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1. Introduction

The scope of this paper is to provide a generalization of recent results, obtained in [23], concerning
the approximation of brittle fracture energies for linearly elastic materials, by means of nonlocal
functionals defined on Sobolev spaces, which are easier to handle also from a computational point of
view.

In [23] an approach originally devised by Braides and Dal Maso [6] for the approximation of the
Mumford-Shah functional has been generalized to the linearly elastic context. Namely, it was shown
that, for a given bounded increasing function f : R+ → R+ the energies

Fε(u) :=
1
ε

ˆ
Ω

f
(
ε−

ˆ
Bε(x)∩Ω

W (Eu(y)) dy
)

dx
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Γ-converge to the functional

α

ˆ
Ω

W(Eu(x)) dx + 2βHn−1(Ju) ,

with α = f ′(0) and β = limt→+∞ f (t), in the L1(Ω)-topology. Above, W(Eu(y)) is a convex elastic
energy depending on the linearized strain Eu, given by the symmetrized gradient of a vector-valued
displacement u, whose jump set Ju represents the cracked part of a material. The energy space of the
limit functional is the one of generalized functions with bounded deformation, introduced in [17].

It is noteworthy that the above result allowed one for a general (convex) bulk energy W having
p-growth for p > 1. The proof strategy must then avoid, at least when estimating the bulk part, any
slicing procedure. This latter is instead successful in the special case∗ W(ξ) = |ξ|p , considered for
instance in [22]. There, non-local convolution-type energies of the form

1
ε

ˆ
Ω

f
(
ε

ˆ
Rn
|Eu(y)|p ρε(x − y) dy

)
dx (1.1)

are considered, where ρ is a convolution kernel whose support is a convex bounded domain and ρε(z)
is the usual sequence of convolution kernels ρ(z/ε)/εn. The Γ-limit of (1.1) with respect to the L1

convergence is given by ˆ
Ω

|Eu(x)|p dx +

ˆ
Ju

φρ(ν) dHn−1 ,

where the anisotropic surface density φρ depends on the geometry and on the size of suppρ. A similar
effort of generalizing the results of [6] to Mumford-Shah type energies with non-isotropic surface part
has been previously performed in [13].

In this paper, we extend the focus of [22, 23] by showing that general Griffith-type functionals of
the form

α

ˆ
Ω

W(Eu(x)) dx + 2β
ˆ

Ju

φ(ν) dHn−1 , (1.2)

where φ is any norm on Rn, can be obtained as variational limit of non-local convolution-type
functionals

1
ε

ˆ
Ω

f
(
ε

ˆ
Rn

W(Eu(y))ρε(x − y) dy
)

dx .

Above, f is again a bounded nondecreasing function with α = f ′(0) and β = limt→+∞ f (t), and the
unscaled kernel ρ has the bounded convex symmetric domain S := {ξ ∈ Rn : φ(ξ) ≤ 1} as its support.
This is the analogue, in the linear elastic setting, of the results in [13].

The proof strategy we devise is based on a localization method and involves nontrivial adaptions
to the method used in [23], in particular when estimating the bulk term in the Γ-liminf inequality
(Proposition 4.2). There, we have to impose (and this is the only point in the paper) an additional
restriction on the convolution kernel ρ, namely of being nonincreasing with respect to the given norm
φ (see Assumption (N2) below). This is namely needed in order to be able to estimate from below the
size of the nonlocal approximations of the bulk term in an anisotropic tubular neighborhood of the set
where they exceed the threshold β

α
, which heuristically corresponds to the breaking of the elastic bonds.

With this, a set K′ε with small area and bounded perimeter, where the fracture energy concentrates can
∗We remark that this particular case is however not the most relevant one from a mechanical point of view, as even for an isotropic

material additional terms in the bulk energy are expected to appear.
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be explicitly constructed. This yields an estimate of the Γ-liminf which has an optimal constant in front
of the bulk term, although being non-optimal for the surface energy.

Another non-optimal estimate for the Γ-liminf, but with an optimal constant for the surface energy
can be instead obtained by a slicing procedure, involving a comparison argument and the convexity of
the open set S (Proposition 4.3). As bulk and surface energy in (1.2) are mutually singular as measures,
a localization procedure entails then the Γ-liminf inequality (Proposition 4.6). Finally, the Γ-limsup
inequality (Proposition 5.1) can be obtained by a direct construction for a regular class of competitors
having a “nice” jump set, and which are dense in energy. Notice indeed that such an approximation (see
Theorem 2.3 for a precise statement) is possibile also with respect to an anisotropic norm φ, combining
the recent results in [8] with the ones in [12].

As a final remark, it would be desirable to get rid of the structural assumption (N2) on the
convolution kernels, which is used only in Proposition 4.2. It is our opinion that this is going to
require quite a delicate abstract analysis of the Γ-limit of nonlocal functionals which approximate
free-discontinuity problems in GS BD, possibly including also finite-difference models which are well
suited to numerical approximations (see [15] for a recent discrete finite-difference approximation of
some Griffith-type functionals in GS BD). A similar analysis for the S BV setting has been performed
in [11], where integral representation formulas for the limit energy have been provided. Furthermore,
nontrivial sufficient conditions have been given under which the bulk part of the energy can be
recovered by only considering weakly compact sequences in Sobolev spaces. We plan to defer this
abstract analysis to a forthcoming contribution. For the asymptotic analysis via Γ-convergence of
local free-discontinuity functionals in linear elasticity and the related issues, we refer the reader to the
very recent papers [7, 14, 20].

Outline of the paper: The paper is structured as follows. In Section 2.1 we fix the basic notation and
results on the function spaces we will deal with (Section 2.2), together with some technical lemmas
(Section 2.3) which will be useful throughout the paper. In Section 3 we list the main assumptions,
introduce our model (Eq (3.4)), and state the main results of the paper, provided in Theorem 3.1 and
Theorem 3.2. Section 4 is devoted to the proof of the compactness statements in the main Theorems
(Proposition 4.1), and to the Γ-liminf inequality, which is proved in Section 4.3 combining the estimates
in Sections 4.1 and 4.2. The proof of the upper bound is given in Section 5.

2. Notation and preliminary results

2.1. Notation

The symbol | · | denotes the Euclidean norm in any dimension, while 〈·, ·〉 stands for the scalar
product in Rn. We will always denote by Ω an open, bounded subset of Rn with Lipschitz boundary,
and by Sn−1 the (n − 1)-dimensional unit sphere. The Lebesgue measure in Rn and the s-dimensional
Hausdorff measure are written as Ln and H s, respectively. A(Ω) stands for the family of the open
subsets of Ω.

Let S be a bounded, open, convex and symmetrical set, i.e., S = −S . For η > 0, we denote by ηS
the η-dilation of S and we will often use the shorthand S (x, η) in place of x + ηS . We consider | · |S the
norm induced by S , defined as

|x|S := inf{η > 0 : x ∈ ηS } , (2.1)

whose unit ball {|x|S < 1} coincides with S , and, correspondingly, we introduce the distance to a closed
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bounded set K ⊂ Rn; namely,

distS (x,K) := min
y∈K
|x − y|S , x ∈ Rn . (2.2)

2.2. GBD and GS BD functions

In this section we recall some basic definitions and results on generalized functions with bounded
deformation, as introduced in [17]. Throughout the paper we will use standard notations for the spaces
(G)S BV and (G)S BD, referring the reader to [2] and [1,3,24], respectively, for a detailed treatment on
the topics.

Let ξ ∈ Rn\{0} and Πξ = {y ∈ Rn : 〈ξ, y〉 = 0}. If Ω ⊂ Rn and y ∈ Πξ we set Ωξ,y := {t ∈ R : y + tξ ∈
Ω} and Ωξ := {y ∈ Πξ : Ωξ,y , ∅}. Given u : Ω→ Rn, n ≥ 2, we define uξ,y : Ωξ,y → R by

uξ,y(t) := 〈u(y + tξ), ξ〉 , (2.3)

while if v : Ω→ R, the symbol vξ,y will denote the restriction of v to the set Ωξ,y; namely,

vξ,y(t) := v(y + tξ) . (2.4)

Let ξ ∈ Sn−1. For any x ∈ Rn we denote by xξ and yξ the projections onto the subspaces Ξ := {tξ :
t ∈ R} and Πξ, respectively. For σ, r > 0 and x ∈ Rn we define the cylinders

Cξ
σ,r(0) := {x ∈ Rn : |xξ | < σ , |yξ | < r} , Cξ

σ,r(x) := x + Cξ
σ,r(0) .

Note that Cξ
σ,r(x) = (xξ − σ, xξ + σ) × Bn−1

r (yξ), where Bn−1 denotes a ball in the (n − 1)-dimensional
space Πξ.

Definition 2.1. An Ln-measurable function u : Ω → Rn belongs to GBD(Ω) if there exists a positive
bounded Radon measure λu such that, for all τ ∈ C1(Rn) with −1

2 ≤ τ ≤ 1
2 and 0 ≤ τ′ ≤ 1, and

all ξ ∈ Sn−1, the distributional derivative Dξ(τ(〈u, ξ〉)) is a bounded Radon measure on Ω whose total
variation satisfies ∣∣∣Dξ(τ(〈u, ξ〉))

∣∣∣ (B) ≤ λu(B)

for every Borel subset B of Ω.

If u ∈ GBD(Ω) and ξ ∈ Rn\{0} then, in view of [17, Theorem 9.1, Theorem 8.1], the following
properties hold:

(a) u̇ξ,y(t) = 〈Eu(y + tξ)ξ, ξ〉 for a.e. t ∈ Ωξ,y;

(b) Juξ,y = (Jξu)ξ,y forHn−1-a.e. y ∈ Πξ, where

Jξu := {x ∈ Ju : 〈u+(x) − u−(x), ξ〉 , 0} .

Definition 2.2. A function u ∈ GBD(Ω) belongs to the subset GS BD(Ω) of special functions of
bounded deformation if, in addition, for every ξ ∈ Sn−1 and Hn−1-a.e. y ∈ Πξ, it holds that
uξ,y ∈ S BVloc(Ωξ,y).
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The inclusions BD(Ω) ⊂ GBD(Ω) and S BD(Ω) ⊂ GS BD(Ω) hold (see [17, Remark 4.5]). Although
they are, in general, strict, relevant properties of BD functions are retained also in this weak setting.
In particular, GBD-functions have an approximate symmetric differential Eu(x) at Ln-a.e. x ∈ Ω.
Furthermore the jump set Ju of a GBD-function is Hn−1-rectifiable (this is proven in [17, Theorem
6.2 and Theorem 9.1], but it has been recently shown that this property is actually a general one for
measurable functions [18]).

Let p > 1. The space GS BDp(Ω) is defined as

GS BDp(Ω) := {u ∈ GS BD(Ω) : Eu ∈ Lp(Ω;Rn×n
sym) , Hn−1(Ju) < +∞} .

Every function in GS BDp(Ω) can be approximated with the so-called “piecewise smooth” S BV-
functions, denotedW(Ω;Rn), characterized by the three properties

u ∈ S BV(Ω;Rn) ∩Wm,∞(Ω \ Ju;Rn) for every m ∈ N ,

Hn−1(Ju \ Ju) = 0 ,
Ju is the intersection of Ω with a finite union of (n−1)-dimensional simplexes .

(2.5)

This is stated by the following result, which combines [8, Theorem 1.1] with [12, Theorem 3.9].

Theorem 2.3. Let φ be a norm on Rn. Let Ω ⊂ Rn be a bounded open Lipschitz set, and let u ∈
GS BDp(Ω;Rn). Then there exists a sequence (u j) such that u j ∈ W(Ω;Rn) and

u j → u in measure on Ω, (2.6)
Eu j → Eu in Lp(Ω;Rn×n

sym), (2.7)ˆ
Ju j

φ(νu j)H
n−1 →

ˆ
Ju

φ(νu)Hn−1 . (2.8)

Moreover, if
´

Ω
ψ(|u|) dx is finite for ψ : [0,+∞)→ [0,+∞) continuous, increasing, with

ψ(0) = 0, ψ(s + t) ≤ C(ψ(s) + ψ(t)), ψ(s) ≤ C(1 + sp), lim
s→+∞

ψ(s) = +∞

then

lim
j→+∞

ˆ
Ω

ψ(|u j − u|) dx = 0 . (2.9)

As observed in [9, Remark 4.3], we may even approximate through functions u such that, besides
(2.5), have a closed jump set strictly contained in Ω made of pairwise disjoint (n−1)-dimensional
simplexes, with Ju ∩ Πi ∩ Πl = ∅ for any two different hyperplanes Πi, Πl.

We recall the following general GS BDp compactness result from [10], which
generalizes [17, Theorem 11.3].

Theorem 2.4 (GS BDp compactness). Let Ω ⊂ Rn be an open, bounded set, and let (u j) j ⊂ GS BDp(Ω)
be a sequence satisfying

sup j∈N
(
‖Eu j‖Lp(Ω) +Hn−1(Ju j)

)
< +∞.

Mathematics in Engineering Volume 4, Issue 4, 1–22.



6

Then there exists a subsequence, still denoted by (u j), such that the set A∞ := {x ∈ Ω : |u j(x)| → +∞}

has finite perimeter, and there exists u ∈ GS BDp(Ω) such that

(i) u j → u in measure on Ω \ A∞,

(ii) Eu j ⇀ Eu in Lp(Ω \ A∞;Rn×n
sym),

(iii) lim inf
j→∞

Hn−1(Ju j) ≥ H
n−1(Ju ∪ (∂∗A∞ ∩Ω)) , (2.10)

where ∂∗ denotes the essential boundary of a set with finite perimeter.

Remark 2.5. If in the statement above one additionally assumes that

sup
j∈N

ˆ
Ω

ψ(|u j|) dx < +∞

for a positive, continuous and increasing function ψ with lims→+∞ ψ(s) = +∞, then A∞ = ∅, so that |u|
is finite a.e., and (i) holds on Ω. Moreover, if ψ is superlinear at infinity, that is

lim
s→+∞

ψ(s)
s

= +∞ ,

by the Vitali dominated convergence theorem one gets that u ∈ L1(Ω) and (i) holds with respect to the
L1-convergence in Ω.

2.3. Some lemmas

We recall here (without adding the standard proofs) some properties of integral convolutions in the
setting of Sobolev spaces.

Proposition 2.6. Let w ∈ W1,p(Ω;Rn) and ρ ∈ L∞(Rn) be a convolution kernel, with supp ρ ⊂ S for
some bounded, open and convex set S ⊂ Ω. Set ρθ(x) := 1

θnρ
(

x
θ

)
. Then the following holds:

(i) let Ω′ ⊂⊂ Ω and 0 ≤ θ ≤ distS (Ω′, ∂Ω). The convolution

ϕθ(x) :=
ˆ

Ω

w(y)ρθ(y − x) dy

belongs to W1,p(Ω′;Rn). Moreover, it holds that

∇ϕθ(x) =

ˆ
Ω

∇w(y)ρθ(y − x) dy a.e. on Ω′. (2.11)

(ii) assume that wε → w in L1(Ω;Rn) and let θε be any sequence with θε → 0 when ε → 0. Then the
sequence

ŵε(x) :=
ˆ

Ω

wε(y)ρθε(y − x) dy

satisfies ŵε → cw in L1(Ω;Rn), where c =
´
Rn ρ(x) dx.

We also recall the following convergence property of one-dimensional sections of averaged
functions (see, e.g., [23, Lemma 2.7(ii)]).

Mathematics in Engineering Volume 4, Issue 4, 1–22.



7

Lemma 2.7. Assume that wε → w in L1(Ω;Rn) and let ηε be any sequence with ηε → 0 when ε → 0.
Then for all ξ ∈ Sn−1 and a.e. y ∈ Πξ, the sequence

ŵξ,y
ε (t) := −

ˆ
Bn−1
ηε (y)

wε(z + tξ) dz

satisfies ŵξ,y
ε → wξ,y in L1(Ωξ,y;Rn), where wξ,y(t) := w(y + tξ).

We will also make use of the following localization result, dealing with the supremum of a family
of measures (see, e.g., [4, Proposition 1.16]).

Lemma 2.8. Let µ : A(Ω) −→ [0,+∞) be a superadditive function on disjoint open sets, let λ be a
positive measure on Ω and let ϕh : Ω −→ [0,+∞] be a countable family of Borel functions such that
µ(A) ≥

´
A ϕh dλ for every A ∈ A(Ω). Then, setting ϕ := suph∈N ϕh, it holds that

µ(A) ≥
ˆ

A
ϕ dλ

for every A ∈ A(Ω).

Lower semicontinuous increasing functions can be approximated from below with truncated affine
functions. We refer the reader to [23, Lemma 2.10] for a proof of the following result.

Lemma 2.9. Consider a lower semicontinuous increasing function f : [0,+∞) → [0,+∞) such that
there exist α, β > 0 with

lim
t→0+

f (t)
t

= α, lim
t→+∞

f (t) = β .

Then there exist two positive sequences (ai)i∈N, (bi)i∈N with

sup
i

ai = α, sup
i

bi = β

and min{ait, bi} ≤ f (t) for all i ∈ N and t ∈ R.

2.4. Γ-convergence

Let (X, d) be a metric space. We recall here the definition of Γ-convergence for families of
functionals Fε : X → [−∞,+∞] depending on a real parameter ε (see, e.g., [5, 16]).

For all u ∈ X, we define the lower Γ-limit of (Fε) as ε→ 0+ by

F′(u) := inf
{

lim inf
j→+∞

Fε j(u j) : ε j → 0+ , u j → u
}
, (2.12)

and the upper Γ-limit of (Fε) as ε→ 0+ by

F′′(u) := inf
{

lim sup
j→+∞

Fε j(u j) : ε j → 0+ , u j → u
}
. (2.13)

We then say that (Fε) Γ-converges to F : X → [−∞,+∞] as ε→ 0+ iff

F(u) = F′(u) = F′′(u) , for all u ∈ X.
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2.5. A one-dimensional Γ-convergence result

The following one-dimensional Γ-convergence result will be useful in the proof of the lower bound
for the surface term. In the statement below, functions in L1(I) with I ⊂ R are extended by 0 outside
I, so that the functionals Hε are well-defined (actually, the result is not affected by the considered
extension).

Theorem 2.10. Let p > 1, let I ⊂ R be a bounded interval and consider a lower semicontinuous,
increasing function f : [0,+∞)→ [0,+∞) complying with

lim
t→0+

f (t)
t

= α, lim
t→+∞

f (t) = β

for some α, β > 0. Let Hε : L1(I)→ [0,+∞] be defined by

Hε(u) :=
1
ε

ˆ
I

f
(
1
2

ˆ x+ε

x−ε
|u′(y)|p dy

)
dx ,

where it is understood that

f
(
1
2

ˆ x+ε

x−ε
|u′(y)|p dy

)
= β

if u < W1,p(x − ε, x + ε). Then the functionals (Hε) Γ-converge as ε→ 0+ to the functional

H(u) :=

α
ˆ

I
|u′|p dt + 2β#(Ju) , if u ∈ S BV(I) ,

+∞ , otherwise

in L1(I).

Proof. The proof can be found, e.g., in [4, Theorem 3.30]. �

3. The non-local model and main results

In this section we list our assumptions and introduce the main results of the paper. Let Ω ⊂ Rn be an
open set with Lipschitz boundary, let 1 < p < +∞ and f : [0,+∞)→ [0,+∞) a lower semicontinuous,
increasing function satisfying

lim
t→0+

f (t)
t

= α > 0, lim
t→+∞

f (t) = β > 0 . (3.1)

Let ρ ∈ L∞(Rn; [0,+∞)) be a convolution kernel. The minimal assumption is that

(N1) ρ is Riemann integrable with ‖ρ‖1 = 1 and S = S ρ := {x ∈ Rn : ρ(x) , 0} is a bounded, open,
convex and symmetrical set.

As every Riemann integrable function is continuous at almost every point, we may also suppose, up
to a modification on a null set, that ρ is lower semicontinuous. Also notice that, by a simple scaling
argument, one can always consider the case of kernels with unit mass, up to modifying the constant α
in (3.1).
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A sequence (ρε)ε>0 of convolution nuclei is then obtained by setting, for every x ∈ Rn and ε > 0,

ρε(x) :=
1
εnρ

( x
ε

)
.

For every v ∈ Rn we define
φρ(v) := 2 sup{|〈y, v〉| : y ∈ S } . (3.2)

Under the previous assumptions on S , the function φρ turns out to be a norm on Rn.
To obtain our main result, we will have to couple (N1) with the additional assumption that the

convolution kernel is a non-increasing function with respect to the norm | · |S , that is

(N2) |x|S ≥ |y|S =⇒ ρ(x) ≤ ρ(y) for all x, y ∈ Rn.

Equivalently, we require that it exists a non-increasing function % : R+ → R+ such that ρ(x) = %(|x|S ).
Notice that, in the case S = B1, every non-increasing radial function ρ complies with (N2).

Let W : Rn×n → R be a convex positive function on the subspaceMn×n
sym of symmetric matrices, such

that
W(0) = 0 , c|M|p ≤ W(M) ≤ C(1 + |M|p) . (3.3)

For every ε > 0 we consider the functional Fε : L1(Ω;Rn)→ [0,+∞] defined as

Fε(u) =


1
ε

ˆ
Ω

f
(
ε

ˆ
Ω

W(Eu(y))ρε(x − y) dy
)

dx, if u ∈ W1,p(Ω;Rn) ,

+∞ , otherwise on L1(Ω;Rn).
(3.4)

We will deal with a localized version of the energies (3.4). Namely, for every A ∈ A(Ω), we will
denote by Fε(u, A) the same functional as in (3.4) with the set A in place of Ω. When A = Ω, we simply
write Fε(u) in place of Fε(u,Ω).

The following theorem is the first main result of this paper. We notice that the additional assumption
(N2) on the structure of the convolution kernel is required in (ii) below only to obtain the optimal lower
bound for the bulk term of the energy.

Theorem 3.1. Let ρ ∈ L∞(Rn; [0,+∞)) be a convolution kernel as in (N1), and let Fε be defined as in
(3.4). Under assumptions (3.1) and (3.3), it holds that

(i) there exists a constant c0 independent of ε such that, for all (uε) ⊂ Lp(Ω;Rn) satisfying Fε(uε) ≤ C
for every ε > 0, one can find a sequence uε ∈ GS BV p(Ω;Rn) with

uε − uε → 0 in measure on Ω

Fε(uε) ≥ c0

(ˆ
Ω

W(Euε) dx + 2Hn−1(Juε ∩Ω)
)
.

(ii) If, in addition, ρ complies with (N2), then the functionals (Fε) Γ-converge, as ε → 0, to the
functional

F(u) =

α
ˆ

Ω

W(Eu) dx + β

ˆ
Ju

φρ(ν) dHn−1 , if u ∈ GS BDp(Ω) ∩ L1(Ω;Rn) ,

+∞ , otherwise on L1(Ω;Rn),
(3.5)

with respect to the L1 convergence in Ω.
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The L1-convergence on the whole Ω can be enforced with the addition of a lower order fidelity
term, as we have discussed in Remark 2.5. This motivates the statement below, where we consider a
continuous increasing function ψ : [0,+∞)→ [0,+∞) such that

ψ(0) = 0, ψ(s + t) ≤ C(ψ(s) + ψ(t)), ψ(s) ≤ C(1 + sp), lim
s→+∞

ψ(s)
s

= +∞ (3.6)

and we set for every A ∈ A(Ω)

Gε(u, A) =

Fε(u, A) +

ˆ
A
ψ(|u|) dx, if u ∈ W1,p(A;Rn) ,

+∞ , otherwise on L1(A;Rn).
(3.7)

As before, we simply write Gε(u) in place of Gε(u,Ω). Then we have the following result.

Theorem 3.2. Under assumptions (3.1), (N1), (3.3), and (3.6) it holds that

(i) If (uε) ⊂ Lp(Ω;Rn) is such that Gε(uε) ≤ C for every ε > 0, then (uε) is compact in L1(Ω;Rn).

(ii) If, in addition, (N2) holds, the functionals (Gε) Γ-converge, as ε→ 0, to the functional

G(u) =

F(u) +

ˆ
Ω

ψ(|u|) dx , if u ∈ GS BDp(Ω) ∩ L1(Ω;Rn) ,

+∞ , otherwise on L1(Ω;Rn),

with respect to the L1 convergence in Ω.

4. Compactness and estimate from below of the Γ-limit

With the following proposition, we prove the compactness statements in Theorem 3.1(i), and
Theorem 3.2(i), respectively. These results can be easily inferred by a comparison with non-local
integral energies whose densities are averages of the gradient on balls with small radii, for which a
compactness result has been provided in [23, Proposition 4.1]. In order to do that, we will only
require assumption (N1) on the convolution kernel ρ.

Proposition 4.1. Let A ∈ A(Ω), and let Fε, Gε be defined as in (3.4), and (3.7), respectively, where
ρ ∈ L∞(Rn; [0,+∞)) satisfies (N1). Then:

(i) Assume (3.1), (3.3). If (uε) ⊂ Lp(Ω;Rn) is such that Fε(uε, A) ≤ C for every ε > 0, one can find a
sequence uε ∈ GS BV p(A;Rn) with

uε − uε → 0 in measure on A

Fε(uε, A) ≥ c0

(ˆ
A

W(Euε) dx + 2Hn−1(Juε ∩ A)
)

for some c0 > 0.

(ii) Assume (3.1), (3.3), and (3.6). If (uε) ⊂ Lp(Ω;Rn) is such that Gε(uε, A) ≤ C for every ε > 0,
then (uε) is compact in L1(A;Rn).
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Proof. Let η ∈ (0, 1) be fixed such that Bη(0) ⊂⊂ S , and denote by mη the minimum of ρ on Bη, which
is strictly positive as we are assuming that ρ > 0 on S . Setting f̃ (t) := f (mηωnη

nt) and for any ε > 0,
we consider the energies

F̃ε(u) =


1
ε

ˆ
Ω

f̃
ε−ˆ

Bηε(x)∩Ω

W(Eu(y)) dy
 dx, if u ∈ W1,p(Ω;Rn) ,

+∞ , otherwise on L1(Ω;Rn).
(4.1)

Since Bη(0) ⊆ S and ρ ≥ mη on Bη(0), a simple computation shows that

F̃ε(u, A) ≤ Fε(u, A) (4.2)

for every u ∈ W1,p(Ω;Rn) and A ⊆ Ω open set. By virtue of (4.2), to obtain (i) it will suffice to apply
the argument of [23, Proposition 4.1] to the sequence F̃ε in (4.1). We then omit the details.

We now come to (ii). If additionally Gε(uε, A) ≤ C, following the argument
for [23, Proposition 4.1(ii)], it can be shown that the sequence (ūε) constructed in (i) complies with

ˆ
A
ψ(|uε(x)|) dx +

ˆ
A
|Euε(x)|p dx +Hn−1(Juε ∩ A) ≤ C < +∞

for all ε. Therefore, in view of the growth assumption (3.6) on ψ, Theorem 2.4 and Remark 2.5 apply,
and this provides the compactness of the sequence (uε) in L1(A;Rn). Then, since uε−uε → 0 in measure
on A, with the Vitali dominated convergence Theorem we infer that (uε) is compact in L1(A;Rn) as well.
This concludes the proof of (ii). �

Now, we turn to provide a first estimate of the Γ-liminf of the functionals Fε. This estimate is
optimal, up to a small error, only for the bulk part of the energy, and this is the only very point where
we need to require the additional assumptions (N2) on the convolution kernels (see Section 4.1). The
proof of an optimal estimate for the surface term, instead, will be derived separately by means of
a slicing argument (see Proposition 4.3 below) for more general kernels complying only with (N1)
providing the comparison estimate (4.2). As the two parts of the energy are mutually singular, the
localization method of Lemma 2.8 will eventually allow us to get the Γ-liminf inequality.

4.1. Estimate from below of the bulk term

We begin by giving the announced estimate for the bulk term.

Proposition 4.2. Let A ∈ A(Ω) with A ⊂⊂ Ω, and consider a sequence uε ∈ W1,p(Ω;Rn) converging to
u in L1(Ω;Rn). Assume (3.1) and (3.3), let η ∈ (0, 1) be fixed and let ρ comply with (N1)–(N2). Suppose
that

sup
ε>0

Fε(uε, A) ≤ C . (4.3)

Then, for every fixed 0 < δ < 1, there exist a constant Mδ,η only depending on f , δ and η, a constant
ση depending on ρ, η such that ση → 0 as η → 0, and a sequence of functions (vδ,ηε ) ⊂ GS BV p(A;Rn)
such that

(i) α(1 − ση)2(1 − δ)2n+1
ˆ

A
W(Evδ,ηε (x)) dx ≤ Fε(uε, A);
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(ii) Hn−1(Jvδ,ηε
) ≤ Mδ,η Fε(uε, A);

(iii) vδ,ηε → u in L1(A;Rn) as ε→ 0.

Proof. We first consider the case f (t) = min{at, b}, with a, b > 0. For given η, we introduce the
truncated kernel ρη(x) := 1

1−ση
ρ(x)(1 − χηS (x)), where the constant ση is given by

ση :=
ˆ
ηS
ρ(x) dx ,

and ση → 0 as η→ 0. Notice that with this choice of ση one has
´
Rn ρ

η(x) dx = 1.
For fixed δ ∈ (0, 1), we then define

Cδ,η :=
1

(1 − δ)n(1 − ση)
, (4.4)

and the functions

ψη,δε (x) := ε

ˆ
Ω

W(Euε(y))ρηε(1−δ)(y − x) dy

ψε(x) := ε

ˆ
Ω

W(Euε(y))ρε(y − x) dy .

Observe that, since W ≥ 0, by the definition of ρη and assumption (N2), we get

ψη,δε (x) ≤ Cδ,ηψε(x) (4.5)

for all x ∈ A. Define now the following sets, depending on δ, η and S :

Kε :=
{

x ∈ A : ψη,δε (x) ≥ Cδ,η

b
a

}
, (4.6)

K′ε :=
{
x ∈ A : distS (x,Kε) ≤ δηε

}
. (4.7)

We prove the inclusion

K′ε ⊆
{

x ∈ A : ψε(x) ≥
b
a

}
. (4.8)

For this, if x ∈ K′ε then there exists z ∈ Kε such that |x − z|S ≤ δηε. Now, by the triangle inequality, for
every y ∈ Ω it holds that

|x − y|S
ε

≤ δη +
|z − y|S
ε

,

whence
|x − y|S
ε

≤
|z − y|S
(1 − δ)ε

if and only if |z − y|S ≥ (1 − δ)ηε. In this case, since ρ is non-increasing with respect to | · |S , we have

ρ
(y − x

ε

)
≥ (1 − ση)ρη

(
y − z

(1 − δ)ε

)
.
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Notice that this inequality holds true also if |z−y|S < (1−δ)ηε. In this case, indeed, one has y−z
(1−δ)ε ∈ ηS

and hence ρη
(

y−z
(1−δ)ε

)
= 0 by definition of ρη. Rescaling the kernels and using (4.4) we get

ρ
η
ε(1−δ)(y − z) ≤ Cδ,ηρε(y − x) ,

so that

ψε(x) ≥
ψ
η,δ
ε (z)
Cδ,η

≥
b
a

and the proof of (4.8) is concluded.
Now, from the inclusion (4.8) and the fact that f (t) = b for t ≥ b

a , we deduce that

Ln(K′ε) ≤
ε

b
Fε(uε, A) . (4.9)

Applying the coarea formula (see for instance [19, Theorem 3.14]) to the 1-Lipschitz function g(x) :=
distS (x,Kε) in the open set {0 < g(x) < ηδε} ⊂ K′ε we get

ε

b
Fε(uε, A) ≥ Ln(K′ε) ≥

ˆ ηδε

0
Hn−1({g = t}) dt .

It follows that we can choose 0 < δ′ε < ηδε such that, for

K′′ε := {x ∈ A : distS (x,Kε) ≤ δ′ε} , (4.10)

it holds

Hn−1(∂K′′ε ) = Hn−1({x ∈ A : distS (x,Kε) = δ′ε}) ≤
1
ηδb

Fε(uε, A) . (4.11)

We define a sequence (vδ,ηε ) of functions in GS BV p(A;Rn) as

vδ,ηε (x) :=


ˆ

Ω

uε(y)ρη(1−δ)ε(y − x) dy if x ∈ A\K′′ε ,

0 otherwise.
(4.12)

Since ‖ρη‖1 = 1, by Proposition 2.6(ii) (applied for θε = ε(1− δ)) and the fact that, by construction and
(4.9), it holds Ln(K′′ε ) → 0 when ε → 0, we have that vδ,ηε → u in L1(A;Rn) as ε → 0. We also have
Hn−1(Jvδ,ηε

) ≤ Hn−1(∂K′′ε ), so that with (4.11) we deduce (ii) for Mδ,η = 1
ηδb .

Now, since Kε ⊂ K′′ε and A ⊂⊂ Ω, it holds ψη,δε (x) < Cδ,η
b
a for all x ∈ K′′ε . As f (t) = min{at, b}, this

gives
f (ψη,δε (x)) ≥

a
Cδ,η

ψη,δε (x) (4.13)

for all x ∈ A \ K′′ε . Now, since the function f is concave and f (0) = 0, it holds f (λt) ≥ λ f (t) for all
λ ∈ [0, 1]. Combining with the monotonicity of f and (4.5), we have

f (ψε(x)) ≥
1

Cδ,η

f
(
ψη,δε (x)

)
(4.14)
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for all x ∈ A. With this, using (4.13), the Jensen’s inequality, (2.11), (4.12), and since W(0) = 0, we
get

Fε(uε, A) ≥
1
ε

ˆ
A\K′′ε

f (ψε(x)) dx

≥
1

εCδ,η

ˆ
A\K′′ε

f
(
ψη,δε (x)

)
dx ≥

a
εC2

δ,η

ˆ
A\K′′ε

ψη,δε (x) dx

≥
a

C2
δ,η

ˆ
A\K′′ε

W
(ˆ

Ω

Euε(y)ρη(1−δ)ε(y − x) dy
)

dx

=
a

C2
δ,η

ˆ
A\K′′ε

W(Evδ,ηε (x)) dx

= a(1 − ση)2(1 − δ)2n
ˆ

A
W(Evδ,ηε (x)) dx .

For a general f complying with (3.1), use Lemma 2.9 to find aδ, bδ > 0 with aδ ≥ α(1 − δ) and
f (t) ≥ min{aδt, bδ} for all t ∈ R, and perform the same construction as in the previous step. This gives
(iii), (ii) (with Mδ := 1

δηbδ
) and

Fε(uε, A) ≥ aδ(1 − ση)2(1 − δ)2n
ˆ

A
W(Evδ,ηε (x)) dx

≥ α(1 − ση)2(1 − δ)2n+1
ˆ

A
W(Evδ,ηε (x)) dx ,

that is (i). �

4.2. Estimate from below of the surface term

In this section we derive by slicing a lower bound for the surface term in the energy. It is worth
mentioning that, by virtue of (4.17), the desired estimate could be probably also obtained by adapting
to the GS BD-setting the semi-discrete approach of [22, Proposition 6.4]. Nonetheless, that argument
is quite delicate for our purposes, and more complicated than we need. It indeed aimed to provide an
optimal lower bound for both the bulk and the surface terms in a unique proof by means of a slicing
procedure. In our case, the general form of the bulk energy we are considering does not comply with
slicing arguments. Therefore, on the one hand, the two terms have to be estimated separately. On the
other hand, an independent and simpler strategy can be followed to provide a lower bound with optimal
constant in front of the surface energy.

We set
τξ := H1({x ∈ S : x = tξ for t ∈ R}) , (4.15)

for every ξ ∈ Sn−1.

Proposition 4.3. Let ρ ∈ L∞(Rn; [0,+∞)) be a convolution kernel complying with (N1), and let Fε be
defined as in (3.4). Assume (3.1) and (3.3). Let δ ∈ (0, 1) be fixed, and consider a sequence ε j → 0.
Let A ∈ A(Ω) and u j ∈ W1,p(A;Rn) converging to u in L1(A;Rn). Assume that

lim inf
j→+∞

Fε j(u j, A) < +∞ .
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Then u ∈ GS BDp(A) and

lim inf
j→+∞

Fε j(u j, A) ≥ β(1 − δ)
ˆ

Jξu∩A
τξ |〈ν, ξ〉| dHn−1 (4.16)

for every ξ ∈ Sn−1.

Proof. It follows from Proposition 4.1 and Theorem 2.4 that u ∈ GS BDp(A). To prove (4.16), we first
note that, by virtue of the growth assumption (3.3), we have

W(Eu) ≥ c|Eu|p ≥ c|〈(Eu)ξ, ξ〉|p ,

for every ξ ∈ Sn−1. Thus, for every fixed ξ, since f is non-decreasing, it will be sufficient to provide a
lower estimate for the energies

Fξ
ε j

(u j, A) :=
1
ε j

ˆ
A

f

cε j

ˆ
S ε j (x)

|〈(Eu j(z))ξ, ξ〉|pρε j(z − x) dz

 dx . (4.17)

We proceed by a slicing argument, and for each x ∈ A we denote by xξ and yξ the projections of x
onto Ξ and Πξ, respectively. Since S is open and convex, for every fixed ξ ∈ Sn−1 we can find a radius
r = r(δ, S ) > 0 such that the cylinder

Cξ
(1−δ),r =

(
−λξ,δ, λξ,δ

)
× Bn−1

r (0) ⊂⊂ S , (4.18)

where λξ,δ := τξ
2 (1 − δ) and τξ is the length of the section S ξ. Indeed, since S is open, some η > 0 can

be found such that Bη(0) is contained in S . Now, if t = (1− δ)s for some s ∈ S ξ and y ∈ ξ⊥ with |y| ≤ η,
then tξ + δy ∈ S from the convexity of S . Thus, it will suffice to choose r := δη.

If we denote by mC the minimum of ρ on Cξ
(1−δ),r, we then have

Fξ
ε j

(u j, A)

=

ˆ
Πξ

dHn−1(yξ)

 1
ε j

ˆ
Aξ,yξ

f

cε j

ˆ
S ε j (x)

|〈(Eu j(z))ξ, ξ〉|pρε j(z − x) dz

 dxξ


≥

ˆ
Πξ

dHn−1(yξ)

 1
ε j

ˆ
Aξ,yξ

f̃

 1
εn−1

j

ˆ
Cξ

(1−δ)ε j ,rε j
(x)
|〈(Eu j(z))ξ, ξ〉|p dz

 dxξ

 ,
(4.19)

where f̃ (t) := f (c mCt). Note that f̃ (t)→ β as t → +∞.
We now set

Fξ,yξ
ε j (u j, Aξ,yξ) :=

1
ε j

ˆ
Aξ,yξ

f̃

 1
εn−1

j

ˆ
Cξ

(1−δ)ε j ,rε j
(x)
|〈(Eu j(z))ξ, ξ〉|p dz

 dxξ .

We denote (with a slight abuse of notation) still with z the (n− 1)-dimensional variable in Bn−1
rε j

(yξ). Set

wξ,yξ
j (t) := −́

Bn−1
rε j (yξ)
〈u j(z + tξ)), ξ〉 dz.
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By virtue of Lemma 2.7(ii), applied with θε j = rε j, we have that wξ,yξ
j converges to uξ,yξ in L1(Aξ,yξ)

for a.e. yξ. Furthermore, setting g(t) := f̃ (ωn−1rn−1t), Fubini’s Theorem, Jensen’s inequality and the
monotonicity of f̃ entail that

Fξ,yξ
ε j (u j, Aξ,yξ)

=
1
ε j

ˆ
Aξ,yξ

f̃

 1
εn−1

j

ˆ
Bn−1

rε j (yξ)
dz
ˆ xξ+λξ,δε j

xξ−λξ,δε j

|〈(Eu j(z + tξ))ξ, ξ〉|p dt

 dxξ

=
1
ε j

ˆ
Aξ,yξ

f̃

 1
εn−1

j

ˆ xξ+λξ,δε j

xξ−λξ,δε j

ˆ
Bn−1

rε j (yξ)
|〈(Eu j(z + tξ))ξ, ξ〉|p dz

 dt

 dxξ

≥
1
ε j

ˆ
Aξ,yξ

f̃

ωn−1rn−1
ˆ xξ+λξ,δε j

xξ−λξ,δε j

−ˆ
Bn−1

rε j (yξ)
〈(Eu j(z + tξ))ξ, ξ〉 dz


p

dt

 dxξ

=
1
ε j

ˆ
Aξ,yξ

g
ˆ xξ+λξ,δε j

xξ−λξ,δε j

|ẇξ,yξ
j (t)|p dt

 dxξ

= λξ,δ
1

λξ,δε j

ˆ
Aξ,yξ

g
ˆ xξ+λξ,δε j

xξ−λξ,δε j

|ẇξ,yξ
j (t)|p dt

 dxξ ,

(4.20)

Now, for the function t 7→ g(t) it still holds g(t)→ β when t → +∞. Hence, applying Theorem 2.10
to the one-dimensional energies

F̃ξ,yξ
ε j (wξ,yξ

j , Aξ,yξ) :=
1

λξ,δε j

ˆ
Aξ,yξ

g
ˆ xξ+λξ,δε j

xξ−λξ,δε j

|ẇξ,yξ
j (t)|p dt

 dxξ

we obtain the lower bound

lim inf
j→+∞

F̃ξ,yξ
ε j (wξ,yξ

j , Aξ,yξ) ≥ 2β#(Juξ,yξ ∩ Aξ,yξ) . (4.21)

Therefore, using (4.20) and (4.21) we deduce

lim inf
j→+∞

Fξ,yξ
ε j (u j, Aξ,yξ) ≥ λξ,δ lim inf

j→+∞
F̃ξ,yξ
ε j (wξ,yξ

j , Aξ,yξ)

≥ βτξ(1 − δ)#(Juξ,yξ ∩ Aξ,yξ) .

With (4.19) and Fatou’s Lemma we finally have

lim inf
j→+∞

Fε j(u j, A) ≥ lim inf
j→+∞

ˆ
Πξ

Fξ,yξ
ε j (u j, Aξ,yξ) dHn−1(yξ)

≥

ˆ
Πξ

(
lim inf

j→+∞
Fξ,yξ
ε j (u j, Aξ,yξ)

)
dHn−1(yξ)

≥ βτξ(1 − δ)
ˆ

Πξ

#(Juξ,yξ ∩ Aξ,yξ) dHn−1(yξ)

= βτξ(1 − δ)
ˆ

Jξu∩A
|〈νu, ξ〉| dHn−1 ,

where in the last equality we used the Area Formula. This concludes the proof of (4.16). �

Mathematics in Engineering Volume 4, Issue 4, 1–22.



17

4.3. Proof of the Γ-liminf inequality

For any A ∈ A(Ω), we denote by F′(u, A) and G′(u, A) the lower Γ-limits of Fε(u, A) and Gε(u, A),
respectively, as defined in (2.12). It holds that G′(u, A) ≥ F′(u, A) for each A ∈ A(Ω) and u ∈ L1(A;Rn)
(see, e.g., [16, Proposition 6.7]). The results of the previous subsection lead to the following estimate.

Proposition 4.4. Assume (3.1), (3.3), and (3.6). Let Fε and Gε be defined as in (3.4) and (3.7),
respectively, and let ρ comply with (N1)-(N2). Let u ∈ L1(Ω;Rn), A ∈ A(Ω), and define F′(u, A) and
G′(u, A) by (2.12) in correspondence of Fε and Gε, respectively. If F′(u, A) < +∞, then u ∈ GS BDp(A)
and

(i) F′(u, A) ≥ α
ˆ

A
W(Eu) dx ,

(ii) G′(u, A) ≥ F′(u, A) ≥ β
ˆ

Jξu∩A
τξ |〈νu, ξ〉| dHn−1

for every ξ ∈ Sn−1. If in addition G′(u, A) < +∞ holds, then one also has

(iii) G′(u, A) ≥ α
ˆ

A
W(Eu) dx +

ˆ
A
ψ(|u|) dx.

Proof. With (2.12) and a diagonal argument, one may find (not relabeled) subsequences (u j) and (ũ j)
converging to u in L1(A;Rn) such that

F′(u, A) = lim inf
j→+∞

Fε j(u j, A) , G′(u, A) = lim inf
j→+∞

Gε j(ũ j, A) .

With the first equality and Proposition 4.3 we have that, if F′(u, A) < +∞, then u ∈ GS BDp(A). By the
second one, the superadditivity of the liminf, Fatou’s lemma and (2.12), we have

G′(u, A) = lim inf
j→+∞

Gε j(ũ j, A) ≥ lim inf
j→+∞

Fε j(ũ j, A) + lim inf
j→+∞

ˆ
A
ψ(|ũ j|) dx

≥ F′(u, A) +

ˆ
A
ψ(|u|) dx .

Hence, (iii) will follow once we have proved (i).
We therefore only have to check (i) and (ii). To this aim, let η, δ ∈ (0, 1) be fixed. Then, by applying

Proposition 4.2 to the sequence (u j), we can find a sequence (vδ,ηj ) ⊂ GS BV p(A;Rn) such that vδ,ηj → u
in L1(A) as ε j → 0 and

(a) α(1 − ση)2(1 − δ)2n+1
ˆ

A
W(Evδ,ηj (x)) dx ≤ Fε j(u j, A);

(b) Hn−1(Jvδ,ηj
∩ A) ≤ Mδ,ηFε j(u j, A).

Now, the equiboundedness of Fε j(u j, A) combined with the bounds (a) and (b) allows to apply the lower
semicontinuity part of Theorem 2.4 to the sequence (vδ,ηj ). Taking into account that A∞ = ∅ because
u ∈ L1(A;Rn), by the convexity of W and (2.10), (ii), we have

α(1 − ση)2(1 − δ)2n+1
ˆ

A
W(Eu(x)) dx ≤ lim inf

j→+∞

ˆ
A

W(Evδ,ηj (x)) dx

≤ lim inf
j→+∞

Fε j(u j, A) = F′(u, A) .
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We then obtain (i) by letting δ→ 0 and η→ 0 above.
For what concerns (ii), from (4.16) of Proposition 4.3 we get

β(1 − δ)
ˆ

Jξu∩A
τξ |〈νu, ξ〉| dHn−1 ≤ lim inf

j→+∞
Fε j(u j, A) = F′(u, A)

for every ξ ∈ Sn−1, so that (ii) follows by taking the limit as δ→ 0 again. �
For the proof of the Γ-liminf inequality, we need the following lemma, which can be found in [22,

Lemma 4.5].

Lemma 4.5. Let S ⊂ Rn be a bounded, convex and symmetrical set, and let φρ and τξ be defined as in
(3.2) and (4.15), respectively. Then

φρ(v) = sup
ξ∈Sn−1

τξ |〈v, ξ〉| . (4.22)

We are now in a position to prove the Γ-liminf inequality.

Proposition 4.6. Let ρ ∈ L∞(Rn; [0,+∞)) be a convolution kernel satisfying (N1)-(N2). Assume (3.1),
(3.3), and (3.6). Consider Fε, and Gε given by (3.4), and (3.7), respectively. Let u ∈ L1(Ω;Rn) and let
A ∈ A(Ω), and define F′(u, A) and G′(u, A) by (2.12) in correspondence of Fε and Gε, respectively. If
F′(u, A) < +∞, then u ∈ GS BDp(A) and

F′(u, A) ≥ α
ˆ

A
W(Eu) dx + β

ˆ
Ju∩A

φρ(ν) dHn−1 .

If it additionally holds G′(u, A) < +∞, then

G′(u, A) ≥ α
ˆ

A
W(Eu) dx + β

ˆ
Ju∩A

φρ(ν) dHn−1 +

ˆ
A
ψ(|u|) dx .

Proof. The proof can be obtained by a standard localization method based on Lemma 2.8. In order
to prove, e.g., the second assertion containing an additional term, we can apply Lemma 2.8 to the set
function µ(A) := G′(u, A), which is superadditive on disjoint open sets since Gε(u, ·) is superadditive
as a set function:

G′(u, A1 ∪ A2) ≥ G′(u, A1) + G′(u, A2) whenever A1, A2 ∈ A(Ω) with A1 ∩ A2 = ∅ .

Then, we consider the positive measure λ(A) := Ln(A) + Hn−1(Ju ∩ A) and the sequence (ϕh)h≥0 of
λ-measurable functions on A defined as

ϕ0(x) :=

αW(Eu(x)) + ψ(|u(x)|) , if x ∈ A\Ju ,

0 , if x ∈ A ∩ Ju ,

ϕh(x) :=

0 , if x ∈ A\Ju ,

βφξh(x) , if x ∈ A ∩ Ju ,
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where

φξh(x) =

τξh |〈νu(x), ξh〉| , if x ∈ Jξh
u ∩ A ,

0 , otherwise in Ju ∩ A ,

for (ξh)h≥1 a dense sequence in Sn−1.
Now, by virtue of Proposition 4.4 it holds that

µ(A) ≥
ˆ

A
ϕhdλ

for every h = 0, 1, . . . , so that all the assumptions of Lemma 2.8 are satisfied. The assertion then
follows once we notice that, taking into account Lemma 4.5, it holds

sup
h≥0

ϕh(x) = ϕ(x) :=

αW(Eu(x)) + ψ(|u(x)|) , if x ∈ A\Ju ,

βφρ(νu(x)) , if x ∈ A ∩ Ju ,

for λ-a.e. x ∈ A. �

5. Estimate from above of the Γ-limit

We denote by F′′ and G′′ the upper Γ-limits of (Fε) and (Gε), respectively, as defined in (2.13).

Proposition 5.1. Let u ∈ GS BDp(Ω) ∩ L1(Ω;Rn). Then

F′′(u) ≤ α
ˆ

Ω

W(Eu) dx + β

ˆ
Ju

φρ(ν) dHn−1 . (5.1)

If, in addition, it holds that
´

Ω
ψ(|u|) dx < +∞, then

G′′(u) ≤ α
ˆ

Ω

W(Eu) dx + β

ˆ
Ju

φρ(ν) dHn−1 +

ˆ
Ω

ψ(|u|) dx . (5.2)

Proof. We only prove (5.1) by using the density result of Theorem 2.3, as (5.2) follows by an analogous
construction with the additional property (2.9).

In view of Theorem 2.3 and remarks below, since we perform a local costruction and by a diagonal
argument it is not restrictive to assume that u ∈ W(Ω;Rn) and that Ju is a closed simplex contained in
any of the coordinate hyperplanes, that we denote by K.

For every h > 0, let Kh := ∪x∈KS (x, h) be the anisotropic h-neighborhood of K. As K is compact
and (n − 1)-rectifiable, it holds (see for instance [21, Theorem 3.7])

lim
h→0

1
h
Ln(Kh) =

ˆ
K
φρ(ν) dHn−1 (5.3)

(observe that a factor 2 is already contained in our definition (3.2) of φρ). Let γε > 0 be a sequence
such that γε/ε→ 0 as ε→ 0. Notice that, for ε small,

K ⊂ Kγε ⊂⊂ Kγε+ε ⊂⊂ Ω ,

Mathematics in Engineering Volume 4, Issue 4, 1–22.



20

recalling that K ⊂ Ω. Let φε be a smooth cut-off function between Kγε and Kγε+ε, and set

uε(x) := u(x)(1 − φε(x)) .

Since u ∈ W1,∞(Ω\Ju;Rn) we have uε ∈ W1,∞(Ω;Rn). Note also that, by the Lebesgue Dominated
Convergence Theorem, uε → u in L1(Ω;Rn). Moreover, since uε = u on S (x, ε) ∩ Ω if x < Kγε+ε, we
have

Fε(uε) ≤
1
ε

ˆ
Ω

f
(
ε

ˆ
S (x,ε)∩Ω

W(Eu(y))ρε(y − x) dy
)

dx + β
Ln(Kγε+ε)

ε
. (5.4)

Setting

wε(x) :=
ˆ

S (x,ε)∩Ω

W(Eu(y))ρε(y − x) dy ,

we have that wε(x) converges to w(x) := W(Eu(x)) in L1
loc(Ω) as ε → 0. Since f complies with (3.1)

and it is increasing, there exists α̃ > α such that f (t) ≤ α̃t for every t ≥ 0. This gives

1
ε

f (εwε(x)) ≤ α̃wε(x) for every x ∈ Ω and every ε > 0 ,

and, taking into account that lim
t→0+

f (t)
t

= α, we also infer that

1
ε

f (εwε(x))→ αw(x) for a.e. x ∈ Ω .

Thus, by Lebesgue’s Dominated Convergence Theorem,

lim
ε→0

1
ε

ˆ
Ω

f
(
ε

ˆ
S (x,ε)∩Ω

W(Eu(y))ρε(y − x) dy
)

dx = α

ˆ
Ω

W(Eu) dx .

As γε+ε

ε
→ 1 as ε→ 0, from (5.3), (5.4), the subadditivity of the limsup and (2.13) we get (5.1). �

Proof of Theorems 3.1 and 3.2. The two results follow by combining Propositions 4.1, 4.6, and 5.1 �
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