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Abstract: The focus of the article is the electro-magneto-hydrodynamics of an Oldroyd 6-constants 

fluid flow through parallel micro-plates with heat transfer. The medium between the micro-plates is 

porous and we use the Darcy-Brinkman-Forchheimer model for it. Numerical calculations, using the 

shooting method, were performed to solve the non-linear equations that emanate from the modeling. 

The results for the velocity mechanism, the Nusselt number and the temperature distribution are 

graphically shown. The analysis of the problem focuses on the effects of several fluid and heat transfer 

parameters, such as the Hartmann number, the Brinkmann number, the Darcy-Brinkman-Forchheimer 

parameter, the Darcy parameter, the viscous dissipation, and the Joule heating coefficient. 
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1. Introduction 

Several research studies have been accomplished recently on the heat transfer through 

microporous media and micro-channels with applications in thermal control in radiators, heat pipes, 

and microelectronics. Micro-channel systems can provide efficient heat removal at substantially 

smaller dimensions for cooling systems in aerospace engineering [1]. The use of micro-radiators for 
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thermal control enables the reduction of the maximum temperature and temperature gradients on the 

equipment when subjected to large heat fluxes [1]. Heat transfer mechanisms are becoming 

increasingly important in the modeling of several other applications including magnetic fluid power 

production [2], geophysical flows, and nuclear reactor cooling [3]. Heat transfer fluid flow through a 

porous media is also associated with several engineering applications in nuclear waste disposal systems, 

thermal energy transfer, and thermal management [4]. The subjects of heat transfer and flow in porous 

media also play an important role in the energy sector, including electro-kinetic energy conversion 

devices, hydrogen storage systems, shale reservoirs, and membrane-based water desalination with 

reverse osmosis. 

Given its scientific and engineering significance, many researchers investigated heat transfer in 

various geometric domains and for various fluid models. Moradi et al. [5] investigated heat transfer 

over a porous medium using a double tube filled with water-based MWCNT nanofluids. Natural 

convection and heat transfer with a fluid via a coarse-grained permeable medium were investigated by 

Ataei-Dadavi et al. [6]. Pandya et al. [7] reviewed the heat transfer effectiveness for plate heat 

exchangers with nanofluids. Miri, Joibary and Siavashi [8] explored the role of Reynolds asymmetry 

and the use of porous media in a counter-flow dual-pipe heat exchanger to improve the heat transfer. 

Zhang et al. [9] used the Darcy–Brinkman–Forchheimer model for porous media to investigate the 

bioconvection flow over a permeable Riga plate. Also, Selimefendigil and Oztop [10] investigated the 

impact of nanofluids and dual porous layers in order to evaluate the heat transfer from a plate using 

impinging flow single-jets and multi-jets. 

Heat transfer with magnetic fields is technologically important because of its numerous 

applications in the metallurgical industry (fluid metal flows), micro-pump flows, biological flows, and 

medicinal uses. In particular the electro-magneto-hydrodynamics micro-pump has attracted the 

attention of several researchers, because of its possible uses in microfluidic systems [11,12]. Magnetic 

fields generate the Lorentz force by the interactions of an externally induced electrical current in 

channel filled with electrically conductive fluids [13–15]. The effects of, viscous dissipation, joule 

heating, and thermal properties on EMHD fluid flow over a microchannel with constant heat flux were 

discussed by Chakraborty et al. [16]. Sarkar et al. [17] investigated the behavior of EMHD flow 

towards a microchannel when it was subjected to slip and electro-kinetic phenomena. Rashid et al. [18] 

studied the effects of EMHD and permeability on the fluid flow across a corrugated microchannel with 

varying viscosity. Reza et al. [19,20] investigated a third-grade fluid flow in a microchannel with 

EMHD and porous effects. Obalalu et al. [21] explored the effect of phase change heat transfer with a 

non-Newtonian EMHD nanofluid with activation energy and chemical reactions. 

The main objective of this research study is to investigate the Oldroyd 6-constant, Electro-magneto-

hydrodynamic fluid flow, across parallel and porous micro-plates with heat transfer, using the Darcy-

Brinkman-Forchheimer model. This investigation is motivated by their fundamental importance in 

industrial engineering applications as well as their value for experimental purposes. Flows in 

microfluidic channels are also relevant in a variety of sectors [22,23], including biomedical and 

biochemical processes, heat exchange due to surface forces and physical particle separation. The fluid 

flow in the stated field is efficiently controlled by using electric fields, pressure gradients, magnetic fields, 

or appropriate combinations of these driving forces. The EMHD micro-pump is one of the several 

pumping concepts that has use in micro-fluidics systems. Because the operating concept of the EMHD 

micro-pump is based on the Lorentz force (created by the interaction of an externally imposed electric 

current along the channel with ferrofluid with a transverse magnetic field orthogonal to the current) [24]. 
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In addition, the Oldroyd 6-constant fluid (non-Newtonian) has a number of industrial uses. 

Several fluid models, including Oldroyd’s, have been presented in recent years. This model 

incorporates the elastic and memory effects that dilute solutions demonstrate. Most of the Oldroyd-B 

fluid models available in the literature [25,26] are confined to 3-constant models, and, hence, cannot 

cover the full characteristics of viscoelastic flows. This is why we chose the Oldroyd 6-constant fluid 

model to investigate its properties. After employing the assumptions to the mathematical modeling, 

the governing differential equations of the model are nonlinear and coupled. Because of this, numerical 

simulations are carried out using the shooting the method with the Mathematica software. When 

compared with other similar approaches, the shooting method delivers results quickly with simple 

computations. Results are presented for the velocity profile, the Nusselt number, and the temperature 

distributions for all the important to the flow parameters. 

2. Mathematical and physical formulation of the Oldroyd 6-constant fluid 

Consider an electrically conducting Oldroyd 6-constant [27] incompressible fluid that moves 

through parallel micro-plates under the influence of electro-magnetic forces. The fluid is moving 

through a porous medium. To investigate the behavior of the Oldroyd 6-constant fluid through the 

porous medium, the Darcy-Brinkman-Forchheimer model is used. A system of rectangular coordinates 

is selected such as x− and z −are assigned along the tangential direction on the charged plates, while 

the y − axis is assigned along the perpendicular direction, as shown in Figure 1. 

 

Figure 1. Geometrical arrangements of an EMHD micro-pump between two parallel 

micro-plates. (a) Three-dimensional position; (b) Two-dimensional position. 

Due to the presence of electrical field E  along the −z axis in the transverse direction, and the 

homogenously applied magnetic field B  along the −y axis, a magnetic Lorentz force is generated 

which acts along the −x  axis. The magnetic Reynolds number is assumed to be very small and, 

therefore, all other effects of magnetism are neglected except for the Lorentz force. The length of the 

micro-channel is denoted by L  along the −x axis, the width is denoted by W , and the height of the 

micro-channel is denoted by 2H (typically its range is 100 200μm− ). The length of the microchannel 

is much larger than the height and the width, that is 2L H  and L W  . According to these 

assumptions, the two-dimensional micro-channel Oldroyd 6-constant fluid flow is reduced to a one-

dimensional steady-state flow for which the velocity is independent of z . The continuity equation 
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for this flow is: 

0,V =  (1) 

Using Darcy-Brinkman-Forchheimer model and body forces, the momentum equation becomes: 

( )1/2
,

d

d
f s

F
mV

c

t

V
p B V V g T T

KK

 
   =  −  + − − + −      (2) 

where is the stress tensor of the Oldroyd 6-constant fluid, g is the gravity, fB is the body force, p  is 

the pressure,  the thermal expansion coefficient, K is the permeability of the porosity, Fc is the 

Forchheimer coefficient,  is the density, t is the time, and  and m sT T are the average temperature and 

the surface temperature. The body force is the induced Lorentz force, defined as follows [28]: 

,fB J B= ×            (3) 

Where J  is the vector that represents the local ion current density and is given by the expression: 

,J V B E  = + ×           (4) 

where  represents the electrical conductivity, B the magnetic field, and E the electric field. 

The stress tensor of the Oldroyd 6-constant fluid is expressed by the following equation: 

( ) ( ) 23 5 1
1 1 1 1 1 2 4 1

1

tr ,
2 2

,    grad ,T

DRD
R R R R R

Dt Dt

R L L L V

 
       

 
+ + + + = + +  

  
= + = 

  

(5) 

Where 1R the first Rivlin-Erickson tensor,
1 2 3 4 5, , , ,     are constants of the material, and  is the 

viscosity of the fluid. The total derivative, D Dt  is defined as follows: 

( ) ( )
( ) ( )

d
,

d

T
D

L L
Dt t

• •
= − • − •

          

(6) 

Where
d

dt
denotes the material derivative. The detailed derivation of Eqs (5) and (6) are presented in 

the Appendix. 

The energy equation for this fluid, which is subjected to viscous dissipation and Joule heating 

effects is: 

2
2

1/2

d
: grad ,

d

F
h

cT J J
S V V V V Q

t K K

 
 




− = + + −

      

(7) 
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where the symbol “ : ” indicates the tensorial product, T represents the temperature, hS denotes the 

specific heat, and Q is the heat flux vector. 

For the chosen geometry shown in Figure 1, the velocity vector is defined by the following 

equation: 

( ),0,0 .V u y =  
          

(8) 

Substituting Eq (5) in Eq (2), we obtain: 

( )2 2

1/2

d
,

d

F
m

xy

s

cp
B u BE u u T T

y K
g

x K

 



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
= − + − −− +

    

(9) 

,
yyp

y y


=

            

(10) 

0.
p

z


=

            

(11) 

The pressure function only depends on the y coordinates. Therefore, we obtain the following 

expression for the momentum equation: 

( )1/2
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d dd
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(12) 

where ( )( ) ( )( )1 2 1 4 2 5 3 2 3 1 3 1 5 3,             = − − + = − − + are derived from Eq (5). 

The boundary conditions of the flow are: 

( ) 0,          ,u y y H= = 

         

(13) 

The governing equations of this model may be cast in dimensionless form using the following 

dimensional parameters: 

( ) ( )

( ) ( )

( )

2 22
1 2
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(14) 

Where,  represents the kinematic viscosity of the fluid, Ha is the Hartmann number, T  is the 

dimensionless temperature, 1E  is a dimensionless parameter related to the electric strength, Da is the 

Darcy parameter and represents the porosity, Gr is the thermal Grashof number, F  represents the 

Forchheimer number, which accounts for the non-Darcian effects of the porous medium and its range 

is from 0 to . 

Accordingly, Eq (12) becomes in dimensionless form: 
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 ( ) ( )
2

2 4 22 2 2
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3 1 0,
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(15) 

The boundary conditions in dimensionless form are simplified as follows: 

( ) 0,     1,u y y= = 

         

(16) 

The EMHD fluid's energy equation is as follows: 

( )

3

1
2 2

2 2 2 3 2

2 2 1/22
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+  
   

 

 

(17) 

where hS the specific heat capacity, and cT represents the thermal conductivity of the fluid. In Eq (17), 

the second term indicates the volumetric heat generation caused by the viscous dissipation, and the 

third term indicates the impact of Joule heating. 

The temperature profile for the fully developed flow depends on the y direction only, and satisfies 

the condition: 

( ) ( )

( ) ( )
0.

, s

m s

T x y T x

T x xx T

 

−
=    

−

        

 (18) 

Using the boundary conditions and the above equation, we obtain the following equations:  

2

2
, and 0.md

k
x x

TT T

x d

 
= = =

         

(19) 

where k is constant. 

The energy equation with its pertinent boundary conditions may be cast in the following form: 
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1
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2 2 2 3 2
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 (20) 

( )2 or  ,
y H

s c s

y H

T
Q T T T x

y =

=


= =

        

 (21) 

where sQ represents the constant heat flux at the wall. For the geometric configuration examined here, 

the energy equation for an infinitesimal section with length dx becomes: 
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0
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  (22) 

Hence, the mean temperature may be written as follows: 

0 = constantm

h

d C

S

T

dx 
=

        

 (23) 

where, 

22

32 4
0

1 1 1 1 1

2 ,sQ CB C CE H
C BE

C C C C C


= + + + + −        (24) 

The coefficients of the previous equations that are used in the calculations are: 

1
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  (25) 

The energy equation, Eq (20), and its boundary conditions become in dimensionless form: 

2

122
2 2 2 3
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dd d
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d d d
1

d

u
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y
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
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+  

   

   

 

 (26) 

( ) 0,    1,T y y= = 
         

 (27) 

where Bm is the Brinkman number –the ratio of heat produced because of viscous dissipation to the 

conduction heat transfer; 1 2 and   are defined in Eq (14); 3 represents the ratio of the Joule heating to 

the heat conduction; and 4 represents the influence of heat generation because of the influence of the 

electric and magnetic fields to the heat conduction. These dimensionless parameters are expressed as 

follows:  

( )
( )

( ) ( )

2 2 2
0

3 42

2
, , .

c m s c m s c m s

EB C H E H
Bm

H T T T T T T T T T

  
 

+
= = =

− − −    

 (28) 

The Nusselt number, which denotes the effects of convective heat transfer, is written as follows: 
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( )
,c H H s

c c s m

h D D Q
Nu

T T T T
= =

−         

 (29) 

where ( ) ,s c s mQ h T T= − and ch is the coefficient of convective heat transfer and, ( )HD H= denotes the 

hydrodynamics diameter of the microchannel. Using Eqs (21) and (29), the final form of the Nusselt 

number at the upper wall is expressed as: 

1

d
.

d
y

T
Nu

y
=

= −

          

 (30) 

3. Solutions of the governing equations 

Because the final forms of Eqs (15) and (26) are nonlinear, closed-form solutions cannot be obtained. 

Thus, a numerical scheme is proposed to obtain the solution of the equations. The shooting method is 

the most effective scheme to solve nonlinear differential equations. To use this numerical scheme, we 

first reduce Eqs (15) and (26) to first-order differential equation systems and then solve them using the 

numerical algorithm developed in Mathematica. This technique is advantageous to other similar methods, 

because it produces better results in a shorter period [29–31]. As a result, Eqs (15) and (26) are reduced 

to the following form: 

 
( ) ( )

2

1 1 22

2
2 4 2 2 2

2 1 2 2 1 1 2 2 1 1 2 1

d d
, ,

d d

3 1 0,

u u
F F F

y y

F F F F F Ha u E Da u F u Gr T F    


= = = 


 + − + −  − +  +  −  + =      (31) 

( )

2

1 1 22

2
2 2 2 2 31 1

2 1 3 42
2 1

d d
, ,

d d

1
0,

1

T T
G G G

y y

F
G Bm F u Bm Ha u Da Bm u Bm F u

F


 




= = = 




 + + − +  + +   +   =  +     (32) 

The boundary conditions are: 

( ) ( )0, 0,             at            1,u y T y y= = = 
         (33) 

4. Graphical and numerical analysis 

This section focuses on the graphical presentation of the numerical results as affected by all the 

variation of the important parameters for flow and heat transfer. In particular, we investigate the 

behavior of the velocity profile, the Nusselt number, and the temperature profile. The following 

parametric values are chosen in the calculations: the semi-height of the geometric domain is in the 

range m100 2= μ00 H − ; the range of the imposed magnetic field is 0.018 0.44T;−  the values of the 

Hartman number are in the range 60.8 10  to 3− ; the value of the imposed electric field strength is 

1 60V/m ; the dimensionless parameter 1E  is in the range
8 50.4 10  to 2.1 10 ;−  The Brinkman 
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number is 10.5;Bm = the Oldroyd 6-constant fluid parameters are 1 21, 0.5; = =  the Darcy-

Brinkman-Forchheimer parameter is 1;F = and the thermal Grashof number is 0.2.Gr =  It must be 

noted that the results for a simply viscous Newtonian fluid can easily recovered in this model by setting

1 2 0 = = . 

Table 1 shows the computational results of the Nusselt number against all the important 

parameters of this problem. 

Table 1. Nusselt number computational results for all emerging parameters. 

1  2  3  Ha  F  Da  Gr  Bm  Nu  

1 0.5 2.5 1 0.5 0.5 0.2 10.5 2.640184 

2        2.406574 

 1       2.844562 

 3       4.401719 

  2      2.809293 

  3      2.475700 

   0.5     3.014919 

   0.8     2.812321 

    0.8    2.767278 

    1    2.740628 

     0.6   2.759587 

     0.7   2.732662 

      0.1  2.282343 

      0.15  2.442868 

       6 1.313252 

       7 1.573756 

Figure 1 is a schematic representation of the micro-pumps, showing the dimensions and the 

direction of the heat transfer. Figure 2 shows the results of the Nusselt number in graphical/column 

form. It is clearly observed in this Figure that the Nusselt number is suppressed due to the strong impact 

of Hartmann number Ha , Darcy parameter Da, and the fluid parameter 1.  However, the Nusselt 

number increases with the Brinkman number ,Bm  the thermal Grashof number ,Gr  and the fluid 

parameter 2 . 

Figure 3 is plotted for the velocity profile to show the behavior of the fluid parameters 1 2 and .   

One can see in this Figure that increasing the values of 1 suppress the magnitude of the velocity. On 

the other hand, the fluid parameter 2 acts in reverse and increases the velocity. The solid line 

corresponds to the case of a viscous fluid. 

The impact of the buoyancy forces on the working fluid is represented by the thermal Grashof 

number. Figure 4 shows the variation of the thermal Grashof number, Gr ,and is effects on the fluid 

velocity. The thermal Grashof number augments the velocity profile along the entire channel, as shown 

in this graph. 

The effects of the Darcy-Brinkman-Forchheimer parameter, F, is shown in Figure 5. It is apparent 

that increasing F significantly retards the flow. A similar behavior was observed in the viscous fluid 

flows through a Riga plate [32]. 
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Figure 6 shows the influence of the Hartmann number, Ha, on the fluid velocity. The existence 

of an external magnetic field introduces resistance to the fluid flow, as it is apparent in the Figure. The 

resistance is caused by the Lorentz force, which is a consequence of the combined application of the 

electric and magnetic fields. The case 0Ha = corresponds to the absence of the magnetic field and the 

velocity profile attains its maximum. As expected, the velocity field is also retarded with the Darcy 

parameter, Da, whose influence is plotted in Figure 7. The effects of the parameters Ha and Da are 

very similar on the entire velocity profile. Figure 8 shows the variation of electric field E1 strength on 

the velocity profile. It is observed in the Figure that increasing values of the electric field enhances the 

velocity profile, since electric field produces larger aiding forces which boost the velocity profile. 

 

Figure 2. Nusselt number variation on the upper wall for several of the governing 

equations parameters. 

 

Figure 3. Effect of the 1 2 and   variation on the velocity profile. 
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Figure 4. Effect of theGr variation on the velocity profile. 

 

Figure 5. Effect of the parameter F variation on the velocity profile. 

 

Figure 6. Effect of the Ha  variation on the velocity profile. 
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Figure 7. Effect of the Da variation on the velocity profile. 

 

Figure 8. Effect of the E1 variation on the velocity profile. 

Figures 9–16 depict the effect of the several parameters on the temperature profile. As shown in 

Figure 9, the Brinkman number Bm, which is the product of the Prandtl number and the Eckert number, 

enhances the temperature profile. The higher values of the Brinkman number impede the heat diffusion 

caused by the viscous dissipation, causing the temperature profile to grow. 

Figure 10 shows the effect of the fluid parameters 1 2 and   . It is observed that the variation of 

the two parameters affects very little the temperature profile. In contrast, the variation of the Grashof 

number has a very significant effect on the temperature profile as shown in Figure 11. 

The variation of the Darcy-Brinkman-Forchheimer parameter, F, on the temperature profile is 

shown in Figure 12, where it may be seen that increasing F has a small but detrimental effect on the 

temperature profile. Figure 13 shows that the magnetic field parameter, Ha, diminishes the temperature 

profile. This effect also causes significant entropy production and exergy destruction [33]. On the 

contrary, the temperature profile was dramatically decreased at the larger values of the parameter 3 , 

as it may be observed in Figure 14. The effect of the Darcy number, Da, is similar since it lowers the 

temperature profile, as it is shown in Figure 15. It may be concluded from the last two cases, that 

increasing the parameters 3  and Da reduces the thermal dissipation and exergy destruction [33]. 

The last Figure 16 shows the variation of the electric field strength on the temperature profile. It can 

be seen that larger values 𝐸1 cause significant increment of the temperature profile. It must be noted 

that the case 𝐸1 = 0 corresponds to the absence of electric field and its influence on the flow regime. 
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Figure 9. Effect of the Bm  variation on the temperature profile. 

 

Figure 10. Effect of the variation of the parameters 
1 2and  on the temperature profile. 

 

Figure 11. Effect of the Gr variation on the temperature profile. 
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Figure 12. Effect of the F variation on the temperature profile. 

 

Figure 13. Effect of the Ha variation on the temperature profile. 

 

Figure 14. Effect of the 3  variation on the temperature profile. 
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Figure 15. Effect of the Da variation on the temperature profile. 

 

Figure 16. Effect of the E1 variation on the temperature profile. 

5. Conclusions 

The Darcy-Brinkman-Forchheimer model was used to investigate the behavior of an Oldroyd 6-

constant fluid in an electro-magneto-hydrodynamic fluid flow through parallel micro-plates with heat 

transfer. The effects of the viscous dissipation and Joule heating are considered in the model. The 

governing equations for this type of fluid are nonlinear and coupled, which implies that exact solutions 

are not possible to obtain. Hence, we used the shooting method to obtain numerical solutions. The 

governing equations are first developed and then cast in dimensionless form. With the results of the 

numerical solution and the effects of all the pertinent dimensionless variables are discussed using 

graphs and tables. The following are the key conclusions of the study: 

i. The Nusselt number increases with the Brinkmann and Grashof numbers, but decreases with 

the Hartmann number. 

ii. The Grashof number significantly increases the fluid velocity, but the Darcy parameter and the 

magnetic field, which creates the Lorenz force impede the fluid motion. 

iii. The Oldroyd 6-constant fluid parameters affect both the velocity and temperature profiles, but 

their effects on the temperature profile are very small. 
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The Darcy-Brinkman-Forchheimer parameter slightly decreases the temperature profile. The 

parameter associated with the magnetic field, Ha, acts to increase the temperature profile. 
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The scalar forms (time-dependent) of Eq (5) are found as: 
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The time-independent equations are as follows: 
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