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Abstract: It was shown that unbounded solutions of the Neumann initial-boundary value problem to
the two-dimensional Keller–Segel system can be induced by initial data having large negative energy
if the total mass Λ ∈ (4π,∞) \ 4π · N and an example of such an initial datum was given for some
transformed system and its associated energy in Horstmann–Wang (2001). In this work, we provide
an alternative construction of nonnegative nonradially symmetric initial data enforcing unbounded
solutions to the original Keller–Segel model.
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1. Introduction

The main purpose of this note is to provide an alternative construction of nonnegative and
nonradially symmetric initial data for some Keller–Segel-type models which will enforce finite or
infinite blowup. Consider the following functional:

F (u, v) :=
∫

Ω

(
u log u − uv +

1
2
|∇v|2 +

1
2

v2
)

dx,

where Ω ⊂ R2 is a bounded domain with C2 boundary ∂Ω and a pair of nonnegative smooth functions
(u, v). The main result of this note is stated as follows.
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Theorem 1.1. For any M > 0 and Λ ∈ (4π,∞) there exists a pair of nonnegative functions (u0, v0) ∈
(C∞(Ω))2 satisfying ‖u0‖L1(Ω) = Λ,

F (u0, v0) < −M.

The above functional F (u, v) appears in the study of the minimal Keller–Segel system:
ut = ∆u − ∇ · (u∇v) x ∈ Ω, t > 0,
vt = ∆v − v + u x ∈ Ω, t > 0,
∂νu = ∂νv = 0 x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)

and also one of the following chemotaxis model featuring a signal-dependent motility function of the
negative exponential type:

ut = ∆(e−vu) x ∈ Ω, t > 0,
vt = ∆v − v + u x ∈ Ω, t > 0,
∂νu = ∂νv = 0 x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1.2)

Classical positive solutions of (1.1) satisfy the following energy-dissipation identity ( [4, 9]):

d
dt
F (u, v)(t) +

∫
Ω

u
∣∣∣∇ log u − ∇v

∣∣∣2 dx + ‖vt‖
2
L2(Ω) = 0,

while for the classical solutions to (1.2), there holds ( [2]):

d
dt
F (u, v)(t) +

∫
Ω

ue−v
∣∣∣∇ log u − ∇v

∣∣∣2 dx + ‖vt‖
2
L2(Ω) = 0.

In both cases, the above energy identities will immediately give rise to the a priori upper bound for
F (u, v)(t). On the other hand, for any given initial data of small total mass such that ‖u0‖L1(Ω) < 4π, one
could derive a lower bound for the energy functional and then the classical solutions of both systems
(1.1) and (1.2) exist globally in time and remain bounded uniformly in the two-dimensional setting
(see [2,4,7,9]). For large data, unbounded solutions of the above problems could be constructed based
on observations of the variational structure of the stationary problem and by taking an advantage of the
subtle connection between its associated functional with the energy F . In [5] the authors introduced a
transformation problem of the original system (1.1) with the unknowns being the cell density and the
relative signal concentration. Then they constructed unbounded solutions for the transformed problem,
which in turn implied blowup of the original one.

In this note we would rather to construct an unbounded solution to the original system (1.1) or (1.2)
in a more direct way. To this aim, let us sketch the main idea of the construction of an unbounded
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solution following [11] (see also [5]). First, the corresponding stationary solutions (us, vs) to (1.1) or
(1.2) satisfy the following problem:

vs − ∆vs =
Λ∫

Ω
evs dx

evs in Ω,

us =
Λ∫

Ω
evs dx

evs in Ω,

∂vs

∂ν
= 0 on ∂Ω,

(1.3)

for some Λ > 0. Denote

S(Λ) :=
{
(us, vs) ∈ C2(Ω) : (us, vs) is a solution to (1.3)

}
for Λ > 0. By [5, Lemma 3.5] and [10, Theorem 1], for Λ < 4πN there exists some C > 0 such that

sup{‖(us, vs)‖L∞(Ω) : (us, vs) ∈ S(Λ)} ≤ C

and
F∗(Λ) := inf{F (us, vs) : (us, vs) ∈ S(Λ)} ≥ −C.

On the other hand, let (u, v) be the classical positive solution to (1.1) or (1.2) in Ω × (0,∞). If the
solution is uniform-in-time bounded, by the compactness method (cf. [13, Lemma 3.1]), there exist a
sequence of time {tk} ⊂ (0,∞) and a solution (us, vs) to (1.3) with Λ = ‖u0‖L1(Ω) such that lim

k→∞
tk = ∞

and that
lim
k→∞

(u(tk), v(tk)) = (us, vs) in C2(Ω),

as well as
F (us, vs) ≤ F (u0, v0).

Thus taking account of the above discussion, for a pair of nonnegative functions (u0, v0) satisfying‖u0‖L1(Ω) = Λ < 4πN,

F (u0, v0) < F∗(Λ),
(1.4)

the corresponding solution must be unbounded or blow up in finite time.
Recently in [2], we constructed nonnegative initial data satisfying (1.4) when Λ ∈ (8π,∞) in the

radially symmetric case, which differs from those given in [5]. However, it was left open whether
our idea for a construction of adequate initial data can be extended to the nonradial symmetric case if
Λ ∈ (4π, 8π). Theorem 1.1 of the present work gives an affirmative answer to this question and as a
consequence, we have an alternative proof of the following corollaries ( [5]).

Corollary 1.2. For any Λ ∈ (4π,∞)\4πN there exists a nonnegative initial datum (u0, v0) satisfying
(1.4) such that the corresponding classical solution of (1.1) satisfies either:

• exists globally in time and lim sup
t→∞

(‖u(t)‖L∞(Ω) + ‖v(t)‖L∞(Ω)) = ∞;

• blows up in finite time.
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Remark 1.3. Finite time blowup solutions of the corresponding parabolic-elliptic system are
constructed if Λ > 4π in [8].

As to the system (1.2), global existence of classical solutions with any nonnegative initial data
was guaranteed in [2], which excluded the possibility of finite-time blowup. Hence, we arrive at the
following:

Corollary 1.4. For any Λ ∈ (4π,∞)\4πN there exists a nonnegative initial datum (u0, v0) satisfying
(1.4) such that the corresponding global classical solution of (1.2) blows up at time infinity.

In previous works [3, 6, 12, 13], nonnegative initial data with large negative energy were
constructed in several modified situations, e.g., the higher dimensional setting, the nonlinear diffusion
case, the nonlinear sensitivity case and the indirect signal case. In those works, the initial datum has a
concentration at an interior point of Ω. Similarly, in our precedent work [2], we constructed an initial
datum which concentrates at the origin based on certain perturbation of the rescaled explicit solutions
to the elliptic system 

−∆V = U x ∈ R2,

eV = U x ∈ R2,∫
R2 U = 8π,

provided that the total mass Λ > 8π. However, without the radially symmetric requirement and when
4π < Λ < 8π, we need to construct an initial datum that concentrates at a boundary point. To this
aim, some cut-off and folding-up techniques are introduced. Besides, a lemma of analysis (Lemma
2.2) plays a crucial role in estimating the value of each individual integral in the energy functional and
in order to get vanishing estimations of the error terms, the radius of the cut-off function used in our
case needs to depend on the rescaled parameter as well, which in contrast was fixed in the radially
symmetric case in [2].

2. Proof of Theorem 1.1

A straightforward calculation leads us to the following lemma.

Lemma 2.1. For any λ ≥ 1 and r ∈ (0, 1), the functions

uλ(x) :=
8λ2

(1 + λ2|x|2)2 , vλ(x) := 2 log
1 + λ2

1 + λ2|x|2
+ log 8 for all x ∈ R2,

satisfy ∫
R2

uλ dx = 8π, uλ(x) ≤ 8λ2, vλ(x) > log 8 > 0 in Br(0) := {x ∈ R2 | |x| < r}.

Since ∂Ω is C2 class, for any boundary point P ∈ ∂Ω there exist some R′ = R′P ∈ (0, 1) and some C2

function γP : R→ R such that

Ω ∩ BR′(0) = {(x1, x2) ∈ BR′(0) | x2 > γP(x1)}
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(cf. [1, Appendix C.1]). Moreover since Ω is a bounded domain, we can find some point
P0 = (P1, P2) ∈ ∂Ω satisfying that there exists R ∈ (0,R′) such that

(γP0)
′′(x1) ≥ 0 for all |P1 − x1| < R. (2.1)

By translation, we may assume P0 = (0, 0). Hereafter we fix the above R ∈ (0, 1) and γ = γP0 . In this
setting, we have the following lemma:

Lemma 2.2. Let f : R2 → R be a radially symmetric, nonnegative and continuous function. For any
r ∈ (0,R) it follows that

1
2

∫
Br(0)

f (x) dx − K(R)
(

sup
x∈Br(0)

f (x)
)
· r3 ≤

∫
Br(0)∩Ω

f (x) dx ≤
1
2

∫
Br(0)

f (x) dx,

where
K(R) := max

|ξ|≤R
γ′′(ξ) > 0. (2.2)

Proof. We first note that for any r ∈ (0,R),

Ω ∩ Br(0) = {(x1, x2) ∈ Br(0) | x2 > γ(x1)}.

Since γ(0) = 0 and the assumption (2.1), it follows by Taylor’s theorem that for all x1 ∈ (−R,R) we
have

γ′(0)x1 ≤ γ(x1) ≤ γ′(0)x1 +
1
2

K(R) · x2
1,

where K(R) := max|ξ|≤R γ
′′(ξ) > 0. Thus we can deduce that

A+ε ⊂ (Ω ∩ Br(0)) ⊂ A,

where

A+ε := {(x1, x2) ∈ Br(0) | x2 > γ
′(0)x1 +

1
2

K(R) · r2},

A := {(x1, x2) ∈ Br(0) | x2 > γ
′(0)x1}.

By denoting

B+ε := {(x1, x2) ∈ Br(0) | γ′(0)x1 +
1
2

K(R) · r2 ≥ x2 > γ
′(0)x1},

we confirm that
A+ε = A \ B+ε.

Since the radial symmetry of f implies∫
A

f (x) dx =
1
2

∫
Br(0)

f (x) dx,

we have
1
2

∫
Br(0)

f (x) dx −
∫

B+ε

f (x) dx ≤
∫

Ω∩Br(0)
f (x) dx ≤

1
2

∫
Br(0)

f (x) dx.
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Since

|B+ε| ≤
1
2

K(R)r2 · 2r = K(R)r3,

we have that

1
2

∫
Br(0)

f (x) dx −
(

sup
x∈Br(0)

f (x)
)
· K(R) · r3 ≤

∫
Ω∩Br(0)

f (x) dx ≤
1
2

∫
Br(0)

f (x) dx,

which concludes the proof. �

For any 0 < η1 < η2 we can construct a radially symmetric function φη2,η1 ∈ C∞(R2) satisfying

φη2,η1(B(0, η1)) = {1}, 0 ≤ φη2,η1 ≤ 1, φη2,η1(R
2 \ B(0, η2)) = {0}, x · ∇φη2,η1(x) ≤ 0.

For any λ > max{1, ( 4
R )

6
5 }, we fix

r := λ−
5
6 , r1 :=

r
2
,

and then 0 < r1 < r < min{1, R
4 }. Noting that

f (λ) := 1 −
1

1 + (λr1)2 = 1 −
4

4 + λ
1
3

↗ 1 as λ→ ∞,

and by the increasing property of f , we can find λ∗ > max{1, ( 4
R )

6
5 } such that

4π · f (λ∗) − 8K(R)λ−
1
2
∗ > 2π,

where K(R) is defined in (2.2). Here we confirm that for any λ > λ∗,

4π · f (λ) − 8K(R)λ−
1
2 > 2π.

Now we define the pair
(u0, v0) := (auλφr,r1χΩ, avλφ R

2 ,
R
4
χΩ)

with some a > 0. Here we remark that u0 and v0 are nonnegative functions belonging to C∞(Ω).

Lemma 2.3. Let Λ ∈ (4π,∞). For λ > λ∗ there exists

a = a(λ) ∈
(

Λ

4π
,

Λ

2π

)
(2.3)

such that ∫
Ω

u0 dx = Λ. (2.4)
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Proof. Firstly by changing variables, we see that∫
B(0,`)

uλ dx = 8
∫

B(0,λ`)

dy
(1 + |y|2)2

= 8π
∫ (λ`)2

0

dτ
(1 + τ)2

= 8π ·
(
1 −

1
1 + (λ`)2

)
for ` > 0, (2.5)

and that

8π ·
(
1 −

1
1 + (λr1)2

)
<

∫
Br(0)

uλφr,r1 dx < 8π ·
(
1 −

1
1 + (λr)2

)
.

Here in light of the radial symmetry of uλφr,r1 , we can invoke Lemma 2.2 to have

4π ·
(
1 −

1
1 + (λr1)2

)
− K(R)8λ2r3 <

∫
Ω

uλφr,r1χΩ dx < 4π ·
(
1 −

1
1 + (λr)2

)
,

where we used

max
x∈Br(0)

uλφr,r1(x) = 8λ2 and
∫

Ω

uλφr,r1χΩ dx =

∫
Br(0)∩Ω

uλφr,r1 dx.

By the choice of r > 0, we have

4π · f (λ) − 8K(R)λ−
1
2 <

∫
Ω

uλφr,r1χΩ dx.

Therefore for any λ > λ∗ we find some a = a(λ) satisfying

Λ

4π
< a <

Λ

2π

and (2.4). We conclude the proof. �

Lemma 2.4. There exists C > 0 such that for all λ > λ∗,∫
Ω

u0 log u0 dx ≤ 8πa log λ + C, (2.6)

where a = a(λ) is defined in Lemma 2.3.

Proof. Since s log s ≤ t log t + 1
e for s ≤ t and u0 ≤ auλχBr(0)∩Ω, it follows∫

Ω

u0 log u0 dx ≤

∫
Ω

(auλχBr(0)∩Ω) log(auλχBr(0)∩Ω) dx +
|Ω|

e

≤ a
∫

Ω

uλχBr(0)∩Ω log uλ dx + (a log a + e−1)
∫

Ω

uλ dx +
|Ω|

e
.

Since log uλ ≤ log(8λ2) = 2 log λ + log 8 and
∫

Ω
uλ ≤ 8π, we have∫

Ω

u0 log u0 dx ≤ 2a log λ
∫

Ω

uλχBr(0)∩Ω dx + 8π(a log 8 + a log a + e−1) +
|Ω|

e
.
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By Lemma 2.2 we obtain ∫
Ω

uλχBr(0)∩Ω ≤
1
2

∫
Br(0)

uλ ≤
1
2

∫
R2

uλ = 4π.

Therefore ∫
Ω

u0 log u0 dx ≤ 8πa log λ + C,

where we remark that the constant C is independent of a and λ in view of (2.3). We conclude the
proof. �

Lemma 2.5. There exists C > 0 such that for all λ > λ∗,∫
Ω

u0v0 dx ≥ 16πa2 log λ −
64πa2 log λ

4 + λ
1
3

− K(R)λ−
1
2 (2 log(1 + λ2) + log 8) −C, (2.7)

where a = a(λ) is defined in Lemma 2.3.

Proof. Using vλ > 0 in B(0, r), u0 = 0 on B(0, r)c and r1 <
R
4 , we see that∫

Ω

u0v0 dx ≥ a2
∫

B(0,r1)
uλvλχBr1 (0)∩Ω dx.

Since uλvλ is radially symmetric and

max
x∈Br1 (0)

uλvλ(x) = 8λ2(2 log(1 + λ2) + log 8),

we apply Lemma 2.2 and recall r1 = 2−1λ−
5
6 to deduce that∫

Ω

u0v0 dx ≥
1
2

a2
∫

B(0,r1)
uλvλ dx − K(R)8λ2(2 log(1 + λ2) + log 8) · r3

1

=
1
2

a2
∫

B(0,r1)
uλvλ dx − K(R)λ−

1
2 (2 log(1 + λ2) + log 8).

Since

vλ(x) > 2 log
1 + λ2

1 + λ2|x|2
for x ∈ B(0, r1),

we have that

1
2

a2
∫

B(0,r1)
uλvλ dx ≥

1
2

a2
∫

B(0,r1)
uλ · 2 log

1 + λ2

1 + λ2|x|2
dx

> 2a2 log λ
∫

B(0,r1)
uλ dx − a2

∫
B(0,r1)

uλ log(1 + λ2|x|2) dx.

By (2.5), it follows

2a2 log λ
∫

B(0,r1)
uλ dx ≥ 2a2 log λ · 8π

(
1 −

1
1 + (λr1)2

)
Mathematics in Engineering Volume 4, Issue 6, 1–12.
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= 16πa2 log λ −
64πa2 log λ

4 + λ
1
3

.

On the other hand, by (2.3) and direct calculations we see

a2
∫

B(0,r1)
uλ log(1 + λ2|x|2) dx = 8a2

∫
B(0,r1)

λ2 log(1 + λ2|x|2)
(1 + λ2|x|2)2 dx

= 16πa2
∫ λr1

0

s log(1 + s2)
(1 + s2)2 ds

< 8πa2
∫ ∞

0

log(1 + ξ)
(1 + ξ)2 dξ < ∞.

Combining above estimates, we obtain that∫
Ω

u0v0 dx ≥ 16πa2 log λ −
64πa2 log λ

4 + λ
1
3

− K(R)λ−
1
2 (2 log(1 + λ2) + log 8) −C

for λ > λ∗ with some positive constant C, which is independent of a and λ due to (2.3). �

Lemma 2.6. For any ε1 > 0 there exists C(ε1) > 0 such that for all λ > λ∗,

1
2

∫
Ω

(
v2

0 + |∇v0|
2
)

dx ≤ 8π(1 + ε1)a2 log λ + C(ε1), (2.8)

where a = a(λ) is defined in Lemma 2.3.

Proof. Since
1 + λ2

1 + λ2|x|2
≤

1 + λ2

λ2|x|2
≤

(
2
|x|

)2

for λ > 1,

we see that for λ > 1
|vλ(x)| ≤ 4 log

2
|x|

+ log 8 in B1(0).

Hence it follows from straightforward calculations that there is a positive constant C satisfying∫
Ω

v2
0 dx ≤ a2

∫
B1(0)

(
4 log

2
|x|

+ log 8
)2

dx

≤ C, (2.9)

where the constant C is independent of a and λ due to (2.3).
Moreover by Young’s inequality, for any ε1 > 0 there exists C′(ε1) > 0 such that

|∇v0|
2 =a2|φ R

2 ,
R
4
∇vλ + ∇φ R

2 ,
R
4
vλ|2χB R

2
(0)∩Ω

≤a2(1 + ε1)φ2
R
2 ,

R
4
|∇vλ|2χB R

2
(0)∩Ω + C′(ε1)a2|∇φ R

2 ,
R
4
|2v2

λχB R
2

(0)∩Ω.

Since by (2.9) we have some C > 0 such that

a2
∫

Ω

|∇φ R
2 ,

R
4
|2v2

λχB R
2

(0)∩Ω dx ≤ C

Mathematics in Engineering Volume 4, Issue 6, 1–12.
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and by the direct calculations, we have

|∇vλ(x)| =
4λ2|x|

1 + λ2|x|2
,

and then we infer that∫
Ω

|∇v0|
2 dx ≤ a2(1 + ε1)

∫
Ω

φ2
R
2 ,

R
4
|∇vλ|2χB R

2
(0)∩Ω dx + C′(ε1)a2

∫
Ω

|∇φ R
2 ,

R
4
|2v2

λdx

≤ 16a2(1 + ε1)
∫

B R
2

(0)∩Ω

λ4|x|2

(1 + λ2|x|2)2 dx + C′′(ε1)

with some C′′(ε1) > 0. Since
λ4|x|2

(1 + λ2|x|2)2 is radially symmetric, we can invoke Lemma 2.2 to see

∫
Ω

|∇v0|
2 dx ≤ 8a2(1 + ε1)

∫
B R

2
(0)

λ4|x|2

(1 + λ2|x|2)2 dx + C′′(ε1),

thus
1
2

∫
Ω

|∇v0|
2 dx ≤ 4a2(1 + ε1)

∫
B1(0)

λ4|x|2

(1 + λ2|x|2)2 dx +
C′′(ε1)

2
.

On the other hand, ∫
B1(0)

λ4|x|2

(1 + λ2|x|2)2 dx = π

∫ λ2

0

τ

(1 + τ)2 dτ

≤ π

∫ λ2

0

1
1 + τ

dτ

= π log(1 + λ2).

Since λ > 1, it follows
log(1 + λ2) ≤ log(2λ2) = 2 log λ + log 2.

Hence
1
2

∫
Ω

|∇v0|
2 dx ≤ 4πa2(1 + ε1) · (2 log λ + log 2) +

C′′(ε1)
2

.

Therefore we conclude

1
2

∫
Ω

|∇v0|
2 dx ≤ 8πa2(1 + ε1) log λ + C(ε1),

where the constant C(ε1) is independent of a and λ due to (2.3). �

Proof of Theorem 1.1. For any Λ ∈ (4π,∞), we have Λ/4π > 1. In view of (2.3), we can fix ε1 > 0
independently of λ such that (1 − ε1)a − 1 > (1 − ε1) Λ

4π − 1 > 0, where a = a(λ) is defined in Lemma
2.3. Then it follows that

a((1 − ε1)a − 1) >
Λ

4π

(
(1 − ε1)

Λ

4π
− 1

)
> 0, for all λ > λ∗. (2.10)
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Collecting (2.6), (2.7) and (2.8), we infer that there exists some C > 0 such that

F (u0, v0) ≤ I1 · log λ + I2 + C,

where

I1 := 8πa − 16πa2 + 8πa2(1 + ε1) = −8πa((1 − ε1)a − 1),

I2 :=
64πa2 log λ

4 + λ
1
3

+ K(R)λ−
1
2 (2 log(1 + λ2) + log 8).

Here (2.10) implies I1 < 0 for all λ > λ∗. On the other hand, we note

lim
λ→∞

I2 = 0.

Based on the above discussion, for Λ ∈ (4π,∞) and M > 0, we can choose some λ > λ∗ such that

F (u0, v0) < −M.

We conclude the proof. �
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