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1. Introduction

This paper is devoted to the analysis of Schrödinger operators on the two dimensional torus T2 with
variable coefficients depending either on time or on space.

In the time-dependent case, being, in particular, a time-degenerate case, a time-weighted version
of Bourgain’s sharp L4-Strichartz estimate will be derived and applied to the corresponding semilinear
initial value problem (IVP). As for the (special) space-dependent nondegenerate case, the sharp local
well-posedness in Hε(T2), for any ε > 0, of the corresponding nonlinear cubic initial value problem
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will be shown.
Before describing in detail the operators under consideration and the problems addressed in this

work, we recall that the celebrated sharp L4-Strichartz estimate on T2 proved by Bourgain [1] for the
rational torus and by Bourgain-Demeter [3] in the general case states that:

‖eit∆xu0‖L4
t ([0,1]×T2) ≤ Cε‖u0‖Hε (T2), ε > 0. (1.1)

Here and in the rest of the paper we shall refer to (1.1) as Bourgain’s sharp Strichartz estimate on T2.
Let us start by introducing Schrödinger equations with time variable coefficients, a topic that has

attracted the interest of mathematicians and physicists in the last decades. For instance, equations of
the form

i∂tu + b(t)∆xu + h(t)u|u|2 + v(t, x)u = 0, (1.2)

under some assumptions on the time dependent functions, have been recently studied in the context of
Bose-Einstein condensations and nonlinear optics in the Euclidian setting. Exact one and two soliton
solutions for (1.2) have been derived in [14], whereas similar related problems have been studied, for
example, in [5, 19, 20] (see also references therein). Interestingly it was shown in [20] that the nature
of the soliton solution (canonical soliton or deformed canonical soliton) to Eq (1.2) is influenced by
the choice of the time dependent coefficients b, h and v.

Time-degenerate equations of the form (1.2) (with b(0) = 0), still in the Euclidean setting, have
been investigated in connection with other mathematical problems. Local well-posedness results for
the homogeneous IVP associated with time-degenerate equations of the form (1.2) (with h = v = 0)
have been derived in [6]. The validity of smoothing estimates and the local well-posedness of the
nonlinear IVP for time-degenerate equations of the form (1.2) was proved by the authors in [9], while
Strichartz estimates for the same kind of time-degenerate equations (with v = 0) have been derived
in [8] by the first author and Ruzhansky. All the results listed hold for space variable in Rd. In the
present work instead we are interested on investigating Strichartz estimates and well-posedness in the
periodic setting.

Let us now go back to the Bourgain’s sharp Strichartz estimate (1.1). We would like to stress
that, in spite of the fact that a deep analysis of Strichartz estimates on the torus and on more general
manifolds has been carried out in the last years, as we will recall below, Bourgain’s sharp result remains
unproved for variable coefficient Schrödinger operators on T2, even in the simplest case when the
Laplace operator is replaced by an elliptic operator with coefficients which are smooth and almost
constant.

In the Euclidean setting Strichartz estimates for non-degenerate space-variable coefficient
Schrödinger operators were proved by the second author and Tataru in [18], and, in the non-elliptic
case, by Salort in [17]. Smoothing estimates for non-degenerate space-variable coefficient
Schrödinger operators have been considered by Kenig, Ponce, Rolvung and Vega, see, for
instance, [11] and references therein. Smoothing and Strichartz estimates for asymptotically flat
Schrödinger operators were derived by Marzuola, Metcalfe and Tataru in [15].

In the manifolds setting Strichartz estimates on general compact manifolds have been proved by
Burq, Gérard and Tzvetkov in [4] and by Hani in [10], and by Mizutani and Tzvetkov in [16] in the
non-elliptic case. Specifically, Theorem 1 in [4] states the following:

Let (M, g) be a Riemannian compact manifold of dimension d ≥ 1 and ∆ be the Laplace Beltrami
operator on M. Given p, q satisfying the scaling condition 2/p + d/q = d/2, and p ≥ 2, q < ∞, the

Mathematics in Engineering Volume 4, Issue 4, 1–23.



3

solution v of
i∂tv(t, x) + ∆v(t, x) = 0, v(0, x) = v0(x),

satisfies for any finite time interval I,

‖v(t)‖Lp(I)Lq(M) ≤ C(I)‖v0‖H
1
p (M)

. (1.3)

It is clear that Boungain’s sharp result on T2 is not covered by (1.3), since, for p = q = 2 and
M = T2, (1.3) gives

‖v(t)‖L4(I)L4(T2) ≤ C(I)‖v0‖H
1
4 (T2)

.

However, still in [4], it is shown that estimate (1.3) is actually sharp when M is the sphere Sd with
d ≥ 3.

The observations and results mentioned above motivated our analysis of the following linear
Schrödinger equations with variable coefficients in T2:

i∂tu + g′(t)∆xu = 0, (1.4)

and
i∂tu + a1(x1)∂2

x1
u + a2(x2)∂2

x2
u = 0, (1.5)

where g′, representing the derivative of a strictly monotone function g ∈ C1(R), with g(0) = 0, is such
that g′(0) = 0, while ai ∈ C∞(T), for i = 1, 2, are strictly positive functions∗.

For the time-degenerate Eq (1.4) (which is now considered in a non-Euclidean setting), a suitable
weighted version of Bourgain’s sharp-Strichartz estimate on T2 will be obtained. As a consequence
of the aforementioned inequality, a local well-posedness result for the semilinear IVP associated with
(1.4) will be obtained.

As for Eq (1.5), by exploiting a change of variables in combination with the use of a gauge
transform, we will be able to apply Bourgain’s sharp-Strichartz estimate to obtain the local
well-posedness of the corresponding cubic IVP in Hε(T2), ε > 0 (the same result as the one we
observe in the non-degenerate constant coefficients case).

Although the study of (1.4) and (1.5) is interesting on its own term, the analysis of these operators
shows that sharp Strichartz estimates on T2 can be obtained even when some variable (possibly
degenerate in time) coefficients are present, and as a consequence also sharp local well-posedness
results in the same settings hold true.

Indeed, while the result in [4] allows to prove local well-posedness in H s(T2), with s > 1/4, of
the cubic IVP associated with the constant coefficient Schrödinger operator on T2, here we manage to
combine different techniques to obtain sharp local well-posedness in H s, s > 0, when some variable
coefficients are present.

For completeness we list below the main results of this paper.

1.1. Well-posedness of cubic nonlinear Schrödinger equations with variable coefficients on R × T2

Let g ∈ C∞(Rt) be a strictly monotone function such that g(0) = g′(0) = 0, let f be a smooth function
such that f ∈ H1,b

g (R) for b ∈ (1/2, 1), where H1,b
g (R) is as in Definition 2.5, and let X̃s,b

g (R × T2) be the
Banach space as in Definition 2.2. Then the following theorems hold.

∗Here we assume smoothness for a1 and a2, but much less regularity is required for our analysis.
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Theorem 1.1. Let s > 0 and b ∈ (1/2, 1). Then, for every u0 ∈ H s(T2), there exists a unique solution
of the IVP {

i∂tu + g′(t)∆xu = g′(t)|u|2u,
u(0, x) = u0(x),

(1.6)

in the time interval [−T,T ] for a suitable time T = T (‖u0‖Hs). Moreover the solution u satisfies

u ∈ C([−T,T ]; H s)

and, for I closed neighborhood of [−T,T ], and χI a smooth cutoff function such that χI ≡ 1 on [−T,T ],
we have that there exists b ∈ (1/2, 1) such that

χIu ∈ X̃s,b
g (R × T2).

Theorem 1.2. Let s > 0 and b ∈ (1/2, 1). Then, for every u0 ∈ H s(T2), there exists a unique solution
of the IVP {

i∂tu + g′(t)∆xu = f (t)|u|2u,
u(0, x) = u0(x),

(1.7)

in the time interval [−T,T ] for a suitable time T = T (‖u0‖Hs). Moreover the solution u satisfies

u ∈ C([−T,T ]; H s)

and, for a closed neighborhood I of [−T,T ], we have that there exists b ∈ (1/2, 1) such that

χIu ∈ X̃s,b
g (R × T2)

with χI being a smooth cutoff function such that χI ≡ 1 on [−T,T ].

Let a1, a2 ∈ C∞(T) be two real valued strictly positive functions and Xs,b
Φ,α̃(R × T2) the Banach space

in Definition 2.4. Then the following local well-posedness result holds.

Theorem 1.3. Let s > 0 and b ∈ (1/2, 1). Then, for every u0 ∈ H s(T2), there exists a unique solution
of the IVP {

i∂tu + a1(x1)∂2
x1

u + a2(x2)∂2
x2

u = u|u|2,
u(0, x) = u0(x),

(1.8)

in the time interval [−T,T ] for a suitable time T = T (‖u0‖Hs). Moreover the solution u satisfies

u ∈ C([−T,T ]; H s)

and, for a closed neighborhood I of [−T,T ], we have that there exists b ∈ (1/2, 1) such that

χIu ∈ Xs,b
Φ

(R × T2)

with χI being a smooth cutoff function such that χI ≡ 1 on [−T,T ].

Remark 1.4. Applying the strategies employed in the results above one can also derive the local well-
posedness of the IVP  i∂tu + g′(t)

(
a1(x1)∂2

x1
u + a2(x2)∂2

x2
u
)

= f (t)u|u|2,
u(0, x) = u0(x),

with solution in a suitable Xs,b
g,Φ space (see Definition 2.4).
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1.2. Well-posedness of the quintic nonlinear Schrödinger equations on R × T

Under the same assumptions on the functions g and f the following results hold.

Theorem 1.5. Let s > 0 and b ∈ (1/2, 1). Then, for every u0 ∈ H s(T), there exists a unique solution of
the IVP {

i∂tu + g′(t)∆xu = g′(t)|u|4u,
u(0, x) = u0(x),

(1.9)

in the time interval [−T,T ] for a suitable time T = T (‖u0‖Hs). Moreover the solution u satisfies

u ∈ C([−T,T ]; H s)

and, for I closed neighborhood of [−T,T ], and χI a smooth cutoff function such that χI ≡ 1 on [−T,T ],
we have that there exists b ∈ (1/2, 1) such that

χIu ∈ X̃s,b
g (R × T).

Theorem 1.6. Let s > 0 and b ∈ (1/2, 1). Then, for every u0 ∈ H s(T), there exists a unique solution of
the IVP {

i∂tu + g′(t)∆xu = f (t)|u|4u,
u(0, x) = u0(x),

(1.10)

in the time interval [−T,T ] for a suitable time T = T (‖u0‖Hs). Moreover the solution u satisfies

u ∈ C([−T,T ]; H s)

and, for a closed neighborhood I of [−T,T ], we have that there exists b ∈ (1/2, 1) such that

χIu ∈ X̃s,b
g (R × T)

with χI being a smooth cutoff function such that χI ≡ 1 on [−T,T ].

Let a ∈ C∞(T) be a real valued strictly positive function and Xs,b
Φ,α̃(R × T) as in Definition 2.4. Then

the following local well-posedness result holds.

Theorem 1.7. Let s > 0 and b ∈ (1/2, 1). Then, for every u0 ∈ H s(T), there exists a unique solution of
the IVP {

i∂tu + a(x)∆xu = u|u|4,
u(0, x) = u0(x),

(1.11)

in the time interval [−T,T ] for a suitable time T = T (‖u0‖Hs). Moreover the solution u satisfies

u ∈ C([−T,T ]; H s)

and, for a closed neighborhood I of [−T,T ], we have that there exists b ∈ (1/2, 1) such that

χIu ∈ Xs,b
Φ,α̃(R × T)

with χI being a smooth cutoff function such that χI ≡ 1 on [−T,T ].
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Remark 1.8. Applying the strategies employed in the results above one can also derive the local well-
posedness of the IVP {

i∂tu + g′(t)a(x)∆xu = f (t)u|u|4,
u(0, x) = u0(x),

with solution in a suitable X̃s,b
g,Φ,α̃ space (see Definition 2.4).

Below we will give detailed proofs of the two dimensional case (x ∈ T2), that have straightforward
applications in the one dimensional case (x ∈ T). However we expect equivalent results to be true in
higher dimensions after applying suitable adjustments in our assumptions and arguments.

Let us remark that in the sequel we will also give very precise proofs of some standard multilinear
estimates contained, for instance, in [1, 12]. Even if some of these results are well-known and
standard, detailed proofs allow to measure in a more precise way some key parameters appearing in
the contraction argument, as, for instance, the parameter δ associated with the length of the time
interval of existence, and, more importantly, some (dangerous) exponents appearing in the contraction
argument. It is only with a sharp evaluation of these quantities that the contraction argument can be
performed successfully and get sharp local well-posedness results.

We conclude this introduction by giving the plan of the paper. Section 2 is devoted to the definition
of the Xs,b

g -spaces which are central in our analysis. In Section 3 we derive the suitable weighted
formulation of Strichartz and multilinear estimates via the use of Xs,b

g -spaces. This section also contains
the proof of Theorem 1.1, 1.2, 1.5 and 1.6. Finally Section 4 will be devoted to the study of (1.8) and
(1.11), that is, in particular, to the proof of Theorem 1.3 and 1.7.

Notation. We shall use the notation A . B to indicate that there exists an absolute constant c > 0 such
that A ≤ cB.

2. Preliminaries

In this section we shall briefly recall some tools we will be using throughout the paper.
Given a function u ∈ C∞(Td), the Fourier and anti-Fourier transforms of u are defined as

û(k) = (F u)(k) =

∫
Td

e−ik·xu(x)dx,

and
u(x) = (F −1û)(x) =

∑
k∈Zd

eik·xû(k),

and, by Plancherel’s Theorem, we have the identity

‖u‖L2(Td) = ‖̂u‖`2(Zd).

Similarly, given a space-time dependent function v(t, x), with (t, x) ∈ R×Td, we can write v(t, x) by
means of the Fourier representation formula as

v(t, x) =
∑
k∈Zd

∫
R

e−i(k·x+tτ)v̂(k, τ)dτ,

Mathematics in Engineering Volume 4, Issue 4, 1–23.
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where here v̂(k, τ) (and in the rest of the paper) is the space-time Fourier transform.
As Bourgain did in his pioneering work in the periodic setting [1], also in our case we will make

use of the Xs,b-spaces recalled below.

Definition 2.1 (Xs,b Spaces). Let X be the space of functions u on R × Td such that

(i) u : R × Td → C;
(ii) t → u(t, x) is S(R) for all x ∈ Td;

(iii) x→ u(·, x) is C∞(Td).

Then, for s, b ∈ R, we denote by Xs,b the completion of the space X with respect to the norm

‖u‖Xs,b :=

∑
k∈Zd

(1 + |k|)2s
∫
R

(1 − |τ − |k|2|)2b |̂u(τ, k)|2dτ


1/2

.

We will now introduce a new notion of Xs,b space subordinate to a function g ∈ C∞(Rt). Let
g ∈ C∞(Rt) be a strictly monotone function such that g(0) = 0, then we define the modified Fourier and
inverse Fourier transform subordinate to g as

(F̃ u)(τ) :=
∫
R

e−ig(t)τu(t)dt

and
(F̃ −1v)(t) := g′(t)

∫
R

eig(t)τv(τ)dτ,

where u, v ∈ L1(R) ∩ L2(R). Note that, on denoting by ũ(τ) := (F̃ u)(τ) we have that the following
properties hold

• u(t) = (F̃ −1ũ)(t);
• F̃ (∂tu)(τ) = (−iτ)F̃ (g′u)(τ);
• ‖ũ‖L2(Rτ) = ‖ 1√

|g′ |
u‖L2(Rt);

• ‖g̃′u‖L2(Rτ) = ‖
√
|g′| u‖L2(Rt);

• ‖F̃ (
√
|g′|u)‖L2(Rτ) = ‖u‖L2(Rt);

When no confusion arises we shall also use the notation ũ(τ, k) for the space-time transform

ũ(τ, k) :=
∫
R×Td

e−i(g(t)τ+k·x)u(t, x)dtdx,

namely, the modified Fourier transform in time and the standard Fourier transform in space of a
function u on R × Td.

With this definition at our disposal we can now define the Xs,b
g and the X̃s,b

g spaces subordinate to g.

Definition 2.2 (Xs,b
g and X̃s,b

g spaces). Given a strictly monotone function g ∈ C∞(Rt), with g(0) = 0,
we define the space Xs,b

g as the completion of the space X in Definition 2.1 with respect to the norm

‖u‖Xs,b
g

:=

∑
k∈Zd

(1 + |k|)2s
∫
R

(1 + |τ − |k|2|)2b|ũ(τ, k)|2dτ


1/2

.
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With the same function g we define the spaces X̃s,b
g as

X̃s,b
g := {u ∈ Xs,b

g ; g′u ∈ Xs,b
g }.

Remark 2.3. Note that, by a simple change of variables, we have the following relations between Xs,b
g ,

X̃s,b
g and Xs,b spaces:

‖u‖Xs,b
g

=

∥∥∥∥∥ 1
g′ ◦ g−1 u(g−1(·), ·)

∥∥∥∥∥
Xs,b

and
‖u‖X̃s,b

g
:= ‖g′u‖Xs,b

g
= ‖u

(
g−1(·), ·

)
‖Xs,b ,

provided that g′u and u are smooth enough. Note also that

‖u‖X0,0
g

= ‖ũ‖L2
τ`

2
k

=

∥∥∥∥∥∥∥ 1√
|g′|

u

∥∥∥∥∥∥∥
L2

t,x

.

These simple observations will be crucial in the next section where the time-degenerate case
described by Eq (1.4) will be treated. We shall also explain below how these spaces are related with
the solution of the IVP associated with (1.4).

We conclude this section by defining some other spaces we will be using throughout the paper.

Definition 2.4 (Xs,b
Φ

, Xs,b
g,Φ, Xs,b

Φ,α̃, Xs,b
g,Φ,α̃ , and X̃s,b

g,Φ,α̃ spaces). Let Φ ∈ C∞(Td) and let g be as in Definition
2.2. Let also α̃ : R × Td → R × Td be such that α̃(t, x) := (t, α(x)), where α : Td → Td is a
diffeomorphism. Then we define the spaces Xs,b

Φ
, Xs,b

g,Φ, Xs,b
Φ,α̃, Xs,b

g,Φ,α̃ , and X̃s,b
g,Φ,α̃ as

Xs,b
Φ

(R × Td) := { f : R × Td → C; eΦ f ∈ Xs,b(R × Td)},
Xs,b

g,Φ(R × Td) := { f : R × Td → C; eΦ f ∈ Xs,b
g (R × Td)},

X̃s,b
g,Φ(R × Td) := { f : R × Td → C; eΦ f ∈ X̃s,b

g (R × Td)},

Xs,b
Φ,α̃(R × Td) := { f : R × Td → C; (eΦ f ) ◦ α̃ ∈ Xs,b(R × Td)},

Xs,b
g,Φ,α̃(R × Td) := { f : R × Td → C; (eΦ f ) ◦ α̃ ∈ Xs,b

g (R × Td)},

X̃s,b
g,Φ,α̃(R × Td) := { f : R × Td → C; (eΦ f ) ◦ α̃ ∈ X̃s,b

g (R × Td)}.

Definition 2.5 (Hp,b and Hp,b
g spaces). Let p ∈ [1,∞) and b ∈ R, then we define the spaces Hp,b(R) and

Hp,b
g (R) as

Hp,b(R) := { f ∈ Lp(R); f̂ , D̂b f ∈ Lp(R)}

equipped with the norm

‖ f ‖p
Hp,b :=

∫
R

〈τ〉pb| f̂ (τ)|pdτ,

with 〈τ〉 := (1 + |τ|2)1/2, and

Hp,b
g (R) := { f ∈ Lp(R); ‖ f ‖Hp,b

g
< ∞},

where ‖ f ‖p

Hp,b
g

:=
∫
R
〈τ〉pb| f̃ (τ)|pdτ.
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3. The degenerate time-dependent case

Here we focus on the analysis of the two-dimensional case, that is when x ∈ T2. We will use the
square torus to conduct our calculations, so that the symbol of the Laplacian is simply −|k|2. The
argument will be the same for any other torus. The one-dimensional case follows similarly and is
described at the end of this section.

We consider the time-degenerate Schrödinger equation on R × T2

i∂tu − g′(t)∆xu = 0,

where g′ is the derivative of a strictly monotone function g ∈ C∞(R), with g(0) = 0, and such that
g′(0) = 0. Additionally, g is supposed to have power growth, that is there exists α > 0 such that
|g( j)(t)| . (1 + |t|)α− j.

It is easy to see that the solution of the IVP associated with the equation under consideration and
with initial datum u(0, x) = u0 is given by

u(t, x) = S (t)u0 :=
∑
k∈Z2

e−ig(t)|k|2 û0(k),

where S (t) := S (t, 0) := eig(t)∆x represents the so called solution operator giving the solution at time t
starting at time 0. More generally, given a space-dependent function ϕ, we have

S (t, s)ϕ :=
∑
k∈Z2

e−i(g(t)−g(s))|k|2ϕ̂(k),

where

• S (t, t) = I ∀t ∈ R;
• S (t, s) = S (t, r)S (r, s), ∀r, s, t ∈ R;
• S (t, s)∆x = ∆xS (t, s).

Moreover by Duhamel’s principle the solution of the inhomogeneous IVP{
i∂tu − g′(t)∆xu = f (t, x)
u(0, x) = u0(x)

is given by

S̃ (t)u0 := S (t)u0 +

∫ t

0
S (t, s) f (s)ds.

Now, considering F̃ as the time-Fourier transform subordinate to g and applying F̃t→τFx→k to Eq
(1.4), we obtain that

F̃t→τFx→k(i∂tu − g′(t)∆xu) = 0

which is equivalent to
(−τ + |k|2)g̃′u(τ, k) = 0,

meaning that the modified Fourier transform of the product of g′ and the solution u is supported on the
paraboloid τ = |k|2.
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3.1. Strichartz and multilinear estimates

Under the previous assumptions on the function g we now prove the frequency localized
(time-)weighted Strichartz estimate from which the full (time-)weighted Strichartz estimate will
follow. Afterwards, we shall also give detailed proofs of some classical multilinear estimates holding
in the constant coefficients case. We will then translate these estimates in their suitable
(time-)weighted version to be used in the time-degenerate case. Some of the standard multilinear
estimates we prove here will be used in their original form in the analyis of the space-variable
coefficients case studied in Section 4.

For simplicity we assume that g is strictly increasing, where, recall, g(0) = g′(0) = 0. This
assumption is useful when we make certain change of variables. Note that the vanishing of g′ is
essential in order to have a degeneracy in the time-dependent Schrödinger operator.

Proposition 3.1. Let φN ∈ L2(T2) be such that supp φ̂N ⊆ B(0,N) := {k ∈ Z2; |k| ≤ N}, and let I ⊂ R be
a finite interval centered at zero. Then, for any ε > 0, we have

‖g′(t)1/4S (t)φN‖L4(I×T2) . Nε‖φN‖L2(T2). (3.1)

Proof. To prove the result we apply a change of variable in time and get

‖g′(t)1/4S (t)φN‖L4(I×T2) =

(∫
I×Td

g′(t)|eig(t)∆φN(x)|4dxdt
)1/4

=
t′=g(t)

(∫
I′×Td
|eit′∆φN(x)|4dxdt′

)1/4

= ‖eit′∆φN‖L4(I′×T2)

. Nε‖φN‖L2(T2),

where the last inequality follows from the standard case when g′(t) = 1 (see [1] for the rational case
and [3] for the general case). This shows (3.1) and concludes the proof. �

Proposition 3.2. Let φN1 , φN2 ∈ L2(T2), N1 >> N2, such that supp φ̂Ni ⊆ B(0,Ni) := {k ∈ Z2; |k| ≤ Ni},
and let I ⊂ R be a finite interval centered at zero. Then, for any ε > 0,

‖g′(t)1/2(S (t)φN1)(S (t)φN2)‖L2(I×T2) . min(N1,N2)ε‖φN1‖L2(T2)‖φN2‖L2(T2). (3.2)

Proof. The proof is straightforward and follows by simply observing that

‖g′(t)1/2(S (t)φN1)(S (t)φN2)‖L2(I×T2) = ‖(eit∆φN1)(e
it∆φN2)‖L2(I′×T2)

. Nε
2‖φN1‖L2(T2)‖φN2‖L2(T2),

where, once more, the last inequality is due to the application of classical results (see [1] for rational
tori and [7] for the general case). �

A Strichartz estimate similar to the one in Proposition 3.2 in any dimension and any p ≥ 2, with
g(t) = 1, was proved by Bourgain and Demeter [3], and hence, using the Littlewood-Paley
decomposition one gets the full (time-)weighted Lp-Strichartz estimate on I × T2 for p ≥ 2 below.
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Theorem 3.3. Let I be a finite time interval. Then, for p ≥ 2,

‖g′(t)1/pS (t)φ‖Lp(I×Td) . ‖φ‖L2(Td), p <
2(d + 2)

d
;

‖g′(t)1/pS (t)φ‖Lp(I×Td) . ‖φ‖Hs(Td), s > 0, p =
2(d + 2)

d
;

‖g′(t)1/pS (t)φ‖Lp(I×T2) . ‖φ‖Hs(T2), s >
d
2
−

d + 2
p

, p >
2(d + 2)

d
.

We now restrict ourselves again to the case d = 2.

Proposition 3.4. Let uN be a function on I × T2 such that the space-Fourier transform ûN(t, k) is
supported in B(0,N) := {k ∈ Z2; |k| ≤ N}. Then, for any s1 > 0 and b1 >

1−min{s1,1/2}
2 ( 1

4 < b1 <
1
2+,

s1 > 1 − 2b1 ), we have
‖χ[0,1]g′(t)1/4u‖L4(R×T2) . N s1‖χ[0,1]g′(t)u‖X0,b1

g
.

Proof. By applying the previous change of variables we have

‖χ[0,1]g′(t)1/4u‖L4(R×T2) = ‖χ[0,g(1)]u(g−1(t), ·)‖L4(R×T2)

. N s1‖χ[0,g(1)]u(g−1(t), ·)‖X0,b1 = N s1‖χ[0,1]g′(t)u‖X0,b1
g
,

where in the last line we applied the result in the standard case g′(t) = 1 in [1] and the relation between
Xs,b and Xs,b

g norms. �

Proposition 3.5. Assume that |I′| := |g(I)| = δ, then

‖χI(t)g′(t)S (t)u0‖Xs,b
g
. δ1/2−b‖u0‖Hs , ∀u0 ∈ H s(T2), (3.3)

∥∥∥∥∥∥g′(t)
∫ t

0
g′(s)S (t, s)w(s)ds

∥∥∥∥∥∥
Xs,b

g

. ‖g′(t)w‖Xs,b−1
g

, (3.4)

‖χI(t)g′(t)|u|2u‖Xs,b−1
g
. ‖χIg′(t)u‖2Xs,b′

g
‖χIg′(t)u‖Xs,b

g
, for b > 1/2, 1/4 < b′ < b, s > 0; (3.5)

‖χIg′(t)u‖Xs,b′
g
. δ

b−b′
8 ‖g′(t)u‖Xs,b

g
. (3.6)

Proof. First observe that (3.3), (3.4), (3.5) and (3.6) hold true in the standard case when g(t) = t
(see [1]). Now, by using the definition of modified Fourier transform (in time) with respect to g, we
have

F̃t→τFx→k(χIg′(t)S (t)u0)(τ, k) =

∫
R

e−ig(t)τ−ig(t)|k|2χIg′(t)̂u0(k)dt

=
t′=g(t)

∫
R

e−it′(τ+|k|2)χg(I)(t′)̂u0(k)dt′ = Ft→τFx→k(χg(I)eit∆u0)(τ, k),
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which, in particular, gives

‖χI(t)g′(t)S (t)u0‖Xs,b
g

= ‖χI(g−1(t))eit∆u0‖Xs,b

. |g(I)|1/2−b‖u0‖Hs ,

where in the last line we applied (3.3) in the standard case g(t) = t to conclude (3.3) in our case.
To prove (3.4) we apply the previous strategy, that is, after a change of variable we get∥∥∥∥∥∥g′(t)

∫ t

0
g′(s)S (t, s)w(s)ds

∥∥∥∥∥∥
Xs,b

g

=

∥∥∥∥∥∥
∫ t

0
ei(t−s′)∆w(g−1(s′))ds′

∥∥∥∥∥∥
Xs,b

. ‖w(g−1(s′))‖Xs,b−1 = ‖g′(t)w‖Xs,b−1
g

,

where in the last line we applied (3.4) in the standard case and the relation between Xs,b and Xs,b
g spaces.

Inequality (3.5) follows again from the standard case, indeed,

‖χI(t)g′(t)|u|2u‖Xs,b−1
g

= ‖χg(I)(t)|u(g−1(t))|2u(g−1(t))‖Xs,b−1

. ‖χg(I)(t)u(g−1(t))‖2Xs,b′ ‖χg(I)(t)u(g−1(t))‖Xs,b

= ‖χI(t)g′(t)u‖2Xs,b′
g
‖χI(t)g′(t)u‖Xs,b

g
,

which proves (3.5).
Finally, (3.6) can be proved again by means of the standard case, so we omit the details. This

concludes the proof. �

More generally one has that the following trilinear estimate holds.

Proposition 3.6. Let s > 0, b > 1/2 and 1/4 < b′ < b. Let also χI be a smooth cutoff function as
before. Then

‖g′(t) χIv1 χIv2 χIv3‖Xs,b−1
g
. ‖χIg′(t)v1‖Xs,b

g
‖χIg′(t)v2‖Xs,b′

g
‖χIg′(t)v3‖Xs,b′

g
(3.7)

Proof. By using the identity

‖g′(t) χIv1 χIv2 χIv3‖Xs,b−1
g

= ‖ χg(I)w1 χg(I)w2 χg(I)w3‖Xs,b−1 ,

with wi(t, x) = wi(g−1(t), x), i = 1, 2, 3, the proof follows from the standard case g(t) = t (see [1]). �

We will now prove some results holding in the classical constant coefficients case from which the
suitable formulation in our degenerate case will be derived.

Proposition 3.7. Let u ∈ Xs,b(R × T2) and let f = f (t) be such that f ∈ H1,b(R). Then, for all s > 0
and for all b ∈ (1/2, 1),

‖u f ‖Xs,b . ‖ f ‖H1,b‖u‖Xs,b . (3.8)
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Proof. Since
‖u f ‖Xs,b = ‖û ∗ f (τ, k)〈k〉s〈τ − |k|2〉b‖L2

t `
2
k

we can prove the result by duality on L2
τ`

2
k . We then take v ∈ L2

τ`
2
k such that ‖v‖L2

τ`
2
k

= 1, and have∑
k∈Z2

∫
R

|û ∗ f |(τ, k)〈k〉s〈τ − |k|2〉b|v|(τ, k)dτ

.
∑
k∈Z2

∫
R2
〈τ1 + τ2 − |k|2〉b〈k〉s |̂u|(τ1, k)| f̂ |(τ2)|v|(τ1 + τ2, k)dτ1dτ2

.
∑
k∈Z2

∫
R2
〈τ1 − |k|2〉b〈k〉s |̂u|(τ1, k)| f̂ |(τ2)|v|(τ1 + τ2, k)dτ1dτ2

+
∑
k∈Z2

∫
R2
〈τ2〉

b〈k〉s |̂u|(τ1, k)| f̂ |(τ2)|v|(τ1 + τ2, k)dτ1dτ2

= I + II.

For the term I we get

I =
∑
k∈Z2

∫
R2
〈τ1 − |k|2〉b〈k〉s |̂u|(τ1, k)| f̂ |(τ2)|v|(τ1 + τ2, k)dτ1dτ2

.

∫
Rτ2

| f̂ (τ2)|
∫
Rτ1

‖〈τ1 − |k|2〉b〈k〉sû(k)‖`2
k
‖v(τ1 + τ2, k)‖`2

k
dτ1

 dτ2

. ‖ f̂ ‖L1‖u‖Xs,b‖v‖L2
τ`

2
k
.

Similar computations on the term II give

II =
∑
k∈Z2

∫
R2
〈τ2〉

b〈k〉sû(τ1, k) f̂ (τ2)v(τ1 + τ2, k)dτ1dτ2

≤ ‖ f ‖H1,b‖u‖Xs,b‖v‖L2
τ`

2
k
.

Finally, putting together the estimates for I and II the result follows. �

Proposition 3.8. Let χI be a smooth cutoff function supported on [−2δ, 2δ] such that χI ≡ 1 on [−δ, δ],
and β ∈ H s+2b(T2). Then

‖χIβ‖Xs,b . ‖χI‖Hb
t
‖β‖Hs+2b

x
. δ1/2−b‖β‖Hs+2b

x
.

Proof. By definition of Xs,b spaces and by the properties of the functions χI and β we have that

‖χIβ‖Xs,b =
(∑

k∈Z2

∫
R

〈k〉2s〈τ − |k|2〉2b|χ̂I(τ)|2 |̂β(k)|2dτ
)1/2

.
(∑

k∈Z2

∫
R

〈k〉2(s+2b)〈τ〉2b|χ̂I(τ)|2 |̂β(k)|2dτ
)1/2

. ‖χI‖Hb
t
‖β‖Hs+2b

x
.
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We now write χI as χI(t) = ψ(δ−1t), with ψ supported on [−2, 2] and ψ ≡ 1 on [−1, 1], and have, since
χ̂I(τ) = δψ̂(δτ), that

‖χI‖Hb
t

=
(
δ2

∫
R

〈τ〉2b|ψ̂(δτ)|2dτ
)1/2

=
(
δ

∫
R

〈δ−1τ〉2b|ψ̂(τ)|2dτ
)1/2
. δ1/2−b‖ψ‖Hb

t
.

Finally, combining the two estimates above we obtain the desired inequality. �

Proposition 3.9. Let h ∈ H1(T2), s > 0, b′ < b and b ∈ (1/2, 1). Then, for p1 > 1/2 and s1 > 1,

‖χIh χIu1 χIu2 χIu3‖Xs,b−1 . ‖χIh‖Hp1
t Hs1

x
‖χIu1‖Xs,b‖χIu2‖Xs,b′ ‖χIu3‖Xs,b′ .

Proof. The proof follows by using the standard technique employed to prove Xs,b-multilinear estimates
(see [1]).

We proceed by duality (on L2
τ`

2
k) observing that

‖χIh χIu1 χIu2 χIu3‖Xs,b−1 = sup
v∈L2

τ`
2
k

‖v‖L2
τ`

2
k
=1

∣∣∣∣ ∫
Rτ0

∫
Rτ1

∫
Rτ2

∫
Rτ3

χ̂Ih(τ0, k0)χ̂Iu1(τ1, k1)χ̂Iu2(τ2, k2)

× χ̂Iu3(τ3, k3)〈τ0 + τ1 + τ2 + τ3 − |k0 + k1 + k2 + k3|
2〉b−1〈k0 + k1 + k2 + k3〉

s

× v(τ0 + τ1 + τ2 + τ3, k0 + k1 + k2 + k3)dτ0τ1dτ2dτ3

∣∣∣∣. (3.9)

We now take the Littlewood-Paley decomposition of h, u1, u2 and u3, that is we write

h =
∑

N0∈2Z

PN0h, u j =
∑

N j∈2Z

PN ju j, j = 1, 2, 3,

where PN is the Fourier multiplier such that P̂Nu(k) is supported in the region {k ∈ Z2; N/2 ≤ |k| ≤ N},
and replace them in (3.9) to get

(3.9) = sup
v∈L2

τ`
2
k

‖v‖L2
τ`

2
k
=1

∑
N0,N1,N2,N3

∑
|k0 |∼N0
|k1 |∼N1
|k2 |∼N2
|k3 |∼N3

∫
Rτ0

∫
Rτ1

∫
Rτ2

∫
Rτ3

|̂χIPN0h(τ0, k0)||̂χIPN1u1(τ1, k1)|

〈τ0 + τ1 + τ2 + τ3 − |k0 + k1 + k2 + k3|
2〉b−1|̂χIPN2u2(τ2, k2)|̂χIPN1u3(τ3, k3)|

× 〈k0 + k1 + k2 + k3〉
s|v(τ0 + τ1 + τ2 + τ3, k0 + k1 + k2 + k3)|dτ0dτ1dτ2dτ3. (3.10)

We then write∑
N0,N1,N2,N3

∑
|k0 |∼N0
|k1 |∼N1
|k2 |∼N2
|k3 |∼N3

=
∑

N0,N2,N3

∑
N1∼max{N0,N2,N3}

∑
|k0 |∼N0
|k1 |∼N1
|k2 |∼N2
|k3 |∼N3

+
∑

N0,N2,N3

∑
N1�max{N0,N2,N3}

∑
α

∑
k1∈Qα
|k0 |∼N0
|k2 |∼N2
|k3 |∼N3

, (3.11)
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where Qα is a cube of side ∼ max{N0,N2,N3} and where α ranges over the number of cubes of side
∼ max{N0,N2,N3} covering a cube of side N1. From (3.10) and (3.11) we obtain

‖χIh χIu1 χIu2 χIu3‖Xs,b−1 . sup
v∈L2

τ`
2
k

‖v‖L2
τ`

2
k
=1

( ∑
N0,N2,N3,

∑
N1�max{N0,N2,N3}

∑
α

N s
1

∫
R4
|̂χIPN0h(τ0, k0)|| ̂χIPQα

u1(τ1, k1)||̂χIPN2u2(τ2, k2)||̂χIPN3u3(τ3, k3)|

〈τ0 + τ1 + τ2 + τ3 − |(k0 + k1 + k2 + k3)|2〉b−1|P̂Q̃α
v̌(τ0 + τ1 + τ2 + τ3, k0 + k1 + k2 + k3)|dτ0dτ1dτ2dτ3

+
∑

N0,N2,N3,

∑
N1∼max{N0,N2,N3}

N s
1

∫
R4
|̂χIPN0h(τ0, k0)|| ̂χIPQα

u1(τ1, k1)||̂χIPN2u2(τ2, k2)||̂χIPN3u3(τ3, k3)|

〈τ0 + τ1 + τ2 + τ3 − |(k0 + k1 + k2 + k3)|2〉b−1|P̂Q̃α
v̌|(τ0 + τ1 + τ2 + τ3, k0 + k1 + k2 + k3)|dτ0dτ1dτ2dτ3

)
.

We now denote by v̌ the inverse Fourier transform of v(τ, k) and by Q̃α a suitable cube of side ∼ N2.
With these notations in mind, by using Plancherel’s theorem and the property |̂u∗χ̂I | ≤ |̂u|∗χ̂I = (|̂u|∨χI)∧

for χI such that χ̂I ≥ 0 (for more details see [2]), we have

‖χIh χIu1 χIu2 χIu3‖Xs,b−1 . sup
v∈L2

τ`
2
k

‖v‖L2
τ`

2
k
=1

( ∑
N0,N2,N3,

∑
N1�max{N0,N2,N3}

∑
α

N s
1

∫
R×T2

χI(t)|P̂N0h|
∨(x)|P̂Qα

u1|
∨(t, x) × |P̂N2u2|

∨(t, x)|P̂N3u3|
∨(t, x)

(〈τ0 + τ1 + τ2 + τ3 − |(k0 + k1 + k2 + k3)|2〉b−1|P̂Q̃α
v̌|)∨(t, x)χ3

I (t) dtdx

+
∑

N0,N2,N3,

∑
N1∼max{N0,N2,N3}

N s
1

∫
R×T2

χI(t)|P̂N0h|
∨(x)||P̂N1u1|

∨(t, x)

×|P̂N2u2|
∨(t, x)|P̂N3u3|

∨(t, x)(〈τ0 + τ1 + τ2 + τ3 − |(k0 + k1 + k2 + k3)|2〉b−1|P̂Q̃α
v̌|)∨χ3

I (t) dtdx
)

� sup
v∈L2

τ`
2
k

‖v‖L2
τ`

2
k
=1

(I + II).

Now the delicate part to analyze is the one where the condition N1 � max{N0,N3,N3} appears,
namely, the first term I on the right hand side of the inequality above. For such a term, on denoting by
M := max{N0,N3,N3}, we have

I .
∑

N0,N2,N3,

∑
N1�M

∑
α

N s
1‖χI(t)|P̂N0h|

∨(x)‖L∞t,x‖χI |P̂Qα
u1|
∨‖L4

t,x
‖χI |P̂N2u2|

∨‖L4
t,x

‖χI |P̂N3u3|
∨‖L4

t,x
‖(〈τ0 + τ1 + τ2 + τ3 − |(k0 + k1 + k2 + k3)|2〉b−1|P̂Q̃α

v̌|)∨‖L4
t,x
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.
∑

N0,N2,N3,

∑
N1�M

∑
α

N s
1‖χI(t)|P̂N0h|

∨(x)‖Hp1
t Hs1

x
‖χI |P̂Qα

u1|
∨‖L4

t,x
‖χI |P̂N2u2|

∨‖L4
t,x

‖χI |P̂N3u3|
∨‖L4

t,x
‖(〈τ0 + τ1 + τ2 + τ3 − |(k0 + k1 + k2 + k3)|2〉b−1|P̂Q̃α

v̌|)∨‖L4
t,x

. ‖χIh‖Hp1
t Hs1

x
‖χIu1‖Xs,b‖χIu2‖Xs,b′ ‖χIu3‖Xs,b′ ‖v̌‖L2

t,x
,

where in the first line we used Sobolev embeddings and Hölder’s inequality, while in the last one we
applied

‖χIPN f ‖L4
t,x
≤ Nε‖χI f ‖X0,b1 , b1 ≥ 1/2(1 −min{ε, 1/2}),

and choose b′ > 1/2(1 − ε), with ε satisfying 3ε < s. Now, taking the supremum over the functions
v ∈ L2

t `
2
k such that ‖v‖L2`2

k
= 1, we get the desired estimate for the term I. Finally, by similar arguments,

the required estimate can be proved for the term II as well, which concludes the proof. �

As a corollary of Proposition 3.9 we get the inequality below.

Corollary 3.10. Let s > 0 and b ∈ (1/2, 1) Then, for all s > 0, b′ < b and b ∈ (1/2, 1), we have

‖χIu1χIu2‖Xs,b−1 . ‖χIu1‖Xs,b‖χIu2‖Xs,b′ .

Proof. The proof follows form Proposition 3.9 by taking h = u3 = 1. �

From Proposition 3.6–3.9 and Corollary 3.10 we derive the suitable (weighted) formulation of the
multilinear estimates holding in the time-degenerate case.

Proposition 3.11. Let s > 0, b ∈ (1/2, 1), b′ < b, and Hp,b
g (R) as in Definition 2.5. Then, for h ∈ H1(T2)

and β ∈ H s+2b(T2), we have
‖g′(t) f (t)u‖Xs,b

g
. ‖g′ f ‖H1,b

g
‖g′u‖Xs,b

g
, (3.12)

‖g′(t)χIβ‖Xs,b
g
. ‖g′χI‖H2,b

g
‖β‖Hs+2b

x
, (3.13)

‖g′(t) χIu1 χIu2‖Xs,b−1
g
. ‖g′(t)χIu1‖Xs,b

g
‖g′(t)χIu2‖Xs,b′

g
, (3.14)

and, for p1 > 1/2, s1 > 1,

‖g′(t) χIh χIu1 χIu2 χIu3‖Xs,b−1
g
. ‖g′(t)χIh‖H2,p1

g Hs1
x
‖g′(t)χIu1‖Xs,b

g

× ‖g′(t)χIu2‖Xs,b
g
‖g′(t)χIu2‖Xs,b′

g
. (3.15)

Proof. The proof follows immediately from Proposition 3.6–3.9 and Corollary 3.10 by using the
identities ‖g′(t)v‖Xs,b

g
= ‖v(g−1(·), ·)‖Xs,b and ̂v ◦ g−1(τ) = g̃′v(τ). �

Let us remark that we will not be using all the estimates in Proposition 3.11 in the time-degenerate
setting. However, since the estimates in Proposition 3.8, 3.9 and in Corollary 3.10 involving standard
Xs,b-spaces will be used in the next section, we translated them in the time-degenerate setting for
completeness.
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3.2. Local well-posedness

With the previous estimates at our disposal we can now focus on the proof of the local
well-posedness of the IVP {

i∂tu + g′(t)∆xu = g′(t)|u|2u,
u(0, x) = u0(x).

The proof is centered on the contraction mapping theorem and by now the argument is standard [1,13].
Still we prefer to report the details below since we will be using the modified spaces X̃s,b

g .

Proof of Theorem 1.1. We start by defining the metric space X as

X := {u ∈ I × T2 → C; ‖u‖X̃s,b
g
< ∞},

where X̃s,b
g is as in Definition 2.2.

Now, given u0 ∈ H s(T2), and I = [−2δ, 2δ], with 0 < δ < 1 to be determined later, we define the
operator

Φu0(u) := χIS (t)u0 + χI(t)
∫ t

0
S (t, t′)g′(t′)|χI(t′)u(t′)|2χI(t′)u(t′)dt′,

where χI is a smooth cutoff function such that χI ≡ 1 on [−δ, δ], and prove that Φu0 is a contraction on
BR := {u; ‖u‖X̃s,b

g
≤ R} ⊂ X̃s,b

g , with R = 2C′δ1/2−b‖u0‖Hs(T2).
Note that, by using Proposition 3.5 and the fact that |g(I)| . δ (which is due to the properties of g),

we get, for u ∈ BR,
‖Φu0(u)‖X̃s,b

g
= ‖g′Φu0(u)‖Xs,b

g

= ‖g′(t)χIS (t)u0‖Xs,b
g

+ ‖g′(t)χI(t)
∫ t

0
S (t, t′)g′(t′)|χI(t′)u(t′)|2χI(t′)u(t′)dt′‖Xs,b

g

. |g(I)|1/2−b‖u0‖Hs(T2) + ‖χIg′(t)u‖2Xs,b′
g
‖χIg′(t)u‖Xs,b

g

≤ Cδ1/2−b‖u0‖Hs(T2) + C3δ1/2−bδ(b−b′)/4‖χIg′(t)u‖3Xs,b
g

≤
R
2

+ δ1/2−bδ(b−b′)/4R3.

Since 1
4 < b′ < b, b ∈ (1/2, 1), then, taking b = 1/2 + ε, with ε ∈ (0, 1/16) (so b ∈ ( 1

2 ,
9

16 )), and
b′ = 1/2− 4ε > 1/4, we have that 1/2− b + (b− b′)/4 = ε/4 > 0. Therefore, by choosing δ sufficiently
small and such that δ1/2−bδ(b−b′)/4R2 ≤ 1/2, from the previous inequality we obtain that Φu0 maps the
ball BR into itself.

To conclude that Φu0 is a contraction we write

χIu|χIu|2 − χIv|χIv|2 = χI(u − v)|χIu|2 + χIvχIuχI(u − v) + |χIv|2χI(u − v)

and apply (3.7) to get

‖Φu0(u) − Φu0(v)‖X̃s,b
g
. (‖χIg′(t)u‖2Xs,b′

g
+ ‖χIg′(t)v‖2Xs,b′

g
)‖χIg′(t)(u − v)‖Xs,b

g

. R3δ1/2−b+(b−b′)/4‖u − v‖X̃s,b
g
< ‖u − v‖X̃s,b

g
,
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where the last inequality follows by choosing, eventually, δ smaller than before. This, finally, gives the
result for t ∈ [−δ, δ], since, recall, χI ≡ 1 on [−δ, δ], and

u(t, x) = S (t)u0 +

∫ t

0
S (t, t′)g′(t′)|u(t′)|2(t′)u(t′)dt′, for all t ∈ [−δ, δ].

�

By using the previous approach we can also prove the local well-posedness of the IVP{
i∂tu + g′(t)∆xu = f (t)|u|2u,
u(0, x) = u0(x),

on I × T2, where I is a suitable finite interval of time and f is smooth enough, namely f ∈ H1,b
g (R) for

b ∈ (1/2, 1). Note that assuming f ∈ H1,b
g (R) in particular implies that f has to be zero at time zero of

the same order of g′.

Proof of Theorem 1.2. We start by defining the metric space X as

X := {u ∈ I × T2 → C; ‖u‖X̃s,b
g
< ∞},

where
X̃s,b

g := {u ∈ Xs,b
g ; g′u ∈ Xs,b

g },

and
‖u‖X̃s,b

g
= ‖g′u‖Xs,b

g
.

Now, given u0 ∈ H s(T2) such that ‖u0‖Hs = r, and I = [−2δ, 2δ], with 0 < δ < 1, we define the
operator

Φu0(u) := χIS (t)u0 + χI(t)
∫ t

0
S (t, t′) f (t′)|χI(t′)u(t′)|2χI(t′)u(t′)dt′

where χI is a smooth cutoff function such that χ ≡ 1 on [−δ, δ], and prove that Φu0 is a contraction on
BR := {u; ‖u‖X̃s,b

g
≤ R} ⊂ X̃s,b

g , with R = 2C′δ1/2−b‖u0‖Hs(T2).
Note that, by using Proposition 3.5, Proposition 3.11, and the fact that |g(I)| . δ (which is due to

the properties of g), we get, for u ∈ BR,

‖Φu0(u)‖X̃s,b
g

= ‖g′Φu0(u)‖Xs,b
g

= ‖g′(t)χIS (t)u0‖Xs,b
g

+ ‖g′(t)
∫ t

0
S (t, t′)g′(t′)

f (t′)
g′(t′)

|χI(t′)u(t′)|2χI(t′)u(t′)dt′‖Xs,b
g

. |g(I)|1/2−b‖u0‖Hs(T2) + ‖χIg′(t)u‖2Xs,b′
g
‖g′(t′)χIu

f (t′)
g′(t′)

‖Xs,b
g

. |g(I)|1/2−b‖u0‖Hs(T2) + ‖χIg′(t)u‖2Xs,b′
g
‖χIg′(t)u‖Xs,b

g
‖g′(t)

f (t)
g′(t)
‖H1,b

g

≤ Cδ1/2−b‖u0‖Hs(T2) + C3δ1/2−bδ(b−b′)/4‖g′u‖3
Xs,b

g
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≤
R
2

+ δ1/2−bδ(b−b′)/4R3 ≤ R

for b, b′ as before and δ sufficiently small. To prove that Φu0 is a contraction we follow the same steps
as before. This completes the proof.

�

The one dimensional case. The previous techniques apply with few suitable modifications in the case
when the problem is set on R × T. Here to prove that the quintic semilinear problem (1.10) is locally
well-posed with solution (multiplied by a suitable cutoff function in time) belonging to the Xs,b

g (R× T)
spaces, one translates, as in the previous case, the well-known standard Strichartz and multilinear
estimates into suitable weighted Strichartz and multilinear estimates. We omit the details which are
left to the interested reader.

Proof of Theorem 1.5. The proof is straightforward after applying the technique used in the
two-dimensional case based on the use of Xs,b

g -spaces. �

4. A space-variable coefficients case

This section is devoted to the study of the IVP{
i∂tu + a1(x1)∂2

x1
u + a2(x2)∂2

x2
u = u|u|2,

u(0, x) = u0(x),
(4.1)

with a1, a2 ∈ C∞(T) real valued and strictly positive. As before, we treat in detail the two dimensional
case above, since, with few modifications, the result in Theorem 1.7 about the quintic one-dimensional
case can be proved.

Our strategy to treat this problem consists in combining a change of variables with a gauge
transformation to reduce the problem to one where the linear part of the equation has constant
coefficients.

We recall that a gauge transformation is a multiplication operator of the form

T f (t, x) := eΦ(t,x) f (t, x)

where the function Φ (in this periodic setting) is periodic in x.
We start by applying in (4.1) the change of variables

(x1, x2) = (α1(y1), α2(y2)) := α(y),

so that, on denoting by v(t, y) := u(t, α(y)) and by v0(y) := u0(α(y)), and assuming that u solves (4.1),
we have

i∂tv(t, y) + ∆yv(t, y) = i∂tu(t, α(y)) + (∂2
x1

u)(t, α(y))(∂y1α1(y1))2 + (∂2
x2

u)(t, α(y))(∂y2α2(y2))2

+ (∂x1u)(t, α(y))∂2
y1
α1(y1) + (∂x2u)(t, α(y))∂2

y2
α2(y2).

Then, by choosing α(y) = (α1(y1), α2(y2)) such that ∂y1α1(y1) =
√

a1(α1(y1)) and
∂y2α2(y2) =

√
a2(α2(y2)), and using the fact that (∂x ju)(t, α(y)) = (∂y jv(t, y))∂y jα j(y j) for all j = 1, 2,
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we get that v solves i∂tv(t, y) + ∆yv(t, y) − (∂y1v(t, y))
∂2

y1
α1(y1)

∂y1α1(y1) − (∂y2v(t, y))
∂2

y2
α2(y2)

∂y2α2(y2) = v|v|2,
v(0, y) = v0(y).

(4.2)

We now apply the gauge transform

T f (t, y) := eΦ(y)v(t, y) = exp
{
−

1
2

∫ y1

0

α′′1 (s1)
α′1(s1)

ds1 −
1
2

∫ y2

0

α′′2 (s2)
α′2(s2)

ds2

}
f (t, y),

(where, note, Φ is periodic since ∂y jα j(y j) =
√

a j(α j(y j))) on the left and right hand side of (4.2) and
have, on denoting by w(t, y) := eΦ(y)v(t, y),

i∂tw + ∆yw −
(
∂2

y1
Φ + ∂2

y2
Φ + (∂y1Φ)2 + (∂y2Φ)2

)
w = e−2Φw|w|2.

Finally, we reduced the study of (4.1) to the study of{
i∂tw + ∆yw = e−2Φw|w|2 − βw
w(0, y) = w0(y)

(4.3)

with β = β(y) = ∂2
y1

Φ + ∂2
y2

Φ + (∂y1Φ)2 + (∂y2Φ)2, and w0(y) = eΦ(y)u0(α(y)).

Theorem 4.1. Let s > 0 and β ∈ H s+2b′(T2) with b′ > 1/2 − ε for some ε > 0. Then, given Φ such that
e−2Φ ∈ H1(T2), for every w0 ∈ H s(T2) there exists a unique solution of the IVP (4.3) in the time interval
[−T,T ] for a suitable T = T (‖w0‖Hs(T2)). Moreover, the solution w satisfies

w ∈ C([−T,T ]; H s(T2))

and
χIw ∈ Xs,b(R × T2),

with b ∈ (1/2, 1) such that b > b′, I a closed neighborhood of [−T,T ], and χI a smooth cutoff fuction
such that χI ≡ 1 on [−T,T ].

Proof. In this proof we consider the metric space X = Xs,b(R × T2) and take w0 ∈ H s(T2). We then
consider I = [−2δ, 2δ], with 0 < δ < 1 to be determined later, and define the operator

Ψw0(w) := χIS (t)w0 + χI(t)
∫ t

0
S (t, t′)

(
χ2

I e−2Φw(t′)|χIw(t′)|2 − χIβ(y)χIw(t′)
)
dt′,

where χI is a smooth cutoff function such that χI ≡ 1 on [−δ, δ]. Now, given BR := {w; ‖w‖Xs,b ≤ R},
with R = 2Cδ1/2−b‖w0‖Hs(T2) and C suitable (see the rest of the proof), we prove that Ψw0 is a contraction.
By using Proposition 3.7, 3.9 and Corollary 3.10, we get, for w ∈ BR, p1 > 1/2, s1 > 1 (here we take
p1 = 1/2 + ε′, with 0 < ε′ < 1 small enough),

‖Ψw0(w)‖Xs,b ≤ C1δ
1/2−b‖w0‖Hs(T2) + C2‖χIe−2Φ‖Hp1

t Hs1
x
δ1/2−b+(b−b′)/4‖χIw‖3Xs,b

+ ‖χIβ‖Xs,b′ ‖χIw‖Xs,b ,

≤ C1R + C′2R + C′3δ
1/2−b+(b−b′)/4R3 ≤ R (4.4)
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for b, b′ as above (see, for instance, the proof of Theorem 1.1), δ small enough and C suitable, for
instance C = 3 max{C1,C′2,C

′
3}. Note that in (4.4) we used the estimate in Proposition 3.8, that is,

‖χIβ‖Xs,b′ . ‖χI‖Hb′
t
‖β‖Hs+2b′

y (T2) . δ
1/2−b′C . C for b′ = 1/2 − ε, since 1/2 − ε < b′ < b, b ∈ (1/2, 1). By

similar arguments, eventually by choosing a different suitable constant C, we can conclude that Φw0 is
a contraction on BR. This, finally, concludes the proof (with T = δ). �

Proof of Theorem 1.3. In order to prove Theorem 1.3 it is enough to apply Theorem 4.1 to the IVP
(4.3). To do that we need that β ∈ H s+b′(T2) and that e−2Φ ∈ H1(T2). Since we have that a1, a2 ∈

C∞(T2), a1, a2 are strictly positive, α′1(y1) =
√

a1(α1(y1)) > 0, and α′2(y2) =
√

a2(α2(y2)) > 0, then we
get that Φ ∈ C∞(T2), and, consequently, that β and e−2Φ have the required properties. Therefore, by
Theorem 4.1, the IVP (4.3) is locally-well posed in H s for all s > 0, and, going back to the IVP (4.2)
with the inverse gauge transform, we can conclude that the latter is also locally well posed in H s, for
all s > 0, and that the solution v satisfies χIv ∈ Xs,b

Φ
(R × T2), where, recall,

Xs,b
Φ

(R × T2) := { f : R × T2 → C; eΦ f ∈ Xs,b(R × T2)}.

Finally, the solution u of (4.1), will belong to the space Xs,b
Φ,α̃ := { f : R × T2 → C; (eΦ f ) ◦ α̃ ∈

Xs,b(R × T2)}, where α̃ : R × T2 → R × T2 is the diffeomorphism given by α̃(t, y) := (t, α(y)). This
concludes the proof. �

Remark 4.2. Going back to the proof that we just concluded it is easy to see that one does not need
to require C∞(T) regularity for the coefficients a1, a2, in fact H2 is enough. Here we did not want to
concentrate on the regularity of the coefficients, but rather on the required regularity of the initial data,
and show that it is the same as the one required for a completely flat torus, that is H s, s > 0.
Remark 4.3. By combining the arguments applied in this and in the previous sections one can also
consider a problem of the form{

i∂tu + g′(t)
∑2

j=1 a j(x j)∂x ju = f (t)u|u|2,
u(0, x) = u0(x),

(4.5)

where g, f and a j, j = 1, 2, satisfy the same properties as above.
In this case, performing a change of variables in space first, and, afterwards, applying a gauge

transform with a suitable Φ = Φ(y), one finally reduces the problem (4.5) to one of the form (3.2)
(eventually with a nonlinearity of the form f (t)e−2Φw|w|2 − g′(t)β(x)w) to which Theorem 1.2 applies
with few modifications. Finally one goes back to the solution of the original initial value problem by
using the inverse gauge transform and changing variables again. The solution obtained this way will
belong to a suitable weighted space X̃s,b

g,Φ,α̃(R × T2) := { f : R × T2 → C; (eΦ f ) ◦ α̃ ∈ X̃s,b
g (R × T2)} with

α̃ as before.
The one dimensional case. Is it easy to see that in the one dimensional case, that is when the problem
is considered on R × T, the presence of a single space variable allows us to apply the same scheme
applied in the two-dimensional case.

Proof of Theorem 1.7. The proof is straightforward and follows from the two-dimensional strategy.
Therefore, after a change of variable in space followed by the application of a gauge transform with a
space-dependent function Φ, the problem is translated in a constant coefficients one. The solution of
the resulting constant coefficients nonlinear problem will, finally, provide the solution of the original
one via the use of the inverse gauge transform and a change of variables.
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Remark 4.4. We remark again that we expect that all the results of this paper can be generalized to the
higher dimensional setting with few modification. We also expect the results in the time-degenerate
case to be true on general closed manifolds combining our strategy with the known results mentioned
in the introduction.
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