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Abstract: In this paper we discuss the model of fractional oscillator where the inertial and restoring
force terms maintains their usual expression but the damping term involves a fractional derivative
of Caputo type, the so called fractional Kelvin-Voigt oscillator. The transient solution of this model
is given in terms of the so called bivariate Mittag-Leffler function, while the steady-state solution in
response to a sinusoidal force involves a 4-variate Mittag-Leffler function. We give numerical examples
comparing the solutions for different values of the order α of the fractional derivative (0 < α ≤ 1), and
compare them with the usual α = 1 solutions in the underdamped, overdamped and critically damped
situations.
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1. Introduction

Oscillation is a phenomenon found in various situations and in different areas, and is therefore a
phenomenon of fundamental importance in the sciences. The study of the harmonic oscillator
problem with damping is a paradigm in the study of oscillations and one of the most important
examples of applications of differential equations. In engineering, oscillations play such a central role
that, if on the one hand their study is important because we are interested in avoiding them as in
excessive vibrations in structures, on the other hand we are sometimes interested in inducing them
very precisely, as for example in the use of forced oscillations for the rheological characterization of
materials. The investigation of possible generalizations of the mathematical description of damped
oscillations is consequently a problem of practical and theoretical interest.

Fractional calculus [1–4] is a branch of mathematical analysis that has been shown to be very
useful in the study of generalizations of differential equations, the so called fractional differential
equations [5–7]. Accordingly it is not a surprise that some authors [8–15] studied generalizations of
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the damped harmonic oscillator equation using the concept of fractional derivative. In [16] the
different approaches to fractional generalizations of the damped harmonic oscillator equation have
been classified into three classes. Class I contains models for which a fractional derivative of order α
(1 < α ≤ 2) appears in the inertial term mdαx(t)/dtα, like in [8–11]; class II contains models for which
a fractional derivative of order β (0 < β ≤ 1) appears in the damping term γdβx(t)/dtβ, like in [12, 13];
and class III includes models for which a fractional derivative appears both in the mass term and in
the damping term, like in [14, 15]. Closed form solutions for fractional oscillator models in class I are
well-known, but not in class II and III. A closed from solution of a model in class III have been
provided recently in [14] for the case when α = 2β, where α and β are the order of the fractional
derivatives of the mass and damping terms, respectively.

In this paper we will study a model in class II called fractional Kelvin-Voigt oscillator [17, 18].
A subject where the Kelvin-Voigt oscillator is a relevant model is viscoelasticity [19, 20]. The basic
model for the study of viscoelasticity consists of the combination of a spring and a dashpot; if this
combination is made in series it is called Maxwell model, and if it is done in parallel, it is called Kelvin-
Voigt model. Based on molecular theories for the description of viscoelastic materials, in [21, 22]
Bagley and Torvik established the basis for the use of fractional calculus in describing the behaviour
of viscoelastic damping [23,24]. An element with constitutive law described by a fractional derivative
of order α ∈ (0, 1) is placed between the behaviour of a spring and a dashpot, being called therefore a
springpot [24]. A fractional Kelvin-Voigt oscillator is an oscillator model where the dashpot is replaced
by a springpot in parallel with the spring. In our opinion, this is the most orthodox choice of all when
compared with the classical model of an harmonic oscillator with damping; indeed there is a term
associated with Hooke’s law and another term corresponding to the usual definitions of momentum
and mass, and the change is made only in the form of the damping term. However, to the best of our
knowledge, this is the less studied type of model, and we believe that this is due to the mathematical
difficulties in expressing its solution, as the functions necessary in the problem are the least known
compared to those of the other classes. Indeed typical models in class I and III have solutions that
can be expressed in terms of Mittag-Leffler functions of one and two parameters, while the case we
will study requires a generalization of these functions called multivariate Mittag-Leffler functions (see
Section 3).

We organized this paper as follows. In Section 2 we introduce the concept of Caputo fractional
derivative and use it to write the damping force term in our fractional differential equation. There are
some different definitions of fractional derivative [25, 26], and the Caputo one is particularly suitable
for initial value problems. In Section 3 we recall the definition of the Mittag-Leffler functions with
one and two parameters and discuss the lesser-known multivariate Mittag-Leffler function, and some
of its properties. In Section 4 we provided the solution of the initial value problem for our fractional
damped oscillator in terms of the bivariate Mittag-Leffler function and explore some of its properties.
In Section 5 we consider some specific examples of our fractional oscillator and compare them with
the classical damped harmonic oscillator. In the Appendix we prove some results used throughout the
text, the proof of which has technical details whose discussion we believe would not be necessary in a
first reading.
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2. The Caputo fractional derivative and fractional viscoelastic friction

The Caputo fractional derivative (also called Caputo-Dzhrbashyan fractional derivative) of order α,
with (n − 1) < α < n (n ∈ N), is defined as [27]

Dα
t [ f (t)] =

dα f (t)
dtα

=
1

Γ(n − α)

∫ t

0

f (n)(τ)
(t − τ)α+1−n dτ, (2.1)

where f (n) denotes the derivative of order n of f (t) and Γ(·) is the gamma function. The Caputo
derivative has two very interesting properties for its use in differential equations. One property is the
fact that Dα

t [1] = 0, unlike other definitions as Riemann-Liouville’s one, for which the

RLDα
t [1] = t−α/Γ(1 − α) for 0 < α < 1. The other property is related to the fact that its Laplace

transform involves only the initial values of derivatives of integer orders of the original function, that
is,

L[Dα
t [ f (t)]](s) = snF(s) −

n−1∑
k=0

sk f (n−k−1)(0), (2.2)

where F(s) = L[ f (t)](s). One important characteristic of Caputo fractional derivative is the presence
of the initial value of integer order derivatives f (n−k−1)(0) in the right hand side of Eq (2.2), unlike, for
example, in the Riemann-Liouville definition [25, 26].

Among the differential equations where the Caputo derivative finds interesting applications, as for
example the relaxation equation (see [27] and references therein), we are interested in the harmonic
oscillator equation. As commented in the Introduction, our approach is conservative, with the
difference in relation to the classic expression for the damped harmonic oscillator given only by a
modification in the damping term. Our fractional oscillator equation is

d2x
dt2 + 2γ

dαx
dtα

+ ω2
0x = f (t), (2.3)

where 0 < α ≤ 1, with initial conditions

x(0) = x0,
dx
dt

(0) = v0, (2.4)

and f (t) is an external force. The damping force is therefore 2mγDα
t [x(t)]. For α = 1 we have the usual

damping term 2mγx′(t). The model based on Eq (2.3) is the fractional Kelvin-Voigt oscillator [17].
Although Eq (2.3) seems to be a simple modification of the classical damped harmonic oscillator

equation, its solution is more obscure than the ones for other apparently more difficult equations, like
for example

d2αx
dt2α + 2γ

dαx
dtα

+ ω2
0x = f (t), (2.5)

whose solution can be expressed in terms of Mittag-Leffler functions of two parameters. In fact, our
equation is as difficult as

dβx
dtβ

+ 2γ
dαx
dtα

+ ω2
0x = f (t), (2.6)

with β , 2α, but we will keep our attention in Eq (2.3) because a fractional inertial term lacks a natural
interpretation in our opinion.
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3. The Mittag-Leffler function and some of its generalizations

The Mittag-Leffler function is a generalization of the exponential function, and is discussed, for
example, in [28, 29], as well as some of its generalizations. Let us recall the main definitions and
results.

The Mittag-Leffler function Ea(z) is defined as

Ea(z) =

∞∑
n=0

zn

Γ(na + 1)
, (3.1)

where Γ(·) is the gamma function. This series converges for all values in the complex plane provided
Re a > 0. A very useful result is the Laplace transform of Ea(−σta), which can be easily calculated
from its definition, that is,

L[Ea(−σta)](s) =
sa−1

sa + σ
. (3.2)

The two-parametric Mittag-Leffler function Ea,b(z) is defined as

Ea,b(z) =

∞∑
n=0

zn

Γ(na + b)
, (3.3)

for Re a > 0 and b ∈ C. The Laplace transforms involving Ea,b(z) is [28]

L[tb−1Ea,b(−σta)](s) =
sa−b

sa + σ
. (3.4)

Another generalization of the Mittag-Leffler function is the multivariate Mittag-Leffler function
E(a1,...,an)(z), defined as [29]

E(a1,...,an),b(z1, . . . , zn) =

∞∑
k1=0

· · ·

∞∑
kn=0

(k1 + · · · + kn)!
k1! · · · kn!

(z1)k1 · · · (zn)kn

Γ(a1k1 + · · · + ankn + b)
. (3.5)

From this definition we see that

E(...,ai,...,a j,...),b(. . . , zi, . . . , z j, . . .) = E(...,a j,...,ai,...),b(. . . , z j, . . . , zi, . . .) (3.6)

for any i and j, and
E(a1,...,an),b(z1, . . . , zn−1, 0) = E(a1,...,an−1),b(z1, . . . , zn−1) (3.7)

When two indexes are equal, a n-variate Mittag-Leffler function reduces to a (n − 1)-variate one; in
fact, considering, without loss of generality, that an−1 = an = a, we have (see Appendix)

E(a1,...,an−2,a,a),b(z1, . . . , zn−2, zn−1, zn) = E(a1,...,an−2,a),b(z1, . . . , zn−2, zn−1 + zn). (3.8)

We have a special interest in the particular case zi = −Aitai (i = 1, 2, . . . , n) since in this case we can
define a one variable function E(a1,...,an),b(−A1ta1 , . . . ,−Antan) with the Laplace transform

L[tb−1E(a1,...,an),b(−A1ta1 , . . . ,−Antan)](s) =
s−b

1 + Ans−an + · · · + A1s−a1
, (3.9)
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whose proof is given in the Appendix. This is a fundamental result for the application of the
multivariant Mittag-Leffler functions in the study of fractional differential equations. A comparison
with Section 5.6 of [5] clearly indicates that the function E(a1,...,an),b(−A1ta1 , . . . ,−Antan) can be
expressed in terms of a series involving three-parameter Mittag-Leffler functions [28].

The bivariate Mittag-Leffler function, that is,

E(a1,a2),b(z1, z2) =

∞∑
k1=0

∞∑
k2=0

(k1 + k2)!
k1!k2!

(z1)k1(z2)k2

Γ(a1k1 + a2k2 + b)
, (3.10)

plays a major role in this work. We see in Eq (3.9) that for z1 = −A1ta1 and z2 = −A2ta2 we have the
Laplace transform

L[tb−1E(a1,a2),b(−A1ta1 ,−A2ta2)](s) =
s−b

1 + A1s−a1 + A2s−a2
. (3.11)

A particularly important case is the one where a2 = 2a1. Let us denote in this case a1 = a, and
consider the function

E(a,2a),b(−A1ta,−A2t2a) =

∞∑
k1=0

∞∑
k2=0

(k1 + k2)!
k1!k2!

(−A1ta)k1(−A2t2a)k2

Γ(ak1 + 2ak2 + b)
. (3.12)

In the Appendix we prove that

E(a,2a),b(−A1ta,−A2t2a) =
1

A+ − A−
[A+Ea,b(−A+ta) − A−Ea,b(−A−ta)], (3.13)

or, equivalently,

E(a,2a),b(−A1ta,−A2t2a) =
t−a

A+ − A−
[Ea,b−a(−A−ta) − Ea,b−a(−A+ta)], (3.14)

where

A± =
A1

2
±

√(A1

2

)2

− A2. (3.15)

4. Analytical solution of the harmonic oscillator with fractional viscoelastic friction

Our objetive is to find the analytical solution of the initial value problem given by the fractional
differential equation (2.3) with the initial conditions given by Eq (2.4), that is,

d2x
dt2 + 2γ

dαx
dtα

+ ω2
0x = f (t), (4.1)

x(0) = x0,
dx
dt

(0) = v0, (4.2)

where 0 < α ≤ 1 and f (t) is an external force. Using the Laplace transform and denoting X(s) =

L[x(t)](s), the transformed equation gives

X(s) =
sx0 + 2γsα−1x0 + v0

s2 + 2γsα + ω2
0

+
F(s)

s2 + 2γsα + ω2
0

, (4.3)
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where F(s) = L[ f (t)](s). The solution x(t) of the problem is therefore

x(t) = x0[Gα,1(t) + 2γGα,α−1(t)] + v0Gα,0(t) + ( f ∗Gα,0)(t), (4.4)

with t > 0 and where we denoted

Gα,β(t) = L−1
[

sβ

s2 + 2γsα + ω2
0

]
(t), (4.5)

for β = {α − 1, 0, 1} and ∗ denotes the convolution product.
We can see from Eq (3.11) that the inverse Laplace transform in Eq (4.5) can be expressed in

terms of the bivariate Mittag-Leffler function. Comparing Eqs (4.5) and (3.11), we see that, with the
identifications

a1 = 2 − α, a2 = 2, b = 2 − β, A1 = −2γ, A2 = −ω2
0, (4.6)

we have
Gα,β(t) = t1−βE(2−α,2),2−β(−2γt2−α,−ω2

0t2). (4.7)

In eq.(4.4) we have the terms Gα,0 and Gα,1(t) + 2γGα,α−1(t). The first one is

Gα,0(t) = tE(2−α,2),2(−2γt2−α,−ω2
0t2). (4.8)

The term Gα,1(t) + 2γGα,α−1(t) in Eq (4.4) can be simplified using the identity

E(a1,a2),b(z1, z2) =
1

Γ(b)
+ z1E(a1,a2),b+a1(z1, z2) + z2E(a1,a2),b+a2(z1, z2), (4.9)

which is the generalization of Eq (B.12) for Ea,b(z) (see Appendix), and whose proof follows directly
from the definition of E(a1,a2),b(z1, z2). Using this identity and Eq (4.7), we obtain

Gα,β(t) =
t1−β

Γ(2 − β)
− 2γGα,β+α−2(t) − ω2

0Gα,β−2(t). (4.10)

Consequently, we have

Gα,1(t) + 2γGα,α−1(t) = 1 − ω2
0t2E(2−α,2),3(−2γt2−α,−ω2

0t2) (4.11)

or
Gα,1(t) + 2γGα,α−1(t) = 1 − ω2

0Gα,−1(t). (4.12)

The solution of Eq (2.3) is given by Eq (4.4) with Gα,0(t) and Gα,1(t) + 2γGα,α−1(t) given by Eq (4.8)
and Eq (4.11), respectively.

Properties of the derivative of Gα,β(t). There is one interesting property involving the derivative of
Gα,β(t), which follow directly from its definition, namely

G′α,β(t) = Gα,β+1(t), β , {1, 2, 3, . . .} (4.13)

The cases β = {1, 2, 3, . . .} can be handled using Eq (4.10). We must remember, however, that in
Eq (4.4) we are considering t > 0. It may be appropriate in this case to work with the Heaviside step
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function H(t), and then we can deal with the term t1−β/Γ(2 − β) in Eq (4.10) using the definition of the
Gelfand-Shilov distribution Gν(t) [33, 34]

Gν(t) =
tν−1

Γ(ν)
H(t), (4.14)

for which we have
lim
ν→0
Gν(t) = δ(t), (4.15)

and
G(n)
ν (t) = Gν−n(t). (4.16)

However, since we are interested in t > 0, we can work with derivatives of functions instead of
derivative of functions; in other words, we will simply write, for example, the derivative 1′ = 0
instead of considering the derivative H′(t) = δ(t) when calculating the derivative in Eq (4.10) for
β = 1, and analogously for β = {2, 3, . . .}.

Using β = 1 in Eq (4.10) it follows that

G′α,1(t) = −2γGα,α(t) − ω2
0Gα,0(t). (4.17)

For the cases β = {2, 3, . . .}, we use, for β = 2,

Gα,2(t) = −2γGα,α(t) − ω2
0Gα,0(t), (4.18)

and then
G′α,2(t) = −2γGα,α+1(t) − ω2

0Gα,1(t). (4.19)

For β = {3, 4, . . .} the calculation is analogous.
Equation (4.13) can be generalized, for β < 1 and 0 < µ ≤ 1, as

DµGα,β(t) = Gα,β+µ(t), (4.20)

which follows using the definition of Gα,β(t) and Dµtν = (Γ(ν + 1)/Γ(ν − µ + 1))tν−µ with ν > 0 and
Dµ1 = 0.

The velocity of the oscillator can be easily calculated using the above properties of the time
derivative of Gα,β(t). From Eqs (4.4) and (4.13) we obtain

v(t) = −x0ω
2
0Gα,0(t) + v0Gα,1(t) + ( f ∗Gα,1)(t). (4.21)

Moreover, since our fractional oscillator model has the same inertial term of the classical one, the
momentum p is mv, where v = v(t) is given by Eq (4.21).

Examples of responses to external forces. For the simple case of an impulsive external force f (t) =

f0δ(t), we have
( f ∗Gα,0) = f0Gα,0(t), (4.22)

where the response function Gα,0(t) is the Laplace transform of H(s),

H(s) =
1

s2 + 2γsα + ω2
0

. (4.23)
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Let us also consider sinusoidal external forces. For an external force f (t) of the form

f (t) = f0 cosωt, (4.24)

the convolution f ∗Gα,0 = f0 cosωt ∗Gα,0(t) can be written as

cosωt ∗Gα,0(t) = L−1
[

s
(s2 + ω2)

H(s)
]

(4.25)

Comparing the above expression with Eq (3.9), we can conclude that

cosωt ∗Gα,0(t) = t2E(2−α,2,4−α,4),3(−2γt2−α,−(ω2 + ω2
0)t2,−2γω2t4−α,−ω2ω2

0t4). (4.26)

The case of an external force of the form

f (t) = f0 sinωt (4.27)

is completely analogous, and the result is

sinωt ∗Gα,0(t) = ωtE(2−α,2,4−α,4),2(−2γt2−α,−(ω2 + ω2
0)t2,−2γω2t4−α,−ω2ω2

0t4). (4.28)

Therefore, the response to an arbitrary sinusoidal force is given in terms of a combination of 4-variate
Mittag-Leffler functions.

4.1. The particular case α = 1

The case α = 1 corresponds to the usual harmonic oscillator with frictional force −2γdx/dt. This
corresponds to α = 1 in Eq (4.8) and in Eq (4.11), that is,

G1,0(t) = tE(1,2),2(−2γt,−ω2
0t2) (4.29)

and
G1,1(t) + 2γG1,0(t) = 1 − ω2

0t2E(1,2),3(−2γt,−ω2
0t2). (4.30)

Now we can use Eq (3.13) or Eq (3.14). In order to use the latter equation, we need [28]

E1,1(z) = ez, E1,2(z) =
ez − 1

z
. (4.31)

This gives

E(1,2),2(−2γt,−ω2
0t2) =

e−γt

t

(
eΩt − e−Ωt

2Ω

)
(4.32)

and

E(1,2),3(−2γt,−ω2
0t2) =

1
ω2

0t2

[
1 − γe−γt

(
eΩt − e−Ωt

2Ω

)
− e−γt

(
eΩt + e−Ωt

2

)]
(4.33)

where we denoted
Ω =

√
γ2 − ω2

0. (4.34)
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Using the above expressions in Eq (4.29) and in Eq (4.30) give the well-known solution of the
harmonic oscillator with frictional force −2γdx/dt for the overdamped and underdamped cases, while
the critically damped solution follows from the limit Ω→ 0 in these solutions.

0 1 2 3 4 5 6
t

0.2

0.4

0.6

0.8

1.0

x(t)

1 2 3 4 5 6
t

0.2

0.4

0.6

0.8

1.0

x(t)

(a) (b)

Figure 1. Plots corresponding to the term in Eq (4.4) with x0 = 1, v0 = 0 and f = 0 for
α = 1 (continuous blue curve), α = 0.8 (dashed magenta curve), α = 0.6 (dotted gray curve),
α = 0.4 (continuous green curve) and α = 0.2 (dashed orange curve), with (a) γ = 1/2 and
ω0 = 2 and (b) γ = 1/2 and ω0 = 4.

5. Numerical solutions

In this section we will study speficic solutions for some values of γ, ω0 and α. Although, as we will
see, the classification of cases as overdamped, underdamped and critically damped is justified only for
α = 1, we will continue using it for preciseness.

5.1. Solutions for the underdamped case

Let us consider the case with x0 = 1 and v0 = 0. The plots corresponding to the solutions for
α = {1, 0.8, 0.6, 0.4, 0.2} are given in Figure 1 for (a) γ = 1/2 and ω0 = 2 and for (b) γ = 1/2 and
ω0 = 4. In Figure 2 we plot the curves in phase space for the fractional oscillator with γ = 1/2 and
ω = 2 for (a) α = 0.8, (b) α = 0.6, (c) α = 0.4 and (d) α = 0.2, and compare these curves with the
one for α = 1. We used in Figure 2 the vertical axis as p/mω2

0 in order to have the direct identification
of this quantity with −Gα,0(t). The plots in Figure 1 have been done using Mathematica 12.2 and were
based on the inversion of the Laplace transform as in Eq (4.5), for which we employed the numerical
inversion codes provided in [35] for Mathematica. The code used in these plots is based on the Post-
Widder inversion formula [35, 36]. However, the plots in Figure 2 have been done using the inverse
Laplace transform routine in Mathematica 12.2, as it produces better results in this case.
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x(t)
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mω2

(a) (b)

-0.5 0.5 1.0
x(t)
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p(t)

mω2

-0.5 0.5 1.0
x(t)

-0.4

-0.2

0.2

0.4

p(t)

mω2

(c) (d)

Figure 2. Curves in phase space for the fractional oscillator (continuous blue curves)
compared with the classical (α = 1) oscillator (dashed magenta curves), with γ = 1/2 and
ω0 = 2, for (a) α = 0.8, (b) α = 0.6, (c) α = 0.4 and (d) α = 0.2. The initial conditions are
x0 = 1 and v0 = 0, and we used t ∈ [0, 30].

2 4 6 8 10 12
t

-1.0

-0.5

0.5

1.0

x(t)

-1.0 -0.5 0.5 1.0
x(t)

-0.2

-0.1

0.1

0.2

p(t)

mω2

(a) (b)

Figure 3. Plots of the physical space (a) and the corresponding phase space (b) solutions for
t ∈ [0, 12] of the damped oscillator for the cases α = 0.4, γ = 1/2 and ω0 = 4 (continuous
blue curve) and α = 1, γ = 0.126764 and ω0 = 4.175715 (dashed magenta curve).

Although all curves in Figure 1 show a decay of an oscillatory amplitude, only the curve for α = 1
has an exponential decay envelope. We can expect to find a damped oscillator with α = 1 such that
for given values γ∗ and ω∗0 the behaviour of its solution resembles the solution for a given α , 1 for
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small values of t, but not for larger values due to deviations from the exponential decay behaviour.
For example, let us consider the case α = 0.4, γ = 1/2 and ω0 = 4. The poles of Laplace transform
L[Gα,β(t)](s) are located in s0.4 = −0.126764 − 4.17572i and s∗0.4 = −0.126764 + 4.17572i. If we
choose γ∗ = −(s0.4 + s∗0.4)/2 and ω∗0 =

√
s0.4s∗0.4, we obtain a solution for the case α = 1 which can

be compared with the solution for the α = 0.4, γ = 1/2 and ω0 = 4 case, as in plot (a) in Figure 3.
The phase space plot of the corresponding curves are in plot (b). The plot of x(t) clearly shows the
similar behaviour of the solutions for small values of t, and the deviation of the decaying behaviour as
t increases. Notwithstanding, the solution with α = 0.4 approaches zero for large t with a rate slower
than the exponential one. This can be seen from the asymptotic expansion of Gα,β(t) for α , 1. We
show in the Appendix that for t → ∞ we have Gα,1 + 2γGα,α−1(t) ∼ t−α – see Eq (C.7). In other
words, and borrowing a jargon from the study of statistical distributions, we can say that the solution
for α = 0.4 has a heavy tailed profile.

5.2. Solutions for the overdamped case and the critically damped case

We proceed like the underdamped case, with x0 = 1 and v0 = 0. The plots corresponding to the
solutions for α = {1, 0.8, 0.6, 0.4, 0.2} are given by the top plots in Figure 4 for (a) γ = 4 and ω0 = 2
and (b) for ω0 = 3. Figure 5 shows the plots of the curves in phase space corresponding to the case
γ = 4 and ω0 = 3 for (a) α = 0.8, (b) α = 0.6, (c) α = 0.4 and (d) α = 0.2, and compare these curves
with the one for α = 1.

1 2 3 4 5 6
t

0.0

0.2

0.4

0.6

0.8

1.0

x(t)

0 1 2 3 4 5 6
t

0.2

0.4

0.6

0.8

1.0

x(t)

(a) (b)

1 2 3 4 5 6
t

0.2

0.4

0.6

0.8

1.0

x(t)

1 2 3 4 5 6
t

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

x(t)

(c) (d)

Figure 4. Plots corresponding to the term in Eq (4.4) with x0 = 1, v0 = 0 and f = 0 for
α = 1 (continuous blue curve), α = 0.8 (dashed magenta curve), α = 0.6 (dotted gray curve),
α = 0.4 (continuous green curve) and α = 0.2 (dashed orange curve), with (a) γ = 4 and
ω0 = 2, (b) γ = 4 and ω0 = 3, (c) γ = 2 and ω0 = 2 and (d) γ = 6 and ω0 = 6.

Mathematics in Engineering Volume 4, Issue 1, 1–23.



12

0.2 0.4 0.6 0.8 1.0
x(t)

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

p(t)

mω2

0.2 0.4 0.6 0.8 1.0
x(t)

-0.15

-0.10

-0.05

p(t)

mω2

(a) (b)

0.2 0.4 0.6 0.8 1.0
x(t)

-0.20

-0.15

-0.10

-0.05

0.05

p(t)

mω2

0.2 0.4 0.6 0.8 1.0
x(t)

-0.2

-0.1

0.1

p(t)
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Figure 5. Curves in phase space for the fractional oscillator (continuous blue curves)
compared with the classical (α = 1) oscillator (dashed magenta curves), with γ = 4 and
ω0 = 3, for (a) α = 0.8, (b) α = 0.6, (c) α = 0.4 and (d) α = 0.2. The initial conditions are
x0 = 1 and v0 = 0, and we used t ∈ [0, 25].

The overdamped case has a distinguished characteristic, that is, while with α = 1 we have real
solutions of s2 + 2γs + ω2

0 = 0 (when γ > ω0), this is not the case for α , 1 since we have complex
conjugated solutions s0 and s̄0 for s2 + 2γsα + ω2

0 = 0 for 0 < α < 1. We expect, therefore, to see
an oscillatory behaviour, which is suggested by the plots in Figure 4, where we see the presence of a
small oscillation for α = 0.6 when γ = 4 and ω0 = 3 but apparently none for γ = 4 and ω0 = 2, as
well as the presence of higher oscillation amplitudes for γ = 4 and ω0 = 3 than for γ4 and ω0 = 2
for the cases α = 0.4 and α = 0.2. We also see that, when we have a clear oscillatory behaviour, the
local wavelength inscreases with inscreasing t, while the amplitude of the oscillations decreases with
increasing t. Let us consider, for example, the case α = 0.2, γ = 4 and ω0 = 2, represented by the
dashed orange curve in the left plot in Figure 4. If we measure the local wavelength by the difference
between successive minima m1 = 0.884, m2 = 2.558, m3 = 4.239, m4 = 5.926 and m5 = 7.623, we
obtain, for λi = mi+1 − mi, λ1 = 1.674, λ2 = 1.681, λ3 = 1.687 and λ4 = 1.707, while the decreasing
in the amplitude of the oscillations is clear in the plots. The values of the local minima were obtained
using the FindMinimum routine in Mathematica. For α = 0.2, γ = 4 and ω0 = 3 (dashed orange curve
in the right plot), we have m1 = 0.741, m2 = 2.167, m3 = 3.596, m4 = 5.026 and m5 = 6.460, we have
λ1 = 1.426, λ2 = 1.429, λ3 = 1.430, λ4 = 1.434, so the increase in the local wavelength is slower than
in the previous case, as well as the rate in which the amplitude of the oscillations decreases.

The plots in Figures 4 and 5 suggest that there may be a critical value α∗ such that for α < α∗
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an oscillatory behaviour appears. It is reasonable to suppose that such critical value depends on γ

and ω0. On the other hand, the presence of singularities in the complex plane for α , 1 with a non-
null imaginary part suggests that this may not be the case, that is, we can always have an oscillatory
behavior for α < 1, although in some cases with a very small amplitude. This is an issue that deserves
attention but it is outside the scope of the present work.

In relation to the critically damped case, in the bottom plots in Figure 4 we have the plots of the
solutions for the cases (c) γ = 2 and ω0 = 2 and (d) γ = 6 and ω0 = 6. As we see, the concept of
critical damping makes sense only in the case α = 1. The behaviour of the solutions is similar to the
overdamped case. In fact, we can see a deviation of the pure decaying solution even in the case α = 0.8
in plot (d).

5.3. Solutions with external term

Equation (4.26) gives the response of a damped harmonic oscillator to an external force of the form
cosωt and initial conditions x0 = 0 and v0 = 0. In Figure 6 we show the plots of the response in the
case γ = 1/2, ω0 = 4, and driving frequency (a) ω = 3, (b) ω = 4 and (c) ω = 5. As suggested in the
previous plots, as α decreases, so the damping decreases and the response increases, and the effect of
resonance is clearly manifested when the driving frequency equals the natural frequency.

2 4 6 8
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Figure 6. Plots corresponding to response of the oscillator with γ = 1/2 and ω0 = 4 to an
external force of the form cosωt, with ω = 3 (dotdashed gray curve), ω = 4 (continuous blue
curve) and ω = 5 (dashed magenta curve), as given in Eq (4.26) , for the cases (a) α = 1, (b)
α = 0.6 and (c) α = 0.2, with initial conditions x0 = 0 and v0 = 0.

In Figure 7 we have plots for the response to an unit impulse force with x0 = 0 and v0 = 0 for
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the cases (a) γ = 1/2 and ω0 = 2 and (b) γ = 4 and ω0 = 3. As in this case the response function
is the Laplace inverse transform of the transfer function H(s) in Eq (4.23), it is interesting to look in
more details the profile of H(s) for different values of α. Let us take case γ = 4 and ω0 = 3 as an
example. Using the frequency ω as a variable through s = iω, in Figure 8 we have the plots of |H(iω)|
and arg H(iω) in terms of ω.
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0.2
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t
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0.2

x(t)

(a) (b)

Figure 7. Plots corresponding to response of the oscillator with (a) γ = 1/2 and ω0 = 2 and
(b) γ = 4 and ω0 = 3 to an external force of the form δ(t), with initial conditions x0 = 0
and v0 = 0, for for α = 1 (continuous blue curve), α = 0.8 (dashed magenta curve), α = 0.6
(dotted gray curve), α = 0.4 (continuous green curve) and α = 0.2 (dashed orange curve).

2 4 6 8 10
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Figure 8. Plots of (a) |H(iω)| and (b) arg H(iω) for the case γ = 4 and ω0 = 3, for α = 1
(continuous blue curve), α = 0.8 (dashed magenta curve), α = 0.6 (dotted gray curve),
α = 0.4 (continuous green curve) and α = 0.2 (dashed orange curve).

It is also interesting to observe how the poles of the H(s) function move through the complex plane.
In Figure 9 we have the phase portraits (made with Mathematica 12) of H(s) for (a) α = 0.2, (b)
α = 0.4, (c) α = 0.6, (d) α = 0.8, (e) α = 0.95 and (f) α = 1, in the rectangular region |Re s| ≤ 8 and
| Im s| ≤ 6. In the HSL color model, the hue is an angular variable with values in [0, 2π] or [−π, π],
and this fact is used in the phase portrait of a function H(s) where points of the plane are colored
according to relation between hue and the angle associated with the argument arg H(s), as shown in
the plot legend in Figure 9. The absolute value |H(s)| can be illustrated using contour lines, and this is
done by means of a gray coloring in a logarithmic scale, as shown in the plot legend in Figure 9, which
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creates an effect of contour lines of constant values of |H(s)| – for more details about the illustration of
complex functions, see [37]. The white line segment in the plots in Figure 9 is the branch cut of H(s).
The analysis of the phase portraits clearly shows the localization of the poles of H(s) as the center of
closed curves with an approximate circular shape. We have two poles, and for small values of α (in
plot (a) α = 0.2), these two poles are located close to the imaginary axis. As the value of α increases,
they move away from the imaginary axis towards the real negative direction, with the imaginary part
of the poles decreasing, as can be seen in the sequence of plots. As α → 1, these two poles approach
each other, while in a region along the branch cut (where we can see the emergence of a curve that
resembles an ellipse) the values of |H(s)| increase. When α = 1 these two poles merge into a single
pole along the negative imaginary axis, while in the region where |H(s)| increased, a new pole appeared
on the real negative axis, which is no longer a branch cut.

(a) (b) (c)

(d) (e) (f)

-π

-π/2

0

π/2

π

0.1

1

10

100

Figure 9. The enhanced phase portraits of H(s) for γ = 4, ω0 = 3 and (a) α = 0.2, (b)
α = 0.4, (c) α = 0.6, (d) α = 0.8, (e) α = 0.95 and (f) α = 1.

6. Conclusions

In this paper we described a model of fractional oscillator with the fractional derivative appearing
in the damping term. This is, to the best of our knowledge, the model of a fractional oscillator less
discussed in the literature, although in our opinion it is the most natural and conservative one because
it keeps the inertial and restoring force terms with their usual form. Our approach used the so called
bivariate Mittag-Leffer function. Some properties of this function have been discussed and proved,
and numerical examples of some particular solutions of the model for different values of the order
α of the fractional derivative were provided, and compared with the usual α = 1 damped oscillator.
The examples show that the damping decreases as the order of the fractional derivative decreases, so
that for certain values, even in the cases classically classified as overdamped or critically damped,
oscillations may appear. The existence and identification of a value for the order of the fractional
derivative below which oscillations can be noticed even in overdamped cases is an issue that deserves
further investigations.
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A. Proof of some results

A.1. Proof of Eq (3.8)

Equation (3.5) with an−1 = an = a is

E(a1,...,a,a),b(z1, . . . , zn−1, zn)

=

∞∑
k1=0

· · ·

∞∑
kn−1=0

∞∑
kn=0

(k1 + · · · + kn−1 + kn)!
k1! · · · kn−1!kn!

(z1)k1 · · · (zn−1)kn−1(zn)kn

Γ(a1k1 + · · · + a(kn−1 + kn) + b)
.

(A.1)

Replacing the summation index kn−1 by m = kn−1 + kn, we have

E(a1,...,a,a),b(z1, . . . , zn−1, zn)

=

∞∑
k1=0

· · ·

∞∑
m=0

(k1 + · · · + m)!
k1! · · · kn−2!m!

(z1)k1 · · · (zn−2)kn−2(zn−1)m

Γ(a1k1 + · · · + am + b)

m∑
kn=0

(
m
kn

) (
zn

zn−1

)kn

,
(A.2)

and since

(zn−1)m
m∑

kn=0

(
m
kn

) (
zn

zn−1

)kn

= (zn−1)m

(
1 +

zn

zn−1

)m

= (zn−1 + zn)m (A.3)

we obtain Eq (3.8).

A.2. Proof of Eq (3.9)

Using the definition of the multivariate Mittag-Leffler function as in Eq (3.5), we have

L[tb−1E(a1,...,an),b(−A1ta1 , . . . ,−Antan)](s)

=

∞∑
k1=0

· · ·

∞∑
kn=0

(k1 + · · · + kn)!
k1! . . . kn!

(−A1)k1 · · · (−An)kn

Γ(a1k1 + · · · + ankn + b)
L[ta1k1+···+ankn+b−1](s)

=

∞∑
k1=0

· · ·

∞∑
kn=0

(k1 + · · · + kn)!
k1! . . . kn!

(−A1)k1 · · · (−An)kn

sa1k1+···+ankn+b

= s−b
∞∑

k1=0

· · ·

∞∑
kn−1=0

(k1 + · · · + kn−1)!
k1! . . . kn−1!

(
−A1

sa1

)k1

· · ·

(
−An−1

san−1

)kn−1

Tn

(A.4)

with

Tn =

∞∑
kn=0

(k1 + · · · + kn−1 + kn)!
(k1 + · · · + kn−1)!kn!

(
−An

san

)kn

=

∞∑
kn=0

(k1 + · · · + kn−1 + 1)kn

kn!

(
−An

san

)kn

,

(A.5)

where we used the notation of the Pochhammer symbol (α)n, that is,

(α)n =
Γ(α + n)

Γ(α)
. (A.6)
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It is well-known [30] that

(1 − z)−α =

∞∑
n=0

(α)n
zn

n!
, |z| < 1. (A.7)

Therefore, for |s| > |An|
1/an we have

Tn =
1

(1 + Ans−an)k1+···+kn−1+1 , (A.8)

and then

L[tb−1E(a1,...,an),b(−A1ta1 , . . . ,−Antan)](s)

=
s−b

(1 + Ans−an)

∞∑
k1=0

· · ·

∞∑
kn−1=0

(k1 + · · · + kn−1)!
k1! . . . kn−1!

(
−A1

sa1(1 + Ans−an)

)k1

· · ·

· · ·

(
−An−1

san−1(1 + Ans−an)

)kn−1

= =
s−b

(1 + Ans−an)

∞∑
k1=0

· · ·

∞∑
kn−2=0

(k1 + · · · + kn−2)!
k1! . . . kn−2!

(
−A1

sa1(1 + Ans−an)

)k1

· · ·

· · ·

(
−An−2

san−2(1 + Ans−an)

)kn−2

Tn−1,

(A.9)

where

Tn−1 =

∞∑
kn−1=0

(k1 + · · · + kn−2)kn−1

kn−1!

(
−An−1

san−1(1 + Ans−an)

)kn−1

. (A.10)

For |s| > (2|An|)1/an the condition for Eq (A.8) holds, and with |s| > (2|An−1)1/an−1 it follows, from the
triangle inequality, that |An−1s−an−1/(1 + Ans−an)| < 1, and then

Tn−1 =
(1 + Ans−an)k1+···+kn−2+1

(1 + Ans−an + An−1s−an−1)k1+···+kn−2+1 , (A.11)

which gives

L[tb−1E(a1,...,an),b(−A1ta1 , . . . ,−Antan)](s)

=
s−b

(1 + Ans−an + An−1s−an−1)

∞∑
k1=0

· · ·

∞∑
kn−2=0

(k1 + · · · + kn−2)!
k1! . . . kn−2!

·

·

(
−A1

sa1(1 + Ans−an + An−1s−an−1)

)k1

· · ·

(
−An−2

san−2(1 + Ans−an + An−1s−an−1)

)kn−2

.

(A.12)

We repeat the same procedure for Tn−2 given by

Tn−2 =

∞∑
kn−2=0

(k1 + · · · + kn−3)kn−2

kn−2!

(
−An−2

san−2(1 + Ans−an + An−1s−an−1)

)kn−2

. (A.13)
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For |s| > (3|An|)1/an , |s| > (3|An−1)1/an−1 and (3|An−2|)1/an−2 , we still have the validity of Eqs (A.8) and
(A.11), and it follows, from the triangle inequality, that |An−2s−an−2/(1 + Ans−an + An−1s−an−1)| < 1, and
then

Tn−2 =
(1 + Ans−an + An−1s−an−1)k1+···+kn−3+1

(1 + Ans−an + An−1s−an−1 + An−2s−an−2)k1+···+kn−3+1 , (A.14)

and then

L[tb−1E(a1,...,an),b(−A1ta1 , . . . ,−Antan)](s)

=
s−b

(1 + Ans−an + An−1s−an−1 + An−2s−an−2)

∞∑
k1=0

· · ·

∞∑
kn−3=0

(k1 + · · · + kn−3)!
k1! . . . kn−3!

·

·

(
−A1

sa1(1 + Ans−an + An−1s−an−1 + An−2s−an−2)

)k1

· · ·

· · ·

(
−An−3

san−3(1 + Ans−an + An−1s−an−1 + An−2s−an−2)

)kn−3

.

(A.15)

After performing the same calculation for Tn−3, . . . ,T2, we obtain

L[tb−1E(a1,...,an),b(−A1ta1 , . . . ,−Antan)](s)

=
s−b

(1 + Ans−an + · · · + A2s−a2)

∞∑
k1=0

(
−A1

sa1(1 + Ans−an + · · · + A2s−s2)

)k1

.
(A.16)

For |s| > max{(n|A1|)1/a1 , . . . , (n|An|)1/an}, the conditions for the validity of Tn, . . . ,T2 are still satisfied,
and the triangle inequality gives |A1/sa1(1 + Ans−an + · · · + A2s−s2)| < 1, and consequently

L[tb−1E(a1,...,an),b(−A1ta1 , . . . ,−Antan)](s) =
s−b

1 + Ans−an + · · · + A1s−a1
, (A.17)

which is the result we want to prove.

B. Proof of Eqs (3.13) and (3.14)

We can prove Eqs (3.13) and (3.14) from Eq (3.12) using the same series manipulations done in [31].
Let us define A+ and A− as in Eq (3.15), that is, A± = (A1/2) ±

√
(A1/2)2

− A2, in such a way that

A1 = A+ + A−, A2 = A+A−. (B.1)

Equation (3.12) can be written as

E(a,2a),b(−A1ta,−A2t2a)

=

∞∑
k1=0

∞∑
k2=0

(k1 + k2)!
k1!k2!

(−A+A−t2a)k2(−1)k1 tak1(A+ + A−)k1

Γ(ak1 + 2ak2 + b)
.

(B.2)

Using the binomial theorem in (A+ + A−)k1 we obtain

E(a,2a),b(−A1ta,−A2t2a)

=

∞∑
k1=0

∞∑
k2=0

k1∑
n=0

(k1 + k2)!
k1!k2!

(−A+A−t2a)k2(−1)k1tak1

Γ(ak1 + 2ak2 + b)
k1!

(k1 − n)!n!
(A+)k1−n(A−)n.

(B.3)
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Using the summation index m defined as k1 = n + m we can write

E(a,2a),b(−A1ta,−A2t2a)

=

∞∑
k2=0

∞∑
n=0

∞∑
m=0

(−1)k2+n+m(A+)k2+m(A−)k2+nt2ak2+an+am(k2 + m + n)!
Γ(2ak2 + an + am + b)k2!m!n!

.
(B.4)

Employing the summation index m′ = k2 + m we have

E(a,2a),b(−A1ta,−A2t2a)

=

∞∑
m′=0

∞∑
n=0

∞∑
k2=0

(−1)m′+n′(A+)m′tam′(A−)k2+ntak2+an(m′ + n)!
Γ(ak2 + an + am′ + b)k2!(m′ − k2)!n!

,
(B.5)

where we have used (m′ − k2)! = 0 for k2 > m′. Using the summation index n′ = k2 + n we have

E(a,2a),b(−A1ta,−A2t2a)

=

∞∑
m′=0

∞∑
n′=0

(−A+)m′(−A−)n′tam′tan′

Γ(an′ + am′ + b)

n′∑
k2=0

(−1)k2(n′ + m′ − k2)!
k2!(m′ − k2)!(n′ − k2)!

.
(B.6)

The last series is
n′∑

k2=0

(−1)k2(n′ + m′ − k2)!
k2!(m′ − k2)!(n′ − k2)!

=

n′∑
k2=0

(−1)k2

(
n
k2

)(
n′ + m′ − k2

n

)
= 1, (B.7)

where we have used [32] (Eq (56), page 619)
n∑

k=0

(−1)k

(
n
k

)(
a − k

m

)
=

(
a − n
m − n

)
(B.8)

with m = n. Then

E(a,2a),b(−A1ta,−A2t2a) =

∞∑
m′=0

∞∑
n′=0

(−A+)m′(−A−)n′tam′tan′

Γ(an′ + am′ + b)
, (B.9)

and using the summation index r = m′ + n′,

E(a,2a),b(−A1ta,−A2t2a) =

∞∑
r=0

(−A+)rtar

Γ(ar + b)

r∑
n′=0

(A−/A+)n′

=
1

A+ − A−

∞∑
r=0

(−1)rtar

Γ(ar + b)
(Ar+1

+ − Ar+1
− ),

(B.10)

where we used the sum of the geometric series. Using the definition of Ea,b(z) as in Eq (3.3), we obtain

E(a,2a),b(−A1ta,−A2t2a) =
1

A+ − A−
[A+Ea,b(−A+ta) − A−Ea,b(−A−ta)], (B.11)

which is Eq (3.13). From the definition of Ea,b(z) it follows the identity

Ea,b(z) =
1

Γ(b)
+ zEa,b+a(z), (B.12)
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which in Eq (B.11) gives

E(a,2a),b(−A1ta,−A2t2a) =
t−a

A+ − A−
[Ea,b−a(−A−ta) − Ea,b−a(−A+ta)], (B.13)

which is Eq (3.14).

C. Asymptotic behaviour of Gα,β(t)

In Appendix A.2 we showed that, for |s| > σ = max{(n|A1|)1/a1 , . . . , (n|An|)1/an}, the Laplace
transform of the series in Eq (3.5), multiplied by tb−1, can be written as

H(a1,...,an),b(s) =
san−b

san + A1san−a1 + A2san−a2 + . . . + An
, (C.1)

where we supposed that an > a j ( j = 1, . . . , n − 1). This function H(a1,...,an),b(s) is the analytical
continuation of the Laplace transformed series to other regions with |s| ≤ σ, particularly in the
neighbourhood of s = 0.

Let us now consider n = 2 and suppose that a2 > a1 > 0. We know, from Watson’s lemma [36],
that the behaviour of a function f (t) for t → ∞ is related to the behaviour of its Laplace transform for
s→ 0. Then, using Eq (3.11), we have, for s→ 0 and a2 > a1,

L[tb−1E(a1,a2),b(−A1ta1 ,−A2ta2)](s) = H(a1,a2),b(s)

=
sa2−b

A2
−

A1s2a2−b−a1

A2
2

−
s2a2−b

A2
2

+ O(s2(a2−a1)),
(C.2)

and therefore, for t → ∞,

tb−1E(a1,a2),b(−A1ta1 ,−A2ta2)

=
tb−a2−1

A2

[
1

Γ(b − a2)
−

A1t−(a2−a1)

A2Γ(b − 2a2 + a1)
−

t−a2

Γ(b − 2a2)
+ O(t−2(a2−a1)

]
.

(C.3)

We also assume b − a2 − 1 > 0.
After using the above expression in Eq (4.7) we obtain

Gα,β(t) =
t−β−1

ω2
0

[
1

Γ(−β)
−

2γt−α

ω2
0Γ(−β − α)

−
t−2

ω2
0Γ(−β − 2)

+ O(t−2α)
]

(C.4)

for t → ∞. We are interested in the cases β = 0 as in Eq (4.8) and β = −1 as in Eq (4.12). For β = 0
we have

Gα,0(t) =
2αγt−α−1

ω4
0Γ(1 − α)

+ O(t−2α−1), (t → ∞) (C.5)

and for β = −1 we have

Gα,−1(t) =
1
ω2

0

[
1 −

2γt−α

ω2
0Γ(1 − α)

+ O(t−2α)
]
, (C.6)
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which gives

Gα,1(t) + 2γGα,α−1(t) =
2γt−α

ω4
0Γ(1 − α)

+ O(t−2α), (t → ∞). (C.7)
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