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Abstract: We consider the equation

utt + δut + A2u + ‖Aθ/2u‖
2
Aθu = g

where A2 is a diagonal, self-adjoint and positive-definite operator and θ ∈ [0, 1] and we study some
finite-dimensional approximations of the problem. First, we analyze the dynamics in the case when the
forcing term g is a combination of a finite number of modes. Next, we estimate the error we commit
by neglecting the modes larger than a given N. We then prove, for a particular class of forcing terms,
a theoretical result allowing to study the distribution of the energy among the modes and, with this
background, we refine the results. Some generalizations and applications to the study of the stability
of suspension bridges are given.
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1. Introduction

Let A2 be a diagonal, self-adjoint, strictly positive operator, densely defined on a real Hilbert space
(H , (·, ·), ‖·‖) and we consider the following nonlinear nonlocal evolution equation

utt + δut + A2u + ‖Aθ/2u‖
2
Aθu = g inH × R+ (1.1)

where θ ∈ [0, 1], δ > 0 and g ∈ C0(R+,H) is a given forcing term.
The purpose of the present paper is to give a rigorous finite-dimensional approximation of (1.1). To

be more precise, we introduce the projection PN onto the space generated by the first N modes, that is,
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by the first N eigenvectors of the operator A2 and we consider the approximated problem

utt + δut + A2u + ‖Aθ/2u‖
2
Aθu = PNg inH × R+ (1.2)

We remark that, by taking u(0) and ut(0) in PNH , Eq (1.2) can be interpreted as a system of N ODEs.
Therefore, Eq (1.2) actually provides a finite-dimensional approximation of equation (1.1). We aim to
prove that any solution of (1.2) is asymptotically finite-dimensional and to estimate, for any ε > 0, the
smallest N = N(ε) such that the asymptotic distance in the phase space between the solution of (1.1)
and the corresponding solution of (1.2) is less than ε. An improvement of the result will be studied for
a particular class of forcing terms.

The reduction of infinite-dimensional dynamical systems to finite-dimensional systems of ODEs is
a technique which has been widely used in the theoretical and numerical study of PDEs. The idea was
first stated by Galerkin [28] and it has been used in many different applied frameworks as well as in the
theory of finite-dimensional inertial manifolds (see [15,19,21,52,54,55] and the references therein). In
particular, it is a fairly common procedure, which we aim to make rigorous, in the study of suspension
bridges [3] to approximate the physical system with the dynamics finite number of modes in order
to reduce the computational complexity of the model. This approach can be physically justified by
observing that “the higher modes with their shorter waves involve sharper curvature in the truss and,
therefore, grater bending moment at a given amplitude and accordingly reflect the influence of the truss
stiffness to a greater degree than do the lower modes” [51, p.11], which means that the dynamics of
the higher modes corresponds to a physically irrelevant phenomenon. We remark that our goal would
not be achieved just by estimating the dimension of the inertial manifold of our system, since we are
interested in providing a finite-dimensional approximation of its asymptotic behavior.

The problem of finding a finite number of natural parameters of a system that uniquely determine its
asymptotic behavior was first discussed for the 2D Navier-Stokes equation [24, 43] and to tackle it the
concepts of finite-dimensional inertial manifold, determining modes and, later, determining nodes and
determining local volume averages were introduced (see [16, Ch. 5], [18] and the references therein).
Regarding our problem, Chueshov in [16, Ch. 5, Thm. 7.2] proved that the dynamics of the first N
modes of (1.1) completely determines the evolution of the system and Eden and Milani in [22] proved
that if the forcing term is N−dimensional, then any solution is attracted to an M−dimensional manifold
with M ≥ N.

Some particular cases of the damped Eq (1.1) have been widely studied in mathematical literature.
An ODE version of the problem was investigated by Loud in [44, 45]. Fitouri and Haraux in [27]
improved some of the previous results on the ODE case and in [26] they provided a close-to-optimal
ultimate bound in the PDE version of the problem. More recently, some sharp stability criteria for
the unimodal version of (1.1) and for a related evolution equation were obtained by Haraux in [37] in
the case g = 0. The case when θ = 1 was studied in a slightly different framework by Holmes and
others in [40, 47] as an example of chaotic dynamics (see also [34]) and some undamped versions of
(1.1) were studied in the case θ = 0 by Cazenave, Weissler and Haraux in [11–14] in order to obtain a
description of the qualitative behavior of more complicated nonlinearities and by Gazzola and Garrione
in [29] to study the dynamics of suspension bridges with multiple intermediate piers.

The considered abstract equation was analyzed by many other authors in an even more general
framework. Biler [7] and de Brito [9] investigated the decay properties of the unforced problem with
weak damping and a more general nonlinear nonlocal term. Da Silvia and Narciso [49, 50] studied
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an extensible beam model subject to a nonlocal nonlinear parameter-dependent damping and a forcing
term. A lot of different variations of (1.1) with a large variety of damping and nonlinear terms has been
studied in mathematical literature (see [16, 17, 20] and the references therein).

In addition to its mathematical relevance, our study also presents a certain physical and engineering
interest. In fact, the considered model is suitable to describe both mono-dimensional and multi-
dimensional physical systems. More precisely, some particular cases of (1.1) concerning the dynamics
of beams and plates was considered by Holmes and Marsden [38, 39] in order to study the problem of
flow-induced oscillations (see also [41, 42]) and in order to provide some more information about the
nonlinear structural behavior of suspension bridges. In particular, we expect our results to allow some
progress in the study of the structural and torsional instability of plates, to which a vast literature is
devoted [1, 2, 4, 5, 31, 32].

If we set A2 = ∆2, θ = 1 and H = L2(Ω), where Ω is a bounded domain in RN (N ≥ 1) with the
smooth boundary ∂Ω, we obtain the equation

utt + δut + ∆2u +

(∫
Ω

|∇u|2
)
∆u = g, in Ω × (0,T ).

This problem is a special case of the more general model

utt + ∆2u − φ(‖∇u‖2L2(Ω))∆u = F (x, t, u, ut)

that was introduced in 1955 by Berger [6] as a simplification of the von Karman plate equation which
describes large deflection of plate. Some related models were later applied to the study of the torsional
instability of suspension bridges. In particular, our results apply also to the partially-hinged plate
problem discussed in [8, 25]

utt + δut + ∆2u +
(
P − S

∫
Ω

u2
r (r, s, t)drds

)
uxx = g in Ω × (0,T )

u = uxx = 0 on {0, π} × [−l, l]
uyy + σuxx = uyyy + (2 − σ)uxxy = 0 on [0, π] × {−l, l}

where S > 0 depends on the elasticity of the material of the deck of the bridge, l > 0 represents the
width of the bridge and σ > 0 is the Poisson’s ratio of the structure, which is assumed to be, in the case
of suspension bridges, between 0 and 0.5. The term P is called “prestressing constant” and it expresses
the buckling loads on the plate. In the case of suspension bridges, the compressive forces along the
edges are introduced in order to increase the stability of the structure. The abstract prestressed model
reads

utt + δut + A2u − PAu + ||Aθ/2u||2Aθu = g inH × R+. (1.3)

The study of this equation will not be discussed in detail since, under the hypothesis P < α1/2
1 (weak

prestressing), the prestressing term does not modify the qualitative behavior of the system and in the
case when P ≥ α1/2

1 (strong prestressing) our results do not hold. In fact, in a strongly prestressed
suspension bridge the linear part of (1.3), which is given by A2 − PA, is not a strictly positive operator
anymore.

Concerning the case where the models describes the dynamics of a mono-dimensional structure,
if we take H = L2(I) (with I = [−π, π]) and A = −∂xx, we can distinguish three different physically
significant cases: θ = 0, θ = 1 and θ = 2.
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In the first case, the considered model has been introduced by Garrione and Gazzola [29] in order
to describe the behavior of the deck of suspension bridges with two intermediate piers. In the work of
Garrione and Gazzola, the deck of the bridge is modeled by a degenerate plate consisting of a beam with
a continuum of cross sections free to rotate around the beam. Therefore, the longitudinal dynamics of
the bridge is modeled by a beam equation, whose nonlinear term can be interpreted as a representation
of “a stiffened beam where the displacement behaves superquadratically and nonlocally: if the beam
is displaced from its equilibrium position in some point, then this increases the resistance to further
displacements in all the other points” [29]. The nonlocal nature of such term is due to the elastic
behavior of the components of the bridge, the sustaining cables in particular. This choice of the
nonlinear term follows from a comparison between the qualitative behavior of some possible models
and the actual behavior of suspension bridges. If we consider D(A) = {v ∈ H2(I) ∩ H1

0(I) : v(−π) =

v(π) = v(−aπ) = v(bπ) = 0} for a, b ∈ (0, 1), where a and b model the position of the piers along the
deck of the bridge, the system reads

utt + δut + uxxxx + ‖u‖2L2(I)u = g(x, t) ∀t ≥ 0,∀x ∈ I

u(0) = u0 ∈ H2(I) ∩ H1
0(I), ut(0) = u1 ∈ L2(I)

u(−π, t) = u(−πb, t) = u(πa, t) = u(π, t) = 0, ∀t ≥ 0.

An analogous equation, in a different functional framework, is involved in the study of the interaction
between the cables and the deck of a suspension bridge in the case when the hangers are considered
inextensible (see [29, 46]).

The second case (θ = 1) was obtained by Woinowsky-Krieger [53] in 1950 and, independently, by
Burgreen [10] in 1951. It models the physical phenomenon that “if the beam is stretched somewhere,
then this increases the resistance to further stretching in all the other points” [29]. The system has
been widely studied in both mathematical and engineering literature (see [22, 33] and the references
therein). If we choose D(A) = {v ∈ H2(I) ∩ H1

0(I) : v(−π) = v(π) = vxx(−π) = vxx(π) = 0}, the model
becomes 

utt + δut + uxxxx − ‖ux‖
2
L2(I)uxx = g(x, t) ∀t ≥ 0,∀x ∈ I

u(0) = u0 ∈ H2(I) ∩ H1
0(I), ut(0) = u1 ∈ L2(I)

u(−π, t) = uxx(−π, t) = uxx(π, t) = u(π, t) = 0, ∀t ≥ 0.

The case θ = 2 was first introduced in [29]. If we consider H = L2(I) and A = −∂xx as we did
before, the nonlinear term ‖u‖2θA

θ/2u reads ‖uxx‖
2
L2(I)uxxxx and the corresponding nonlinear equation can

be interpreted as a model for “a stiffened beam with bending energy behaving superquadratically and
nonlocally: this means that if the beam is bent somewhere, then this increases the resistance to further
bending in all the other points” [29]. Despite the physical interest of the case θ = 2, due to its technical
difficulty, in this paper we decided to restrict ourselves to the cases where θ ∈ [0, 1].

The results of the paper are given in three main theorems. First, in Theorem 2.3, we prove that if
the forcing term is finite-dimensional, i.e., if g is a combination of a finite number N of modes, then
any solution is asymptotically finite-dimensional too in a sense that we specify in Definition 2.2. In the
case of small oscillations or large damping, our result improves the one of Eden and Milani [22]. The
proof is based on an application of a recent work of Haraux [37]. Next, in Theorem 2.4 we prove that,
under suitable smallness conditions on the nonlinearity and on the forcing term, we are able to give an
M−dimensional approximation of (1.1). More precisely, we prove that for any ε > 0 there exists N ∈ N
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such that the asymptotic distance between a solution of (1.1) and a solution of (1.2) is controlled by ε
in the phase space norm. The proof relies on a continuous dependence result and on Theorem 2.3. To
conclude, in Theorem 2.5, fixed θ = 0, we focus on a particular class of forcing terms and we refine the
result of Theorem 2.4. In particular, under suitable smallness conditions on the solution, we improve
the ultimate bounds previously given for general forcing terms in [8, 26] and we estimate how much
the dynamics changes as we eliminate a single mode from the dynamics. This latter result represents
one of the main novelties of the paper since, to the author’s knowledge, this is the first statement of this
type present in literature.

The paper is organized as follows. In Section 2 we give some definitions and we state the main
results of the paper. In Section 3, some technical results are given. The proofs of the main results are
contained in Section 4, Section 5 and Section 6, which are devoted to the proof of Theorem 2.3,
Theorem 2.4 and Theorem 2.5 respectively. In Section 7, we present some physical conclusions
concerning the application of our results to suspension bridges with multiple intermediate piers.

2. Statement of the main results

Let (H , (·, ·), ‖·‖) be a Hilbert space and consider a diagonal, self-adjoint and positive-definite
operator A2 : D(A2) ⊂ H → H , with eigenvalues 0 < α1 < · · · < α j ↗ ∞ and eigenfunctions
en, solutions of the problem

(Aen, Av) = αn(en, v) ∀v ∈ D(A).

The sequence (en)n≥1 is a complete orthonormal system ofH . For our convenience, we preferred to use
A2 instead of A to build the functional framework of the problem. The operator A2 defines a family of
Hilbert spacesHσ = D(Aσ/2) with σ ≥ 0, endowed with the norms ‖·‖σ induced by the scalar products

u, v ∈ Hσ =⇒ (u, v)σ := (A
σ
2 u, A

σ
2 v) =

∞∑
n=1

ασ/2n unvn,

‖u‖σ :=
√

(u, u)σ

(2.1)

where un = (u, en) and vn = (v, en). In particular, ‖·‖0 = ‖·‖. In the context of this work, we consider the
cases when σ ∈ [−2, 2], where for negative s the space H s is defined as the dual of H−s. Throughout
the paper, we denote by 〈·, ·〉 the duality product of H2. It possible to verify that Hρ ↪→ Hσ densely
whenever 0 ≤ σ ≤ ρ and that

u ∈ Hρ, 0 ≤ σ < ρ =⇒ ‖u‖ρ ≥ α
ρ−σ

4
1 ‖u‖σ. (2.2)

In this framework, for any family of indices J = { j1, . . . , jn}, we define the projection

PJ : H → 〈e j1 , . . . , e jn〉

u =

∞∑
h=1

uheh 7→

n∑
r=1

u jr e jr .

In particular, we denote by PN and QN := I − PN the orthogonal projections onto 〈e1, . . . eN〉 and onto
〈eN+1, . . . 〉 respectively. In addition, for any k ∈ N we introduce the projection uk onto the orthogonal
complement of ek given by

uk := I − PkQk−1 : H → 〈ek〉
⊥.
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Since A is a diagonal operator, we remark that

∀s ∈ [0, 2],∀M = {m1, . . . ,mn}, AsPM = PMAs and AsQM = QMAs. (2.3)

Moreover, if u = QNu for some N ∈ N, then the estimate (2.2) can be improved by

u ∈ Hρ, 0 ≤ σ < ρ =⇒ ‖u‖ρ ≥ α
ρ−σ

4
N+1‖u‖σ. (2.4)

By using the notation in (2.1), problem (1.1) may be rewritten as

utt + δut + A2u + ‖u‖2θA
θu = g inH × R+. (2.5)

Let us make clear what is meant by weak solution of (2.5):

Definition 2.1. Assume that

g ∈ C0
b(R+,H) := C0(R+,H) ∩ L∞(R+,H). (2.6)

A weak solution of (2.5) is a function

u ∈ C0(R+,H
2) ∩C1(R+,H) ∩C2(R+,H

−2)

such that
〈utt, ϕ〉 + δ(ut, ϕ) + (u, ϕ)2 + ‖u‖2θ(u, ϕ)θ = (g, ϕ) ∀ϕ ∈ H2.

We remark that by this definition it follows that u(0) = u0 ∈ H
2 and ut(0) = u1 ∈ H . Existence and

uniqueness of weak solutions follows from an immediate adaptation of the result in [33, Theorem 2.1]
(see Theorem 3.1).

First, we prove that if the forcing term if finite-dimensional, i.e. if g = PNg for some N ∈ N, then
any weak solution of (2.5) is asymptotically finite-dimensional. Actually, we guarantee the validity
of the result for a more general family of forcing terms. We introduce the notion of exponentially
N−dimensional forcing term.

Definition 2.2. We say that g ∈ C0
b(R+,H) is exponentially N−dimensional if there exists η > 0 such

that
lim
t→∞

(‖QNg(t)‖ + ‖QNgt(t)‖)eηt = 0.

In Section 4, we prove the following statement which describes the asymptotic behavior of the
solution in the case when the forcing term is exponentially N−dimensional.

Theorem 2.3. Assume (2.6) and let δ > 0. If g is exponentially N−dimensional, there exists M ≥ N
and η̃ > 0, both depending on δ, lim supt→∞ ‖g(t)‖, θ, N, η and α1, i.e., the first eigenvalue of A2, such
that

lim
t→∞

(‖QMu(t)‖22 + ‖QMut(t)‖2)eη̃t = 0,

where u is a weak solution of (2.5).
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Motivated by physical arguments (see Section 7), we now consider a “separated variables” forcing
term such as g(t) = g f (t), where g ∈ H and f ∈ C0

b(R+,R).
Let us consider a weak solution u of (2.5). Numerical simulations show that for some j we have

lim supt→∞ |(u(t), e j)| � lim supt→∞ ‖u(t)‖, that is, we have that the asymptotic amplitude of some
modes of u seems to be negligible with respect to the overall dynamics (see Figure 3). Hence, we
expect to be able to neglect such modes both from the forcing term g and the solution u, thus reducing
the numerical complexity of the model. Therefore, for any finite family of indices J = { j1, . . . , jm}, we
consider the finite-dimensional approximation of (2.5) given by

vtt + δvt + A2v + ‖v‖2θA
θv = PJg. (2.7)

We remark that in virtue of Theorem 2.3, any solution of (2.7) is exponentially finite-dimensional. We
prove that under suitable smallness conditions on the forcing term, for an appropriate choice of J, (2.7)
is a good approximation of (2.5), i.e., for any weak solution u of (2.5), the weak solution v of (2.7)
provides a good exponentially finite-dimensional approximation of u. More precisely, in Section 5 we
prove the following theorem:

Theorem 2.4. Assume δ > 0 and g(t) = g f (t) with g ∈ H and f ∈ C0
b(R+,R). There exists ḡ∞ =

ḡ∞(α1, δ, θ) > 0 such that, if
g∞ := lim sup

t→∞
‖g(t)‖ < ḡ∞,

then for every ε > 0 there exists a finite family of indices J = { j1, . . . jm} depending on α1, δ, g∞ and ε
such that

lim sup
t→∞

(‖u(t) − v(t)‖22 + ‖ut(t) − vt(t)‖2) ≤ ε

where u is a weak solution of (2.5) and v is a weak solution of (2.7).
Moreover, if g is exponentially N−dimensional, then there exist M ≥ N and η̃ > 0, both depending

on α1, δ, lim supt→∞ ‖g(t)‖, θ, N and η, such that, if J = {1, . . . ,M}, then

lim
t→∞

(‖PMu(t) − v(t)‖22 + ‖PMut(t) − vt(t)‖2)eη̃t = 0.

In Section 6 we further restrict ourselves to the case when the forcing term is sinusoidal in time and,
for the sake of simplicity, we focus on the case when θ = 0, i.e., we study the problem

utt + δut + A2u + ‖u‖2u = g sin(ωt). (2.8)

For ‖g‖ small enough, Theorem 2.4 states that if we replace g with PMg, we commit an error arbitrarily
small as M grows. This suggests to consider the case when g = PMg for some M ∈ N. Let v be a
solution of

vtt + δvt + A2v + ‖v‖2v = ukg sin(ωt). (2.9)

Let us now estimate the distance between u and v. The following theorem holds:

Theorem 2.5. Assume δ > 0 and let g(t) = g sin(ωt) with g = PMg for some M ∈ N. There exists ḡ > 0
depending on δ, ω and α j with j = 1, . . .M, such that, if ‖g‖ < ḡ, then, for any k ∈ {1, . . . ,M} and for
any u and v weak solutions of (2.5) and (2.9),

lim sup
t→∞

(‖uku(t) − v(t)‖22 + ‖ukut(t) − vt(t)‖2) ≤
C(g, ek)4

((αk − ω2)2 + δ2ω2)2 ,

where C = C(α1, . . . , αM, g, δ, ω) > 0.
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The results involved in the proof of Theorem 2.5 are the most physically significant in the
applications considered (see Section 7). In fact, Theorem 2.5 relies upon an estimate on the asymptotic
amplitude of each mode, that allows us to study the distribution of the energy among the modes (see
Figures 3 and 5) and to obtain a new bound on the asymptoticH2−norm of u that improves the estimate
given in [8, Lemma 22] (see Figure 2).

Theorems 2.4 and 2.5 are not perturbation statements. Indeed, for any fixed δ > 0, an explicit
expression of the smallness conditions on g∞ and ‖g‖ required by the statements of Theorems 2.4
and 2.5 is obtained in Sections 5 and 6 respectively. Since the term g models the action of the wind
along the deck of the bridge, we physically interpret such smallness conditions on g∞ as requirements
on the aerodynamic load on the structure. In particular, the conditions of Theorems 2.4 and 2.5 are
equivalent to require that the speed of the wind v is below a certain threshold v̄. Moreover, we remark
that such conditions can not be avoided since even in the ODE case large forcing terms lead to a chaotic
dynamics [44, 45] and the behavior of the solutions can be quite complicated, even where the forcing
term is periodic in time [30, 48].

Our results are adaptable to more general frameworks. In particular, exploiting the abstract results
of Haraux [37] and Chueshov [16], the cases with strong damping terms and with more general
nonlinearities such as Aθut and M(‖u‖2θ)A

θ/2u with 0 ≤ θ ≤ 1 appear to be treatable. On the other
hand, our results can not be immediately generalized to evolution equations with nonlinear nonlocal
damping terms such as N(‖u‖21)g(ut), since the linear analysis on which the proof of Theorem 2.5 is
based seems not to be easily extendable to such case.

We notice that, if the initial states of (2.5) and (2.7) were close to each other, a uniform estimate
on the distance in the phase space between the solutions of the approximated and the exact problem
would be expected to hold for any t ≥ 0. Unfortunately, we were not able to obtain such estimate and
the techniques exploited in the proofs of Theorems 2.4 and 2.5 do not seem suitable to get this result.

3. Preliminary results

We start by recalling some basic properties concerning well-posedness and regularity of the
solutions.

Theorem 3.1. Let (2.6) hold. Then

1). (Weak solutions) If u(0) = u0 ∈ H
2 and ut(0) = u1 ∈ H , problem (2.5) admits a unique global

weak solution such that

u ∈ C(R+,H
2) ∩C1(R+,H) ∩C2(R+,H

−2);

2). (Regular solutions) If u(0) = u0 ∈ H
4 and ut(0) = u1 ∈ H

2, problem (2.5) admits a unique regular
solution, that is, a unique global weak solution such that

u ∈ C(R+,H
4) ∩C1(R+,H

2) ∩C2(R+,H);

3). (Continuous dependence on initial data) Let (u0n, u1n) be any sequence with

(u0n, u1n)→ (u0, u1) inH2 ×H ,
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and let un(t) denote the weak solution of (2.5) with initial data un(0) = un and ut(0) = u1n. Then
for every T > 0 we have that

(un(t), un,t(t))→ (u(t), ut(t)) uniformly in C0([0,T ],H2 ×H).

The proof follows from a standard applications of monotone operator theory with locally Lipschitz
perturbations. We refer to [20, Theorem 1.5 and Proposition 1.15] and the references therein for a
detailed discussion, that we decided to omit. For an alternative approach, see [33, Theorem 2.1] for the
global existence and uniqueness of weak solutions and continuous dependence on initial data and [8,
Theorem 5] for the global existence and uniqueness of regular solutions.

We remark that in Theorem 3.1 we did not introduce the concept of strong or classical solution.
This choice is motivated by the fact that in some applications such formulations are not possible, as in
the case of the multiple intermediate piers model discussed in the introduction (see [29, Section 4] for
a more detailed discussion).

The following proposition gives some ultimate bounds on the Sobolev norms of u. Since the result
comes from a straightforward generalization of the estimates proved in Section 7 of [8], we omit the
proof.

Proposition 3.2. Assume (2.6) and let u be a weak solution of (2.5). We introduce the quantities
g∞ := lim supt→∞ ‖g(t)‖ and

E∞ := g2
∞max

(
2
δ2 ,

1
2α1

)
, α :=

δ/2 if δ2 < 4α1,

δ/2 −
√
δ2/4 − α1 if δ2 ≥ 4α1.

Then, the following estimates on u hold:

lim sup
t→∞

‖u(t)‖2 ≤
4E∞√

α2
1 + 4αθ1E∞ + α1

=: Φ0;

lim sup
t→∞

‖u(t)‖2θ ≤
4E∞ + 2α2Φ0√

α2−θ
1 + 2(2E∞ + α2Φ0) + α1−θ/2

1

=: Φθ;

lim sup
t→∞

‖u(t)‖22 ≤ 2E∞ + α2Φ0 =: Φ2;

lim sup
t→∞

‖ut(t)‖2 ≤ min
λ>0

1 + λ

λ

(
2E∞ + max

s∈[0,Φ0]

(
(λ + 1)α2 − α1s −

1
2

s2
))

=: Φv.

3.1. Continuous dependence on the forcing term

We now prove the continuous dependence of the solutions on the forcing term under suitable
smallness conditions on the parameters of the problem.

Proposition 3.3. Let u and v be weak solutions respectively of the problems

utt + δut + A2u + ‖u‖2θA
θu = g1, vtt + δvt + A2v + ‖v‖2θA

θv = g2 (3.1)

where g1, g2 ∈ C0
b(R+,H). Let Υµ := lim supt→∞ ‖(u(t) + v(t))/2‖2µ with µ in [0, 2]. There exists

Fθ(α1, δ,Υθ,Υ2θ) such that, if Fθ < 1 holds, then there exists C > 0 depending on δ and g∞ such
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10

that
lim sup

t→∞
(‖u(t) − v(t)‖22 + ‖ut(t) − vt(t)‖2) ≤ C lim sup

t→∞
‖g1(t) − g2(t)‖. (3.2)

Moreover, if there exists η > 0 such that lim supt→∞ ‖g1(t) − g2(t)‖eηt = 0, then there exists η1 > 0 such
that

lim
t→∞

(‖u(t) − v(t)‖22 + ‖ut(t) − vt(t)‖2)eη1t = 0. (3.3)

In particular, we can take

Fθ :=
2
√

ΥθΥ2θα
−θ/4
1 + Υθ

α(1−θ)/2
1

max
(
1
δ
,

1
2
√
α1

)
. (3.4)

Proof. The idea of the proof is standard but, for our purposes, it is mandatory to fully report it since
we are interested in making the smallness conditions required from our results explicit.

Let α > 0. We define

Λα :=
1
2
‖wt‖

2 +
1
2
‖w‖22 +

αδ

2
‖w‖2 +

1
16
‖w‖4θ + α(wt,w)

and let E be the quantity

E :=
1
2
‖wt‖

2 +
1
2
‖w‖22 +

1
4
‖w‖4θ .

Remark that, by using the Cauchy-Schwarz inequality, the Young inequality and (2.2), we get

Λα ≤
1 + αε2

1

2
‖wt‖

2 +
αδ

2
‖w‖2 +

α1 + α/ε2
1

2α1
‖w‖22 +

1
16
‖w‖4θ ≤ C1E,

Λα ≥
1 − αε2

2

2
‖wt‖

2 +
αδ

2
‖w‖2 +

α1 − α/ε
2
2

2α1
‖w‖22 +

1
16
‖w‖4θ ≥ C2E, (3.5)

where C1 and C2 are positive numbers, obtainable for suitable choices of the values of α, ε1 and ε2. In
particular, to get C2 we have to require

1 − αε2
2 > 0, α1 −

α

ε2
2

> 0.

Hence, for every α such that α <
√
α1 we can find ε2 such that (3.5) holds.

We first consider u and v as regular solutions of the problems in (3.1). We define w := v − u and
r := g2 − g1. The function w is the regular solution of the problem

wtt + δwt + A2w + ‖v‖2θA
θv − ‖u‖2θA

θu = r. (3.6)

We remark that, if ξ := (u + v)/2, we have

‖v(t)‖2θA
θv(t) − ‖u(t)‖2θA

θu(t) = 2(ξ(t),w)θAθξ(t) + ‖ξ(t)‖2θA
θw +

1
4
‖w‖2θA

θw. (3.7)
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From the definition of Λα, by using (3.6) and (3.7), since u and v are regular solutions we get

Λ̇α + (δ − α)‖wt‖
2 + α‖w‖22 + 2(ξ,w)θ(Aθξ,wt) + ‖ξ‖2θ(A

θw,wt)+

+ 2α|(ξ,w)θ|2 + α‖ξ‖2θ‖w‖
2
θ +

α

4
‖w‖4θ = (r,wt + αw).

(3.8)

Let Cµ = supt≥0 ‖ξ(t)‖
2
µ for any µ ∈ [0, 2]. For a suitable choice of α, by using Cauchy-Schwarz and

Young inequality we have that for some positive constants ᾱ and α̃

(δ − α)‖wt‖
2 + α‖w‖22 + 2(ξ,w)θ(Aθξ,wt) + ‖ξ‖2θ(A

θw,wt) + 2α|(ξ,w)θ|2+

+ α‖ξ‖2θ‖w‖
2
θ +

α

4
‖w‖4θ ≥ (δ − α)‖wt‖

2+

+ α‖w‖22 − 2‖ξ‖θ‖w‖θ‖ξ‖2θ‖wt‖ − ‖ξ‖
2
θ‖w‖2θ‖wt‖ +

α

4
‖w‖4θ ≥

≥

δ − α − 2
√

CθC2θα
−θ/4
1 + Cθ

2α(1−θ)/2
1

 ‖wt‖
2 +

α − 2
√

CθC2θα
−θ/4
1 + Cθ

2α(1−θ)/2
1

 ‖w‖22+
+
α

4
‖w‖4θ ≥ ᾱE ≥ α̃Λα.

(3.9)

In particular, we choose the parameter α so that
δ − α −

2
√

CθC2θα
−θ/4
1 + Cθ

2α(1−θ)/2
1

> 0

α −
2
√

CθC2θα
−θ/4
1 + Cθ

2α(1−θ)/2
1

> 0,
⇐⇒


δ > α +

2
√

CθC2θα
−θ/4
1 + Cθ

2α(1−θ)/2
1

α >
2
√

CθC2θα
−θ/4
1 + Cθ

2α(1−θ)/2
1

.

Hence, since α <
√
α1, if 

δ >
2
√

CθC2θα
−θ/4
1 + Cθ

α(1−θ)/2
1

,

√
α1 >

2
√

CθC2θα
−θ/4
1 + Cθ

2α(1−θ)/2
1

we can find values of α such that (3.9) holds. Therefore we can find α such that (3.9) is satisfied if

2
√

CθC2θα
−θ/4
1 + Cθ

α(1−θ)/2
1

max
(
1
δ
,

1
2
√
α1

)
< 1. (3.10)

Now, for some positive α̃ and C̃ we get, from (3.8) and (3.9),

Λ̇α + α̃Λα ≤ (r,wt + αw) ≤ C̃‖r‖ =: f̃ (t). (3.11)

By defining

Mα(t) = Λα(t) −
∫ t

t0
f̃ (s)eα̃(s−t)ds,

from (3.11) we obtain
Ṁα(t) + α̃Mα(t) ≤ 0.
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Hence, from the Gronwall inequality and from the fact that for any ε > 0 there exists t0 > 0 such that
| f̃ (s)| ≤ C̃(ε + lim supt→∞ ‖r(t)‖) for any s ≥ t0, we get

Λα(t) ≤ Λα(t0)e−α̃(t−t0) +

∫ t

t0
f̃ (s)eα̃(s−t)ds ≤

≤ Λα(t0)e−α̃(t−t0) + C̃(ε + lim sup
t→∞

‖r(t)‖)e−α̃t e
α̃t − eα̃t0

α̃
, ∀t ≥ t0.

(3.12)

Since we can take ε arbitrarily small as t0 goes to infinity, from (3.12) we infer that there exists C > 0
such that

lim sup
t→∞

Λα(t) ≤ C lim sup
t→∞

‖r(t)‖. (3.13)

Moreover, if there exists η > 0 such that lim supt→∞ ‖r(t)‖eηt = 0, then (3.12) yields that there exists
η1 > 0 such that

lim
t→∞

Λα(t)eη1t = 0. (3.14)

From (3.5), there exists a positive constant C2 such that Λα(t) ≥ C2E(t). Therefore, (3.13) and (3.14)
imply (3.2) and (3.3) respectively.

We remark that
lim sup

t→∞
‖ξ(t)‖2µ = Υµ.

Hence, we can take Cµ = Υµ. Therefore, from (3.10), we get that if

2
√

ΥθΥ2θα
−θ/4
1 + Υθ

α(1−θ)/2
1

max
(
1
δ
,

1
2
√
α1

)
< 1,

then the thesis holds for regular solution u and v.
The same conclusions hold for u and v weak solutions of the problems in (3.1) by using a standard

density argument. Indeed, sinceH4 is dense inH2 andH2 is dense inH , setting (u(0) = u0, ut(0) = u1)
and (v(0) = v0, vt(0) = v1), there exists two sequences (u0

n, u
1
n) and (v0

n, v
1
n) inH4 ×H2 such that

(u0
n, u

1
n)→ (u0, u1) and (v0

n, v
1
n)→ (v0, v1) inH2 ×H .

Hence, from Theorem 3.1 we have the two sequences of regular solutions un and vn with (un(0) =

u0
n, un,t(0) = u1

n) and (vn(0) = v0
n, vn,t(0) = v1

n) such that, for any T > 0,

(un, un,t)→ (u, ut), (vn, vn,t)→ (v, vt) uniformly in C([0,T ],H2 ×H).

Therefore, since all the calculations hold for un and vn (and the difference wn := un − vn), we get the
thesis for the weak solutions u and v passing to the limit when n→ ∞. �

3.2. Some general stability results

In order to prove Theorem 2.3, we give a reformulation of Theorem 4.1 of [37] adapted to our
framework.
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Proposition 3.4. Let (H, (·, ·), | · |) be a Hilbert space and let A2 be a self-adjoint and strictly positive
linear operator on H with dense domain D(A). We introduce the Hilbert space V := D(A) endowed
with the norm ‖·‖2 := (A·, A·) and we identify the unbounded operator A2 with its extension in L(V,V ′).
The duality pairing in V ′ × V will be denoted in the same way as the inner product in H.

We consider B(t) ∈ C1(R+,L(V,H)) such that for any v ∈ V

0 ≤ lim sup
t→∞

(B(t)v, v) ≤ λ‖v‖2, lim sup
t→∞

(B′(t)v, v) ≤ λ′‖v‖2

for some positive numbers λ and λ′.
Let u be a bounded solution of

utt + δut + (A2 + B(t))u = g

where δ > 0, g ∈ C(R+,H) and limt→∞ |g(t)|ec0t = 0 for some positive constant c0.
If

λ′

δ
< 1

then there exists c > 0 such that
lim
t→∞

(‖u(t)‖2 + |ut(t)|2)ect = 0.

Proof. We proceed as in the proof of Theorem 4.1 of [37] and we define the quadratic form on V × H
given by

Φ(t) =
1
2

(|ut|
2 + ‖u‖2) +

δ

2
(u, ut) +

δ2

4
|u|2 +

1
2

(B(t)u, u).

For any fixed t0 > 0 we have, if t ≥ t0,

Φt =
1
2

(B′(t)u, u) −
δ

2
|ut|

2 −
δ

2
(B(t)u + A2u, u) + (g, ut +

δ

2
u) ≤

≤
1
2

sup
t≥t0

(B′(t)u, u) −
δ

2
|ut|

2 −
δ

2
‖u‖2 + Ke−c0t.

for some positive constant K. Hence, for t0 large enough

Φt(t) ≤ −
δ

2
|ut(t)|2 −

δ − λ′

2
‖u(t)‖2 + Ke−c0t

Therefore, if λ′ < δ we get, for some positive α,

Φt(t) + αΦ(t) ≤ Ke−c0t

for any t ≥ t0 and from Gronwall lemma we get the thesis. �

We recall a further stability result due to Haraux for an ODE related to our problem.

Proposition 3.5. [Theorem 2.1 of [37]] Let λ, δ > 0, a ∈ L∞(R+) with a(t) ≥ 0 for any t ≥ 0. Let
x ∈ C2(R+) be a solution of

ẍ + δẋ + (λ + a(t))x = 0. (3.15)
Mathematics in Engineering Volume 4, Issue 4, 1–36.
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Assume
lim sup

t→∞
a(t) < δmax(δ, 2

√
λ).

There there are η1 > 0 and M > 0 such that any bounded solution x of (3.15) satisfies

x2(t) + ẋ2(t) ≤ M[x2(s) + ẋ2(s)]e−η1(t−s)

for any s ≤ t.

With minimal effort, the same statement can be proven for x solving

ẍ + δẋ + (λ + a(t))x = g̃.

where g̃ ∈ C(R+) satisfies limt→∞ g̃(t)eηt = 0 for some η > 0.

3.3. Linear analysis

Some preliminary results on the behavior of a damped and forced harmonic oscillator are useful in
order to simplify the following study. In particular, we study the equation

ÿ + δẏ + λy = Ψ, (3.16)

where we require Ψ to be antiperiodic. We recall that a function f : R → R is said to be antiperiodic
of antiperiod τ (i.e. τ−antiperiodic) if

f (t + τ) = − f (t), ∀t ∈ R.

Proposition 3.6. Let us consider Ψ ∈ L2
loc(R+) antiperiodic of anti-period π/ω. We suppose that λ > 0

and δ > 0. Then there exists an antiperiodic solution z of anti-period π/ω of (3.16) and we have that
for some η > 0, for any y(t) solution of (3.16),

lim
t→∞

(|y(t) − z(t)| + |ẏ(t) − ż(t)|)eηt = 0.

Proof. Let us consider Aω ⊂ L2([0, π/ω]) the space of the locally square-integrable antiperiodic
functions with anti-period π/ω, endowed with the standard L2 norm on the interval [0, π/ω]. The
family {en =

√
ω/πe(2n+1)iωt}n∈Z is an orthonormal basis of this space. Hence, we write

Ψ(t) =

√
ω

π

∑
n∈Z

ψ je(2n+1)iωt.

Setting

z(t) :=
√
ω

π

∑
n∈Z

ψn

−ω2(2n + 1)2 + λ + iδω(2n + 1)
e(2n+1)iωt,

it is immediate to verify that z(t) is an antiperiodic solution of (3.16). The thesis now follows from
the standard theory of ODEs. Indeed, any solution of (3.16) is given by the sum of z(t) with a general
solution yg of the associated homogeneous equation

ÿg + δẏg + λyg = 0,
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which is given by
yg(t) = e−δt/2 f (t),

with

f (t) :=


S sin

( t
2

√
4λ − δ2 + ϕ

)
, if 4λ > δ2,

S
t
2

√
4λ − δ2 cos(ϕ) + S sin(ϕ), if 4λ = δ2,

S sinh
( t
2

√
δ2 − 4λ + ϕ

)
, if 4λ < δ2,

where the arbitrary constants S and ϕ are dependent from the initial conditions. We notice that

max(| f (t)|, | f ′(t)|) ≤ Ceµt,

for some constants C > 0 and 0 ≤ µ < δ/2. Therefore, since y(t) = z(t)+yg(t), we get that for a suitable
choice of η > 0

lim
t→∞

(|y(t) − z(t)| + |ẏ(t) − ż(t)|)eηt = lim
t→∞

(
| f (t)| +

∣∣∣∣∣ f ′(t) − δ2 f (t)
∣∣∣∣∣) e(η−δ/2)t ≤

≤
δ + 4

2
C lim

t→∞
e(η+µ−δ/2)t = 0,

which is the thesis. �

Proposition 3.7. Let us consider Ψ ∈ L2
loc(R+) antiperiodic of anti-period π/ω and let y(t) satisfy

(3.16). We suppose λ, δ > 0 and 2
√
λ , δ. We introduce the quantities

w±λ :=
π2

ω2

λ − δ2

2
± δ

√
δ2

4
− λ

 ,
Ω2
λ :=

π4

2ω4(w+
λ − w−λ )


tan

( √
w+
λ

2

)
√

w+
λ

−

tan
( √

w−λ
2

)
√

w−λ


where, for any w ∈ C,

√
w is the complex number z such that

z2 = w and z ∈ {ζ : <(ζ) > 0} ∪ {ζ : <(ζ) = 0 and =(ζ) ≥ 0}.

Then the following estimate holds

lim sup
t→∞

y(t) ≤ Ωλ‖Ψ‖L∞([0,π/ω]). (3.17)

Moreover, if Ψ ∈ C2(R+), then
lim sup

t→∞
ẏ(t) ≤ Ωλ‖Ψ̇‖L∞([0,π/ω]).
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Proof. From Proposition 3.6, Eq (3.16) admits an antiperiodic solution z(t) and any solution of y(t)
of (3.16) converges exponentially to z(t), which yields that lim supt→∞ y(t) = lim supt→∞ z(t). Hence,
since from the antiperiodicity of z(t) we have that lim supt→∞ z(t) = ‖z‖∞, in order to get the result it
suffices to estimate the L∞−norm of z(t). In the notation of Proposition 3.6, we have that

z(t) :=
√
ω

π

∑
n∈Z

ψn

−ω2(2n + 1)2 + λ + iδω(2n + 1)
e(2n+1)iωt,

Then, if cn =
√

(−ω2(2n + 1)2 + λ)2 + δ2ω2(2n + 1)2, from Cauchy-Schwarz inequality we obtain

|z(t)| ≤
√
ω

π

∑
n∈Z

|ψn|

cn
≤

√
ω

π

√∑
n∈Z

|ψn|
2

√
2
∑
n≥0

1
c2

n
. (3.18)

Moreover, if Ψ ∈ C2(R+), we have

|ż(t)| ≤
√
ω

π

∑
n∈Z

|(2n + 1)ωψn|

cn
≤

√
ω

π

√∑
n∈Z

|(2n + 1)ωψn|
2

√
2
∑
n≥0

1
c2

n
. (3.19)

First, we remark that from Parseval’s theorem√∑
n∈Z

|ψn|
2 = ‖Ψ‖L2([0,π/ω]) ≤

√
π

ω
‖Ψ‖L∞([0,π/ω]),√∑

n∈Z

|(2n + 1)ωψn|
2 = ‖Ψ̇‖L2([0,π/ω]) ≤

√
π

ω
‖Ψ̇‖L∞([0,π/ω]).

(3.20)

Then, to conclude the proof, we compute a closed form for the serie∑
n≥0

1
c2

n
=

∑
n≥0

1
ω4(2n + 1)4 − (2λ − δ2)(2n + 1)2ω2 + λ2 . (3.21)

We observe that (3.21) becomes∑
n≥0

1
c2

n
=

∑
n≥0

π4

(w+
λ − w−λ )ω4

[
1

(2n + 1)2π2 − w+
λ

−
1

(2n + 1)2π2 − w−λ

]
. (3.22)

We now recall that the Mittag-Leffler expansion for the cotangent function gives

cot(w) =
1
w

+

∞∑
n=1

2w
w2 − π2n2 .

Some straightforward computations give

1
2

tan
(w

2

)
=

1
2

cot
(w

2

)
− cot(w) =

∞∑
n=0

2w
(2n + 1)2π2 − w2 .
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Thus, we can infer that ∑
n≥0

1
(2n + 1)2π2 − wλ

=
tan

( √wλ

2

)
4
√

wλ

.

Hence, from (3.22) we can conclude that

∑
n≥0

1
c2

n
=

π4

4ω4(w+
λ − w−λ )


tan

( √
w+
λ

2

)
√

w+
λ

−

tan
( √

w−λ
2

)
√

w−λ

 . (3.23)

By using (3.20) and (3.23) in (3.18) and (3.19), we obtain the thesis. �

In [36, Theorem 2.1], a result similar to Proposition 3.7 is proven. In particular, the maximum
value of lim supt→∞ y(t) as the forcing term Ψ varies in the unitary ball of L∞(R) is determined. On
the other hand, for any fixed antiperiodic forcing term Ψ in C2(R), in Proposition 3.7 we estimated
lim supt→∞ y(t) and lim supt→∞ ẏ(t). As Figure 1 shows, Proposition 3.7 almost always gives a better
estimate on lim supt→∞ y(t).
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Figure 1. Comparison between the estimates on the ‖·‖∞−norm of y solution of (3.16) given
by [36] (blue) and by (3.17) (black) with δ = 1 and ω = 3 as λ vary from 1 to 150 (left) and
with δ = 1 and λ = 5 as ω vary from 1 to 15 (right). In red, we represented the ‖·‖∞−norm of
the antiperiodic solution of (3.16) with Ψ(t) = signum(sin(ωt)).

3.4. Structure of the paper

The remainder of the paper is organized as follows. First, in Section 4 we apply the results of
Subsection 3.2 in order to prove Theorem 2.3. In particular, we apply Proposition 3.4 to prove that for
N large enough, if g is exponentially N−dimensional, then there exists N̄ ≥ N such that any solution
u of (2.5) is exponentially N̄−dimensional (see Lemma 4.1). After that, fixed n > N, we study the
asymptotic amplitude of un(t) = (u(t), en) for any u solution of (2.5) and in Lemma 4.2 we determine
whether un(t) decays exponentially as t goes to infinity. In subsection 4.2 we exploit Lemma 4.1 and
Lemma 4.2 in order to get Theorem 2.3. We remark that, even though the thesis of Theorem 2.3 follows
from Lemma 4.1, Lemma 4.2 is necessary in order to improve the result of Lemma 4.1. More precisely,
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Lemma 4.2 provides an improvement of the smallest number M ≥ N obtained in Lemma 4.1 such that
if g is exponentially N−dimensional then any solution u is exponentially M−dimensional.

Next, by exploiting the continuous dependence of the solution from the forcing term, that is,
Proposition 3.3, and Theorem 2.3, in Section 5 we give the proof of Theorem 2.4.

In Section 5, by proceeding as in a result of Bonheure, Gazzola and Moreira dos Santos [8, Theorem
6], we show that (2.8) admits an antiperiodic solution p. In Lemma 6.2 we use Proposition 3.7 to
estimate, for any n ∈ N, the asymptotic amplitude of pn(t) := (p(t), en). Such result yields an estimate
on the H s−norms of p (see Lemma 6.3) which we numerically verified to be better than the a-priori
estimates obtained in [8] (see Figure 2). From Proposition 3.3, we have that under suitable smallness
conditions on lim supt→∞ ‖g(t)‖, any solution u of (2.8) converges to p in the phase space norm. Hence,
from Lemma 6.2 and Lemma 6.3, in Lemma 6.4 we get an estimate on the asymptotic amplitude of
un(t) = (u(t), en) and on the H s−norms of u for any u solution of (2.8). Finally, in Lemma 6.5, we
exploit the previous results of Section 6 in order to get a results for finite-dimensional systems of
ODEs and in Subsection 2.5 we apply Lemma 6.5 and Lemma 6.4 to get Theorem 2.5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.5

1

1.5

2

2.5

3

Figure 2. Comparison between the general estimate on lim supt→∞ ‖u(t)‖2 (blue) and the one
obtained by using the antiperiodicity of the forcing term (red).

4. Proof of Theorem 2.3

4.1. Stability of the higher modes

We now apply the results of the previous section to our framework in order to prepare the proof of
Theorem 2.3.

Lemma 4.1. Let u be a weak solution of (2.5). Let g be exponentially N−dimensional. If there exists
N̄ ≥ N such that

lim sup
t→∞

(
1
α1−θ

1

‖u(t)‖22 + ‖ut(t)‖2
)
< 2δα(2−θ)/2

N̄+1

then there exists η̃ > 0 such that

lim sup
t→∞

(‖QN̄u(t)‖22 + ‖QN̄ut(t)‖2)eη̃t = 0.
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Proof. Fix N̄ ≥ N and, for any s ∈ [0, 2], let Υs := lim supt→∞ ‖u(t)‖2s . We introduce the operator-
valued function B(t) := ‖u(t)‖2θA

θ. By using (2.3), we get that w = QN̄u solves

wtt + δwt + (A2 + B(t))w = QN̄g. (4.1)

By using (2.4) we remark that for any v ∈ H2 such that QN̄v = v

0 ≤ lim sup
t→∞

(B(t)v, v) = lim sup
t→∞

‖u(t)‖2θ‖v‖
2
θ ≤

Υθ

α(2−θ)/2
N̄+1

‖v‖22,

lim sup
t→∞

(B′(t)v, v) = lim sup
t→∞

(ut(t), Aθu(t))‖v‖2θ ≤

≤
1

2α(2−θ)/2
N̄+1

lim sup
t→∞

(
1
α1−θ

1

‖u(t)‖22 + ‖ut(t)‖2
)
‖v‖22.

(4.2)

We introduce

ϕ(t) =
1
2

(‖ut(t)‖2 + ‖Au(t)‖2) +
δ

2
(u(t), ut(t)) +

δ2

4
‖u(t)‖2.

By applying Proposition 3.4 to (4.1), from (4.2) we get that if

lim sup
t→∞

(
1
α1−θ

1

‖u(t)‖22 + ‖ut(t)‖2
)
< 2δα(2−θ)/2

N̄+1
,

then ϕ(t)→ 0 exponentially as t goes to infinity. This yields that there exists η̃ > 0 such that

lim
t→∞

(‖Aw(t)‖2 + ‖wt(t)‖2)eη̃t = 0.

Therefore, since ‖Aw‖2 = ‖w‖22, we get the thesis. �

We now apply Proposition 3.5 to the projection of (2.5) on the n−th mode. The following lemma
holds.

Lemma 4.2. Let g be exponentially N−dimensional. For any weak solution u of (2.5), if

∃n ≥ N + 1 such that lim sup
t→∞

‖u(t)‖2θ < δmax(2θδ1−θ, 2α(1−θ)/2
n ), (4.3)

then for any M ≥ n there exists η̃ > 0 such that for any n ≤ N̄ ≤ M

lim
t→∞

(|(u(t), eN̄)|2 + |(ut(t), eN̄)|2)eη̃t = 0.

Proof. Fixed n ≥ N + 1, we consider the projection of u on the n−th mode, i.e., un := (u, en). The
function un satisfies

ün + δu̇n + (αn + ‖u(t)‖2θα
θ/2
n )un = (g, en).

Since n ≥ N + 1, for some η > 0, limt→∞(g(t), en)eηt = 0. Let us suppose that lim supt→∞ ‖u(t)‖2θ <
δmax(2θδ1−θ, 2α(1−θ)/2

n ). Since

max(2θδ1−θ, 2α(1−θ)/2
n ) ≤ max

(
δ

αθ/2n

, 2α(1−θ)/2
n

)
,
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we have that
αθ/2n lim sup

t→∞
‖u(t)‖2θ < δmax(δ, 2

√
αn),

which yields that, from Proposition 3.5,

lim
t→∞

(|un(t)|2 + |u̇n(t)|2)eη1t = 0.

Since (α j) j is strictly increasing, max(2θδ1−θ, 2α(1−θ)/2
n ) is an increasing sequence. Hence, if (4.3)

holds, then for any N̄ ≥ n
lim sup

t→∞
‖u(t)‖2θ ≤ δmax(2θδ1−θ, 2α(1−θ)/2

N̄
),

that implies that for any M ≥ n there exists η̃ > 0 such that for any n ≤ N̄ ≤ M

lim
t→∞

(|uN̄(t)|2 + |u̇N̄(t)|2)eη̃t = 0,

that is the thesis. �

4.2. Completion of the proof of Theorem 2.3

Let g be exponentially N−dimensional and let u be a weak solution of (2.5). We recall that, from
Proposition 3.2, we have

lim sup
t→∞

‖u(t)‖2θ ≤
4E∞ + 2α2Φ0√

α2−θ
1 + 2(2E∞ + α2Φ0) + α1−θ/2

1

=: Φθ;

lim sup
t→∞

‖u(t)‖22 ≤ 2E∞ + α2Φ0 =: Φ2;

lim sup
t→∞

‖ut(t)‖2 ≤ min
λ>0

1 + λ

λ

(
2E∞ + max

s∈[0,Φ0]

(
(λ + 1)α2 − α1s −

1
2

s2
))

=: Φv.

(4.4)

We introduce the quantity N̄ defined as the smallest integer number greater than N such that

1
α1−θ

1

Φ2 + Φv < 2δα(2−θ)/2
N̄+1

. (4.5)

From (4.4), (4.5) implies

lim sup
t→∞

(
1
α1−θ

1

‖u(t)‖22 + ‖ut(t)‖2
)
< 2δα(2−θ)/2

N̄+1
.

Hence, from Lemma 4.1, if (4.5) holds then there exists η1 > 0 such that

lim
t→∞

(‖QN̄u(t)‖22 + ‖QN̄ut(t)‖2)eη1t = 0.

We introduce the set

B := {n ∈ N : n ∈ [N, N̄] and Φθ < δmax(2θδ1−θ, 2α(1−θ)/2
n+1 )}
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and we define

N :=

min B if B , ∅

+∞ if B = ∅.

From Proposition 3.2 we have that lim supt→∞ ‖u(t)‖2θ ≤ Φθ. Hence, from Lemma 4.2, if N , +∞, there
exists η2 > 0 such that

lim
t→∞

(|(u(t), en+1)|2 + |(u̇(t), en+1)|2)eη2t = 0

for any n ∈ [N, N̄] ∩ N, which yields

lim
t→∞

(‖QN PN̄u(t)‖22 + ‖QN PN̄ut(t)‖2)eη2t.

Hence, if we set P∞ := I, Q∞ := 0 and M := min{N, N̄}, for some η̃ > 0

lim
t→∞

(‖QMu(t)‖22 + ‖QMut(t)‖2)eη̃t = lim
t→∞

(‖QN PN̄u(t)‖22 + ‖QN PN̄ut(t)‖2)eη̃t+

+ lim
t→∞

(‖QN̄u(t)‖22 + ‖QN̄ut(t)‖2)eη̃t = 0.

This concludes the proof of Theorem 2.3.

5. Proof of Theorem 2.4

Let us suppose that
2
√

ΦθΦ2α
(θ−2)/4
1 + Φθ

2α(1−θ)/2
1

max
(
1
δ
,

1
√
α1

)
< 1, (5.1)

where Φθ and Φ2 are defined in Proposition 3.2. Since Φθ and Φ2 depend on g∞ and δ, we get that, for
any fixed δ, (5.1) translates into Fθ(α1, δ, g∞) < 1 for some Fθ. Therefore, for any fixed δ > 0, there
exists ḡ∞ > 0 such that if g∞ < ḡ∞, then (5.1) holds. We remark that, since the term g models the
action of the wind along the deck of the bridge, we physically interpret (5.1) as a requirement on the
load exerted on the structure by the wind. In particular, since ḡ∞ in engineering applications (see [23])
is proportional to the speed of the wind v, the relation (5.1) is equivalent to require that v < v̄ for some
v̄ > 0.

Let u be a weak solution of (2.5) and for any J = { j1, . . . , jm} let vJ be a weak solution of the
problem

vJ
tt + δvJ

t + A2vJ + ‖vJ‖
2
θA

θvJ = PJg.

We introduce the quantities Υµ = lim supt→∞ ‖(u(t) + vJ(t))/2‖2µ, where µ ∈ [0, 2]. From Proposition 3.3
with g1 = PJg and g2 = g = PJg + QJg, there exists a function Fθ = Fθ(α1, δ,Υθ,Υ2θ), given by (3.4),
such that if Fθ < 1 then there exists a constant C > 0 such that

lim sup
t→∞

(‖u(t) − vJ(t)‖22 + ‖ut(t) − vJ
t (t)‖2) ≤ C lim sup

t→∞
‖QJg(t)‖. (5.2)

Since g = g f (t), for a suitable choice of J, we have that C lim supt→∞ ‖QJg(t)‖ < ε. Hence we can
conclude that, for a suitable choice of the family J, (5.2) gives

lim sup
t→∞

(‖u(t) − vJ(t)‖22 + ‖ut(t) − vJ
t (t)‖2) ≤ ε. (5.3)
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From Proposition 3.2 and (2.2), we have that Υθ ≤ Φθ and Υ2θ < αθ−1
1 Φ2. Hence, Fθ < 1 is implied by

(5.1). Therefore, fixed δ, if g∞ < ḡ∞ for some positive constant ḡ∞, where ḡ∞ does not depend by J,
then (5.3) holds. This proves the first part of Theorem 2.4.

Let now g be exponentially N-dimensional and let M ≥ N be obtained from Theorem 2.3, i.e., let
M ≥ N be such that for some η > 0

lim
t→∞

(‖QMu(t)‖22 + ‖QMut(t)‖2)eηt = 0. (5.4)

Let u and v be, respectively, weak solutions of (2.5) and

vtt + δvt + A2v + ‖v‖2θA
θv = PMg.

We remark that u is solution of the following problem

utt + δut + A2u + ‖u‖2θA
θu = g = PMg + QMg.

Since we supposed g to be exponentially N-dimensional and M ≥ N, there exists η > 0 such that

lim
t→∞
‖PMg(t) + QMg(t) − PMg(t)‖eηt = lim

t→∞
‖QMg(t)‖eηt = 0.

Therefore, from Proposition 3.3 with g1 = PMg and g2 = g = PMg + QMg we have that, fixed δ, if g∞
is sufficiently small, then there exists η1 > 0 such that

lim
t→∞

(‖u(t) − v(t)‖22 + ‖ut(t) − vt(t)‖2)eη1t = 0.

Since v = PMv, from (5.4) we get that for some η̃ > 0

lim
t→∞

(‖PMu(t) − v(t)‖22 + ‖PMut(t) − vt(t)‖2)eη̃t = 0.

This concludes the proof of Theorem 2.4.

6. Proof of Theorem 2.5

6.1. Some preliminary results

In Theorem 2.5, we restrict ourselves to the case when the forcing term is antiperiodic in time due to
the engineering interest of this case (see Section 7). Moreover, for the sake of simplicity, we consider
the case θ = 0. The antiperiodicity of the forcing term allows us to provide some more information
about the solution of (2.8). In particular, proceeding as in Theorem 6 of [8], where the result was
proven in the periodic framework, by using Proposition 3.6, we obtain the following statement:

Proposition 6.1. If g(t) is a continuous antiperiodic function of anti-period τ, then there exists a
solution of (2.5) antiperiodic of anti-period τ.

Proof. The proof proceeds as in [8, Theorem 6]. First, we fix n ≥ 1 and we prove the existence of a
τ−antiperiodic solution for the problem

utt + δut + A2u + ‖u‖2u = Png. (6.1)
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Hence, we seek a τ−antiperiodic solution un in the form

un(x, t) :=
n∑

k=1

hn
k(t)ek(x).

We consider the spaces C2
τ(R) and C0

τ(R) of C2 and C2 τ−antiperiodic functions and in the same
notations of [8, Theorem 6] we have that (6.1) is equivalent to

Ln(h(t)) + ∇Gn(h(t)) = g(t),

where h := (hn
1, . . . , h

n
n), g := (g1, . . . , gn), Ln is a diagonal operator such that

Lk
n(h) := ḧk + δḣk + αkhk

and

Gn(h) :=
1
4

n∑
j,k=1

h2
jh

2
k .

We observe that for any q ∈ (C0
τ(R))n from Proposition 3.6 there exists a unique h ∈ (C2

τ(R))n such that
Ln(h) = q. Thanks to the compact embedding (C2

τ(R))n ⊂ (C0
τ(R))n, we have that the nonlinear map

Γn : (C0
τ(R))n × [0, 1]→ (C0

τ(R))n defined by

Γn(h, ν) = L−1
n (g − ν∇Gn(h)), ∀(h, ν) ∈ (C0

τ(R))n × [0, 1]

is compact. Moreover, from Proposition 3.2 we have that there exists Hn > 0 (independent of ν) such
that if h ∈ (C0

τ(R))n solves h = Γn(h, ν), then

‖h‖(C0
τ (R))n ≤ Hn.

Hence, since the equation h = Γn(h, 0) from Proposition 3.6 admits a unique τ−antiperiodic solution,
the Leray-Schauder principle ensures the existence of a solution h ∈ (C0

τ(R))n of h = Γn(h, 1).
This proves the existence of a τ−antiperiodic solution of (6.1). The proof the result follows from
the existence of a τ−antiperiodic solution of (6.1) exactly as in [8, Theorem 6] by showing that the
sequence (un) converges to a τ−antiperiodic solution u of (2.8). �

In this section we use the quantities

w±j :=
π2

ω2

α j −
δ2

2
± δ

√
δ2

4
− α j

 ,
Ω2

j :=
π4

2ω4(w+
j − w−j )


tan

( √
w+

j

2

)
√

w+
j

−

tan
( √

w−j
2

)
√

w−j


(6.2)

obtained by replacing λ by α j in Proposition 3.7.
We now apply Proposition 3.7 in order to get an estimate on the j−th mode of the antiperiodic

solution p of (2.8), which we proved to exist in Proposition 6.1. In the following, whenever a real-
valued function f (t) will be antiperiodic, we will write interchangeably lim supt→∞ f (t) and ‖ f ‖∞.
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Lemma 6.2. Let p be an antiperiodic solution of (2.8). If

max
j

Ω j lim sup
t→∞

‖p(t)‖2 < 1 (6.3)

where Ω j is defined in (6.2), then, if we set Υ0 := lim supt→∞ ‖p(t)‖2 and Υv := lim supt→∞ ‖pt(t)‖2,

g j

(1 + Υ0Ω j)
√

(α j − ω2)2 + δ2ω2
≤ lim sup

t→∞
|p j(t)| ≤

g j

(1 − Υ0Ω j)
√

(α j − ω2)2 + δ2ω2
,

(ω(1 − Υ0Ω j) − 2
√

Υ0ΥvΩ j)g j

(1 − (Υ0Ω j)2)
√

(α j − ω2)2 + δ2ω2
≤ lim sup

t→∞
| ṗ j(t)| ≤

(ω(1 − Υ0Ω j) + 2
√

Υ0ΥvΩ j)g j

(1 − Υ0Ω j)2
√

(α j − ω2)2 + δ2ω2
,

where p j := (p, e j) and g j := lim supt→∞(g(t), e j) = (g, e j).

Proof. We study the j−th component of the problem (2.8), namely

p̈ j + δ ṗ j + α j p j + ‖p‖2 p j = g j sin(ωt). (6.4)

We consider the antiperiodic solution v of the problem

v̈ + δv̇ + α jv = g j sin(ωt). (6.5)

It is possible to verify that the general solution of (6.5) is given by

v(t) =
g j√

(α j − ω2)2 + δ2ω2
sin

(
ωt + arctan

δω

ω2 − α j

)
+ S e−δt/2 sin

( t
2

√
4α j − δ2 + ϕ

)
,

where the constants S and ϕ are determined by the initial data of (6.5). Hence, it follows that, for any
choice of the initial data of (6.5),

lim sup
t→∞

v(t) =
g j√

(α j − ω2)2 + δ2ω2
, lim sup

t→∞
v̇(t) =

ωg j√
(α j − ω2)2 + δ2ω2

. (6.6)

If we subtract (6.5) from (6.4), if w := p j − v we get

ẅ + δẇ + α jw = −‖p‖2 p j.

Hence, from Proposition 3.7 we get, if p(0)
j := lim supt→∞ p j(t), p

(1)
j := lim supt→∞ ṗ j(t), Υ0 :=

lim supt→∞ ‖p(t)‖2 and Υv := lim supt→∞ ‖pt(t)‖2,

lim sup
t→∞

|w(t)| ≤ Υ0Ω jp
(0)
j ,

lim sup
t→∞

|ẇ(t)| ≤ Ω j‖2(p(t), pt(t))p j(t) + ‖p(t)‖2 ṗ j(t)‖L∞(0,π/ω) ≤

≤ 2
√

Υ0ΥvΩ jp
(0)
j + Υ0Ω jp

(1)
j .

(6.7)

Since p and v are both antiperiodic, w is antiperiodic and (6.7) gives∣∣∣‖v‖∞ − ‖p j‖∞

∣∣∣ ≤ ‖w‖∞ ≤ Υ0Ω jp
(0)
j ,
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25∣∣∣‖v̇‖∞ − ‖ ṗ j‖∞

∣∣∣ ≤ ‖ẇ‖∞ ≤ 2
√

Υ0ΥvΩ jp
(0)
j + Υ0Ω jp

(1)
j .

We get then

lim sup
t→∞

v(t) − Υ0Ω jp
(0)
j ≤ p

(0)
j ≤ lim sup

t→∞
v(t) + Υ0Ω jp

(0)
j ,

lim sup
t→∞

v̇(t) − 2
√

Υ0ΥvΩ jp
(0)
j − Υ0Ω jp

(1)
j ≤ p

(1)
j ≤ lim sup

t→∞
v̇(t) + Υ0Ω jp

(1)
j + 2

√
Υ0ΥvΩ jp

(0)
j .

Hence, from (6.6) we get, since hypothesis (6.3) holds,
g j

(1 + Υ0Ω j)
√

(α j − ω2)2 + δ2ω2
≤ p

(0)
j ≤

g j

(1 − Υ0Ω j)
√

(α j − ω2)2 + δ2ω2
,

which yields

(ω(1 − Υ0Ω j) − 2
√

Υ0ΥvΩ j)g j

(1 − (Υ0Ω j)2)
√

(α j − ω2)2 + δ2ω2
≤ p

(1)
j ≤

(ω(1 − Υ0Ω j) + 2
√

Υ0ΥvΩ j)g j

(1 − Υ0Ω j)2
√

(α j − ω2)2 + δ2ω2

that is the thesis. �

We now apply the results of Lemma 6.2 in order to get an estimate on theH−norm andH2−norm
of an antiperiodic solution p of (2.8).

Lemma 6.3. Let p be an antiperiodic solution of (2.8). Let us suppose that

max
j

Ω jΦ0 < 1,

where Φ0 is defined in Proposition 3.2. Then the following estimates hold:

lim sup
t→∞

‖p(t)‖2 ≤
∞∑
j=1

g2
j

(1 − Φ0Ω j)2((α j − ω2)2 + δ2ω2)
=: ϕ < ∞, (6.8)

lim sup
t→∞

‖pt(t)‖2 ≤
∞∑
j=1

(ω(1 − Φ0Ω j) + 2
√

Φ0ΦvΩ j)2g2
j

(1 − Φ0Ω j)4((α j − ω2)2 + δ2ω2)
=: ϕv < ∞, (6.9)

lim sup
t→∞

‖p(t)‖22 ≤
∞∑
j=1

α jg2
j

(1 − Φ0Ω j)2((α j − ω2)2 + δ2ω2)
=: ϕ2 < ∞. (6.10)

Proof. We prove (6.10) only, since the proofs of (6.8) and (6.9) are completely analogous. From
Lemma 6.2, by using that from Proposition 3.2 Υ0 := lim supt→∞ ‖p(t)‖2 ≤ Φ0,

lim sup
t→∞

‖p(t)‖22 ≤
∞∑
j=1

α j‖p j‖
2
∞
≤

∞∑
j=1

α jg2
j

(1 − Φ0Ω j)2((α j − ω2)2 + δ2ω2)
.

We recall that the sequence (α j) j is divergent. Therefore, for j large enough, w−j = w+
j and |w+

j−w−j | =
2π2δ

√
α j − δ2/4/ω2 ≥ π2δ

√
α j/ω

2. Hence

∣∣∣Ω2
j

∣∣∣ ≤ π2

δω2√α j

∣∣∣∣∣∣∣∣∣∣∣∣=

tan

( √
w+

j

2

)
√

w+
j


∣∣∣∣∣∣∣∣∣∣∣∣ ≤

π2

δω2√α j

∣∣∣∣∣∣tan
( √

w+
j

2

)∣∣∣∣∣∣√
|w+

j |

.
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We remark that

|tan(a + ib)| ≤

√
sin2(2a) + sinh2(2b)

(cos(2a) + cosh(2b))2 .

Moreover, from the definition of w+
j (see (6.2)), we have that =(w+

j ) → +∞. Hence, we conclude that

lim j→∞ | tan(
√

w+
j /2)| = 1 and consequently

lim
t→∞

Ω j = 0.

Then, since lim j→∞ α j = +∞ and max j Ω jΦ0 < 1, we have that, for some positive constant C, for any
j ∈ N

α j

(1 − Φ0Ω j)2((α j − ω2)2 + δ2ω2)
< C.

Therefore, by using that
∞∑
j=1

g2
j = ‖g‖2 < ∞,

we get that
∞∑
j=1

α jg2
j

(1 − Φ0Ω j)2((α j − ω2)2 + δ2ω2)
≤

∞∑
j=1

Cg2
j = C‖g‖2 < ∞,

that is the thesis. �

We observe that, from Proposition 3.3, any solution u of (2.8) exponentially converges to p under
suitable smallness conditions on ‖g‖. Hence, Lemma 6.2 and Lemma 6.3 hold for any weak solution u
of (2.8). More precisely, the following lemma holds.

Lemma 6.4. Let u be a weak solution of (2.8). If

max
j

Ω jΦ0 < 1, F (ξ∞) < 1,

where F(ξ) = 3ξmax(1/δ, 1/(2
√
α1))/

√
α1 and ξ∞ :=

(
(
√

Φ0 +
√
ϕ)/2

)2
, then

lim sup
t→∞

‖u(t)‖2 ≤ ϕ, lim sup
t→∞

‖u(t)‖22 ≤ ϕ2, lim sup
t→∞

‖ut(t)‖2 ≤ ϕv,

and

g j

(1 + ϕΩ j)
√

(α j − ω2)2 + δ2ω2
≤ lim sup

t→∞
|(u(t), e j)| ≤

g j

(1 − ϕΩ j)
√

(α j − ω2)2 + δ2ω2
,

(ω(1 − ϕΩ j) − 2
√
ϕϕvΩ j)g j

(1 − (ϕΩ j)2)
√

(α j − ω2)2 + δ2ω2
≤ lim sup

t→∞
|(ut(t), e j)| ≤

(ω(1 − ϕΩ j) + 2
√
ϕϕvΩ j)g j

(1 − ϕΩ j)2
√

(α j − ω2)2 + δ2ω2
,

where ϕ, ϕv and ϕ2 are defined in (6.8), (6.9) and (6.10) respectively.
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Proof. Let p be an antiperiodic solution of (2.8). We define w = p − u. The function w solves

wtt + δwt + A2w + ‖p‖2 p − ‖u‖2u = 0.

We proceed as in Proposition 3.3 and we get that if

F(lim sup
t→∞

‖ξ(t)‖2) < 1

where ξ = (u + p)/2, then
lim
t→∞

(‖u(t) − p(t)‖22 + ‖ut(t) − pt(t)‖2) = 0. (6.11)

Since

lim sup
t→∞

‖ξ(t)‖ ≤
lim supt→∞ ‖u(t)‖ + lim supt→∞ ‖p(t)‖

2
≤

√
Φ0 +

√
ϕ

2
,

from the monotonicity of F we get that F(ξ∞) < 1 implies (6.11). Hence, the thesis follows from
Lemma 6.2 and Lemma 6.3. �

6.2. The role of a single mode in the dynamics

Let us consider the finite-dimensional problem

ẍ + δẋ + Λx + ‖x‖2x = g(t) (6.12)

where x(t) = (x1(t), . . . , xn(t)) ∈ Rn, g(t) = (g1(t), . . . , gn(t)), Λ = diag(α j)n
j=1 and ‖·‖ is the Euclidean

norm in Rn. This problem is a finite-dimensional approximation of (2.8).
Here, we estimate how much the evolution of the system changes as we eliminate a single mode

from the dynamics. For the sake of simplicity, in the following we consider the case when the higher
mode is the one we choose to neglect. We observe that

Pn−1 ẍ + δẋ + Λn−1Pn−1x + ‖Pn−1x‖2Pn−1x + x2
nPn−1x = Pn−1g(t) (6.13)

where Pn−1(a1, . . . , an) = (a1, . . . , an−1), Λn−1 = diag(α j)n−1
j=1 . We consider now the function y(t),

solution of
ÿ + δẏ + Λn−1y + ‖(y, 0)‖2y = Pn−1g(t) (6.14)

At this point, the question is reduced to estimate the (asymptotic) distance between the solution x of
(6.12) and the solution y of (6.14). To this end, with a slight abuse of notations, we introduce the

Rn−norms ‖·‖1 and ‖·‖2 defined by ‖x‖1 = |x1| + · · · + |xn| and ‖x‖2 =
√
α1|x1|

2 + · · · + αn|xn|
2. We

remark that the result is completely independent of the choice of the mode neglected. The following
lemma holds.

Lemma 6.5. Let x and y be solutions of Eqs (6.12) and (6.14) respectively. Let g = g sin(ωt)
with g ∈ Rn and we suppose that F(ξ∞) < 1, where ξ∞ is defined in Lemma 6.4 and F(ξ) =

3ξmax(1/δ, 1/(2
√
α1))/

√
α1. Moreover, we suppose that

max
j

Ω jΦ0 < 1, max
j

Ω jϕ < 1.
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Then there exists a function S of the parameters of the problem such that if S < 1 then we have that

lim sup
t→∞

‖Pn−1x(t) − y(t)‖
2
≤ C(χ)χ2

n,

lim sup
t→∞

‖Pn−1 ẋ(t) − ẏ(t)‖ ≤ C1(χ, χ
v
)χ2

n + C2(χ, χ
v
)χn,vχn

where χ = (χ1, . . . χn), χ j := lim supt→∞max(|x j(t)|, |y j(t)|), χ
v

= (χ1,v, . . . χn,v) and χ j,v :=
lim supt→∞max(|ẋ j(t)|, |ẏ j(t)|).

Proof. First, we remark that as in Lemma 6.4, since F(ξ∞) < 1, we have that there exist two
antiperiodic functions p1 ∈ C2(R+,R

n) and p2 ∈ C2(R+,R
n−1) such that

lim
t→∞
‖x(t) − p1(t)‖2

2
+ ‖ẋ(t) − ṗ1(t)‖2 = 0,

lim
t→∞
‖y(t) − p2(t)‖2

2
+ ‖ẏ(t) − ṗ2(t)‖2 = 0.

Therefore, since we are interested in the asymptotic behavior of our system, we can restrict ourselves
to the case when x and y are both antiperiodic without loss of generality.

Let us consider the difference between Eqs (6.13) and (6.14). If we set w := Pn−1x and z := w − y,
we get

z̈ + δż + Λn−1z = Ψ

where Ψ = −x2
nw − (‖w‖2 − ‖y‖2)y − ‖w‖2z and for the sake of simplicity, abusing the notations, we

wrote ‖w‖ and ‖y‖ instead of ‖(w, 0)‖ and ‖(y, 0)‖ respectively.
We focus on one component, say j, in order to treat only scalar quantities. Hence, we consider the

equation
z̈ j + δż j + α jz j = Ψ j (6.15)

where Ψ j = −x2
nx j − (‖w‖2 − ‖y‖2)y j − ‖w‖2z j = −x2

nx j − (w − y,w + y)y j − ‖w‖2z j. The fact that x and y
are antiperiodic implies that Ψ is antiperiodic too. Hence, we can apply Proposition 3.7 to (6.15) and,
if we introduce the quantities

ϕ := maxt≥0 max(‖x(t)‖2, ‖y(t)‖2), ϕv := maxt≥0 max(‖ẋ(t)‖2, ‖ẏ(t)‖2),
χ j := max(‖x j‖∞, ‖y j‖∞), χ j,v := max(‖ẋ j‖∞, ‖ẏ j‖∞) for j = 1, . . . , n,

then, setZ := maxt≥0 ‖z(t)‖, we have

‖z j‖∞ ≤ Ω j‖Ψ j‖∞ ≤ Ω j(χ2
nχ j + 2

√
ϕχ jZ + ϕ‖z j‖∞).

Therefore, set Z j := ‖z j‖∞ and C j := Ω jϕ, by requiring that C j < 1 for any j = 1, . . . n we get

Z j ≤
C jχ j

1 −C j

(
χ2

n + 2
√
ϕZ

ϕ

)
. (6.16)

We define the quantity

S :=
n−1∑
j=1

2C jχ j

(1 −C j)
√
ϕ
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and we suppose S < 1.
We remark that for any x ∈ Rn, ‖x‖ ≤ ‖x‖1 := |x1|+. . . |xn| and, for any bounded function f : R→ Rn,

supt ‖ f (t)‖
1
≤ ‖ f1‖∞ + · · · + ‖ fn‖∞. Hence we have that Z ≤

∑n−1
j=1 Z j. Therefore, by summing (6.16)

over j and solving inZ we get

Z ≤
S

1 − S
χ2

n

2
√
ϕ
. (6.17)

Next, we remark that for any bounded function f : R → Rn we have that supt ‖ f (t)‖
2
≤
√
α1‖ f1‖∞ +

· · · +
√
αn‖ fn‖∞. HenceZ2 := maxt≥0 ‖z(t)‖2 ≤

∑n−1
j=1
√
α jZ j and from (6.16) and (6.17) it follows that

Z2 ≤

n−1∑
j=1

√
α jZ j ≤

n−1∑
j=1

C jχ j
√
α j

1 −C j

(
χ2

n + 2
√
ϕZ

ϕ

)
≤

1
ϕ(1 − S )

n−1∑
j=1

C jχ j
√
α j

1 −C j
χ2

n. (6.18)

In particular, from (6.17) and (6.18) we conclude that there exist two positive constants b and c such
that

Z ≤ bχ2
n, Z2 ≤ cχ2

n. (6.19)

Moreover, from (6.19) and (6.16), there exist constants a j such that

Z j ≤ a jχ
2
n for any j = 1, . . . , n − 1. (6.20)

We now define Z(1)
j := ‖ż j‖∞ andZ(1) := maxt≥0 ‖ż(t)‖. By applying Proposition 3.7 to (6.15) we get

Z(1)
j = lim sup

t→∞
|ż j(t)| ≤ Ω j lim sup

t→∞
|Ψ̇ j(t)|. (6.21)

Since ‖w‖2 − ‖y‖2 = (w + y,w − y) = (w + y, z), we have

Ψ̇ j = − 2xn ẋnx j − x2
n ẋ j − (ẇ + ẏ, z)y j+

− (w + y, ż)y j − (w + y, z)ẏ j − 2(w, ẇ)z j − ‖w‖2ż j.
(6.22)

Therefore from (6.22) and (6.21) we get

Z(1)
j ≤ Ω j(2χnχn,vχ j + χ2

nχ j,v + 2
√
ϕvχ jZ + 2

√
ϕχ jZ

(1) + 2
√
ϕχ j,vZ + 2

√
ϕvϕZ j + ϕZ(1)

j ).

Hence, by using (6.19) and (6.20), if L j := χ j,v + 2
√
ϕvϕa j + 2(

√
ϕχ j,v +

√
ϕvχ j)b and C j is defined as

before, then

Z(1)
j ≤

C j

1 −C j

2χnχn,vχ j + L jχ
2
n + 2

√
ϕχ jZ

(1)

ϕ
.

By reasoning as before we conclude that, if S < 1, then

Z(1) ≤
1

1 − S

(
S
√
ϕ
χnχn,v + Lχ2

n

)
where L is a suitable constant.
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We are now able to estimate the asymptotic distance between x and y, since

lim sup
t→∞

‖unx(t) − y(t)‖
2
≤ cχ2

n,

lim sup
t→∞

‖un ẋ(t) − ẏ(t)‖ ≤
S

(1 − S )
√
ϕ
χnχn,v +

L
1 − S

χ2
n.

(6.23)

We remark that, since we can estimate ϕ and ϕv in function of χ and χ
v
, S and L are dependent by

χ1, . . . χn and χv,1, . . . χv,n only. Therefore, from (6.23) we get the thesis. �

6.3. Completion of the proof of Theorem 2.5

Since g = PMg, from Lemma 6.4 we get that, if F(ξ∞) < 1,

lim
t→∞
|(u(t), e j)| = 0, lim

t→∞
|(ut(t), e j)| = 0 for j > M.

Therefore, we can rewrite (2.8) and (2.9) as finite-dimensional dynamical systems of the form (6.12)
and (6.14) respectively.

We introduce the quantities

χ j := lim sup
t→∞

|(u(t), e j)|, χ j,v := lim sup
t→∞

|(ut(t), e j)| for j ≤ M.

From Lemma 6.5, we have that if Ω jΦ0 < 1, C j = Ω jϕ < 1 for any j ≤ M and

S =

M∑
j=1

2C jχ j

(1 −C j)
√
ϕ
< 1

where Φ0 and ϕ are defined in Proposition 3.2 and in Lemma 6.3, then

lim sup
t→∞

‖uku(t) − v(t)‖2 ≤
1

ϕ(1 − S )

M∑
j=1

C jχ j
√
α j

1 −C j
χ2

k ,

lim sup
t→∞

‖ukut(t) − vt(t)‖ ≤
S

(1 − S )
√
ϕ
χkχk,v +

L
1 − S

χ2
k ,

(6.24)

where L is obtained in the proof of Lemma 6.5. Fixed δ, we recall that S and L are constants depending
on χ1, . . . χn and χv,1, . . . χv,n. Hence, since from Lemma 6.4 we have that

χ j ≤
g j

(1 − ϕΩ j)
√

(α j − ω2)2 + δ2ω2
, χv, j ≤

(ω(1 − ϕΩ j) + 2
√
ϕϕvΩ j)g j

(1 − ϕΩ j)2
√

(α j − ω2)2 + δ2ω2
,

from (6.24) we obtain that

lim sup
t→∞

(‖uku(t) − v(t)‖22 + ‖uku(t) − v(t)‖2) ≤
Cg4

k

((αk − ω2)2 + δ2ω2)2 ,

where C is a constant depending on A2, g and ω, that is the thesis.
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7. The intermediate piers model

In this section we show how the analysis performed in this paper can be useful in order to get some
more information about the stability of real world structures such as suspension bridges.

While in the first part of the paper (Theorem 2.3 and Theorem 2.4) we study the general case given
by (2.5), in the second part (Theorem 2.5) we focus in particular on the case when θ = 0 and

g = g sin(ωt).

In particular, takingH = L2(I) with I = [−π, π], A = −∂xx andD(A) = {v ∈ H2(I)∩H1
0(I) : v(−π) =

v(π) = v(−aπ) = v(bπ) = 0} for a, b ∈ (0, 1), the results of Section 6 apply to the system


utt + δut + uxxxx + ‖u‖2L2(I)u = g(x) sin(ωt) ∀t ≥ 0,∀x ∈ I

u(0) = u0 ∈ H2(I) ∩ H1
0(I), ut(0) = u1 ∈ L2(I)

u(−π, t) = u(−πb, t) = u(πa, t) = u(π, t) = 0, ∀t ≥ 0.

(7.1)

This choice of the forcing term comes from the fact that, in engineering literature (see [35]), the load
due to the vortex shedding of the wind along the structure of the bridge is usually modeled in this
way with g(x) ≡ g∞ ∈ R. The coefficient g∞ depends on the wind speed and on the geometry of the
structure and ω is the frequency at which vortex shedding occurs. More precisely, we have that in
engineering applications g(x, t) = W2 sin(ωt), where W is the scalar velocity of the wind blowing on
the deck of the bridge and ω can be expressed in terms of the structural constants of the bridge and the
aerodynamic parameters of the air. We refer to the European Eurocode [23] (see also [8]) for a more
detailed discussion.

The peculiar expression of the forcing term allows us to improve the estimate on the asymptotic
H2−norm of the solution of (7.1) that one is able to obtain with no other information on g than
the value of lim supt→∞ ‖g(t)‖. A comparison between the general estimate on lim supt→∞ ‖u‖2 (see
Proposition 3.2) obtained by using the methods of [8, Lemma 22] and the one obtained by using the
antiperiodicity of the forcing term (see Lemma 6.4) is given in Figure 2. The data considered are
a = b = 14/25, δ = 1.5, and ω = 20. The maximum value of g∞ considered represents the largest
value of g∞ such that Lemma 6.4 can be applied.

The improvement in the estimates on the asymptotic H2−norm is obtained by using also ultimate
bounds of the asymptotic amplitude of each mode. We represent in Figure 3 a comparison between
these estimates, obtained in Lemma 6.4, and a numerical estimate on the asymptotic amplitude of each
of the first 20 modes. Fixed δ = 1.5 and g∞ = 1.5, we considered the cases when ω = 5 (left) and
ω = 10 (right). We considered different positions of the piers, namely we chose a = b = 14/25 (up)
and (a, b) = (0.51, 0.67) (down). Each of these choices respect the hypothesis of Lemma 6.4. We
remark that the mode with largest amplitude is such that √α j/ω ≈ 1.
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Figure 3. Comparison between the asymptotic estimate on the amplitude of the first 20
modes for different values of ω and for different configurations of the piers.

The estimates on each single mode of u allow us to study more precisely how the asymptotic
H2−norm of u varies as the position of the piers vary, i.e., as a and b varies (see Lemma 6.4). Since
most suspension bridges have symmetrical piers with a = b ∈ [1/2, 2/3], we restrict ourselves to the
case where (a, b) ∈ [1/2, 2/3] × [1/2, 2/3]. We represent in Figure 4 the estimate on the asymptotic
H2−norm given by Lemma 6.4 in function of a and b, with δ = 1.5, g∞ = 1.5 and ω = 10 fixed. We
remark that this figure does not give any information about the stability of the bridge as a and b vary.
In fact, the stability of a bridge is more endangered by the concentration of the energy on a single mode
than by the generalized oscillation of the structure.

Figure 4. Plot of a theoretical estimate of the asymptoticH2−norm in function of a and b.

In order to study the distribution of the H2−norm among the modes, we introduce the concept of
family of asymptotic η−prevailing modes.
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Definition 7.1. Let 0 < η < 1. We say that a weak solution of (2.5) has a family S = { j1, . . . jn} of
asymptotic η−prevailing modes if

lim sup
t→∞

‖QS u‖22 < η
4 lim sup

t→∞
‖PS u‖22.

In Figure 5 we plot the number of η−prevailing modes for η = 0.1. The value of the parameters is
the same as in Figure 4, namely δ = 1.5, g∞ = 1.5 and ω = 10. We can observe that the asymptotic
H2−norm concentrates on few modes as a = b. Moreover, we notice how the energy turns out to be
more dispersed among the modes when a , b.

Figure 5. Number of 0.1−prevailing modes in function of a and b.

In conclusion, we are able to assert that under suitable smallness conditions on the asymptotic
amplitude of the forcing term and on the nonlinearity, we are able to perform a rather accurate modal
analysis for the nonlinear nonlocal beam equations considered. In particular, Figure 5, allows us to
conclude that the more stable configurations are achieved when a , b. This suggests that, according to
the model considered, asymmetric suspension bridges are more stable than suspension bridges where
the piers are symmetric with respect to the center of the deck.
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