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Abstract: Despite recent advances in regularization theory, the issue of parameter selection still
remains a challenge for most applications. In a recent work the framework of statistical learning was
used to approximate the optimal Tikhonov regularization parameter from noisy data. In this work, we
improve their results and extend the analysis to the elastic net regularization. Furthermore, we design a
data-driven, automated algorithm for the computation of an approximate regularization parameter. Our
analysis combines statistical learning theory with insights from regularization theory. We compare our
approach with state-of-the-art parameter selection criteria and show that it has superior accuracy.
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1. Introduction

Inverse problems deal with the recovery of an unknown quantity of interest X € R? from a corrupted
observation Yy € R™. In most cases the relationship between X and y is linear, and can be approximately
described by

Yy =AX+ oW, (1.1)

where A € R™“ is a known linear forward operator, W is a zero-mean isotropic random vector,
modeling the noise, and o > 0 is the noise level. Inverse problems of this type are ubiquitous in image
processing, compressed sensing and other scientific fields. In image processing applications they
model tasks such as denoising, where A is the identity; deblurring, where A is a convolution operator;
and inpainting, where A is a masking operator.

The recovery of the original signal x from the corrupted observation y is an ill-posed inverse


http://www.aimspress.com/journal/mine
http://dx.doi.org/10.3934/mine.2022053
www.aimspress.com/mine/article/6026/special-articles

2

problem.  Thus, the theory of inverse problems suggests the use of suitable regularization
techniques [16]. Specifically, in case of Gaussian noise, X is approximated with the minimizer of a
regularized functional

argmin ||Az — y||? + AJ(2), (1.2)

zeRd

where |||, is the Euclidean norm modeling data-fidelity, J is a penalty term encoding an a priori
knowledge on the nature of the true solution, and A is a regularization parameter determining a trade-
off between these two terms. Having the penalty term fixed, a central issue concerns the selection of
A. The optimal parameter Aoy is the one that minimizes the discrepancy between the minimizer z*(y)
of (1.2) and the exact solution X, i.e.,

Aopt = argmin ||z/l - x||2. (1.3)
A€(0,+00)

If a dataset of pairs of clean signals and noisy observations were available, we could try to to learn a
suitable performance regression functional y — Ao, that would allow to select a regularization
parameter by knowing only the noisy observation. Unfortunately though, due to the curse of
dimensionality accurate learning such a high-dimensional function requires a number of samples that
scales exponentially with the ambient dimension [10,26]. A common approach to mitigate these
effects is to assume that the relevant data are supported on structures of substantially lower
dimensionality. On a practical level, regularization parameters are instead typically selected
heuristically or through cross-validation.

But, in many applications X is unknown (thus we cannot use supervised methods) and there is no
available information about the noise W or the noise level o. This is the case in classical regularization
theory, where the clean image is unknown and hence A,y is approximated using prior knowledge or
an estimate of the noise. We add that classical regularization theory is mostly concerned with data
that belongs to a function space, and correspondingly most parameter selection methods focus on the
recovery of the minimum least-squares norm solution.

Choosing a good approximation to Ay i a non-trivial, problem-dependent task that has motivated
significant amounts of research over the last decades. However, there is still no framework that allows
a fast and efficient parameter selection, particularly in a completely unsupervised setting. In this paper,
we aim at (partially) closing this gap and provide a novel concept for automated parameter selection by
recasting the problem in the framework of statistical learning theory. Specifically, inspired by recent
and (to our knowledge) first results in this spirit [10] we propose a method for computing an accurate
regularized solution z*(y) for the elastic net, with a nearly optimal regularization parameter A, that
uses a dimension reduction preprocessing step with the help of a dataset of corrupted data samples. We
emphasize that the method is unsupervised and requires minimal human interference.

Existing parameter selection methods. Parameter selection rules used in regularization theory can
be broadly classified as those based on the discrepancy principle [1,25], generalized cross-validation
(GCV) [19], balancing principle [23,34], quasi-optimality [21,31] and various estimations of the mean-
squared error (MSE) (see [11,27] and references therein). GCV is a particularly popular parameter rule
for linear methods since it gives a closed form for the regularization parameter and does not require
tuning of any additional parameters or the knowledge of the noise. In specialized cases GCV can
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be extended to nonlinear problems [36], but the regularization parameter is no longer given in closed
form nor through an implicit equation. Balancing principle is a stable method that has received a lot of
attention in the inverse problems community and has also been studied in the framework of learning
theory, but requires tuning of additional parameters. Quasi-optimality is one of the simplest parameter
choice methods. It does not require any information about the problem but it is not as stable as the
(hardened) balancing principle as it does not account for statistical outliers [3]. Discrepancy and MSE-
based principles still remain the preferred methods for parameter selection for nonlinear estimators due
to their simplicity and accuracy. We refer to a recent rather comprehensive comparative study on the
existing approaches [3].

In order to select the regularization parameter most existing methods require the regularized solution
z'(y) to be computed over a predefined grid of values of A. The regularization parameters are then
chosen according to some criteria, e.g., loss over a validation set. To find regularization parameters
by an exhaustive search is a computationally expensive task, especially in the high-dimensional data
scenario, with often no guarantees on the quality of approximation. Moreover, most criteria presuppose
that some a priori information is available, such as an accurate estimate of the noise level (in e.g.,
discrepancy principle) or bounds on the noise error (in e.g., balancing principle) and require additional,
method-specific parameters to be preselected.

Elastic net regularization. Elastic net regularization was proposed by Zou and Hastie [37], as

z'(y) = argmin Az - I3 + A (llzll, + @ [l2I3). (1.4)

zeR4

where @ > 0 is a hyperparameter controlling the trade-off between ¢; and ¢, penalty terms. Our
motivation for considering the elastic net is that it produces sparse models comparable to the Lasso
(and is thus well suited for problems with data on lower dimensional structures), while often
achieving superior accuracy in real-world and simulated data. Moreover, the elastic net overcomes the
main limitations of €£; minimization. Namely, it encourages the grouping effect, which is relevant for
many real-life applications such as microarray classification and face detection (see [9] and references
therein).

To solve (1.4) the authors in [37] rewrite the elastic net functional as Lasso regularization with
augmented datum, use LARS [14] to reconstruct the entire solution path, and apply cross-validation to
select the optimal regularization parameter. Later work [9] studies theoretical properties of (1.4) in the
context of learning theory, analyzes the underlying functional and uses iterative soft-thresholding to
compute the solution. For the parameter choice the authors provide an adaptive version of the balancing
principle [23,34]. The rule aims to balance approximation and sample errors, which have contrasting
behavior with respect to the tuning parameter, but requires (potentially) many evaluations of 2*(y). We
will rework some of the arguments from [9] for the computation of 2!, while keeping our focus on
an efficient approach for parameter learning. In [22] the authors propose an active set algorithm for
solving (1.4). Addressing the problem in the framework of classical regularization theory, the authors
consider the discrepancy principle [6, 25] for determining the parameter. This requires estimations
of the solution 2! for many parameter values, and a pre-tuning of other, method-specific parameters.
Moreover, it is assumed that the noise level is known, which is often not the case in practice.

The authors in [24] use a hybrid alternating method for tuning parameters A and « for the model
fitting problem y; = a’X,i = 1,...,n, where y; € R, @; € R” and x € R”. The first step is to update the
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solution z*, using coordinate descent, and then to update A and @ in one iteration. The main advantage is
the efficiency, as one does not need to calculate z* for multiple parameters at once, but rather on a much
coarser parameter grid. The method is in spirit similar to LARS, but has better scalability. It requires
that a non-convex problem is solved, and hence has inherent limitations. Moreover, it cannot be used
in the setting of general inverse problems (1.1), where the design matrix A is fixed and each response
y is generated by a new clean signal X. In summary, we are not aware of any parameter selection rule
for the elastic net that allows to select A without a priori assumptions and without extensive manual
adjustments.

This work. We leverage the work [10] where the authors propose a data-driven method for
determining the optimal parameter for Tikhonov regularization, under the assumption that a training

set of independent observations Y,,...,Y, is made available, each of them associated with an
(unknown) signal X, ..., Xy through y; = AX; + ow,;. The starting point of the method is to find an
empirical proxy X of the real solution X by assuming that X,...,Xy are distributed over a

lower-dimensional linear subspace and then select the regularization parameter as
— g
Agpt = argmin ||zTik(y) —Y||2 , (1.5)
A€(0,+00)

where z%ik(y) is the minimizer of the Tikhonov functional min,.p. ||AZ — yllg +A ||z||§ . The analysis and
techniques regarding X are independent from the chosen optimization scheme, whereas the selection
of ;l\opt is defined by the regularization scheme. However, it is worth mentioning that if A" is not
injective, X is not a good proxy of X. For Tikhonov regularization this is not an issue as, without loss
of generality, we can always assume that A is injective. Specifically, one can replace X in (1.3) with
X" = ATAx and recall that 2}, belongs to ker"(A) for all A. Therefore, for wider applicability of the
suggested framework, it is important to address the selection of ’/fopt for a wider class of regularizers
and inverse problems.

In this paper, we extend the framework of [10] by providing the analysis for the elastic net
regularization, and improving the theoretical results regarding the empirical estimators through
stronger concentration bounds, see Lemma 2.2. Moreover, we develop an efficient, fully automated
algorithm for computing a nearly optimal regularization parameter, that we call OptEN. The
algorithm uses backtracking line search to minimize a given loss function: the discrepancy between
the elastic net solution z(y) and the empirical estimator X, which is well suited if A is injective. In
case of a non-injective A we develop an adjusted loss function that again ensures near optimal
performance. Lastly, whereas in [10] the dimensionality of the subspace to which the real solution X
belongs to is assumed to be known, and which is needed to construct the empirical estimator X, in this
work we develop two strategies for its estimation. The first is based on the spectrum of the empirical
covariance matrix of noisy observations, and is used when X lies in a true lower dimensional linear
subspace. = The second strategy is used in cases where X only approximately lies in a
lower-dimensional subspace, as is the case e.g. in wavelet denoising. The algorithm is extensively
tested on synthetic and real-world examples. The last point is the main practical contribution of our
paper. We add that our goal is not to introduce a new regularization paradigm but rather to design a
fast and unsupervised method for determining a near optimal regularization parameter for existing
regularization methods. In summary, we analyze our problem in two settings:
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(1) simplified case A = |d: (corresponding to image denoising): We restate the lower level problem
and show that in case of a bounded w it admits a unique minimizer, which motivates the algorithm.
Furthermore, we provide a bound on |Aqy — ;l\optl for independent Bernoulli random noise and
discuss the number of samples needed for optimal learning, see Proposition 4.4. Though the
latter model might be oversimplified, it captures the essence of the problem and our experiments
confirm the results in more general settings.

(i1) general case: for a general matrix A we provide an unsupervised, efficient, and accurate
algorithm for the computation of an approximate optimal parameter. We study the performance
of our algorithm, comparing it to state-of-the-art parameter choice methods on synthetic and
image denoising problems. The obtained results show that our approach achieves superior
accuracy.

1.1. Outline

In Section 2, we describe the assumptions on the linear inverse problem and the distribution of
data that we study, and we define and prove bounds regarding empirical estimators. In Section 3 we
discuss minimizers of the elastic net (1.4), and define loss functions that will be used for parameter
selection. Section 4 provides the main theoretical results of the paper regarding loss functionals and
their minimizers. In Section 5 we present an efficient and accurate algorithm for the computation of an
approximate optimal parameter. We study the performance of our method through several numerical
experiments on synthetic and imaging data in Section 6. Therein, we compare our method with state-
of-the-art parameter selection criteria in terms of accuracy of the solution recovery, closeness to the
optimal parameter, sparse recovery and computational time. For imaging tasks our focus is on wavelet-
based denoising where we work on synthetic images and real-world brain MRIs. We conclude with a
brief discussion about future directions in Section 7. The Appendix contains proofs of auxiliary results.

1.2. Notation

The Euclidean and the ¢;-norms of u = (uy, ..., U,)" are denoted by ||ul|, and ||u]|,, respectively. The
modulus function |-, the sign function sgn(-), and the positive part function (-), are defined component-
wise fori =1,...,d, by |u|; = |u;|, sgn(u); = sgn(u;), and ((U).); = (U;)+, where for any u € R

1, ifu>0,
sgn(u) =<0, ifu=0, and (u), =max{0,u}.
-1, ifu<o,

.....

the Moore-Penrose pseudo inverse by M, and the spectral norm by ||[M||,. Furthermore, range(M) and
ker(M) are the range and the null space of M, respectively. For a square-matrix M, we use trace(M) to
denote its trace. The identity matrix is denoted by Id and we use 1y for the indicator function of a set
D c RY. For any v € RY, v ® V is the rank one operator acting on W € R? as (VT W)v.

A random vector & is called sub-Gaussian if

1

€l := sup supq‘%E[|vT§|”]q < +oo.
vb=1 g1
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The value || ||¢2 is the sub-Gaussian norm of €, with which the space of sub-Gaussian vectors becomes
a normed vector space [33]. The (non-centered) covariance of a random vector € is denoted as

%(¢) := Cov(§) = E[¢ ®¢&].

We write a < b if there exists an absolute constant C > 0 such that a < Cb.
2. The empirical estimator for linear inverse problems

We consider the following stochastic linear inverse problem: given a deterministic matrix A € R"™*¢,
we are interested in recovering a vector X € R¢ from a noisy observation y € R" obeying

y = AX + oW, (2.1)

where
(A1) the unknown datum X € R¢ is a sub-Gaussian vector, such that [Ixly, = 1;

(A2) there exists a sub- family 1 < i; < ... < i, < d of h indices, with 7 < d, such that
V :=range (X(X)) = span{e;,,...,€;}

and ker(A) NV = {0};

(A3) the noise w € R™ is an independent sub-Gaussian vector, such that [lcw]||,, < 1, Z(w) = Id and
o > 0 is the noise level.

Conditions (A1) and (A3) are standard assumptions on the distributions of the exact datum X and
the noise ow, ensuring that the tails have fast decay. Note also that from a theoretical standpoint,
normalization conditions on X and W can always be satisfied by rescaling.

As discussed in the introduction, we consider the recovery of X by means of regularized
minimization, z'(y) = argmin, . ||AZ — y||§ + AJ(z), where J(2) is the elastic net functional. More
specifically, we are interested in the selection of the regularization parameter 4. To do so, we
follow [10] and leverage assumption (A2) to construct an empirical estimator of X, which will be used
to select A by minimizing the suitable notion of discrepancy between z%(y) and the constructed
empirical estimator.

We begin by discussing the construction of the empirical estimator, from the given training data of
noisy samples, and developing concentration bounds. First, it follows from the definition that V is the
smallest subspace such that X € V, almost surely. Thus, by (A2), the exact datum x almost surely has
at most & non-zero entries, and since ker (A) NV = {0}, it is a unique vector with that property. Define
now W = range (X(AX)). The following simple result was shown for an injective A in [10]; here we
extend it to the general case.

Lemma 2.1. Under Assumption (A2) we have dim W = h and ‘W = AV.

Proof. A direct computation gives

2(AX) = E[AX ® AX] = AZ(X)A" = APZ(X)(AP)",
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where P denotes the orthogonal projection onto V. Assumption (A2) says that A is injective on V, and
thus X(AXx) and X(x) both have rank 4. Furthermore, (AP)" maps R” onto V, so that

range(X(Ax)) = (APZ(x))V = APV =W,

where Z(X)V = V, by the definition of V and since X(X) is symmetric. O

2.1. Empirical estimators and concentration bounds

Lemma 2.1 suggests that V could be directly recovered if A were invertible and ‘W were known.
In most practical situations though, neither of those assumptions is satisfied: we only have access to
noisy observations and A could not only be non-invertible, but also non-injective. We will address this
issue by recasting the problem to a statistical learning framework, similar to [10]. Namely, suppose we
are given observation samples y,, ..., Yy such thaty, = AX; + ow; fori = 1, ..., N, where X;, W; and o
are unknown, and let

_ 1 &
(V) = — RV,
(y) N;v,éby,

be the empirical covariance of the observations. Standard statistical theory suggests thatf(y) is a good
approximation to X (y) provided N is large enough. As a consequence, we will show that a vector space
spanned by the first 4 eigenvectors of E(y), denoted by W, is a good estimator of W.

To justify the above claims, observe first that since £(w) = |d holds by (A3), we have

T (y) = Z(AX) + old. (2.2)

Therefore, Z (y) and X (AX) have the same eigenvectors and the spectrum of X (y) is just a shift of the
spectrum of X (AX) by 2. Let 4; > ... > A, be the non-zero eigenvalues of Z(éx), counting for
multiplicity, and u; > ... > w,, and gy > ... > W, be the eigenvalues of X(y) and X(y), respectively.
From (2.2) it follows

(2.3)

2

/,li:/li+0'2, fOl‘iZl,...,h,
Ui =0o°, fori=h+1,...,m

Let II be the (orthogonal) projection onto W, which has rank A due to Lemma 2.1, and let II be
the (orthogonal) projection onto “W. We now show the fundamental tool of our study: that I is an
accurate and an unbiased approximation of II for a sufficiently small noise level o~. We distinguish
between bounded and unbounded y and improve upon results in [10].

Lemma 2.2. Assume that 0> < A, and |[Z(Y)ll, = 1. Given u > 0, with probability greater than

1 —2exp(—u)
HH HH ( /h+0';]m+u+h+o';[m+u]’ 2.4

provided N > (h +0%m+ u). Furthermore, if Y is bounded, then with probability greater than 1 —

exp(—u)
— A logth+m)+u logh+m)+u
[ -], < —[\/ R — ) (2.5)

provided N 2 (log(2m) + u).
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Proof. We will first show (2.4). Using Theorem 9.2.4 and Exercise 9.2.5 in [33], we have

r+u r+u)’ 2.6)

v -S|, < ||2<y)||2( o
with probability greater than 1—2 exp(—u), where r = trace (X(y)) / |[Z(Y)||, is the stable rank of X(y)'/%.
Using trace (X(Y)) < A4 + mo? and ||Z(Y)|l, = A; + 0% < 24;, we get

“Z(y)—f(y)|‘2 S/ll[ /h+0']2Vm+u . h+0'12\]m+u)’ 27

where we used ||Z(Y)||> > 1 to bound r. Let u* = u, > o>. By (2.3) it follows that IT is the projection
onto the linear span of those eigenvectors of 2(y) whose corresponding eigenvalue is greater than or
equal to u*. Using uy, — ups1 = Ay, by (2.7) we have

i Y Mr — Mp+1 _ &
e =[xy - T, < B = 2 (2.8)
provided N > (h +0m+ u). Let now I1,- be the projection onto the linear span of those eigenvectors

of f(y) whose corresponding eigenvalue is greater than or equal to x*. As a consequence of Theorem
7.3.1 in [5], there exists an eigenvalue u* of X(y) such that

W'~ < e and dimIl, = dimII (2.9)
ﬁjﬁﬂh+1+€:()'2+€, VZIj<7Ik (2.10)

1 —
I, — 11|, < P H(Id ~TL)E(y) - z(y))HH2 . @.11)

By (2.9) it follows that u* =, so that I1,- = I and hence

1
/lh—é

”ﬁ - HH2 < Hf(y)n - Z(y)HH2 < % Hf(y)n - z(y)HH2 . 2.12)

Since Hf(y)n - z(y)HH2 < Hf(y) - z(y)|'2, the claim follows by (2.7).

Assume now that |lyll, < VL holds almost surely and consider a family of independent m X h
matrices
Si = (y; ® y)II - Z(y)II, i=1,...,N.
Since ]%, NS = E(y)l'[ —2(y)II we can apply the matrix Bernstein inequality for rectangular matrices

(Theorem 6.1.1. in [32]). Thus, for u > 0 we have

P(Hf(y)n -z > u) < (m+ h)exp (%}iﬂ)

where M > 0 is a matrix variance constant independent of m, h, and d, such that

max {E ST

LE[SiST,} < m.
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A direction computation gives M < L|[X(y)||,. It follows that

log(h + m) + u N log(h + m) + u
N N ’

[Eym - x| <4 (\/

holds with probability greater than 1 —exp(—u) for every u > 0. Moreover, by analogous argumentation
(2.8) holds provided N > (log(2m) + u), see 7 for details. Thus, (2.5) follows by applying (2.12). O

The previous result comes with a certain caveat. Namely, the proof implicitly assumes that either &
or the spectral gap are known (which informs the choice of the approximate projector ID). In practice
however, the desired eigenspace can only be detected if there is a spectral gap and if it corresponds to
the eigenspace we want to recover, i.e., if A, > 9, where

0= max (i — A1) = max (Wi = pis1) - (2.13)

.....

Proposition 2.3. Assume A, > 9, where ¢ is given by (2.13). Then the empirical covariance matrix has
a spectral gap at the h-th eigenvalue, with probability greater than 1 — 2 exp(—u), provided 6 < A;, and
2

pi
N > (AIZ_IJ)Q(h + u).

|ﬁj —ﬁj+1| <2e+ |,Uj —,Uj+1|,

by adding and subtracting u; and y . inside the first term. Thus, if j > & then Iﬁj - ﬁj+1| < 2e by (2.3),
and if j < h then |ﬁ] — ﬁj+1| < 2€ + 0, by the definition of ¢ in (2.13). For j = & on the other hand we
have |ﬁh —ﬁh+1| > |up — tps1| — 2€. In conclusion,

argmax (u; — tir1) = h

i=1,...m—1

holds provided provided € < #. Using (2.6) the claim follows. O

It is clear that if 6 > A, then the spectral gap of the empirical covariance matrix is achieved at
as this observation would suggest and we can rely on a wealth of ad hoc remedies. We devote more
attention to this question in Section 6.1, and suggest alternative heuristics for estimating the intrinsic
dimension A.

We are ready to define our empirical estimator of X. Let Q = AA" be the orthogonal projection
onto range(A) = ker"(AT), and P = ATA the orthogonal projection onto range(A") = ker*(A). The
empirical estimator of X is defined as

X = ATly. (2.14)

In the following, we use X to learn a nearly optimal regularization parameter for parameter selection
for the elastic net, but it can in principle be used for a broader range of problems This is due to the fact
that X is in principle independent of the choice of the optimization scheme. That is, it only leverages
the structural assumption (A2).
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Remark 2.4. One might want to consider X as an approximate solution by itself, and completely avoid
regularization and thus the issue of parameter choice. Even though X can be a good estimator of X
in certain situations, it will however often perform poorly. Namely, when A is not injective, when the
training set size N is small, or when the noise level is small, the empirical estimator X will perform
worse than the regularized solution Z\(y). This can be seen by the empirical evidence, cf. Table 2,
where X is the worst performing method. In addition, X does not preserve the structure of the original
signal, e.g., X will in general not be sparse for a sparse X. Thus, regularization is indeed needed to
ensure the desired structure and optimize the reconstruction performance. Lastly, we remind that we
are interested in using an estimator X for which ‘/L,p, —;l\,,pt‘ is small with high probability (i.e., the
one that can be used to derive an accurate parameter selection) and we are not interested in directly

controlling ||X —3(\”2, which is the goal in manifold learning [4].

Observe also that ) =y — ﬁy the empirical estimator X satisfies the (empirical) inverse problem

AX + Qn = Qy. (2.15)

Thus, a direct consequence of (2.15) is that minimizers of the empirical and of the original problem
coincide.

Lemma 2.5. Let?(y) = argmin, . ||AZ — lel% + A1J(2), where Q = AAT, for A € R™ and J is the
(elastic net) penalty term. Then'Z (y) = Z\(Y), where Z\(y) is given by (1.4).

Proof. We compute ||Az - y||§ = [|Az-Qy + (Q — Id)yllg. Since Q is an orthogonal projection onto
range(A) it follows (Q — Id)y € range*(A). Using Pythagoras’ theorem we thus have ||[Az - y||5; =
||Az — Qy||§ +1(Q - Id)y||§ . Since the second term does not depend on z we get

argmin [|Az — y||} + AJ(2) = argmin [|Az — Q|3 + 1J(2).

zeRd zeRd

3. Loss functionals for parameter selection for the elastic net

In this section we discuss the elastic net minimization, and the loss functionals that will be used for
the selection of the regularization parameter.

3.1. Elastic net minimization

From now on we focus on the parameter choice for the elastic net, where J(z) = ||z||, + « ||z||§, SO
that
Ay — inllAz — vIi2 + 1 2 3.1
z'(y) = argmin||Az - y|l; + A(l12ll; + alz];). 3.1
zeRm
The term ||2||,, enforces the sparsity of the solution, whereas ||z||§ enforces smoothness and ensures
that in case of highly correlated features we can correctly retrieve all the relevant ones. We first recall
some basic facts about existence, uniqueness and sensitivity of elastic net solutions with respect to
regularization parameters [22].
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Lemma 3.1. The elastic net functional is strictly convex and coercive. Moreover, for each 1 > 0 the
minimizer of (1.2) exists, is unique and the mapping A — z* is continuous with respect to 1 > 0.

In the remainder of this paper we will recast (3.1) as

Z(y) = argmin[|Az - yI3 + (1 - ) (|lzll, + e [12I3). (3.2)
zeR™
where t € [0,1] and @ > 0 is a fixed parameter. For ¢ € (0, 1) the solutions of (3.2) correspond to
solutions of (3.1) for A = % On the other hand, for = 0 we get 2°(y) = 0, and for ¢ = 1 we define
z!(y) := x?, where
x* = argmin (||z]|, + @ |l2I3), for N' = {z € R" | ATAz = ATy}, (3.3)
ZeN
This definition is driven by the following observations. First, the set N' = A’y @ ker (A) is non-empty
(since A has finite rank). Furthermore, it was shown in [9] and [22] that in case of the elastic net
minimization
lin]l Z' = x“. (3.4)
—
In other words, X* plays the role of the Moore-Penrose solution in linear regularization schemes [16].
By Lemma 3.1 the minimizer of (3.2) always exist and is unique, the map ¢ +— 2’ is continuous for
t € (0,1). Equation (3.4) implies that ¢t — Z' is continuous at ¢ = 1, and later in (3.7) we show that the
continuity also holds at r = 0.

Solution via soft-thresholding.  The elastic net does not admit a closed form solution in case of a
general forward matrix A. In Zou and Hastie [37] the elastic net problem is recast as a Lasso problem
with augmented data, which can then be solved by many different algorithms (e.g., the LARS
method [14]). Alternative algorithms compute the elastic net minimizer directly, and are generally
either of the active set [22] or the iterative soft-thresholding-type [9]. Here we adhere to iterative
soft-thresholding, and rework the arguments in [9] to show that the solution to (3.2) can be obtained
through fixed point iterations for all ¢ € [0, 1]. To begin, define the soft-thresholding function by

S:(u) = sgn(u) (|u| - %) , (3.5)

+

and the corresponding soft-thresholding operator S, (u), acting component-wise on vectors u € R”.
The next lemma is a direct reworking of the arguments in [9, Corollary 1] and states that (3.2) is a fixed
point of a contractive map.
Lemma 3.2. The solution to (3.2), for A € R™4)y € R"™ and t € (0, 1), satisfies Z = T,(z), where the
map T : RY — R4 is a contraction and is defined by

1

Z=7(2)=——8,(t(0ld-ATA)z+ATy), 3.6
@) = S )z +1ATY) (3.6)

with the Lipschitz constant

(o3, — o%)

103, + 02) + 2a(1 — 1)

b

2,2
Tty
2

where 0 = , and o, and oy, are the smallest and the largest singular values of the matrix A,

respectively.
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For ¢ = 0, the solution is z° = 0, which is consistent with (3.6). Furthermore, by (3.5) and (3.6), we

get
1

Z=0 if 0<1<—m—00. (3.7)

1+2]ATy],
Our definition of the solution at ¢+ = 1 in (3.3) also satisfies z = 7,(2) since S;_, is identity and thus
z='(y) = A'y, though 77 is not a contraction. In summary, the solutions are consistent with Lemma

3.1, as expected.

Closed form solution. In the case of orthogonal design [37], i.e., ATA = Id, the solution of (3.1) is
given by
i (ATY-4/2),
1 +ad
where the product is understood component-wise. Plugging A4 = 17" into (3.8) we have

sgn(ATy), (3.8)

_ (1 +2]ATy) - D),

20) = e EATY). (3.9)

3.2. Quadpratic loss functionals

To select the regularization parameters we go back to first principles and consider quadratic loss
functionals.

Definition 3.3. Functions R,E : [0,1] = R, defined by

R() = |2 -x;. R = |2 -, (3.10)

are called the true and the empirical quadratic loss, respectively. Furthermore, define

— —

topr = argmin R(1), 1., = argmin R(?). (3.11)
1€[0,1] 1€[0,1]

In view of Lemma 3.1 and the discussion in Section 3.1, the benefits of recasting A to [0, 1] are
clear: R and R are both continuous, defined on a bounded interval, and, hence, achieve a minimum.
Thus, our aim is to minimize R while ensuring |tc,pt —/t:,pt| is small.

Let us discuss some difficulties associated with elastic net minimization which need to be addressed.
On one hand, a closed form solution of (3.2) is available only when ATA = Id and is otherwise
only approximated. Furthermore, as we will see below, loss functionals R and R are globally neither
differentiable nor convex, but rather only piecewise. These two issues suggest that the analysis of
their minimizers in full detail is challenging. Therefore, in the following we split the analysis into
a simplified case for ATA = Id where we can provide guarantees, and the general case where we
provide an efficient algorithm. Furthermore, we need to amend the empirical loss function R in the
case when A is non-injective. This is due to the fact that in case of non-linear methods R(f) cannot be
reliably estimated outside the kernel of A, see [15] and Figure 1. We follow the idea of SURE-based
methods [18], which provide an unbiased estimate of R(f) by projecting the regularized solution onto
ker*(A). Namely, we define projected and modified loss functions ﬁp, k\m: [0,1] —» R by

Ry(t) = |[PZ(y) - [, and R,,(1) = [az'y) - Thy| z : (3.12)
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where P = ATA is the orthogonal projection onto ker*(A). Define also

i, = argminﬁp(t), and 7, = argmink\m(t). (3.13)
r€[0,1] r€[0,1]

Note that to define k\m(t) we used the fact that X = ATﬁy, and thus compared to k\p, we avoid the
computation of the Moore-Penrose inverse A, which might be either costly to compute or indeed
numerically unstable if A is poorly condltloned As we will show in Section 6, and can see in the right-
most panel in Figure 1, using R and R,, instead of R when A is non- injective dramatically improves
the performance. Note that projecting onto ker"(A) makes the loss functional smoother (dampening
the gradients).

true loss R(t)

i " — empirical loss R(t) \
/ empirical loss R(t) 050{ ===+ modified loss R,,(t)
050 true loss R(t) N EEEEER projected loss IT’,,!H

empirical loss R(t)

0.5 true loss R(t)

0.0 0.2 04 06 08 10 0.0 02 0.4 06 0.8 10 0.0 02 0.4 06 08 10
t t t

Figure 1. Empirical and true losses for m = 500, d = 60, h =5, N = 50, « = 1073, o = 0.08,
and zero mean isotropic Gaussians X and w. In the left panel A is injective and /I\Opt is a good
proxy for 7,y In the middle panel rank(A) = 40 and we see that /t;pt does not approximate 7
well. On the other hand, the right panel shows that in case of a non-injective matrix, R,, and
Ep improve the performance.

In the next section we analyze the minimizers f,, and ’t;pt, and develop bounds on |foy —/t;pt in
simplified settings. These results motivate us to design an algorithm, which we call OptEN, that
minimizes the corresponding empirical loss function (R(f), R,(t), or R,(¢)). This is discussed in
Section 5.

4. Parameter error

Since the elastic net solution is in general not available in closed form, a rigorous study of the
parameter error is challenging in full generality. Therefore, we restrict our attention to simplified
cases, though we emphasize that our approach in practice performs well on significantly broader model
assumptions, which we will show in Section 6. In case of orthogonal design AT A = Id we can, without
loss of generality, assume A = Id (otherwise redefine y as ATy). Let now y = X + oW and assume
ly1]> ... > |ynl. Plugging (3.9) into (3.10) we get

XA (1 + 21y - D, ?
R() = Zl( o) o) sgn(y»—x,-) .

Define b; = 1 +2|y,|, fori = 1,...,m. Loss function R(?) is continuous on [0, 1], and differentiable on
intervals

Io=[0.by"). I, =(b,. 1], and 7} = (0", b),), fork=1,....m-1.
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Considering one interval at a time a direct computation yields the minimizer of each R|;,. Let k =

1,.. — 1 and define g; = sgn(y,)(l +2alyil), ¢; = sgn(y;) + 2x;(a — 1) + 2y;, and d; = sgn(y;) + 2aX;,
and con51der the expression #; = ék— The minimizer ** of R|7, is then given by
i=1 4iCi

bk, for t, < by
k=11, forby <1 <bg . 4.1)

Brs1, for fp > iy

Therefore, t; is the minimizer if it is inside the interval J;, and otherwise the minimizer is the
corresponding edge of the interval. Further details regarding the derivation are in Section 7 in the
Appendix. An analogous expression holds for k = m, whereas R(¢) is constant on 7, as argued in
(3.7). Therefore, the minimizer of R(?) 1S fop = argming_q R(t**). The empirical loss function k\(t)
is also continuous on [0, 1] and is piecewise differentiable on the same set of intervals since they
depend only on y. Consequently, minimizers 7** of R(7) are also of the form (4.1), where we only
ought to replace x; by X;.

Notice that unless further assumptions are made, minimizers Z,, and /tgpt are not given explicitly: we
still need to evaluate R(¢) and E(t) at m + 1 locations, and it is not clear that there are no local minima
or that the minimizer is unique. We will now show that in case of bounded noise there is indeed only
one minimum and that it concentrates near ¢ = 1.0 for moderate noise levels. This analysis will also
give a theoretical intuition that will drive our algorithm. Furthermore, we will show that in a simplified
case of Bernoulli noise we get explicit bounds on the parameter error.

4.1. Bounded noise

Consider now the case of bounded noise such that there is a gap between the noise and the signal. We
show that there exists a unique minimizer and there are no local minima. For simplicity of computation,
we let @ = 1, though the results hold for all @ > 0. Lety = X+ow and assume X = (Xy,...,X;,0, ..., 0)"
where |X;| > 20 |Wj| foralli=1,...,hand j = 1,...,m. Without loss of generality, we assume that y
is ordered so that

X;+ow;| > |X;+ow;| forl <i<j<hand |w;|>|w;| forl <i<j<m.
J J J j J

The loss functional R(r) = ||zt - x||§ is thus piecewise differentiable on intervals 7, where b,- =1+
21X;+owy fori = 1,...,h,and b; = 1 + 20 |wy| for i = h+1,...,m. Also, we have b, > b; for
i < j. We will show that R(?) can be monotonically increasing only for t larger than some 9; > b, !,.

Thus, for all # smaller than ¥;, R(?) is a monotonically decreasing function. Let thus ¢ € 7 ; for j<h.
The function R() is continuously differentiable in 7 j, so it is sufficient to show that R’(z) is positive. A
direct computation, as in Section 4 and in particular in 7 in the Appendix, gives

b; (1 + 2 sgn(y;)x;)

J
R(1) > 0if r > ==L 2 =9, (4.2)
i=1"i

It suffices to show ; > b]T+11. Since sgn(y;) = sgn(X;) fori < j < h, we have

bj+1(l +2|Xi|)_bi >4|Xi| |Xj+1 + OWjiq| > 0. (43)
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Therefore, b; (1 + 2 sgn(y;)x;) > b’ 1 b%, and the claim follows. Extending the same analysis to ¢ € 7,
we ought to show by, (1 +21x;]) —b; > 0 for 1 <i < h. Computing gives

Brer (1 +21x]) = b;i > 207 Wy [ (1 +21xi]) > 0.

Hence, t,p > bh .1> as desired. We will now show that R(7) admits only one minimizer. Assume there
exists #* such that t* € 7 ;» for some j* > h and R'(#*) = 0. This means

o Z, Lo (1 + 25gn(y,)x)+ Zl et D
7 2

—19'* andb <l9*<b_

Jr+1

We proceed by induction showing that R(¢) is increasing for all j > j*. For ¢t € I ; with j > h, it follows

S by (1 +2sgn(y)x;) + Z{:h+1 b
j—l b2

i::ﬂ

e

R(H<0ifr<

Let us show #; < b} for j = j* + 1. We have

Sh (1 + 2sgn<yl>x) + 5L b 9,2l 04D,

9, = : <b;',
s I b2
where we used the fact ¥+ < bj_. =b *1 1> and b; > bjs». The rest of the proof then follows by

mathematical induction. Analogous computatlon yields the same type of a result for the empirical loss
function R.

Lemma4.1. Lety = X+0W, assume X = (X1,...,%,0,...,0)" where |x;| > 20 |Wj|f0ralli =1,...,h
and j = 1,...,m, and let @« > 0. Loss function R(t) is then either monotonically decreasing on the
entire interval [0, 1], or it is decreasing until some interval I jx, for j* > h + 1 where it achieves a
(unique) minimum, and it is monotonically increasing on all the subsequent intervals. The same holds
for R.

4.2. Bernoulli noise

Lemma 4.1 states that R(f) and E(t) achieve a unique minimum in [0, 1], and that they are
monotonically decreasing before, and monotonically increasing after this minimum. Furthermore, the
minimizer is bigger than (1 + 20 |wj,,;|)~!, which means that for moderate noise levels, it will be close
to 1. The issue is that minimizers ¢« and 57* do not need to lie in the same interval, i.e., j* # ?, and
thus they cannot be directly compared. Instead, we consider a simplified model that encodes the main
features of the problem. In particular, let

1
y =X+ ow, where P(w; = 1) = R “4.4)
and assume X = (X,...,X,,0,...,0)", and |x;| > 20, fori = 1,...,h. As before, without loss of
generality we can assume |y{|> |y2|> ... > |y,|. It then follows b; = 2|x; £ 0| + 1, for 1 < i < h,
and b; = 20 + 1 otherwise. Moreover, b; > by, for all j = 1,...,A. In the following, we will for

the sake of simplicity consider the case @ = 1. The details regarding the general case, @ # 1, are in
the Appendix. First, as in Section 4.1 we know that 7, > bj!,. We can now explicitly compute the
minimizer of R(7).
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Lemma 4.2. Let X satisfy (4.4) and assume X = (Xq,...,%,,0,...,0)7, and |x;| > 20, fori=1,...,h.

True loss functional R(t) is minimized for t,, = min{t*, 1} € [b;lil, 1], where

. Sk (1 +2sgn (y,) X;) + byt (m — h)

45
S b? + (m— b, ()
Proof. Considering (4.2) for t € (b,‘lil, 1) we get
h h
2R (1) = [Z b2 + (m — h)bfm] £= > by (1+25gn (y) ;) = bya(m = h). (4.6)
i=1 i=1

The root of (4.6) is exactly (4.5). Arguing as in (4.3) we have * > ﬁ. Restricting to [0, 1] the claim
follows. =

Remark 4.3. The minimizer given by Lemma 4.2 will be in [0, 1] provided Z?:] ly;| < (m — h)o and
h <m/2.

For the empirical loss function it is in general not true that X; = 0 for i > &, nor is % a Bernoulli
random variable. However, y and b;’s remain the same, and an entirely analogous computation gives

= _ o, Zim brsgn () (6 —%)

4.7)
Yot/ b}
We can now bound the approximation error for the optimal regularization parameter.
Theorem 4.4. Assume that the conditions in Lemma 4.2 hold, and that t,,, < 1 and 0'% < 1. Given

u > 0, with probability of at least 1 — 2 exp(—u) we have

[ 2 2
Sﬂ h+am+u+h+0'm+u s ﬁ’ 4.8)
A N N m

provided N > (h +0%m+ u) Assume now 'Y is bounded. With probability greater than 1 — 3 exp (—u)

we then have
1 1
o [T s T
A N N m

Proof. By assumptions we have t,, = * by Lemma 4.2. We can now rewrite (4.5) and (4.7) as

—

topt - topt

—

topl - topt

provided N = (log2m + u).

o _ bl +2(seny - b).x) Il + 2((sgny - b).X)
IIb] 2 ’ IIb| 2 '

Therefore, using (4.7) we have

<v,x —Y)
* *

lIbl}?
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with v defined by v; = 2sgn(y;)b; for j = 1,...,h, and v; = sgn(w;) for j > h. Thus, ||v|, < [|b]|, and
we have

x =] Iyl 0 |TIw|
T <2t—2 <22 n-T1 —2).
[T < 2 (||b||2 |-, ¢ bl

Using [Ibll3 = m + 4 |lyll, + 4 lyl}} and [[Iwl}, = /, and provided N % (h + u + o*m), by Lemma 2.2 we

have
2 2
|t*—?|scﬂ /h+o-m+u+h+<rm+u s ﬁ
An N N m

with probability greater than 1 — 2 exp(—u), and C > 0 is a constant. Since |t* —?| > |t* —/t:,pt| the
claim follows. The proof for a bounded y is entirely analogous. O

Remark 4.5. Theorem 4.4 is valid not only for a = 1 but for all a. Namely, in Appendix 7 we show
that for any a > 0 the following holds

A |h+u+o*m h+u+o*m h
< — + +04[—.
/lh N N m

—

Z‘opt - topt

5. OptEN algorithm

Driven by insights in Section 4, we are ready to present an efficient heuristic algorithm for learning
the Opfimal regularization parameter for the Elastic Net (OptEN). The algorithm is based on the
minimization of a given loss function (R, R, or 75,,). In Section 4 we showed that in a simplified, yet
instructive, setting that the optimal parameter tends to be in the vicinity of t = 1, depending on the
noise level and the signal-to-noise gap. This is supported by experimental evidence in more general
situations such as for non-injective A, as we will see in Section 6. Moreover, the loss function is
monotonically decreasing as we get away from ¢ = 1. These observations drive our algorithm which
assumes that the minimizer lies in a valley not too far from # = 1, see Figure 1. Therefore, we will
perform a line search on the graph of a given loss function, starting from ¢ = 1.

Line search methods follow iterations #;,1 = f; + s;Px, Where py is the search direction and s the
step size:

e Search direction. We select p; by estimating j?\’(tk) with central differences, k\’(t) ~ AR() =
W where € > 0 is small enough. For ¢ = 1 we instead use AR(1) := w. Then set
Pr = —AR(D).

e Step size. We estimate s; with the backtracking line search (consult [2] for an overview of line
search methods).

Our approach is presented in Algorithm 1, while an extensive numerical study is provided in the next
section.
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Algorithm 1 OptEN algorithm for approximating the optimal elastic net regularization parameter
using backtracking line search
Input: y,,...,yy.Y € R", A € R"™;

Compute X according to (2.14).
Set a loss function — R or k\p or ﬁm. In the rest of the algorithm we will refer to it as R;
Sete >0,tol >0,t0l2>0,0<a<1,andc,8,y > 0;
Setk «—0,10=1
Compute ry = R(1), 7 = R(1 — €), po = (r1 — F1)/€, and r, = @(y0);
repeat
[=t+apg
@0 = r1. ¢y = —Pi> @1 = R(D;
if o1 — o < c1¢)a then

Sk = @,
else
Sy = 1 Lp(’JQZ :
k 2 p1—go—pya’
end if
if |s¢| < tol2 or |sy_1/sk| > v then
Sk = Sk-15;
end if

Set 1 = tx + SkPks
Compute r; = R(tg41), Prs1 = R(tear + €) — R(tys1 — €)/(26);
ke—k+1,

until |p;| < tol or k < max_iter;

Output: Approximate regularization parameter 7 := #;.

6. Experimental results

We now study the performance of our approach and show its adaptivity to different scenarios by
conducting experiments on synthetic and imaging data. In the first set of experiments we perform a
thorough comparison of our method with state-of-the-art parameter selection rules by exploring their
behavior with respect to noise level and other notions. The second set of experiments deals with image
denoising where we use wavelet-based thresholding with the elastic net. We consider two data-sets:
natural images and a real-world brain MRI data. Note that we do not aim to compare our method with
state-of-the art denoising methods, but rather only with state-of-the-art methods regarding the selection
of the regularization parameter for the elastic net. We start with a discussion of methods that can be
used for the automatic detection of the sparsity level 2 and show that when a sufficient amount of
training points is given, we can reliably estimate 4.

6.1. Estimating the sparsity level

In real applications the sparsity level of a vector is either not available or is only an approximate
notion, i.e., the desired vector is sparse only when we threshold its entries. Such regimes require 4 to
be estimated, which in our case means looking at the spectrum of the corresponding covariance matrix.
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This question belongs to the class of low-rank matrix recovery problems since what we are trying to
recover is the geometry (i.e., projection onto the range) of the noiseless, lower rank matrix £(AX), using
only the covariance matrix of noisy observations f(y), which is of full rank. Thus, estimating % boils
down to thresholding singular values of the empirical covariance matrix according to some spectral
criterion that exploits the underlying structure.

For a positive definite matrix with singular values 4, > ... > A1,, > 0 commonly used spectral
criteria are

(1) The spectral gap argmax, Ay — Ax+1l;

(i1) The relative gap argmax, (1 A );

Akl
(ii1)) The cumulative spectral energy Zle Ail 2ty A

(iv) The relative cumulative spectral energy Zle Ai/ Zf-‘j 11 A;.
For the latter two criteria one sets a threshold, say 0.95, and selects h as the first k for which the
corresponding spectral energy reaches that threshold.

We study the behavior of these four criteria on three different types of forward matrices A: random
Gaussian, random circulant Rademacher, and random Toeplitz Gaussian matrices. These matrices
were chosen because they have different spectral behavior and commonly appear in inverse problems.
In each case A is a 100 x 100 real matrix, normalized so that ||A||, = 1, and we take N = 100 samples
X;, sampled according to X; = &, + V;, where & ~ N(0,1) and v; = 4sgn(§) for 1 < i <7 < 20,
and & = v; = 0 otherwise, w; ~ N(0,1;p9) and o = 0.3. We compute f(y) = %Zfiﬂi ® Yy, for
Yy, = AX; + oW;.

In Figure 2, we show the application of the aforementioned spectral criteria to E(y). It is clear from
the results that all four methods would fail if used without taking further information into account.
For example, the spectral gap criterion (in the upper right panel) would dictate the selection of & = 3,
but a more careful look at the plot suggests that the behavior of the spectral gap changes dramatically
around & = 20, which corresponds to the true 4. Such ad hoc solutions are sensible and often improve
the performance but can be hard to quantify, especially on real data.

The last spectral criteria, 1 — A; /441, is perhaps the most promising, but is also subject to demands
on N, as shown in the bottom row of Figure 2. Namely, if N is not large enough then 1 — A4/ A1, has a
heavy tail on the spectrum of E(y) and would thus suggest a large £, as in the bottom left corner of the
Figure. Instead, in Section 6.2 we look for the relative gap within the first m/2 singular vectors. We
note that in the case of the first three spectral criteria the situation does not change as the number of
samples increases. On the other hand, for the last criterion it does: heavy tails flatten back to zero for
all three choices of random matrices, see the plot in the bottom right corner of Figure 2.

In Section 6.3 we will apply our algorithm to wavelet denoising where there is no natural choice
of h since wavelet coeflicients of images are not truly sparse. We will instead consider two scenarios;
when we are given an oracle 4 (i.e., the i giving the highest PSNR), and when / has to be estimated
from data.
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Figure 2. Plot in the upper left corner shows the spectrum of three different types of matrices.
The remaining plots (not including the one in the bottom right corner) consider different
notions of the spectral gap for N = 100. The plot in the bottom right considers the last
criteria, 1 — ==~ but for N = 150 samples, showing that the behavior for large k changes
dramatically, compared to the plot in the bottom right for N = 100.

6.2. Synthetic examples

Experimental setting. We consider the inverse problem of the type y = AX + ow, where the data
are generated according to X = £ + v, where

(D1) A € R™ is a random Gaussian matrix such that ||A]l, = 1,
(D2) & ~ N(0,1), and v; = 4sgn(&;) for 1 <i < h; & = v; = 0 otherwise,
(D3) w ~ N(0,1d,,).

The rationale behind distributional choices in (D2) is twofold. First, having v be a non-constant
vector ensures that V = range(Z(X) is truly and fully A-dimensional (i.e. if v were constant there
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would be one dominant singular vector). Second, forcing |v;| = 4 fori = 1,..., h ensures that the data
are not concentrated around the origin (which happens e.g., if v; = 0 for all i in (D2)) and that there is a
gap between the original signal and the noise. The gap can be measured by SparseSNR := H
We add that the conclusions and the results of this section, and of Section 6.1, stay the same in case
of the more usual distribution assumptions, i.e., for X ~ N(0, Id,) where Id;, is a diagonal matrix with

exactly 4 entries set to 1 and the rest to 0, and noise levels as in Section 6.3.

Comparison. We compare our algorithm with the following parameter selection methods: the
discrepancy principle [25], monotone error rule [29], quasi optimality [30], L-curve [20],
(Monte-Carlo) balancing principle [23] and its elastic net counterpart [9], (Monte-Carlo) generalized
cross-validation [18] and nonlinear cross validation [17]. In the remainder of this paper we refer to
other methods by their acronyms, and to our method as OptEN. The first five methods are commonly
used in inverse problems (a detailed account and an experimental study can be found in [3]), whereas
Monte-Carlo and nonlinear cross-validation are adaptations of generalized cross-validation for
non-linear regularization methods.

Before presenting the results, we provide a concise description of considered methods. Most of
the methods require some additional information about the problem, predominantly the noise level
o, to be either known or estimated, which affects their performance. We provide the true noise level
whenever a given method requires it and furthermore, we perform judicious testing and tuning of
all other quantities, taking into account recommendations from relevant literature. We consider a
regularization parameter sequence t, = L_ where n € {0,1,...,Npx}, and vy > 0, g > 0 and

THvog™”
Nmax € N are preselected”. For each n we denote the corresponding elastic net solution as z,, := 2",

Discrepancy Principle [DP]

Discrepancy principle is one of the oldest parameter choice rules which selects a solution so that the
norm of the residual is at the noise level. Thus, the regularization parameter is chosen by the firstn € N
such that

1Az, — yll, < 7o Vm, (6.1)

where we fix 7 = 1.

Monotone Error Rule [ME]

This rule is based on the observation that the monotone decrease of the error ||z, — X||, can only be
guaranteed for large values of the regularization parameter. Therefore, the best parameter ¢,- is chosen
as the first z-value for which one can ensure that the error is monotonically decreasing. The parameter
is then chosen by the smallest 7 such that

(Az, -y, A" (2, — Z,41))
< 1o \m. 6.2
A @ -zl ©2)

We fix 7 = 1 for our experiments. The left hand side of (6.2) is replaced with (6.1) whenever the
denominator is 0.

“This is an adaptation of the parameter sequence from [3] that reflects our reparametrization from A to ¢, as in (3.2)
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Quasi-Optimality Criterion [QO]

Quasi-optimality is a parameter rule that does not need the noise level, and thus has enjoyed
reasonable success in practice, especially for Tikhonov regularization and truncated singular value
decomposition. The regularization parameter is chosen according to

N, = argmin ||z, — Z,.1|l> - (6.3)
N<Nmax

L-curve method [LC]

The criterion is based on the fact that the log —log plot of (||Az, —YlI|,,|z.||,) often has a distinct
L-shape. As the points on the vertical part correspond to under-smoothed solutions, and those on the
horizontal part correspond to over-smoothed solutions, the optimal parameter is chosen at the elbow of
that L-curve. There exist several versions of the method; here we use the following criterion

n, = argmin{||Az, -yl [1z,l}. (6.4)

Nn<Nmax

(Monte-Carlo) Balancing Principle [BP]

The principle aims to balance two error contributions, approximation and sampling errors, which
have an opposite behavior with respect to the tuning parameter. More precisely, we select the parameter
by

n* = argmin{t,| ||z, — z;||, < 4kop(k),k =n,..., N},

where k > 0 is a tuning parameter. More computationally friendly, yet equally accurate, versions of the
balancing principle are also available [3]. As our main focus on the accuracy of the parameter choice,
we will use the original and more computationally heavy version of the balancing principle.

The value of op(k) is in general unknown but it can be estimated in case of white noise.
Following [3], we calculate p(k)* ~ mean{”A;lf,-”i}, where &, ~ N(0,1d,,), 1 <i <L (weuseL =4),
and A>! is the map that assigns y to z,.

Elastic Nets Balancing Principle [ENBP]
In [9] the authors propose a reformulation of the balancing principle for elastic net,

: inft, 12 — Zentlly < ——C
n* = argmin{t,| |z — Zi ], £ ———,
B \/anoqkﬂ

The method stops the first time two solutions are sufficiently far apart. The constant C needs to be
selected, and in our experience this task requires a delicate touch.

k= Npax—1,...,n},

(Monte-Carlo) Generalized Cross-Validation [GCV]

The rule stems from the ordinary cross-validation, which considers all the leave-one-out
regularized solutions and chooses the parameter that minimizes the average of the squared prediction
errors. Specifically, GCV selects n according to

-1 2
m”" ||Az, - ylIl;

n, = argmin (6.5

<Nmax (m‘l tr(ld,, — AA;, 1))2’
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where A' is the map such that z, = A} '(y). In the case of the elastic net, the map A" is not linear
and, thus, we cannot assign a meaning to its trace. Instead, we follow the ideas of [18] and estimate
the trace stochastically using only one data sample.

Nonlinear Generalized Cross-Validation [NGCV]
In [17] the authors reconfigure GCV for non-linear shrinkage methods, and » is selected according
to

2
. Az, =yl
n, = argmln o
n<Npoe M~ (1 —ds/m)

iz,
Il

(- : 2
where s = i with [l := [Fl + @2

Y

Comparison/Error. For each method we compute: the (normalized) error in approximating the
optimal regularization parameter, the (normalized) error, false discovery proportion (FDP), true
positive proportion (TPP), and the computational time. TPP and FDP are measures that quantify the
notions of true and false discovery of relevant features in sparsity based regression tasks [28]. FDP is
the ratio between false discoveries and the total number of discoveries,

#[j: 2, # 0and x; = 0]

FDR( = max(#[j: Z;-;t()],l) .

TPP on the other hand is the ratio between true (i.e., correct) discoveries in the reconstruction and true
discoveries in the original signal,

#[j: z;;&Oandxj;&O]
h

TPP(f) =

Thus, to recover the structure of the original sparse data we want FDP close to O and TPP close to
1. It is known that there is often an explicit (and sometimes even quantifiable) trade-off between FDP
and TPP, in the sense that the support overestimation is an (undesirable) side-effect of full support
recovery. In other words, a consequence of true support discovery is often a non-trivial false support
discovery [28]. When computing FDP and TPP we will rather than demand for an entry to be exactly
zero, instead threshold the values (with 0.5 being the threshold).

Testing setup. To compute the true optimal parameter 7,,, we run a dense grid search on [0, 1]

using the true expected loss ||z’ - X||§ As suggested in [3] we use 7 = 1 and provide the true noise
level o for discrepancy principle and monotone error rule; balancing principle uses k = 1/4 and
true o; elastic net balancing principle uses C = 1/2500. The parameter grid for DP, ME, BP, QO,
LC, BP, GCV, and NGCV is defined by vy = 1, ¢ = 0.95, and Np,x = 100 (thus, 7o = 0.5 and
tn,,, = 0.9941143171), whereas for ENBP, we use 7y = 0.05, ¢ = 1.05, and Nyax = 100. The tests
are conducted for m € {500,900}, d € {100,200} and & € {10, 20,30}, where all combinations of
a € {107°,1073,1072,107"'} and o € {0.05,0.1,0.2,0.3} are considered. To compute the empirical
estimator X, we generate N = 50 independent random samples of the training data (X, y).
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Results in Table 1 are averaged over 100 independent runs for @ = 1073, m = 500, d = 100, h = 10,
where V = span{ey,...,e;}, and o = 0.3, which corresponds to SparseSNR ~ 0.17. The first row in
the table, x;,,, describes the elastic net minimizer for which the true optimal regularization parameter
is provided.

Table 1. Comparison of errors for regularization parameter selection methods, with an
injective matrix A € R!% and h = 10, @ = 1073, o = 0.3. The values are averages
over 100 independent runs. We write in bold the method that achieved the best result.

Method ot bzl FDP(7) TPP(?) computaion
X, 0 0.0984 0.1583 1.000 0

X N/A 0.1004 0.000 1.000 N/A
OptEN 0.0254 0.0994 0.160 1.000 3.716
DP 0.1196 0.1118 0.087 1.000 0.7421
ME 0.2493 0.1376 0.010 1.000 0.1757
QO 0.4543 0.1843 0.716 1.000 7.193
LC 0.1414 0.1174 0.188 1.000 1.564
BP 0.0877 0.1057 0.095 1.000 36.77
ENBP 0.2728 0.1450 0.007 1.000 4355
GCV 0.4548 0.1844 0.716 1.000 15.91
NGCV 0.3597 0.1577 0.638 1.000 7.306

Discussion. OptEN always returns the value which is the closest to the optimal regularization
parameter, and its results are in general comparable to the ones provided by the minimizer with the
optimal parameter. However, one can observe that other methods, e.g., discrepancy principle, provide
a better balance between FDP and TPP (returning solutions that are more sparse), though at a cost of a
larger approximation error. Balancing principle also provides very good results, but it is slow unless
an effort is made to improve its computational time. Moreover, we observed that the performance of
all methods that require the noise level o to be known deteriorates if we do not provide the exact
value of the noise level, but only its rough estimate.

The overall results are mostly consistent over all experimental scenarios we looked at, with a couple
of exceptions. As expected, FDP and estimation errors deteriorate not only for larger o but also for
larger a, though the ranking of the methods and the patterns of behavior remain the same. This is due
to the fact that as a increases the elastic net penalty sacrifices sparsity for smoothness. The empirical
estimator X is a very accurate estimator of the original signal, and it sometimes outperforms even
the elastic net solution that uses the optimal parameter. However, as it has been observed in [10] for
Tikhonov regularization and confirmed in Figure 3, the performance of the empirical estimator worsens
in the small noise regime.

Comparison with empirical estimator: effects of o and Ny

We study the behavior of the relative estimation error with respect to o~ and the number of training
samples. We compare OptEN with the empirical estimator X, DP, NGCV, and BP. We use m = 500, d =
100, 2 = 10 and (D1)-(D3) with o ranging from 0.1 to 0.5 in the first experiment, whereas we vary
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the number of training samples N from 20 to 60 in the second experiments as depicted in Figure 3.
Our method again outperforms other considered parameter selection rules. However, the empirical
estimator performs slightly better than OptEN for larger noise levels (it is also better than the optimal
elastic net solution), and it performs worse for lower noise levels. This is essentially due to the fact
that X is never truly sparse, but has a lower (thresholded) FDP. Namely, as a projection onto an h-
dimensional space the non-zero entries of X are very small, whereas the non-zero entries obtained with
elastic net are larger and their size depending on the noise level. The parameter « plays a similar role;
for small o OptEN beats X, and for larger « the situation is reversed.

0.45
0.12

0.40

0.10 0.35

0.30

I .05

0.06
0.20

0.15
0.04

0.10

0.02

0.05

010 015 020 025 030 035 040 045 050 20 25 30 35 A0 15 50 55 60
o Nirain

Figure 3. In the left panel is the behavior of OptEN, the empirical estimator, discrepancy
principle, balancing principle, and nonlinear GCV with respect to o is shown. In the right
panel the behavior of our method for different values of o as the number of samples N
increases is shown. Dashed lines represent the error achieved by taking the true optimal
parameter for the corresponding o.

Non-injective matrices

We now conduct experiments with non-injective matrices. The setting is as in Table 1, where now
A € R30I with rank (A) = 40. As mentioned in Section 3.2, we test our method by minimizing the
projected loss functional R, » and the modified error functional R,.. The results can be found in Table 2.
Our method (using both the projected and modified functionals) again outperforms standard parameter
selection rules in terms of the precision accuracy, and loses out to some methods when it comes to FDP
and TPP. We also observe that the performance of the empirical estimator deteriorates and X indeed
should not be used as the solution itself but some additional regularization is required.
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Table 2. Comparison of errors for regularization parameter selection methods, with a matrix
A € R0 rank(A) = 40, and & = 10, @ = 1073, o = 0.3. The values are averages over
100 independent runs. We write in bold the method that achieved the best result.

|10pl_t|

Ix=2"]l>

computational

Method ” X FDP(ty  TPP() e 1]
using 7, 0 0.5704 0.4918 0.9450 0
empirical estimator X~ N/A 0.7978 0.8047 1.000 N/A
projected OptEN 0.0718 0.6033 0.507 0.930 8.16
modified OptEN 0.0763 0.6046 0.497 0.926 15.57
DP 0.1316 0.6343 0.528 0.926 1.93
ME 0.3203 0.7234 0.290 0.765 0.15
QO 0.3167 0.7857 0.819 0.997 7.04
LC 0.3389 0.7426 0.304 0.749 7.00
GCV 0.3172 0.7865 0.819 0.997 14.04
NGCV 0.3172 0.7865 0.819 0.997 7.06
BP 0.2636 0.7179 0.757 0.974 35.01
ENBP 0.2133 0.6549 0.362 0.847 3.69

6.3. Image denoising

The task of image denoising is to find an estimate Z of an unknown image X from a noisy
measurement Y, where Y = X + o0&, and E denotes isotropic white noise. The goal is to improve the
image quality by removing noise while preserving important image features such as edges and
homogeneous regions.

There are a large number of methods addressing image denoising , starting from ‘classical’ wavelet
thresholding [12, 13] and non-linear filters, to stochastic and variational methods [7, 8]. Since the
primary goal of this paper is to evaluate how the proposed approach performs as a parameter selection
method for the elastic net, here we only compare our method with other state-of-the-art parameter
selection methods for the elastic net, and do not compare the elastic net with image denoising methods
in general. In particular, we compare OptEN with the discrepancy principle and the balancing principle
(i.e., the top performers from previous experiments). In all cases the results show that OptEN has
superior performance and selects nearly optimal parameters, see Table 3.

Wavelet-based denoising. We denoise the noisy image Y by minimizing
(1 =DIZ = YIi3 + (IWZI|, + a||ZI]y), for Z € [0, 17", (6.6)

where W is the wavelet transform using the family of db4 wavelets, @ = 1073, and p is the number of
pixels in the image. The wavelet transform sparsifies natural images, and we thus select the empirical
estimator in the wavelet domain. Moreover, in the limit with respect to the number of samples N — oo,
the empirical projection IY is for a given h equivalent to a hard thresholding of WY that preserves its
h largest wavelet coefficients. Thus, for image denoising we do not use samples Y; but instead only
threshold WY for a well chosen 4. Here h cannot be chosen by searching for a gap in WY, since
it most often does not exist. Instead, we say that the true h is the one that minimizes the MSE of
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the reconstructed image. In our first set of experiments the empirical estimator X is chosen by hard
thresholding Y, where 4 is optimal.

Table 3. Results on wavelet denoising of noisy images with different noise levels using the
elastic net minimization. Each column defines the method used to select the regularization
parameter. In bold is the method that achieved the best result. Columns titled noisy
correspond to PSNR and SSIM values of the initial noisy image. Columns titled using A,
correspond to the best values achievable for the selected the elastic net functional, where we
find the optimal parameter by a grid search on the true loss functional. We write in bold the
method that achieved the best result.

PSNR SSIM
noisy OptEN DP  BP Sig - noisy OptEN DP BP

Topt

using
Topt

space
shuttle

oc=0.05 3233 2627 3232 30.26 30.63 0.929 0.687 0.929 0.850 0.862
o=0.075 3026 2287 30.25 27.32 27.69 0.908 0.516 0908 0.748 0.765
o=0.1 28.77 20.50 28.76 25.32 25.60 0.892 0.394 0.891 0.660 0.676
cherries

oc=0.05 3580 26.08 35.79 30.52 31.08 0.973 0.647 0972 0.837 0.855
o=0.075 3359 22.63 3359 2740 27.77 0.964 0.463 0964 0.720 0.737
o=0.1 31.94 20.24 31.82 2526 2554 0.958 0.339 0942 0.617 0.633
cat

=005 2934 26.02 2933 28.72 2893 0.890 0.767 0.890 0.861 0.868
o=0.075 27.06 2251 27.03 25.85 26.04 0.825 0.612 0.823 0.758 0.767
o=0.1 25.69 20.04 25.24 23.88 24.03 0.771 0.486 0.741 0.664 0.671
mud flow

o=0.05 2838 26.02 2837 28.20 28.30 0.870 0.777 0.869 0.856 0.860
o=0.075 26.07 2250 26.06 2546 25.60 0.795 0.629 0.795 0.755 0.762
o=0.1 2471 20.01 2446 23.58 23.70 0.735 0.506 0.717 0.662 0.668
IHC

o=0.05 2933 26.02 2933 28.73 2892 0.890 0.767 0.889 0.861 0.868
o=0.075 27.06 2251 27.04 2586 26.04 0.825 0.612 0.823 0.759 0.767
o=0.1 25.70 20.04 25.39 23.85 24.04 0.772 0.486 0.748 0.662 0.671

6.3.1. Denoising with an oracle h

Data and learning setup. We consider five grayscale images: space shuttle, cherries, cat, mud flow,
and IHC, each of size 512 x 512 pixels. For BP and DP the regularization parameter is selected from
a sequence of parameter values #, = ﬁoq" with vo = 1, g = 0.95, and N,,,x = 100, same as before.

Moreover, we fix 7 = 1, k = 1/4 for BP and DP, and provide them with the true noise level. For OptEN
the empirical estimator is computed with an oracle 4, i.e., the one returning the lowest MSE.
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Comparison/Error. We use two performance metrics: peak signal-to-noise ratio (PSNR) and the
structural similarity index (SSIM) between the original image X and the recovered version Z. PSNR
is a standard pixel-based performance metric, defined through the MSE by

maxi<i<, X; — minlSiSp Xi

PSNR(X, Z) = 101og, MSE(X, Z)

1
, MSE(X,Z) = —|IX - Z|.
p

MSE and PSNR are ubiquitous in image and signal analysis due to their simplicity and suitability
for optimization tasks, but are also infamous for their inability to capture features salient for human
perception of image quality and fidelity [35]. SSIM on the other hand, is a structure-based performance
metric that tries to address this issue by using easy-to-compute structural statistics to estimate image
similarity. It is defined through

X7 std(X)*std(Z)? + C,

SSIM(X, Z) :( g
XZ +C

2XZ +C, ] ( 2std(X)std(Z) + C, )

where X, Z are the means, and std(X), std(Z) are the standard deviations of pixels of corresponding
images X and Z, and C,, C, are positive constants’.

Table 3 provides the PSNR and SSIM values generated by all algorithms on the considered images,
while Figure 4 shows the result of denoising on a 128 x 128 detail of each image for o~ = 0.075. We can
see that our method achieves the highest PSNR on all images and that this effect is more pronounced
for larger noise values.

6.3.2. Denoising with a heuristically chosen &

In this set of experiments we study the performance of our method in a situation where the optimal
h is not known a priori. We run experiments on a real-world dataset of brain images*, which consists
of in vivo MRIs of 13 patients with brain tumor, taken pre-surgery. For each patient we took an
MRI slice, isolated the area around the brain and then added additional isotropic white noise with
o € {0.05,0.075,0.1}. We then select & by a heuristically driven procedure. Namely, for each image
Y we set an initial 4y € N and determine 7, by performing Algorithm 1, where iho is constructed by
taking A largest coeflicients of WY. We then set #; = hg + hgep, repeat the procedure, and continue
iteratively for . The iterations are stoppped once the corresponding 7, start to decrease or become
discontinuous (since heuristically this corresponds to a decrease in the PSNR of the corresponding
elastic-net regularized solution). £y and hgep are chosen according to the size of the image. The
behavior of this criterion can be seen in Figure 5, and it shows that if % is too large the empirical
estimator is virtually the same as Y. In other words, the minimizer of “Zt - ih”z ist=1(@0e.,A1=0),
which we observe in Figure 5.

The resulting reconstruction for oo = 0.1 can be seen in Figure 6 on four images. The effects of
denoising are visually not as striking as the results in Section 6.3.1. We attribute this to the fact that
PSNR gains with the best possible choice of parameter using elastic net are quite small, namely, PSNR
of the noisy image improves only by around 5 — 7%, when taking the optimal parameter (see Table 4).

"We take C; = 0.01, C, = 0.03 by the convention of python’s skimage package
#Obtained from http://nist.mni.mcgill.ca/?page_id=672, therein referred to as group 2
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Other parameter selection rules (discrepancy principle and balancing principle) did not improve the
PSNR and are thus not presented.

noiseless

mud flow cat cherries space shuttle

IHC

pru,
LB . -

Figure 4. Comparing the effects of denoising for different parameter selection rules.

—t

—— PSNR

PSNR and t

1000 2000 3000 4000 5000 6000
h

Figure 5. A visual representation of our heuristic criteria for selecting 4. Here we choose
h = 4400. The flat line at the end corresponds to #; = 1.
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Table 4. PSNR values for the results in Figure 6.

using fop noisy OptEN
28.608 27.297 28.432
28.329 26.792 28.079
28.221 26.735 27.935
28.501 26.906 28.240

noiseless

Figure 6. Denoising results on a brain image data set. The PSNR values are in Table 4.

7. Conclusions and future work
In this paper, we presented an approach for the estimation of the optimal regularization parameter
for the elastic net. Theoretical guarantees are available only in simplified scenarios but we used insights

gained therein to steer and create an efficient algorithm. The algorithm exhibits excellent prediction
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accuracy, including in cases when there are no theoretical guarantees. Comparison with state-of-the-
art methods show a clear superiority of our method, under the studied testing scenarios. Moreover,
whereas other studied methods require adjsting a number of additional parameters in order to achieve
satisfactory results, our method is entirely autonomous given a sufficient number of training samples.

We aim to use the ideas presented in this paper in further studies. Namely, we will study the behavior
of the solution with respect to the other hyperparameter, @, and consider other optimization schemes,
predominantly focusing on imaging applications. We will also work on developing an optimization
scheme for a joint minimization of both the regularization functional and the loss functional for the
regularization parameter.
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Appendix - Supplementary proofs

Proofs for Section 4

We will here add more details regarding per-interval minimisers of the loss function R(¢), defined in
(3.10). First, we note the expression

m

X (@1 + 21y - D, P
R(t) = ;( 2 —a) +a) sgn(y;) — Xi) =: ; ri(1),

established in 4. Define b; = 1 +2|y;|, fori = 1,...,m. Loss function R(?) is continuous on [0, 1], and
differentiable on intervals

Io=|0.b"), 7, =(b,, 1], and I} = (b;'.b},), fork=1,...,m—1.
On I the loss function is constant, R(f) = >, X?. Define now a; = sgn(y;)(1 + 2a/ly,|), ¢; = sgn(y;) +
2x;(a — 1) + 2y;, d; = sgn(y;) + 2ax;. If 1 < k < m then ri(t) = x? for i > k, and for i < k we have
2
ri(t) = ‘l‘( fci—d; ) , and thus

t(l-a)+a

1 tc; — d; 1 tc; — d;
{t:——dil— + ¢; 4:——,'4.
) =~y =)+l T Y T a0 =)
Therefore, R, (1) = —m Zf-‘zl a;(tc;—d;). Equating the above expression with zero and restricting

the solution to the interval 7, yields the desired expression.

Proofs for Theorem 2.2
We will here add an analogue of Eq (2.8) for the case of bounded y. Assume |ly||, < VL holds

almost surely and consider a random matrix R = y ® y. Then ER = X(y), and ||R||, < L. Furthermore,
R" =R and

my(R) = max {|[E[RR]||.

E[R"R]||,} = [ERTR]|, < LIZW)I, -
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Let now y; ~ y and define a family of independent m X m matrices
Ri=y;®y;,, i=1,...,N,

so that R; ~ R. The empirical covariance f(y) = # >V R; is then the matrix sampling estimator and
by Corollary 6.2.1 from [32] we have that for all s > 0

Ns?/2 )

(2w -z, 2 5) < 2m eXp(_mz(R) T2Ls/3

Ns2/2

Writing now 2m exp (—m

) = exp(—u), we have a quadratic equation for s, whose solution is

4Le + +/(4Le)* + T2Nmy(R)e
s =
6N

for £ := u + 4log(2m). It then follows

< 4Le + 3+2Nmy(R)e < max(4L,3v2m,(R)) € + VNe
- 3N - 3 N

<c [u +log(@m) | [u+ 10g(2m)]
N N

. Plugging it all together we have that with probability at least 1 — exp(—u)

[Ew -z, s = 1(;5(2”” N 1<1>Vg(2m)_

Thus, provided N > u + log(2m) we have

N

_ max(4L,3v2my(R))
for C = ——=—"—+

[Fw -zw)|, < w2

Computations for a # 1 in Section 4.2

Lety = x + ow, where P(w; = 1) = % and assume X = (X,...,X,,0,...,0)7, and [x;| > 20,
fori = 1,...,h. In the following we will use v, to denote a vector in R¥ that consists of the first
k entries of a vector v € R™, and denote 1 = ow. In Section 4 we showed that the minimum of
R(t) = ||z’(y) - x||§ and ﬁ(t) = ||z’(y) —3(“2 in each sub-interval 7, for k = 1,...,m of [0, 1] is of the
form .

ek _ St did; 7k _ St did;

r —_—

k > T ok —
Zizl ac; Z,-;l ac;

for

a; = si(1+2alyiD), ¢ =s;+2x(=1+a)+2y, ¢ =s;+2%(-1+a)+2y,

d; = S; + ZCL’X,', di =8S; + 20’/)-(\1",
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where s; = sgn(y;). Denoting err = 2(X — X), we write
d; - d; = 2a (X - x;) = aerr;, and G - ¢; = 2(a — DX - x;) = (@ — Der;.

We now have

wk _ 7Rk _ f:l a;d; Zf | 4iCi — Zf:l a;d; Zi‘(:l aiCi
; i=1 QiCi Zf:l aic;
S 6 (d iCi — dici) = Qisi<jsk 4idlj (dza +djc; —dicj — dei)
Zi'(:l aic; Zf:l aic; -

Writing down each of the terms in the numerator we get

dia —dic; = —Za/erri(yi - Xl') —err;d; = —erra;,

where we use the fact that ¢; = d; + 2(y; — X;). We also get

dic; +dc; — El;cj - c7jc,- =err;((@ — d; — ac;) + err; ((a -1, - acj) =— (errja,- + err,-aj).

Thus,
k k k k k
Z a;d; Z aic; — Z a,fz’?Z aic; = — Z aerr; + Z a;a;(a;er; + a;err;)
i=1 i=1 i=1 i=1 i=1 1<i<j<k
k k
==Y em|a +a; ) at|=—llawl} ) aem

i=1 i£] i=1
Turning our attention to the denominator we have

k k k
Za,c, E ac; = E al2 + E a,a; ccj+c,cj)

i=1 i=1 i= 1<i<j<k
k k k
= (Z aic,-) +(a@-1) (Z a,c,-) Z a;err;,
i=1 i=1 j=1

due to
cicj+cic;=2cici+ (@—1) (errjci + erricj), and ¢;¢; = ¢} + (a — 1)cier;.

Putting it all together and rewriting we have

2
mk _ = l[@rll; @i, erri)

(@l = 2 = Dé@en ) (Il = 26 = i@ (y = %)1.0)

and recall n,,, = (Y — X)1. Taking now k = m we have by Cauchy-Schwartz inequality

lall3
Topt — Lopt| < -
Jfop = Top (1ali2 ~ 26 ~ 1)@, ) (1l - 2(a ~ D¢,y - )w x|, -
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The term ||x - i” , can be bounded as in Section 4. To bound the first factor we compute

()|

l1all>

llall3 - 2(a — 1)@, n)| = llall3 |1 - 2(@ - 1)

Provided® ‘Z(a/ - 1)<ﬁ,n>' < %illallz we have

llall,

1 -2(a-1) al
2

<211+ 2(a-1)

< 2(1 + 20— 1] ”“”2),

llall,

and

a -1
_’y_x -X
1 - 2(a - 1)<“”3T>‘ < 2[1 +2la -1 _||y”a”A||2) < 2(1 +2a -1 —::Z”z)
2 2 ’

where in the last line we used y — X = (Id — ﬁ)y and the fact ||ld — P||, = ||P||, for non-trivial (neither
null nor identity) orthogonal projections P. For @ > 1 we have

-1k nd2ge - 1 Mk

lall, =

<1,
llall,

using |lall, > 2|e||lyll,, and the signal-to-noise gap in the last inequality. On the other hand, for
0 < a < 1 we have |lyl| = | + 1|l $ VA + o v/m, with high probability, giving
lall3 |

(1 20~ 16 m) (1~ 20— @y )]~ V"

— — h
Itopt - lopt| < “H - HH2 t+0 \/;,
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In conclusion, for @ > 0 we have

as desired.

@ AIMS Press

$This holds for example if (@ — 1)202m < m + 4a|lyll, + 40 |yl
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