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Abstract: In the paper [20], the authors introduced a Gauss curvature flow to study the Aleksandrov
problem and the dual Minkowski problem. The paper [20] treated the cases when one can establish the
uniform estimate for the Gauss curvature flow. In this paper, we study the Lp dual Minkowski problem,
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estimate for the Gauss curvature flow. We adopt the topological method from [13] to find a special
initial condition such that the Gauss curvature flow converges to a solution of the Lp dual Minkowski
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1. Introduction

LetM0 be a smooth, closed, uniformly convex hypersurface in Rn+1 enclosing the origin. In [20],
the authors studied the following anisotropic Gauss curvature flow:{∂tX(x, t) = − f (ν)rαK(x, t)ν,

X(x, 0) = X0(x),
(1.1)

where K(·, t) is the Gauss curvature of the hypersurfaceMt, parametrised by X(·, t) : Sn → Rn+1, ν(·, t)
is the unit outer normal at X(·, t), f is a given positive smooth function on Sn, and r = |X(x, t)| is the
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distance from the origin to the point X(x, t).
The Gauss curvature flow (1.1) was introduced to study the existence of solutions to the dual

Minkowski problem proposed in [16]. It can be formulated as solving the following Monge-Ampère
equation on the unit sphere Sn,

det(∇2u + uI)(x) =
f (x)
u

(|∇u|2 + u2)
α
2 , x ∈ Sn, (1.2)

where u denotes the support function of a hypersurface solution M. By establishing the a priori
estimates and studying the convergence of the normalized flows of (1.1), the following results were
proved in [20].

Theorem 1.1. ( [20]) Let f be a smooth and positive function on the sphere Sn.

(i) If α > n + 1, there is a unique smooth, uniformly convex solution to (1.2).

(ii) If α = n + 1, assume that f satisfies the condition (1.3) below, then there is a smooth, uniformly
convex solution to (1.2). The solution is unique up to dilation.

(iii) If α < n + 1 and f is even, there is an origin-symmetric, smooth and uniformly convex solution
to (1.2).

(iv) If f ≡ 1, then the solution must be a sphere when α ≥ n + 1, and the origin-symmetric solution
must be a sphere when 0 ≤ α < n + 1.

When α = n + 1, Eq (1.2) is the Aleksandrov problem. It is known that there is a necessary and
sufficient condition for the existence of solutions, namely

ˆ
Sn

f = |Sn|,

ˆ
ω

f < |Sn| − |ω∗|, ∀ convex domain ω ⊂ Sn,

(1.3)

where ω∗ is the dual set of ω.
In this paper, as in [5, 10, 20] we employ a Gauss curvature flow to study the existence of solutions

to the Lp dual Minkowski problem introduced in [23]
which extends the dual Minkowski problem (1.2). Let f and g be positive functions on Sn, and

p, q ∈ R. We study the existence of solutions to the following equation,

det(∇2u + uI)(x) =
f (x)up−1(|∇u|2 + u2)

n+1−q
2

g
( ∇u(x)+ux√
|∇u|2+u2

) , x ∈ Sn. (1.4)

Equation (1.4) contains the Lp dual Minkowski problem as a special case (namely when g ≡ 1). It
extends the Lp-Minkowski problem (when q = n + 1 and g ≡ 1) and the dual Minkowski problem
(when p = 0 and g ≡ 1).

In particular, when g ≡ 1, p = 1, q = n+1, Eq (1.4) is the classical Minkowski problem, which asks
for the existence of closed convex hypersurfaces with prescribed surface area measure. It is a major
impetus for the development of fully nonlinear PDEs. The Lp-Minkowski problem, introduced in [22],

Mathematics in Engineering Volume 5, Issue 3, 1–19.



3

concerns the existence of closed convex hypersurfaces with prescribed p-area measures. It extends the
classical Minkowski problem and includes the logarithmic Minkowski problem (p = 0), and the centro-
affine Minkowski problem (p = −n− 1) as special cases [2,11]. In the last two decades, great progress
has been made in the study of the Lp-Minkowski problem. There is a rich phenomena on the existence
and multiplicity of solutions, depending on the range of the exponent p (see e.g., [1, 9, 12, 15, 18, 19]).

For general exponents p and q, Eq (1.4) has been studied in [4, 6–8, 17]. Suppose that g ≡ 1. The
existence of smooth solutions to (1.4) was proved in [17] for p > q, and in [8] for p = q. When p < q,
the solution may not be smooth in general. Weak solutions were obtained in [4] when p > 1 and q > 0,
and later on in [8] for all p > 0 and q ∈ R. If only origin-symmetric solutions are concerned, Eq (1.4)
was solved in [6] when pq ≥ 0, and in [7] when q > 0 and −q∗ < p < 0 where q∗ is defined as

q∗ =



q
q − n

if q ≥ n + 1,

nq
q − 1

if 1 < q < n + 1,

+∞ if 0 < q ≤ 1.

Suppose now g . 1. Equation (1.4) with p = q = 0 characterises the Gauss image problem proposed
by [3], which extends the classical Aleksandrov problem. It was also considered in [21] from the
optimal transportation viewpoint.

The main result of this paper is the following.

Theorem 1.2. Let f , g ∈ C1,1(Sn) be positive functions satisfying c−1
0 ≤ f , g ≤ c0 for some constant

c0 > 1. Suppose that q > n and

p <


−

nq
q − 1

, if q ≥ n + 1,

−
q

q − n
, if n < q < n + 1.

(1.5)

Then there is a uniformly convex and C3,α-smooth positive solution to (1.4), where α ∈ (0, 1).

When q = n + 1 and g ≡ 1, Theorem (1.2) recovers the main result in [13]. The range of p and q in
Theorem 1.2 has no overlap with that in [7], and to the best of our knowledge, has not been studied in
other papers.

To prove Theorem 1.2, we will employ the following Gauss curvature flow,

∂X
∂t

(x, t) = −η(t)
f (ν)
g(ξ)
〈X, ν〉p|X|n+1−qK(x, t)ν + X(x, t), (1.6)

where X(·, t) : Sn → Rn+1 is a parametrisation of the evolving convex hypersurfaceMt, ξ = X/|X|, ν
and K are respectively the unit outward normal and the Gauss curvature ofMt. The multiplier η(t) is
given by

η(t) =
[ˆ
Sn

f (x)up(x, t)dx
] 1
−p−1[ ˆ

Sn
g(ξ)rq(ξ, t)dξ

]1− 1
q
, (1.7)

and as before, u(x, t) and r(ξ, t) are the support and radial functions ofMt.
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Denote by Ko the set of convex bodies Ω ⊂ Rn+1 containing the origin in its interior. We will show
that (1.6) is a gradient flow to the following functional:

Jp,q(Ω) =
[ˆ
Sn

g(ξ)rq(ξ)dξ
] 1

q
+

[ ˆ
Sn

up(x) f (x)dx
] 1
−p
, (1.8)

where Ω ∈ Ko, u and r are the support function and the radial function of Ω, respectively. If Ω ∈ Ko is
a critical point of the functional (1.8), then the support function of Ω satisfies Eq (1.4).

For the Gauss curvature flow (1.6), a main issue is the lack of uniform estimates, namely the control
of the eccentricity of Ω (i.e., the eccentricity of the minimum ellipsoid of Ω). Our strategy is to use a
topological method to find a special initial condition such that the evolving hypersurfacesMt = ∂Ωt

satisfy
Br(0) ⊂ Ωt ⊂ BR(0), (1.9)

for some positive constants R ≥ r > 0 independent of t. Once the solution satisfies such a C0-estimates,
one can establish higher order a priori estimates for the flow (1.6). Hence by the monotonicity of the
functional (1.8), the flow converges to a solution of (1.4).

To find the special initial hypersurface, we assume that q > n and (1.5) such that the functional
Jp,q(Ω) will become very large if either the volume of Ω is sufficiently large or small, or the eccentricity
of Ω is sufficiently large. This property enables us to find the special initial hypersurface by using
the topological method and the variational structure of the equation as in [13], where we proved the
existence of solutions to the Lp-Minkowski problem in the super-critical case (namely when q = n + 1
and p < −n − 1). Although the approach is similar to that in [13], equation (1.4) and the associated
flow (1.6) are more complicated than the corresponding ones in [13]. Therefore, we need to present
sufficient details of the argument for the approach.

We will consider in Section 2 the a priori estimates for the flow (1.6). In Section 3, we combine
the a priori estimates and the topological method to find a special initial condition such that the flow
converges to a solution of (1.4), and thus prove Theorem 1.2. Section 4 contains further remarks on
some variants of Theorem 1.2.

2. A priori estimates for the Gauss curvature flow (1.6)

For a closed convex hypersurfaceM ⊂ Rn+1, the support function ofM is given by

u(x) = 〈x, ν−1
M

(x)〉, ∀ x ∈ Sn,

where νM : M → Sn is the Gauss map and ν−1
M

is its inverse. It is well known that ν−1
M

(x) = u(x)x +

∇u(x), and the Gauss curvature ofM at ν−1
M

(x) is given by

K = 1/ det(ui j + uδi j), (2.1)

where ui j := ∇2
i ju. Assume that Cl(M) ∈ Ko, where Cl(M) denotes the convex body enclosed byM.

Recall that the radial function ofM, denoted by r, is given by

r(ξ) = max{λ : λξ ∈ Cl(M)} ∀ ξ ∈ Sn. (2.2)
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Denote ~r(ξ) = r(ξ)ξ. We also define the radial Gauss mapping by

AM(ξ) = νM(~r(ξ)) ∀ ξ ∈ Sn.

It is easy to verify that
r ◦A −1

M
(x) = |ν−1

M
(x)| = (u2(x) + |∇u(x)|2)

1
2 .

For any convex body Ω ∈ Ko, its polar dual Ω∗ is given by

Ω∗ = {x ∈ Rn+1 : x · y ≤ 1,∀ y ∈ Ω}.

Let Mt be a solution to the flow (1.6) and X(·, t) be its parametrisation. Consider the new
parametrisation

X(x, t) = X(ν−1
Mt

(x), t).

It is straightforward to compute

∂X
∂t

=
∑

i

∂X
∂zi

∂(ν−1
Mt

)i

∂t
+
∂X
∂t
.

Since the first term on the right hand side is tangential, taking inner product with the unit outer normal
ofMt gives that

∂tu(x, t) =
〈
x, ∂tX(x, t)

〉
=

〈
x, ∂tX(ν−1

Mt
(x), t)

〉
.

Hence by (2.1), the flow (1.6) can be expressed as

∂tu(x, t) = −
η(t) f (x)

g
(
∇u+ux√
u2+|∇u|2

) up(u2 + |∇u|2)
n+1−q

2

det(∇2u + uI)
+ u. (2.3)

Theorem 2.1. Suppose that both f and g are positive and C1,1-smooth. Let u(·, t) be a positive, smooth
and uniformly convex solution to (2.3), t ∈ [0,T ). Assume that

1/C0 ≤ u(x, t) ≤ C0 (2.4)

for all (x, t) ∈ Sn × [0,T ). Then

C−1I ≤ (∇2u + uI)(x, t) ≤ CI ∀ (x, t) ∈ Sn × [0,T ), (2.5)

where C is a positive constant depending only on n, p, q,C0, minSn f , minSn g, ‖ f ‖C1,1(Sn), ‖g‖C1,1(Sn), and
the initial condition u(·, 0), but is independent of T .

Proof. We first observe that, by the convexity

|∇u(x, t)| ≤ max
Sn

u(·, t) ≤ C0, ∀ (x, t) ∈ Sn × [0,T ). (2.6)
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It also yields the bound of η(t) defined by (1.7):

1/C1 ≤ η(t) ≤ C1, for all t ∈ [0,T ), (2.7)

where C1 depends only on n, p, q,minSn f ,minSn g,maxSn f ,maxSn g and C0.
Recently in [14], we studied the centro-affine Minkowski problem. We established in [14] the a

priori estimates for a more general equation of the form

∂tu(x, t) = −η(t)Φ(x, u,∇u)[det(∇2u + uI)]−1 + u(x, t), (2.8)

so that when

Φ(x, u,∇u) =
f (x)

g
(
∇u+ux√
u2+|∇u|2

)up(u2 + |∇u|2)
n+1−q

2 ,

the Eq (2.8) becomes (2.3).
By virtue of Lemma 6.1 and Lemma 6.2 in [14], and using (2.6), (2.7) and (2.8), we conclude (2.5)

as desired and hence complete the proof. �

By the second derivative estimates (2.5), Eq (2.3) becomes uniformly parabolic. Hence, by Krylov’s
regularity theory, we have the following C3,α estimate,

‖u(·, t)‖C3,α(Sn) ≤ C ∀ (x, t) ∈ Sn × [0,T ), (2.9)

for any given α ∈ (0, 1), where the constant C depends only on n, p, q,C0, minSn f , minSn g, ‖ f ‖C1,1(Sn),
‖g‖C1,1(Sn), and the initial condition u(·, 0). By the a priori estimates (2.9), we have the longtime
existence of solutions to the flow (1.6), provided that u satisfies (2.4).

Theorem 2.2. Assume the conditions in Theorem 2.1. Let Tmax be the maximal time such that the
solution u(·, t) exists on [0,Tmax). Then Tmax = ∞ and u satisfies the estimates (2.5) and (2.9).

3. Proof of Theorem 1.2

In this section, we use a topological method to select an initial hypersurface N0, such that the
flow (1.6) deforms N0 to a solution of (1.4).

3.1. Monotonicity of the functional (1.8)

We first prove the monotonicity of J := Jp,q under the flow (1.6). Recall that

J(Ω) =
[ˆ
Sn

g(ξ)rq(ξ)dξ
] 1

q
+

[ˆ
Sn

up(x) f (x)dx
] 1
−p
.

Lemma 3.1. SupposeMt, t ∈ [0,T ), is a solution to the flow (1.6) in Ko. Then

d
dt
J(Ωt) ≥ 0,
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where Ωt = Cl(Mt). Equality holds if and only if the support function ofMt satisfies

det(∇2u + uI) =
f up−1(|∇u|2 + u2)

n+1−q
2

g
(
∇u+ux√
u2+|∇u|2

) η(t), (3.1)

where η is given in (1.7).

Proof. The following formulas can be found in [20]:

∂tr
r

(ξ, t) =
∂tu
u

(AMt(ξ), t),

|JacA |(ξ) =
rn+1K(~r(ξ, t))

u(AMt(ξ))
,

(3.2)

where JacA is the Jacobian of the radial Gauss mapping.
By virtue of (2.1), (2.3) and (3.2), we obtain

d
dt
J(Ωt) =

[ ˆ
Sn

grqdξ
] 1

q−1
ˆ
Sn

grq∂tr
r

dξ −
[ˆ
Sn

up f dx
] 1
−p−1
ˆ
Sn

f up∂tu
u

dx

=
[ ˆ
Sn

grqdξ
] 1

q−1
ˆ
Sn

g
rq−n−1

K
∂tudx −

[ˆ
Sn

up f dx
] 1
−p−1
ˆ
Sn

f up−1∂tudx

=
[ ˆ
Sn

grqdξ
] 1

q−1
ˆ
Sn

g
rq−n−1

uK

(
u − η(t)

f
g

rn+1−qupK
)
∂tudx ≥ 0.

Clearly, equality d
dtJ(Ωt) = 0 holds if and only if u(·, t) satisfies (3.1). �

The proof of Lemma 3.1 also verifies that (1.4) is the Euler-Lagrange equation of the functional (1.8)
up to a constant. Note that once we have a solution to (3.1), by a proper rescaling, we can obtain a
solution to (1.4).

In the following, we aim to find an initial condition u(·, 0) such that (2.4) is satisfied.

3.2. An estimate for the functional (1.8)

For any convex body Ω in Rn+1, let E(Ω) denote John’s minimum ellipsoid of Ω. We have

1
n + 1

E(Ω) ⊂ Ω ⊂ E(Ω).

Let a1(Ω) ≤ a2(Ω) ≤ · · · ≤ an+1(Ω) be the lengths of semi-axes of E(Ω). Denote eM = eΩ =
an+1(Ω)
a1(Ω) the

eccentricity ofM := ∂Ω (or the eccentricity of Ω).
In this subsection, we will show Proposition 3.2 by assuming that Lemma 3.3 and Lemma 3.4 hold.

The proofs of Lemma 3.3 and Lemma 3.4 will be presented after the proof of Proposition 3.2.

Proposition 3.2. Suppose that q > n and p satisfies (1.5). Suppose that f , g satisfy c−1
0 ≤ f , g ≤ c0

for some constant c0 > 1. For any given constant A > J(B1(0)), if one of the quantities eΩ, Vol(Ω),
[Vol(Ω)]−1, and [dist(O, ∂Ω)]−1 is sufficiently large, then J(Ω) ≥ A.
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Proof. We divide the proof into three steps.
Step 1: If eΩ ≥ e for a large constant e > 1, we have J(Ω) > A.

By Lemmas 3.3 and 3.4, we have

−
1
p

ˆ
Sn

updx ≥ C
dn−|p|∏n+1

j=2 a j
, (3.3)

1
q

ˆ
Sn

rqdξ ≥ Caq−n
n+1

n∏
j=1

a j. (3.4)

From (3.3) and (3.4), there exists a constant C > 0 depending only on n, p, q, c0 such that

[J(Ω)]2 ≥ C
[ˆ
Sn

updx
]− 1

p
[ˆ
Sn

rqdξ
] 1

q

≥ Cd
n
|p|−1a

1− n
q

n+1

[ n+1∏
j=2

a
− 1
|p|

j

][ n∏
j=1

a
1
q

j

]
= C

[a1

d

]1− n
|p|
[a2

a1

]1− n
|p|−

1
q
[a3

a2

]1− n−1
|p| −

2
q
· · ·

[an+1

an

]1− 1
|p|−

n
q
.

That is

[J(Ω)]2 ≥ C
[a1

d

]1− n
|p|

n∏
j=1

[a j+1

a j

]1− n+1− j
|p| −

j
q
. (3.5)

Condition (1.5) yields that

1 −
n
|p|

> 0, and 1 −
n + 1 − j
|p|

−
j
q
> 0, ∀ j = 1, · · · , n.

To see this, if q ≥ n + 1, then |p| > nq
q−1 and

1 −
n + 1 − j
|p|

−
j
q
> 1 −

(n + 1 − j)(q − 1)
nq

−
j
q

=
(q − n − 1)( j − 1)

nq
≥ 0.

While if n < q < n + 1, then |p| > q
q−n and

1 −
n + 1 − j
|p|

−
j
q
> 1 −

(n + 1 − j)(q − n) + j
q

=
(n − j)(n + 1 − q)

q
≥ 0.

Note that a1 ≥ d. If eΩ is large, there is a j such that a j+1/a j is large. We see from (3.5) that
J(Ω) ≥ A.
Step 2: If either Vol(Ω) ≤ v0 or Vol(Ω) ≥ v−1

0 , for a small constant v0 > 0, then J(Ω) > A.
We have

J(Ω) ≥
[ˆ
Sn

rqgdξ
] 1

q
≥ Cd ≥

Cd
an+1

[Vol(Ω)]
1

n+1 , (3.6)
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and
J(Ω) ≥

[ˆ
Sn

up f dx
] 1
|p|
≥

C
an+1

≥
a1

an+1

C

[Vol(Ω)]
1

n+1

. (3.7)

If a1/d is large, then (3.5) implies that J(Ω) ≥ A. Therefore we may assume a1 ≤ Cd for some C,
and so a1/an+1 ≤ Cd/an+1. Hence if either d/an+1 or a1/an+1 is sufficiently close to 0, then (3.5) again
shows that J(Ω) ≥ A. Hence we assume that d/an+1 or a1/an+1 are away from 0. By (3.6) and (3.7), if
either Vol(Ω) or [Vol(Ω)]−1 is large, then J(Ω) ≥ A.
Step 3: If dist(O, ∂Ω) ≤ d0 for a sufficiently small d0 > 0, then J(Ω) > A.

In this case, we may assume that a j ≤ Cd for all 1 ≤ j ≤ n + 1 for some C ≥ 1. As discussed in
Step 2, a1 ≤ Cd, otherwise we are done. If a j/d is sufficiently large for some j, then eΩ is also huge as
eΩ ≥ a j/a1 ≥ a j/(Cd). Step 1 shows that J(Ω) ≥ A.

Under the above assumption, if d is sufficiently small, then Vol(Ω) becomes very small. By Step 2,
we have J(Ω) > A. �

Lemma 3.3. Let Ω ∈ Ko. Suppose q > 0. There exists a constant C > 0 depending only on n and q
such that

1
q

ˆ
Sn

rq(ξ)dξ ≥ Caq−n
n+1

n∏
i=1

ai.

Here, r is the radial function of Ω, and a1 ≤ · · · ≤ an+1 are the lengths of semi-axes of E(Ω).

Proof. By a proper rotation of coordinates, we assume that E = E(Ω) is given by

E − ζE =
{
z ∈ Rn+1 :

n+1∑
i=1

z2
i

a2
i

≤ 1
}
,

where ζE = (ζ1, · · · , ζn+1) is the center of E. We can further assume that ζn+1 ≥ 0.
Since 1

n+1 E ⊂ Ω, we have

u(en+1) ≥ ζn+1 +
1

n + 1
an+1. (3.8)

Hence, there exists a point p0 ∈ Ω such that

p0 · en+1 = u(en+1) ≥ ζn+1 +
1

n + 1
an+1.

Consider the hyperplane L which is orthogonal to en+1 and passes through ζE:

L = {z ∈ Rn+1 : (z − ζE) · en+1 = 0}.

Let P = L ∩ 1
n+1 E be the intersection of L with the ellipsoid 1

n+1 E, and V be the cone in Rn+1 with base
P and the vertex p0. Clearly V ⊂ Ω.

Case 1: q > n + 1. Let us consider the following subset of V:

V ′ =
{
z ∈ V : zn+1 − ζn+1 ≥

1
2
(
p0 · en+1 − ζn+1

)}
.
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This together with (3.8) implies that

|z| ≥
an+1

2(n + 1)
, ∀ z ∈ V ′. (3.9)

Using V ′ ⊂ Ω, q > n + 1 and (3.9), we have

1
q

ˆ
Sn

rqdξ =

ˆ
Ω

|z|q−n−1dz ≥
ˆ

V′
|z|q−n−1dz ≥ Caq−n−1

n+1 Vol(V ′), (3.10)

where C is a constant depending only on n and q.
It is easy to see that

Vol(V ′) ≥ cnan+1

n∏
i=1

ai. (3.11)

Combining (3.10) and (3.11), we conclude that
ˆ
Sn

rqdξ ≥ Caq−n
n+1

n∏
i=1

ai.

Case 2: 0 < q ≤ n + 1. Since Ω contains the origin and Ω ⊂ E, we have

|z| ≤ cnan+1, ∀ z ∈ Ω. (3.12)

Using 1
n+1 E ⊂ Ω, n < q ≤ n + 1 and (3.12), we derive that

1
q

ˆ
Sn

rqdξ =

ˆ
Ω

|z|q−n−1dz ≥ Caq−n−1
n+1 Vol(Ω) ≥ Caq−n

n+1

n∏
i=1

ai.

This completes the proof. �

Lemma 3.4. Let Ω ∈ Ko. Suppose p < 0. There exists a constant C > 0 depending only on n and p
such that

−
1
p

ˆ
Sn

updx ≥ C
dn−|p|∏n+1

j=2 a j
.

Here, u is the support function of Ω, d = dist(O, ∂Ω) and a1 ≤ · · · ≤ an+1 are the lengths of semi-axes
of E(Ω).

Proof. By a proper rotation of coordinates, we assume that E = E(Ω) is given by

E − ζE =
{
z ∈ Rn+1 :

n+1∑
i=1

z2
i

a2
i

≤ 1
}
,

where ζE = (ζ1, · · · , ζn+1) is the center of E. Let x0 ∈ S
n be a point such that u(x0) = minSn u = d, where

u is the support function of Ω and d = dist(O, ∂Ω). We choose i# and switch ei# and −ei# if necessary
such that

x0 · ei# = max{|x0 · ei| : 1 ≤ i ≤ n + 1}.
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This implies that x0 · ei# ≥ cn. We use cn to denote a constant which depends only on n but may change
from line to line.

Let w(x) = u(x) + u(−x), x ∈ Sn, be the width of Ω in x. Since 1
n+1 E(Ω) ⊂ Ω ⊂ E(Ω), we have

d ≤ min
Sn

w ≤ cnai#

and
2ai

n + 1
≤ w(ei) ≤ 2ai, ∀ i = 1, · · · , n + 1.

By switching ei and −ei if necessary, we assume that u(ei) ≤ cnai for all i = 1, · · · , n + 1.
Consider the coneV in Rn+1 with the vertex p0 = r∗(x0)x0 and the base

C := convex hull of
{
O, r∗(ek)ek

}
k,i# .

Here, r∗ is the radial function of the polar dual Ω∗ of Ω:

Ω∗ = {y ∈ Rn+1 : y · z ≤ 1 ∀ z ∈ Ω}.

LetV′ be a subset ofV:

V′ =
{
z = (z1, · · · , zn+1) ∈ V : zi# ≥

r∗(x0)
2

x0 · ei#

}
.

Recall that r∗ = 1/u. So r∗(x0) = 1
d . Since x0 · ei# ≥ cn, we see that

1
cnd
≤ |z| ≤

1
d

for all z ∈ V′.

The second inequality above follows byV′ ⊂ Ω∗ ⊂ B1/d(0) (as Bd(0) ⊂ Ω). Therefore

−
1
p

ˆ
Sn

updx =
1
|p|

ˆ
Sn

(r∗)|p|

=

ˆ
Ω∗
|z||p|−n−1dz

≥

ˆ
V′
|z||p|−n−1dz

≥ Cdn+1−|p|Vol(V′). (3.13)

Since r∗(ek) = 1
u(ek) ≥

cn
ak

for all k ≥ 1, we obtain

Vol(V′) ≥
cn

d
ai#

n+1∏
j=1

a−1
j .

Plugging this into (3.13), we obtain

−
1
p

ˆ
Sn

updx ≥ Cdn−|p|ai#

n+1∏
j=1

a−1
j ≥ C

dn−|p|∏n+1
j=2 a j

.

�
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Remark 3.5. Let Mt, t ∈ [0,Tmax), be a solution to (1.6). By Proposition 3.2, if J(Mt) < A
for a constant A independent of t, then there exist positive constants e0, v0, d0 depending on A, but
independent of t, such that

eMt ≤ e0, v0 ≤ Vol(Mt) ≤ v−1
0 , and Bd0(0) ⊂ Ωt, (3.14)

where Ωt is the convex body enclosed by Mt. Note that (3.14) implies (2.4). Hence, the a priori
estimates (2.5) and (2.9) hold, and one has the long-time existence of solution (Theorem 2.2).
Therefore, all we need is to establish the condition J(Mt) < A for some constant A.

3.3. A modified flow of (1.6)

We introduce a modified flow (as in [13]) such that for any initial condition, the solution exists for
all time t ≥ 0. It is more convenient to work with a flow which exists for all t ≥ 0.

Let us fix a constant

A0 = 10‖g‖L1(Sn) + 10(n + 1)‖ f ‖L1(Sn). (3.15)

If the minimum ellipsoid of Ω is B1(0), then 1
n+1 B1(0) ⊂ Ω ⊂ B1(0) and hence

J(Ω) ≤
1
2

A0. (3.16)

For a closed, smooth and uniformly convex hypersurface N such that Ω0 = Cl(N) ∈ Ko, we define
M̄N (t) as follows:

a): IfJ(MN (t)) < A0 for all time t ≥ 0, let M̄N (t) =MN (t) for all t ≥ 0, whereMN (t) is the solution
to (1.6).

b): If J(N) < A0, and J(MN (t)) reaches A0 at the first time t0 > 0, we define

M̄N (t) =

MN (t), if 0 ≤ t < t0,

MN (t0), if t ≥ t0.

c): If J(N) ≥ A0, we let M̄N (t) ≡ N for all t ≥ 0.

For convenience, we call M̄N a modified flow of (1.6). By the a priori estimates in Section 2, M̄N (t)
is smooth for any fixed time t, and Lipschitz continuous in time t. Moreover, we have the following
properties.

i) M̄N (t) is defined for all time t ≥ 0, and by Lemma 3.1,J(M̄N (t)) is non-decreasing. In particular,
we have J(M̄N (t)) ≤ max{A0,J(N)} ∀ t ≥ 0.

ii) If either dist(O,N) is very small, or Vol(Ω0) is sufficiently large or small, or eΩ0 is sufficiently
large, by Proposition 3.2, we have M̄N (t) ≡ N ∀ t ≥ 0.
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3.4. Homology of a class of ellipsoids

Here we recall the homology of a class of ellipsoidsAI introduced in [13], such that an ellipsoid E
with J(E) < A0 is contained inAI . By Proposition 3.2, we have

Corollary 3.6. For the constant A0 given by (3.15), there exist sufficiently small constants d̄ and v̄, and
sufficiently large constant ē, such that for any Ω ∈ Ko,

(i) if dist(O, ∂Ω) ≤ d̄, then J(Ω) > A0;

(ii) if eΩ ≥ ē, then J(Ω) > A0;

(iii) if Vol(Ω) ≤ v̄ or Vol(Ω) ≥ 1/(n + 1)n+1v̄−1, then J(Ω) > A0.

LetK be the metric space consisting of non-empty, compact and convex sets in Rn+1, equipped with
the Hausdorff distance. Denote by K̄o the closure of Ko in K .

Fix the constants d̄, v̄, ē in Corollary 3.6. Let AI be the set of ellipsoids E ∈ K̄o such that v̄ ≤
Vol(E) ≤ 1/v̄, and eE ≤ ē. Denote byA the following subset ofAI

A = {E ∈ AI : Vol(E) = ωn, and either eE = ē or dist(O, ∂E) = 0}.

Here, ωn = |B1(0)| is the volume of B1(0), and eE is the eccentricity of E.
We also denote by EI the set of ellipsoids inAI centred at the origin, and by E the set of ellipsoids

inA centred at the origin. These sets are all metric spaces by equipping the Hausdorff distance.
It was proved in [13] that EI is contractible and so the homology Hk(EI) = 0 for all k ≥ 1. Moreover,

AI is homeomorphic to EI × B1(0). Hence,AI is contractible and the homology

Hk(AI) = 0 for all k ≥ 1. (3.17)

Denote

P =
{
E ∈ AI : either Vol(E) = v̄, or Vol(E) = 1/v̄, or eE = ē, or O ∈ ∂E

}
. (3.18)

It is the boundary of AI if we regard AI as a set in the topological space of all ellipsoids. Moreover,
there is a retraction Ψ from AI \ {B1} to P. Namely, Ψ : AI \ {B1} → P is continuous and Ψ|P = id.
The following two theorems were also proved in [13].

Proposition 3.7. We have the following results.

(i) Hk+1(P) = Hk(A) for all k ≥ 1.

(ii) There is a long exact sequence

· · · → Hk+1(A)→ Hk(E × Sn)→ Hk(E) ⊕ Hk(Sn)→ Hk(A)→ · · · .

Proposition 3.8. Let n∗ =
n(n+1)

2 . The homology group Hn∗+n−1(E) = Z.
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3.5. Selection of a good initial condition

In this subsection, we use Propositions 3.7 and 3.8 to select a special initial condition in AI such
that the solution to the Gauss curvature flow (1.6) satisfies the uniform estimate. The idea is similar to
that in [13].

For any ellipsoid N such that Cl(N) ∈ AI , let M̄N (t) be the solution to the modified flow. We have
the following properties:

1) If Cl(N) is close to P in Hausdorff distance or in P, we have J(N) ≥ A0 and so M̄N (t) ≡ N for
all t (see Corollary 3.6).

2) If Cl(N) is close to B1(0) in Hausdorff distance, then J(N) < A0.

3) By our definition of the modified flow, J(M̄N (t)) < max{A0,J(N)} for all t. Hence by
Remark 3.5, if M̄N (t) is not identical to M̄N (0) = N , then

eM̄N (t) ≤ ē, v̄ ≤ Vol(M̄N (t)) ≤ 1/v̄, and Bd̄(0) ⊂ Cl(M̄N (t)) ∀ t ≥ 0. (3.19)

With these properties, we can prove the following key lemma.

Lemma 3.9. For every t > 0, there exists N = Nt with Cl(N) ∈ AI , such that the minimum ellipsoid
of M̄N (t) is the unit ball B1(0).

Proof. Suppose by contradiction that there exists t′ > 0 such that, for any Ω ∈ AI , EN (t′) , B1(0),
where N = ∂Ω and EN (t′) is the minimum ellipsoid of ΩN (t′) := Cl(M̄N (t′)).

By Corollary 3.6, EN (t′) ∈ AI . Hence we can define a continuous map T : AI → P by

Ω ∈ AI 7→ EN (t′) ∈ AI \ {B1} 7→ Ψ(EN (t′)) ∈ P,

where Ψ is the retraction after (3.18), and B1 = B1(0) for short. Note that when Ω ∈ P, we have
J(Ω) ≥ A0 and thus EN (t′) = EN (0) = Ω. This implies that T |P = idP. Hence, T is a retraction from
AI to P, and so there is an injection from H∗(P) to H∗(AI). By (3.17), we then have

Hk(P) = 0 for all k ≥ 1.

It follows from Proposition 3.7 (ii) that

Hk(E × Sn) = Hk(E) ⊕ Hk(Sn) for all k ≥ 1.

Computing the left-hand side by the Künneth formula and using the fact Hk(Sn) = Z if k = 0 or k = n,
and Hk(Sn) = 0 otherwise, we further obtain

Hk(E) ⊕ Hk−n(E) = Hk(E) ⊕ Hk(Sn).

However, this contradicts Proposition 3.8 by taking k = n∗ + 2n − 1 in the above. �

In the following we prove the convergence of the flow (1.6) with a specially chosen initial condition.
Take a sequence tk → ∞ and let Nk = Ntk be the initial data from Lemma 3.9. By our choice of A0

(see (3.15) and (3.16)), Lemma 3.9 implies that

J(M̄Nk(tk)) ≤
1
2

A0. (3.20)
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Hence, by the monotonicity of the functional J , we have

M̄Nk(t) =MNk(t) ∀ t ≤ tk.

Since Cl(Nk) ∈ AI and Bd̄(0) ⊂ Cl(Nk), by Blaschke’s selection theorem, there is a subsequence ofNk

which converges in Hausdorff distance to a limit N∗ such that Cl(N∗) ∈ AI and Bd̄ ⊂ Cl(N∗).
Next, we show that the flow (1.6) starting from N∗ satisfying J(MN∗(t)) < A0 for all t.

Lemma 3.10. For any t ≥ 0, we have

J(M̄N∗(t)) ≤
3
4

A0.

Hence
M̄N∗(t) =MN∗(t) ∀ t > 0.

Proof. For any given t > 0, since Nk → N∗ and tk → ∞, when k is sufficiently large such that tk > t,
we have

J(M̄N∗(t)) − J(MNk(t)) ≤
1
4

A0.

By the monotonicity of the functional J ,

J(MNk(t)) ≤ J(MNk(tk)).

Combining above two inequalities with (3.20), we obtain that

J(M̄N∗(t)) = J(M̄N∗(t)) − J(MNk(t)) +J(MNk(t))
≤ J(M̄N∗(t)) − J(MNk(t)) +J(MNk(tk))

≤
1
4

A0 +
1
2

A0 =
3
4

A0.

This completes the proof. �

3.6. Convergence of the flow and existence of solutions to (1.4)

Let ΩN∗(t) = Cl(MN∗(t)) and u(·, t) be its support function. By Lemma 3.10,MN∗(t) satisfies (3.19).
Hence,

d̄ ≤ u(x, t) ≤ C, ∀ (x, t) ∈ Sn × [0,∞),

where C = (n + 1)/(v̄ωn−1d̄n). Hence, condition (2.4) holds, and we obtain the existence of solutions
to (1.4) as follows.

Proof of Theorem 1.2. DenoteM(t) =MN∗(t) and J(t) = J(M(t)). By Lemma 3.1 and Lemma 3.10,

J(t) < A0 and J ′(t) ≥ 0 ∀ t ≥ 0.

Therefore, ˆ ∞
0
J ′(t)dt ≤ lim sup

T→∞
J(T ) − J(0) ≤ A0.
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This implies that there exists a sequence ti → ∞ such that

J ′(ti) =
[ˆ
Sn

grqdξ
] 1

q−1
ˆ
Sn

g
rq−n−1

uK

(
u − η(t)

f
g

rn+1−qupK
)
∂tudx

∣∣∣∣
t=ti
→ 0.

Passing to a subsequence, we obtain by the a priori estimates (2.9) that u(·, ti) → u∞ in C3,α(Sn)-
topology and u∞ satisfies

det(∇2u + uI) = λ
f up−1(|∇u|2 + u2)

n+1−q
2

g
(
∇u+ux√
u2+|∇u|2

) ,

where λ = limti→∞ η(ti). As p , q, it can be seen that uλ∞ = λ
1

p−q u∞ satisfies (1.4). �

4. Further remarks

This section is devoted to some variants of Theorem 1.2. We show that when g is a positive function
defined on Rn+1 instead of Sn, our argument still works. We first show Eq (4.1) below admits a solution
u up to some multiplier λ > 0 when p and q are in the same range as in Theorem 1.2. Since now g is
a function on Rn+1, it does not imply that the equation with λ = 1 has a solution by a scaling argument
as mentioned in Section 3.6.

Theorem 4.1. Let f ∈ C1,1(Sn) and g ∈ C1,1(Rn+1) be two positive functions satisfying c−1
0 ≤ f , g ≤ c0

for some c0 > 1. Suppose q > n and p satisfies (1.5). Then there is a constant λ > 0, and a uniformly
convex and C3,α function u, α ∈ (0, 1), such that

det(∇2u + uI)(x) = λ
f (x)up−1(|∇u|2 + u2)

n+1−q
2

g(∇u(x) + ux)
, x ∈ Sn. (4.1)

Proof. Similarly to (1.6), we study the flow

∂X
∂t

(x, t) = −η(t)
f (ν)
g(X)

〈X, ν〉p|X|n+1−qK(x, t)ν + X(x, t), (4.2)

where

η(t) =
[ ˆ
Sn

f (x)up(x, t)dx
] 1
−p−1[

q
ˆ
Sn

ˆ r(ξ,t)

0
g(τξ)τq−1dτdξ

]1− 1
q
.

The same computation as in Lemma 3.1 implies that the functional

J (1)(Ω) =
[
q
ˆ
Sn

ˆ r(ξ)

0
g(τξ)τq−1dτdξ

] 1
q

+
[ˆ
Sn

up(x) f (x)dx
] 1
−p

is non-decreasing along (4.2).
Since g is bounded and positive, we have

c−1
0

[ˆ
Sn

rqdξ
] 1

q
≤

[
q
ˆ
Sn

ˆ r(ξ)

0
g(τξ)τq−1dξdτ

] 1
q
≤ c0

[ˆ
Sn

rqdξ
] 1

q
.
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Therefore, Proposition 3.2 is also valid for the functional J (1).
As a result, we can define the modified flow for (4.2) as in Section 3.3 with A0 = 10c0|S

n| + 10(n +

1)‖ f ‖L1(Sn). By using the topological argument as in Section 3.5, we can show the existence of an initial
hypersurfaceM0 with Cl(M0) ∈ Ko such that the evolving hypersurfaceMt = ∂Ωt of the flow (4.2)
satisfies

Br(0) ⊂ Ωt ⊂ BR(0)

for some constants R > r > 0 which are independent of time t. Equivalently, the support function of
Mt, which satisfies the parabolic equation

∂tu(x, t) = −
η(t) f (x)

g(∇u + ux)
up(u2 + |∇u|2)

n+1−q
2

det(∇2u + uI)
+ u, (4.3)

enjoys the C0-estimates:

C−1
0 ≤ u(·, t) ≤ C0.

Since (4.3) is of the form (2.8), Theorem 2.1 is valid for (4.3). Therefore, u(·, t) exists for all time t ≥ 0
and is of C3,α-smooth.

The same argument as in Section 3.6 implies that u(·, ti) converges to a solution of (4.1) with λ =

limti→∞ η(ti). �

When q ≥ n + 1 and p < −q, we can show the existence of solutions to (4.1) with λ = 1.

Theorem 4.2. Let f ∈ C1,1(Sn) and g ∈ C1,1(Rn+1) be two positive functions satisfying c−1
0 ≤ f , g ≤ c0

for some c0 > 1. Suppose q ≥ n + 1 and p < −q. Then there is a uniformly convex and C3,α function
to (4.1) with λ = 1, where α ∈ (0, 1).

Proof. Consider the functional

J (2)(Ω) = −
1
p

ˆ
Sn

up(x) f (x)dx +

ˆ
Sn

ˆ r(ξ)

0
g(τξ)τq−1dτ dξ,

and the flow
∂X
∂t

(x, t) = −
f (ν)K(x, t)〈X, ν〉p

g(X)
|X|n+1−qν + X(x, t). (4.4)

Similar calculations as in Lemma 3.1 show that J (2) is non-decreasing under (4.4).
One can verify that Proposition 3.2 holds for the functional J (2).

Step 1: if d = dist(O, ∂Ω) is sufficiently small, then J (2)(Ω) is sufficiently large. We adopt the same
notations as in Proposition 3.2. By virtue of (3.3) and (3.4), we obtain

[J (2)(Ω)]2 ≥ C
( ˆ
Sn

updx
)(ˆ

Sn
rqdξ

)
≥ Ca1aq−n−1

n+1 dn−|p|,

where C > 0 depends only on n, p, q and c0. As q ≥ n + 1 and a1 ≥ d, we have

[J (2)(Ω)]2 ≥ Cdq−|p|.
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This shows that if d is tiny, then J (2)(Ω) is huge.
Step 2: if Vol(Ω) or [Vol(Ω)]−1 is sufficiently small, then J (2)(Ω) is sufficiently large. Since Vol(Ω)
being small implies that d is tiny, we are done by Step 1 in this case. Suppose that Vol(Ω) is huge. The
conclusion then follows from

J (2)(Ω) ≥ C
ˆ
Sn

rqdξ ≥ C[Vol(Ω)]
q

n+1 . (4.5)

Step 3: if eΩ is sufficiently large, then so is J (2)(Ω). By Step 1, we assume without loss of generality
that d is bounded from below by a constant C > 0 depending on n, p, q and c0. Using (4.5),

[J (2)(Ω)]
n+1

q ≥ C Vol(Ω) ≥ CeΩdn+1 ≥ CeΩ.

This proves Step 3.
To complete the proof, we introduce a modified flow of (4.4) and use the topological argument as

in Section 3 to find the needed initial hypersurface N , such that the evolving hypersurfacesMt with
M0 = N satisfy Br(0) ⊂ Ωt ⊂ BR(0) for some constants R > r > 0. Since the support function
u(·, t) of (4.4) satisfies a parabolic equation of the form (2.8), the higher order derivative estimates
follow by Theorem 2.1. The remaining proof follows exactly as that of Theorem 1.2. Since (4.4) does
not contain an integral term like η(t) in (4.2), along a sequence of times {ti}

∞
i=1, u(·, ti) converges to a

solution of (4.1) with λ = 1. �

Acknowledgments

The first author was supported by ARC DE210100535. The second author was supported by
NSFC12031017 and the Fundamental Research Funds for the Central Universities (No. 226-2022-
00157). The third author was supported by ARC DP200101084.

Conflict of interest

The authors declare no conflict of interest.

References

1. B. Andrews, Classification of limiting shapes for isotropic curve flows, J. Amer. Math. Soc., 16
(2003), 443–459. https://doi.org/10.1090/S0894-0347-02-00415-0
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