). More explicitly, we have 7(f) = (—sint,cos?) and n(t) = (cost,sint). Then, we
set
U, =uT+un (3.40)
with u; :=u, -7 and u, := u, - n. Note that both u; and u, belong to Hé([—n, 7], R).
In this moving frame, the energy (3.38) assumes the expression

Gu,) = % f ﬂ(atul(t) + (D) + (Bua(t) — uy (D) + Kui(t)dt (3.41)

and the constraint (3.37) reads as
1 T
o I ] W30 + ud(nde = 1. (3.42)

In what follows, we denote by £,(Z, C?) the Sobolev space of square summable sequences (¢,),cz :=
(Clp» Copdnez in €5(Z,C?) such that (nc,),ez is still in €,(Z,C?). Every in-plane vector field u, €
Hﬁl([—n, 7], R?), with components u; := u, -7 and u, := u, - n, can then be represented in Fourier
series as follows

w =Y e u) =) ce™, (3.43)

nez nez
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for some (¢,)nez 1= (C1.ns Con)nez € £,(Z,C?) and with i the imaginary unit. As a side remark, we note
that
W) =Ty + omy = " (crae™ty+ ) (erne™n). (3.44)
} }

ne{=1 nef{=1

Therefore, the information on the average of u, is contained in the harmonics of order |n| = 1.
Next, we represent the energy functional G given by (3.41), in the Fourier domain. For that, we use
Parseval’s theorem to restate the energy G in (3.41) in terms of Fourier coefficients as follows

Gu,) = Z:(n2 + D(leral® + leanl®) + ©leral? = 4n3 e icza.

nez

Also, we take advantage of the symmetry properties of the complex Fourier coefficients. Indeed, since
we are representing real-valued functions, we know that for every n € N there holds

€10,€20 €R, €10 =Crps  Con = Cop (3.45)
After that, the energy G(u ) can be represented under the form

Gu,) = (|C1,0|2 + |C2,0|2) + K2|C1,0|2
+2 3 (12 + D1l + lea) + Kler il = 4n3ler 12, (3.46)

nx1

We would like to interpret the previous expression as an energy functional on £,(Zs, R? xR?). For that,
we first observe that 3[c ,c2,] = J(R[canl, Slean]) - (Rlcrnl, Jler,]) with the antisymmetric matrix

0 -1
J.:(l 0) (3.47)

representing the unitary image in matrix form, and then we set

¢l = ( C(l)ﬁ ),02,0 - ( C(z)ﬂ ) (3.48)
_ 9%[Cl,n] _ 9%[CAZ,H]
Cin= \5( Slen] ),cz,n = \/5( Sew ] ) nxl. (3.49)

In this way, the minimization problem (3.41)—(3.42) for G is equivalent to the minimization (in the
space of sequences £»(Zso, R? x R?)) of the energy functional

G@.) = Y (0 + Deral +leanl) + Kler,f = 4nJes, - e (3.50)

n=0

with ¢ - e, = ¢, - €; = 0, and subject to the constraint

el +leanf = 1. (3.51)

n=0
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If (¢y,, €2,,) minimizes the energy (3.50)—(3.51), then the Euler-Lagrange equations associated with
the minimization problem gives the existence of a Lagrange multiplier A € R such that for every n > 0
there holds

(n* + 1)er, + K°¢r, — 2nJes, = Ac,, (3.52)
(n* + ey, + 2nJey, = Aeo,. (3.53)

from which one easily gets that 1 = G(u, ). Therefore the previous two relations can be rewritten under
the form

(n* + 1+ = G.)) c1, = 2nJcy, (3.54)
(n* +1-G@.)) ea = 20Ty, (3.55)

Note that for n = 0, the first of the previous two relations gives (1 +2 -G L)) c10 = 0 and, therefore,
by (3.32) we have
cro=0. (3.56)

Also, observe that (3.32) assures that for every n > 0 there holds
(" +1+&=Gw))>0,  (n’+1-Gw))>0,

with the second inequality being strict for every n > 1. Therefore, from (3.54) and (3.55) we infer that
for every n > 1 there holds

¢ (3.54) 2n
" M+ 1+k*-Gu,))
(3.55) 4n?
P+ 1= GuL) (2 + 1+ 42— Gy) ™

JcZ,n

Hence, if ¢;, # O then necessarily (n2 +1-Gu L)) (n2 +1+£2-Gu l)) = 4n? which, given the
upper bound G(u,) < «*/2 in (3.32), admits the only possible solution

2
1
Q(uL)=%+n2+1—§VK4+16n2.

Also, the upper bound G(u,) < 1in (3.32) gives that 1 < n*> < 4 —«%. Therefore we deduce that we can
have ¢;,, # 0 only when «*> < 3 and, in this latter case (i.e., if ¢, # 0 and 0 # «*> < 3), one necessarily
has n?> < 4,ie.,n < 1.

Overall, we get that it is always the case (i.e., for every * > 0) that

cio=0 and ¢, =¢, =0 VYn>2.

Moreover, if k* > 3 then the last relation strengthen to ¢, = ¢, = 0 for every n > 1. In other words,
the minimization problem (3.50)—(3.51) reduces to a finite-dimensional minimization problem and it
is convenient to investigate the regimes «*> > 3, and k> < 3 separately.
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The regime «*> > 3. The problem (3.50)—(3.51) trivializes to
minimize c3,, (3.57)

subject to C%,o = 1. This immediately gives u;(f) = 0 and u,(¢) = =1 as minimizer of the energy (3.41)
and, therefore (cf. (3.40)), u, = +n are the only two global minimizers of the energy when «* > 3.
This proves statement i. in Theorem 2.

The regime «*> < 3. The problem (3.50)—(3.51) becomes

minimize ¢, + 211> + €21 ?) + Kleri* —4Jeay - €1 (3.58)

subject to
o +lenl? +leal’ = 1. (3.59)

We can incorporate part of the constraint into the energy functional and solve for
P 2 2., 21, 2
minimize 1 + |C1’1| + |Cz,1| + K |Cl’1| - 4.](,'2,1 c €11 (360)

subject to the relaxed
el +leanl* < 1. (3.61)

In fact, if ¢, 1, ¢21 € R? solve (3.60)—(3.61), it is then sufficient to set C%,o =1—|c1 1> +|cpf* to geta
solution of (3.58)—(3.59). To solve (3.60)—(3.61) we use polar coordinates in the plane. We set

¢ = pi(cosBy,sinfy), c¢y1 = pr(cos by, sinb), (3.62)
We note that Jc;; - €11 = p1p2 sin(d; — 6,) and we reformulate the minimization problem as
minimize 1 + p7 + p3 + k*p? — 4p1 2 sin(6;, — 6,) (3.63)

subject to
pp2>0 and p?+p3 < 1. (3.64)

We note that 6, 6, do not play any role in the constraint (3.64), therefore at a minimum point one must
have
0, — 6, =n/2 mod 2. (3.65)

It remains to minimize
minimize g(p,02) := 1 + p} + p3 + K27 — 4p1p2 (3.66)

subject to the constraint p;, p> > 0 and p7 + p3 < 1.

The regime «* = 3. One can easily check that when x*> = 3 the function g reduces to g(p;,ps) =
1 + (2p; — p»)*. Therefore the energy is minimized when p, = 2p; and p% < 1/5. But then, from (3.62)
and (3.65) we infer that

¢ = pi(cosby,sinby), ¢y =2p(cosby,sinb,), 6 —6,=mn/2, (3.67)
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which in turn, given (3.48) and (3.49), translate into

V2o .
Go=1-501, ci1= 7,016'9, a1 = V2p,e® (3.68)

for an arbitrary 6 € R. It follows that u;(r) = ¢y €" +¢1e 7" = V2p; cos(0+1) and ur(r) = o0+ " +
Core =+ 1 - 5p§ +2 \/§p1 sin(6 + t). The corresponding family of minimizers reads as (cf. (3.40))

u, (1) = V2p, cos(8 + HT(r) + [i 1 =302 +2V2p, sin(8 + )| n(r)

for arbitrary 6 € [-m, 7] and 0 < p; < 1/ V5. The common value of the energy is G(u,) = 1. This
proves statement ii. in Theorem 2.

The regime k* < 3. To study the minimization problem (3.66) in the regime x> < 3 we rely on polar
coordinates in the plane. We set (p;,p;) = ro with 0 < r < 1, o = (cos ¢, sin¢) € S', ¢ € [0,7/2] and
minimize in ¢ the function

g(r, @) := 1+ r*(1 + k* cos® ¢ — 2sin 2¢). (3.69)

For that we note that when «* < 3 the quantity 1 + «* cos? ¢ — 2 sin 2¢ is strictly negative for a range of
angles included in [0, 7/2]. Indeed, 1 + «* cos? ¢ — 2 sin 2¢ is strictly negative when

arctan (2 - V3 - K2) < ¢ < arctan (2 + V3 - K2)

that is, when ¢ € [/12,57/12] C [0, 7/2]. Therefore, when x> < 3, in order to minimize g(r, ¢) we
want to take maximal 7> = 1. The energy minimization problem then further reduces to a parametric
problem in the single variable ¢:

g(¢) = k¥ cos® ¢ + 2 — 2sin(2¢). (3.70)

For what follows, it is convenient to set w? := Vi* + 16. The first-order minimality conditions can be

written under the form )

% sin(2¢) + % cos(2¢) = 0. (3.71)

K K

It is then clear that for every x> > 0 there exists a unique angle in ¢, € [0, /2] such that
cos(2¢,) = K*/w?, sin(2¢,) = 4/w?. (3.72)

The observation allows us to rewrite the first-order minimality condition (3.71) under the form sin(2(¢+
¢.)) = 0. Thus, given 0 < «* < 3, once computed ¢,, the minimal energy is achieved at ¢ = —¢, + /2
and r = 1 (recall that ¢, ¢, € [0,7/2]). This leads to p; = cos(—¢, + n/2) = sin¢,, p, = sin(—¢, +
n/2) = cos ¢, with ¢, € [0,7/2] being the unique solution of (3.72). But this means that the minimal
coefficients c;, €11, and ¢, are given by (cf. (3.62))

¢y =(sing)o, ¢y = —(cosg)Jo, c0=0
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for arbitrary o € S'. The corresponding minimal energy is given by (cf. (3.72))
2 2 2 2 1, .
2(leral” +le2i ) + kleral” =4Jexy - e10 =2 + EK (1 = cos(2¢,)) — 2 sin(2¢,)
1
= 5(K2 —w?+4).

Going back to the original configuration we have (cf. (3.48)—(3.49))

2 . i . V2 i
ciy = 7(s1n de”, ¢ = —17(003 de

for an arbitrary § € R and, therefore, u;(f) = ¢ e + ci e = V2(sing,)cos(d + 1) and u,(r) =
cr1€" +Cyet = \/§(c0s @) sin(0 + t). The corresponding family of minimizers reads as (cf. (3.40))

u,(r)= \/E(sin ¢ cos(@ + nr(r) + \/z(cos o) sin(0 + t)n(t)

with ¢, € [0,7/2] given by ¢, := %arctan(4//<2) and 6 € [—n, ] arbitary. The common value of the
energy is G(u, ) = %(K2 — w? + 4). This proves statement iii. in Theorem 2.
Finally, we note that for x> < 3

lu, ()] = 2sin*(¢,) cos>(t + 0) + 2 cos’(¢,) sin’(¢ + 6)

and, therefore, u, is S? valued only when cos(2¢,) = 0. But this never happens because from (3.72)
we know that cos(2¢,) = k*/ w,%. Therefore, when 0 < x> < 3, there are no minimizers of G in problem
(3.24)—(3.25) that are S?-valued. This gives (3.9) and concludes the proof of the theorem. O

4. The stability of in-plane configurations

This section is devoted to the analysis of in-plane minimizers of the energy (2.2). The interest in
such configurations is motivated by numerical simulations. Indeed, numerical schemes for the analysis
of ground states of ¥ seem to converge towards solutions that are in-plane. The phenomenon, enforced
by Theorem 3 when «*> > 3, and partially endorsed by Lemma 1 for > < 3, motivates the following
conjecture.

Conjecture (C). For every k* > 0 the minimizers in H;(([—JT, 1, S?) the energy functional (cf. (2.4))

F(u) := f ) Ou()*dt + & f " lu(t) x n(r)|*dt 4.1)

are in-plane. In other words, ifu € H;([—ﬂ, 7], S?) minimizes (4.1) then u - e5 = 0 in [—n, 7]

Theorem 3 assures that conjecture (C) is true when x> > 3, as +n are the only global minimizers of
F. When «* < 3, the answer remains open. Indeed, while it is simple to prove that all minimizers are
Sl-valued when, as in Lemma 1, the S?>-valued constraint is relaxed to the energy constraint

eI =2, (4.2)

Lé([—n,n] JR3)

the situation seems more involved for S2-valued configurations.
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Let us comment a little bit more about some common aspects of the numerical schemes available to
compute energy-minimizing maps. We focus on the iteration scheme introduced by Alouges in [2] for
computing stable S?-valued harmonic maps on bounded domains of R?, but our observations transfer to
other numerical schemes, e.g., the dissipative flow governed by the Landau—Lifshitz—Gilbert equation
(see, e.g., [3,5,18]). The algorithm proposed in [2] has the advantage of operating at a continuous level;
this allows us to use it as a versatile theoretical tool to obtain the existence of solutions with prescribed
properties. Starting from an initial guess mq € HJ([—ﬂ, n], $?), the scheme builds a sequence (m;) ;an
of energy-decreasing S?-valued configurations which eventually converges, weakly in Hé([—ﬂ, ], $?),
to a critical point m., of the energy ¥. The algorithm preserves specific structural properties of the
initial guess my. While structure-preserving features are most often a strength of numerical schemes,
other times they represent their biggest weakness. For example, as we are going to show, the algorithm
retains the following properties of the initial guess [16]:

i. If the initial guess my is axially symmetric (with respect to the z-axis), so are the elements of the
sequence (m;) i« produced by the iterative scheme and the weak limit m.,.

ii. If the initial guess my is in-plane, then all the elements of the sequence (m;) ;e produced by the
iterative scheme are in-plane, as well as the weak limit m.,. Moreover, if the initial guess my is
in-plane and in a prescribed homotopy class, so is the weak limit m., of (m;) je.

Point ii tells us that regardless of whether conjecture (C) is true or false, in-plane configurations appear
in simulations and therefore are of interest. For this reason, the second half of the section focuses
on the characterization of the in-plane critical points of the energy functional 7 (see (4.1)) and the
analysis of their minimality properties.

In order to state the main result of this section, we need to introduce some notation. In what
follows, as before, we denote by n(f) = (cost,sint,0) and 7(¢) := 9d,n(t) the normal and tangential
fields to S' x {0}. Also, for any k* > 0 we denote by a, > 0 the unigue solution of the equation

1 4 1
1 f dx = 1. 4.3)
2n - 2

@2 + k% sin” x

2

The uniqueness of the solution of (4.3) comes from the fact that for every k- > 0 the continuous

function .

1 T
aeR, —» — f dx “4.4)
28 N2 +

K2sin’ x

is decreasing in a, diverges to +co when @ — 0, and converges to 0 when @ — +co.
After that, given a,, we denote by F, the elliptic integral of the first kind defined for any 6 € R by

F(0) := X. 4.5)

9
1
f a
_” \/1 + (K2/a2) sin® x

and we denote its inverse function, which is usually referred to as the Jacobi amplitude function, as
am, := F'. Finally, we define E, to be the complete elliptic integral

E := f ' \/ 1 + (k2/a2) sin® xdx. (4.6)
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It follows from (4.3) that F (0 + 2n) = F(6) + 2na,. Hence, the inverse function am, satisfies the
identity am,(y + 27, ) = am,(y) + 27 which, in particular, assures that the minimizers identified in the
next Theorem 4 (cf. (4.7)-(4.8)) are 2r-periodic.

Theorem 4 (in-plane minimizers). Let k> > 0. If m, is a (global) minimizer in Hﬂl([—n, nl,SY) of
the energy functional ¥ (cf. (4.1)), then either degm, = 0 or degm, = 1. Precisely, there exists a
threshold value k* of the anisotropy parameter such that the following dichotomy holds:

i. If K& > K2, then any global minimizer has degree one. Moreover; for every k* > 0, the normal
fields +n are the only two global minimizers of ¥ in the homotopy class {degm, = 1}.

ii. If k* < k2, then any global minimizer has degree zero. Also, for any k* > 0, the minimizers of F
in the homotopy class {degm } = 0 are given by (cf. Figure 5)

m, (t) = sin 8(t)T(¢r) + cos 6(¢)n(r) “4.7)
with 6 (a strictly decreasing function) being any element of the family
0(t) = am(—a,t +b), beR, (4.8)

and a, > 0 the unique solution of (4.3). Moreover, the minimal value of the energy is given by
(cf. Figure 6)

F (m,) = -2x(1 + a?2) + 2a,E,. (4.9)

iti. The exact value of k? is determined as the solution of the equation
—2na? + 2a,E, = 4n, (4.10)

which gives k* ~ 2.31742.
iv. For any k¥* > 0, the degree-zero solutions (4.8) are locally stable critical points of the energy F
in (4.1). Also, for any k> > 0, degree-one solutions +n are local minimizers of the energy F .

Combining i and ii we get the following characterization of the energy landscape. The normal vector
fields +n are the only two global minimizers of & when k* > k? and the common minimum value of the
energy is 2. When k* < k? the minimal energy depends on k, it is given by (4.9), and is reached when 6
is given by (4.8). Finally, when k* = k* both the degree one solutions +n and the degree zero solutions
(4.7)—(4.8) coexist as energy minimizers and the common value of the energy is 2n (cf. Figure 6).

Mathematics in Engineering Volume 5, Issue 3, 1-38.



29

JULLY L \QLJLLQ//
- |
T Ny T

Kk2=0.25 K2=1 Kk2=2.25

Figure 5. A plot of the vector fields minimizing the energy (4.1). There is a critical value >
of the anisotropy parameter, x> ~ 2.31742, below which the global minimizers of (4.1) have
degree zero, and above which the only two global minimizers are the normal vector fields +n
(and have degree one). From left to right, we plot the minimizers for «* = 0.25, ¥* = 1, and

K> =2.25.
1.5 F
// 2m
a0 N
£ min F
2 L
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Figure 6. There is a critical value «?> of the anisotropy parameter, k> ~ 2.31742, below
which the global minimizers of (4.1) have degree zero, and above which the only two global
minimizers are the normal vector fields +n (and have degree one).

Remark 10. Note that, while in the S!-valued setting the normal vector fields +n are local minimizers
for every k* > 0, this was not the case in the S%-valued setting reported in Theorem 3 (where +n
become unstable for k> < 1). The precise reason is that here we are restricted to the class of in-plane
perturbations, whereas in the S2-valued case the loss of stability is caused by perturbations in the e3
direction.

Proof. As in the proof of Theorem 2, it is convenient to set m, = m;7T + myn with my := m, - T and
my := m, - n, where n(t) = (cost,sint,0) and 7(¢) := 0,n(t) are the normal and tangential fields to
S! x {0}. Note that both m; and m, are in Hﬁl([—ﬂ, n],R). In the moving frame (7, n), the energy (4.1)
assumes the expression (cf. (3.41))

F(m,) = f 10,my — my | + 10;my + mo|*dt + & f m; dt. 4.11)

/4
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Clearly, the vector field (m;, m;) is S!-valued. We lift it by setting
mi(t) ;= sin6(¢), my(t) := cos6(r). 4.12)

After that, the energy (4.11) reads as

F(m,) = f 10,0(t) + 11*dt + &* f sin’ 6(¢)dt (4.13)

/Y

= f " 10,00)1> + «* sin® 0()dt + 27 + 2(0(n) — O(=7)). (4.14)

It is clear that since m;, m, € Hﬁ1 ([, ], R) we necessarily have
0(rr) — 0(—m) = 2nj (4.15)

for some j € Z. Hence, the energy functional ¥ takes the form
F(m,) = f 10,0()1* + «* sin® O(1)dt + 27(1 + 2) (4.16)

The integer j € Z is nothing but the degree of the S'-valued map (m;, m,) whose components are the
coordinates of m, in the moving frame (7, n). Therefore, from (4.15) we get that

degm, = j+ 1. 4.17)

In fact, the previous relation can also be obtained from (4.15) observing that m;, = (cos(6(t) +
1), sin(6(¢) + 1), 0).

The expression (4.16) can be used to investigate the critical points of ¥ in any prescribed homotopy
class j € Z. Here, however, we are interested in global minimizers and, as we are going to show, this
restricts the admissible homotopy classes to only two cases.

First, we use (4.15) and Jensen’s inequality for the Dirichlet part in (4.16) to get that

F(m,) =271 + j)* + &2 f ' sin® 6(¢)dt (4.18)

-7

for every m, € Hg (S',SY). Second, we recall that for every k> > 0, we have F(n) = 2r, as well as
F (o) = nk® for any o € S!. Therefore, if m, is a minimizer of (4.16), then necessarily

271(1 + j)* < F(m,) < min{2x, 7k*}. (4.19)

Since 27(1 + j)> > 2m when |1 + j| > 1, from the previous bounds, we get that the global minimizers
of ¥ in Hﬂl(Sl, S1) have to satisfy the relation (4.15) with j € {~2, —1,0}. On the other hand, if j = -2
we get that F (m, ) is strictly greater than 27 because the density «*(sin §)? gives a positive contribution
when j # 0. Hence, necessarily j € {—1,0}. Hence, recalling (4.17),

degm, € {0, 1}.

This proves the first part of the statement.
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Now, if m, is a global minimizer of ¥ and if degm, = 1, i.e., if j = 0, then from (4.19) we know
that 2 < ¥ (m,) < nk>. Hence, necessarily k*> > 2 if degm, = 1. It follows that deg m, = 0 whenever
k* < 2. Also, if ¥* > 3, then Theorem 3 implies that +n are the only two global minimizers of ¥, and
these belong to the homotopy class deg m, = 1. Therefore, if k> > 3, then any global minimizer has
degree one, and if k> < 2, then any global minimizer has degree zero.

Note that, at this stage, we cannot infer the existence of a threshold k> € [2, 3] such that any global
minimizer has degree one when x> > «2, and any global minimizer has degree zero when k* < k2.
Indeed, in principle, it can still be the case that the minimizing homotopy classes are not described by
intervals. However, from the characterization of the minimizer in the homotopy classes degm, = 0
(given in the proof of ii.) and from the comparison of the associated energies (given in the proof of
iii.), it immediately follows that there exists a unique >

K€ [2,3] (4.20)

such that if k2 > «2, then any global minimizer has degree one, and if x> < «2, then any global minimizer
has degree zero.

Proof of i. It remains to show that for every x > 0, the vector fields +n are the only two global
minimizers of # in the homotopy class degm, = 1. For that, it is sufficient to observe that when
j =0, from (4.18), we get that F(m,) > 2n = F (+n) regardless of the value of > > 0. Moreover,
F(m,) > 2nif || sin elliz[—n,m # 0, i.e., if m, ¢ {xn}. This guarantees the uniqueness statement about
the minimizers +n.

Proof of ii. We want to improve the estimate (4.20), but we also want to identify the minimizers of
in the prescribed homotopy class deg m, = 0. This amounts to the minimization problem for # under
the constraint j = —1 in (4.15). In other words, one has to minimize energy (cf. (4.16))

F(m,) = 21 + f 10,0(0)1* + k2 sin® O(t)dt (4.21)
under the constraint that 6(7) — (-m) = —2x (cf. (4.15)). The Euler—Lagrange equations associated
with (4.21) gives the equation

8,6(t) = K* sin 6(¢) cos 6(1), (4.22)

subject to the degree constraint
O(r) = 6(—m) — 2. (4.23)

It is worth noticing that, from the mechanical point of view, the nonlinear ordinary differential
equation (4.22) describes the dynamics of an (ideal) inverted pendulum in the reduced setting where
the pivot point of the pendulum is fixed in space (cf. Figure 7). In this reduced setting, the equation
of the inverted pendulum, up to a sign, is the one of a simple pendulum (see, e.g., [6, p. 35]), the
difference being in the nominal location of the pivot point which, for the inverted pendulum, is below
its center of mass. Precisely, if the inverted pendulum consists of a spherical mass subject to the force
of gravity g, placed at the end of a rigid massless rod of length ¢ then, its equation is given by (4.22)
with k> = g/¢. Using this mechanical analogy, the minimizers m, in the class {deg m, = 0} we are
interested in, correspond to solutions of the inverted pendulum in which the mass m performs a full
clockwise turn at the minimal cost of the energy (4.21).
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Figure 7. (Left) The ideal inverted pendulum consists of a spherical mass m, subject to the
force of gravity g, placed at the end of a rigid massless rod of length ¢ attached to a (possibly
oscillating) pivot point. When the pivot point of the pendulum is fixed in space, the equation
of motion, up to a sign, is the one of a simple pendulum; the difference is in the nominal
location of the pivot point which, for the inverted pendulum, is below its center of mass.
(Right) The typical phase portrait of the inverted pendulum (4.22). It consists of the level
sets of the function f,(x,y) := y* — k* sin® x. The maximal quote of the separatrix X := fK‘I(O)
is achieved at |«|; here k> = 1.5. The closed level curves correspond to oscillations of the
pendulum about its equilibrium position 26 = +x, while the curves outside the separatrix
correspond to full rotations of the pendulum.

The problem is solvable in terms of elliptic integrals. For that, we observe that by multiplying both
parts of (4.23) by 0,0 one gets that if the integral curve

t € [-m, 7] - (0(2),8,0(r)) € R? (4.24)
solves (4.23) then there exists a constant ¢, € R such that
0,0(1))> — k*sin® 0(r) = ¢, Yt e [-m, 7l. (4.25)

Precisely, ¢, := 8,0(-n)]* — k* sin’ 6(—m). In other words, every solution (6(¢), 9,0(t)) of the boundary
value problem (4.23) belongs to some level set of the function f.(x,y) := y* — «*sin® x, with the
understanding that we formally set y := 9,0 and x := 6. The phase diagram is depicted in Figure 7
where the thicker line represents the separatrix

= {(xy) €R?:)? = &’ sin’ x} (4.26)

which bounds the region
S = {(x.y) e R? 1 y? <’ sin’x}. (4.27)

Note that the phase diagram is periodic (in the x-direction) of period 7. However, it is convenient to
consider the range —m < x = 6 < « of length 27 because we are interested in solutions such that
O(rr) — 6(—m) = —2n. From the phase diagram represented in Figure 7, it is clear that the solutions
we are interested in are such that the coordinate y = 0,6 never vanishes, as this is the only way to
connect, via a phase curve, two points of the phase portrait whose x coordinates are 27 away. The
rigorous proof follows by observing that the region S includes the level sets {f.'(c)}.<o which consist
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of disjoint compact subsets of S, each one of them projecting on the x-axis on a set of diameter less
than 7. However, the solution curves a(?) := (6(t), 0,0(t)) we are interested in, have to satisfy (4.23)
and, therefore, must have a trace in the phase space whose projection on the x-axis has diameter 2.
It follows that any solution a(r) := (6(), 0,0(t)) of (4.22)—(4.23) lies on the level set fk‘l(c,() for some
¢, > 0. After that, we observe that the solutions lying on the level set f:1(0) whose projection on the
x-axis have diameter 2 correspond to the normal vector fields +n; hence, from now on, we focus on
solutions in S¢ = U, f~'(c). Given the expression of c,, this implies that

10,0(=n)* > * sin” (—n). (4.28)

First, we note that if (x,y) € § C then y # 0. Therefore, the solutions of (4.22)—(4.23) are such that
0,0(t) # 0 for every t € [-m,n]. Thus, 6 is either decreasing or increasing. But given the degree
condition (4.23) the solutions we are looking for have to be decreasing. Therefore, from (4.25), we get
that

0,0(t) = — \/ 10,6(=m)> = k2 sin” 6(—r) + &2 sin” (2). (4.29)

It is convenient to set

@ = \/|a,9(—n)|2—,<2 sin® 6(—7), (4.30)

because, as we are going to show, the value of «, just defined coincides with the value defined by (4.3).
Note that @, > 0 due to (4.28). The expression of d,6(¢) can be rewritten under the form

3,0(t) = —a, \/ 1 + (k2/a2) sin® 6(t). (4.31)

Next, we observe that the elliptic integral of the first kind F, (defined in (4.5)) is increasing (invertible)
and vanishes at —r. Therefore from (4.31) we deduce that

F(6(1)) = F(0(-m)) = =(1 + m)a. (4.32)
In particular, evaluating the previous relation at # = 7 and taking into account (4.23) we obtain
F,(0(n)) — F (6(—n)) = —2na. (4.33)

On the other hand, the integrand defining F, is periodic of period m and, therefore, taking also into
account that 6(r) = 6(—x) — 27, we obtain
O(—m)-2m 1
F(6(m)) — F(8(-n)) = f dx
6(=m) \/ 1+ (/<2 /a?) sin” x

- f\/l dx

+ (k2 /a2) sin® x

= — 27, (4.34)

where we set B, := 1/(2n)F,(rr). From (4.33) and (4.34) it follows that if (6(¢), 0,6(¢)) is a solution of
our problem (4.22)—(4.23) then necessarily a, = .. Therefore the value of @, can be characterized as
the unique solution of the equation (cf. (4.3))

f dx = 1. (4.35)

@z + K? sin® x
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Once computed «,, we can characterize the solutions of (4.22)—(4.23) using (4.33), which gives the
one-parameter family of functions 6(r) = F.' (F(6(-n)) — (t + m)a,), 8(—x) € R, which, by the way, is
of the form

0(t) = am(—a,t + b,), b, .= F(0(-n)) — na, € R. (4.36)

This proves (4.8) and gives a parameterization of the family of solutions in terms of the initial condition
6(—m), or in terms of the initial condition 9,0(—x) due to (4.30).

In principle, the energy can depend on b,, but this is not the case as we are going to show next. For
that, we observe that from (4.31) we get that

10,000 = a2 + k* sin* 6(1). (4.37)

Plugging the previous expression into the energy functional (4.21), we obtain that if m, minimizes the
energy in the homotopy class {deg m, = 0}, then

F(my) =211 +a’) +2 f ' 0,6(1)|*dt. (4.38)

Next, we observe that since 6 is a decreasing function, we have that

T 0(—7)
f 16,0(t)/*dr = f (6,0 0 ) (X)*10:6~" (x)|dx
- ¢/

(7)

0(—m) 1
= ——dx. (4.39)
‘Lﬂ) |8x9_1 (X)|

But from (4.36) we know that 6~!(x) = % and, therefore

K

T 0(—m) 1
10,0(0)2dt = a, f dx
L ’ o 1FL)|

0(—m)
= a, f \/ 1 + (k%/a?)sin® x dx. (4.40)
()

Making use of the m-periodicity of the integrand, from (4.6) and (4.23) we infer that

f 10,60(0)1*dt = a, f \/ 1+ (k2/a2)sin® xdx = a,E,. (4.41)
Overall, plugging the previous expression into the expression (4.38) of the energy, we get
F(m,) = -2n(1 + a?) + 2aE, (4.42)

and this proves (4.9).
Proof of iii. The proof quickly follows from i and ii because the energy of the normal vector fields +n
evaluates to 2r and, therefore, due to (4.42), degree zero configurations given by (4.36) are preferred
as soon as

—2n(1 + a?) + 2a,E, < 2. (4.43)
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This happens when «* < «? ~ 2.31742.

Proof of iv. Finally, we want to show that the degree zero solutions (4.36), which we know to be global
minimizers when k*> < k2, retain local stability for every «*> > 0. For that, we compute the second
variation of the energy (4.11) which, for any ¢ € Hﬁl([—n, 7],R), reads as (cf. (4.13))

F"(0)(p) = f 10,0(0)* + K>¢*(f) cos 26(7) dt. (4.44)
From the Euler-Lagrange equations (4.22) we get that
010 = K*(cos 260)0,0. (4.45)

Moreover, since |0,6] > ¢, > 0 on the compact set [~ ] for some ¢y > 0, we can use the Hardy
decomposition trick (see [12,26-29]) and say that any ¢ € HJ ([, 7], R) can be written as ¢ = (9,0)y¥
for some i € H;([—ﬂ, n], R). Therefore

F"(O)(p) = f 100210, + 10,0 11* + 3,400,600, || + 110,61 (cos 26) dt. (4.46)

Integrating by parts the previous expression and making use of (4.45) we obtain

F(O)¢) = f 0,610 dt > (c)) f 0y dr. (4.47)

Finally, plugging 8 = 0 into (4.44), we get that +n are uniform locally stable critical points for every
k? > 0. Therefore, since the lifting (4.12) preserves small H' neighborhoods, we get that +n are local
minimizers of the energy ¥ . This concludes the proof. O
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