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1. Introduction

In this paper we continue the study of the boundary Harnack principle for solutions to elliptic
equations, based on the method developed in [7]. The classical boundary Harnack principle states that
two positive harmonic functions that vanish on a portion of the boundary of a Lipschitz domain must
be comparable up to a multiplicative constant, see for example [1,6,11,14]. Further extensions to more
general operators and more general domains were obtained in several subsequent works [2,3,5,10,12,
13].

In particular, Bass and Burdzy [3, 4] and Banuelos, Bass and Burdzy [2] provided sharp versions
using probabilistic methods. They established the boundary Harnack principle for nondivergence
elliptic operators in Hölder domains (or more general twisted Hölder domains) of exponent α > 1

2 ,
and for divergence operators in Hölder domains of arbitrary exponent α > 0. For the case of
divergence operators, an analytical proof based on Green’s function was given by Ferrari in [8].

To state precisely the boundary Harnack principle in Hölder domains, first we introduce some
notation. Let g : B

′

1 → R be a Cα Hölder function of n − 1 variables with g(0) = 0, and α ∈ (0, 1).

http://www.aimspress.com/journal/mine
http://dx.doi.org/10.3934/mine.2022004
www.aimspress.com/mine/article/5752/special-articles


2

Denote by Γ ⊂ Rn the graph of g,

Γ := {xn = g(x′)}, 0 ∈ Γ,

and by Cr the cylinder above B′r and at height r on top of Γ

Cr := {x′ ∈ B′r, g(x′) < xn < g(x′) + r}.

We say that C1 is a Cα-Holder domain in a neighborhood of Γ.
The following version of the boundary Harnack principle is due to Banuelos, Bass and Burdzy,

see [2].

Theorem 1.1. Let Lu = div(A(x)∇u) be a uniformly elliptic linear operator, and assume that u, v are
two positive solutions to

Lu = Lv = 0, in C1,

which vanish on Γ. Then
u
v

(x) ≤ C
u
v

(
1
2

en

)
for all x ∈ C1/2,

with C depending on n, α, ‖g‖Cα and the ellipticity constants of L.

The assumption that u = v = 0 in Γ is understood in the H1 sense, i.e., u, v ∈ H1
0(C1) in a

neighborhood of Γ.
Recently, in [7] we found a direct analytical method of proof of the boundary Harnack principle

based on an iteration scheme and Harnack inequality. In particular we established the corresponding
results in Hölder domains of exponent α > 1

2 for general equations either in divergence or
nondivergence form.

In the present paper we discuss further the case of Hölder domains of arbitrary exponent α > 0, and
give a proof of Theorem 1.1 using the same ideas from [7]. We also consider some novel extensions of
Theorem 1.1 to non-divergence equations whose coefficients remain constant in the vertical direction
(see Section 4).

The paper is self-contained and is organized as follows. In Section 2 we give two lemmas
concerning Harnack inequality outside domains of small capacity. In Section 3 we use these lemmas
and employ the arguments from [7] to prove Theorem 1.1. Finally in Section 4 we provide some
extensions of Theorem 1.1 to more general divergence operators, and certain non-divergence or fully
nonlinear operators.

2. Two lemmas

In this section we present two lemmas concerning solutions to divergence equations in domains
whose complement in the unit cube Q1 has small capacity.

Given a domain Ω and a compact set K ⊂ Ω, we say that two functions u, v ∈ H1(Ω) agree on K,
and write u = v in K, if u − v ∈ H1

0,loc(K
c). Here Kc denotes the complement of K in Rn.

In particular, if L is a uniformly elliptic operator in divergence form

Lu = div(A(x)∇u),
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with
A(x) measurable, Λ |ξ|2 ≥ ξT A(x) ξ ≥ λ |ξ|2, λ > 0,

then the statement that u solves

Lu = 0 in Ω \ K, and u = 0 on ∂Ω, u = 1 in K, (2.1)

means that Lu = 0 in the open set Ω \ K, and

u − η ∈ H1
0 (Ω \ K) ,

where η ∈ C∞0 (Ω), and η = 1 in a neighborhood of K.
Notice that the solution u to (2.1) is a supersolution in Ω, i.e., Lu ≤ 0 in Ω.
Let Q1 denote the unit cube in Rn centered at 0, and E ⊂ Q1 a closed set. Set,

cap3/4(E) := capQ1(E ∩ Q3/4) = inf
w∈A

∫
Q1

|∇w|2dx,

where
A := {w ∈ H1

0(Q1), w = 1 in E ∩ Q3/4}.

The first lemma states that a solution to Lv = 0 in Q1 \E satisfies the Harnack inequality in measure
if E has small capacity. Positive constants depending on the dimension n and the ellipticity constants
λ, Λ are called universal.

Lemma 2.1. Assume v ≥ 0 is defined in Q1 \ E and satisfies

Lv = 0.

Let
Qi := Q1/8(xi) ⊂ Q1/2, i = 1, 2

be two cubes of size 1/8 included in Q1/2. Assume that

cap3/4(E) ≤ δ and
|{v ≥ 1} ∩ Q1|

|Q1|
≥ 1/2,

for some δ small, universal. Then
|{v ≥ c0} ∩ Q2|

|Q2|
≥ 1/2

for some c0 small.

The second lemma is standard and states that the weak Harnack inequality holds for a subsolution
v ≥ 0 which vanishes on a set E of positive capacity.

Lemma 2.2. Assume that v ≥ 0 in Q1, and

Lv ≥ 0 in Q1, v = 0 in E ∩ Q3/4.

If
cap3/4(E) ≥ δ,

then
v(0) ≤ (1 − c(δ))‖v‖L∞ .
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Proof of Lemma 2.1. Let ψ be the solution to

Lψ = 0 in Q3/4 \ K, ψ = 1 in K, ψ = 0 on ∂Q3/4,

where K is a compact subset of {v ≥ 1} ∩ (Q1 \ E) with |K| ≥ 1
4 |Q

1| (see Figure 1). By hypothesis and
weak Harnack inequality (see Theorem 8.18 and Theorem 9.22 in [9]) we find

ψ ≥ c0 in Q1/2, (2.2)

for some small c0.

E

Q1

2

3/4
Q

Q

Ki÷¥
Figure 1. Lemma 2.1.

Similarly as above we define φ to be the solution to

Lφ = 0 in Q1 \ (E ∩ Q3/4), φ = 1 in E ∩ Q3/4, φ = 0 on ∂Q1. (2.3)

We claim that if δ is chosen sufficiently small then,

|{φ >
1
4

c0} ∩ Q2| ≤
1
2
|Q2|. (2.4)

For this we let w be the solution to (2.3) when L = 4. The Dirichlet energies of φ and w are comparable
since ∫

(∇(φ − w))T A∇φ dx = 0,

hence
cap3/4(E) ≤

∫
|∇φ|2 dx ≤ C

∫
(∇φ)T A∇φdx ≤ C

∫
|∇w|2 dx = Ccap3/4(E).

By Poincaré inequality we find ∫
φ2 dx ≤ C

∫
|∇φ|2 dx ≤ Cδ,

which gives the claim (2.4).
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Next we compare 2v with ψ − φ in Q3/4 \ E.
They satisfy the same equation in Q3/4 \ (E ∪ K), and in a neighborhood of K by the continuity of v

we have
2v ≥ 1 ≥ ψ − φ.

On the other hand
ψ − φ ≤ 0 on ∂(Q3/4 \ E)

in the sense that (ψ − φ)+ ∈ H1
0(Q3/4 \ E). Since v ≥ 0, the maximum principle gives

2v ≥ ψ − φ,

which by (2.2), (2.4) yields the desired conclusion.
�

Proof of Lemma 2.2. Assume that ‖v‖L∞ = 1. Then, by the maximum principle we have

1 − v ≥ φ,

with φ as in (2.3) above. It suffices to show that φ ≥ c(δ) on ∂Q7/8 which by the maximum principle
implies the desired conclusion φ(0) ≥ c(δ) small. Since all the values of φ are comparable near ∂Q7/8

by the Harnack inequality, we need to show that φ ≥ c′(δ) at some point on ∂Q7/8.
Assume by contradiction that |φ| ≤ µ is very close to 0 on ∂Q7/8. The Caccioppoli inequality (we

think that φ is extended to 0 outside Q1) implies

‖∇φ‖L2(Q1\Q15/16) ≤ C‖φ‖L2(Q1\Q7/8) ≤ Cµ. (2.5)

On the other hand if η ∈ C∞0 (Q1) with η = 1 in Q15/16 then∫
∇[η2(1 − φ)]A∇φ dx = 0,

hence ∫
η2∇φA∇φ dx ≤ C

∫
|∇φ|2|∇η|2 dx ≤ Cµ2.

This together with (2.5) implies that the Dirichlet energy of φ in Q1 is bounded above by Cµ2, and we
reach a contradiction. �

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We recall that Γ denotes the graph of a Cα

function g, with α ∈ (0, 1),
Γ := {xn = g(x′)}, 0 ∈ Γ,

and Cr denotes the cylinders of size r on top of Γ

Cr := {x′ ∈ B′r, g(x′) < xn < g(x′) + r}.
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The main idea of the proof is to show through an iterative procedure that a solution w which vanishes
on Γ and is mostly positive in Cr, becomes positive near the origin.

We denote by
Ar :=

{
x ∈ B′r| g(x′) + rβ ≤ xn < g(x′) + r

}
,

the points in the cylinder Cr at height greater than rβ on top of Γ, for some β > 1.
We divide the proof in three steps.
Step 1. We show that, there exist C0, β > 1 depending on n, α, ‖g‖Cα , and the ellipticity constants of

L, such that if w is a solution to Lw = 0 in Cr (possibly changing sign) which vanishes on Γ,

w ≥ f (r) on Ar,

and
w ≥ −1 on Cr,

where
f (r) := eC0rγ , γ := β(1 −

1
α

) < 0,

then,
w ≥ f (

r
2

) a onA r
2
, (3.1)

and
w ≥ −a on C r

2
, (3.2)

for some small a = a(r) > 0, as long as r ≤ r0 universal.
The conclusion can be iterated and we obtain that if the hypotheses are satisfied in Cr0 then

w > 0 on the line segment {ten, 0 < t < r0}.

Since g is Hölder continuous, we can apply interior Harnack inequality to w + 1 in a chain of balls
and need

C(rβ)1− 1
α = Crγ balls

to connect a point inAr/2 with a point inAr. We conclude that

w ≥ ( f (r) + 1)e−C1rγ − 1 inAr/2, (3.3)

for some C1 universal, hence w ≥ 1 inAr/2 if C0 is sufficiently large.
Next we take a point on Γ := {xn = g(x′)}, say 0 for simplicity, and consider the cubes of size rβ/α

centered on the en axis, i.e., Qrβ/α(ten) (see Figure 2).
When t > Crβ the cube is in the interior of the domain and when t < −Crβ the cube is in the

complement. There are Crγ stacked cubes which connect the domain with its complement. The graph
property of the domain implies that the capacity of the complement

E = {xn ≤ g(x′)}

in Qrβ/α(ten) is decreasing with t. By continuity we can find a cube centered at t0en such that, after a
rescaling of factor r−β/α, cap3/4(E) = δ in that cube, with δ as in Lemma 2.1.
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Figure 2. Step 1, Theorem 1.1.

For all cubes centered at ten with t ≥ t0 we can apply Lemma 2.1 repeatedly for w + 1 and obtain an
inequality in measure as in (3.3),

|{w ≥ 1} ∩ Qi(ten)| ≥
1
2
|Qi|, Qi(ten) := Q 1

8 rβ/α(ten).

Thus {w− = 0} has positive density in all cubes centered at ten with t ≥ t0.
Now we notice that we can apply weak Harnack inequality for w− in all cubes, in the top cubes with

t ≥ t0 because of the density property, and in the bottom ones with t ≤ t0 because of Lemma 2.2.
Hence w− decreased by a fixed factor on the en axis passing through a point on Γ, with respect to its

maximum over all cubes of size rβ/α centered on that axis. As we move each time a rβ/α distance inside
the domain from the sides of Cr, sup w− decreases geometrically hence,

w ≥ −e−c0r1−β/α
in Cr/2,

for c0 small universal. We choose
a(r) := e−c0r1−β/α

,

and in view of (3.3), our claim
w ≥ 1 ≥ a(r) f

( r
2

)
,

is satisfied for all r small.
Step 2. [Carleson estimate] We show that,

u, v ≤ C2 in C1/2,

with C2 universal. We apply an iterative argument similar to the one in Step 1. Since u(en/2) = 1, the
interior Harnack inequality gives that

u ≤ eC1h1−1/α
Γ in C3/4, hΓ(x) := xn − g(x′), (3.4)
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with C1 universal. With the same notation as Step 1, we wish to prove that if r is smaller than a
universal r0 and

u(y) ≥ f (r),

for some y ∈ C1/2, then we can find

z ∈ S := {|y′ − z′| = r, 0 < hΓ(z) < rβ},

such that
u(z) ≥ f

( r
2

)
.

Since |z − y| ≤ Crα, we see that for r small enough, we can build a convergent sequence of points
yk ∈ C3/4 with u(yk) ≥ f (2−kr)→ ∞. On the other hand the extension of u by 0 below Γ is a subsolution
in a neighborhood of Γ. Therefore u is bounded above, and we reach a contradiction.

To show the existence of the point z we let

w :=
(
u −

1
2

eC0rγ
)+

, with C0 � C1.

By (3.4) we know that
w = 0 when hΓ(x) ≥ rβ.

By Lemma 2.1 this estimate can be extended in measure for the cubes of size rβ/α with t ≥ t0 since the
capacity of the complement is bounded above. More precisely, as in Step 1, in each cube of size rβ/α

we have that either {w = 0} has positive density (for the cubes with t ≥ t0), or positive capacity (for the
cubes with t ≤ t0).

Moreover, if our claim is not satisfied then we apply Weak Harnack inequality for w repeatedly as
in Step 1 above. As we move inside the domain from the sides of Cr(y′, g(y′)) we obtain

w ≤ f
( r
2

)
e−c0r1−β/α

in Cr/2(y′, g(y′)).

In particular
1
2

f (r) ≤ w(y) ≤ f
( r
2

)
e−c0r1−β/α

,

and we reach a contradiction.
Step 3. We prove the theorem using the Steps 1 and 2 above. After multiplication by a constant we

may assume that u = v = 1 at 1
2en. It suffices to show that for a large constant C3 > 0 universal,

w := C3u −C−1
3 v ≥ 0 in C1/2.

By Step 2 we know that v ≤ C3 hence w ≥ −1 in C3/4. Moreover, since u(en/2) = 1, we conclude by
interior Harnack for u that

w ≥ f (r0) in C3/4 ∩ {xn ≥ rβ0},

provided that C3 is chosen sufficiently large. Here f , r0 and β are as in Step 1.
We conclude by Step 1 that w ≥ 0 on the line {ten, 0 < t < 3/4}. We can repeat the argument at all

points on Γ ∩ C1/2, and the theorem is proved. �
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4. Some extensions

In this section we state a few variants of the Theorem 1.1. First we remark that the proof applies to
operators involving lower order terms.

Theorem 4.1. The statement of Theorem 1.1 holds for general uniformly elliptic operators

Lu = div(A(x)∇u) + b(x) · ∇u + d(x)u, b ∈ Lq, d ∈ Lq/2, q > n,

with the constant C depending also on q, ‖b‖Lq , ‖d‖Lq/2 .

Indeed, we only need to check that the statements of Section 2 continue to hold in the small cubes
of size rβ/α. After a dilation this corresponds to proving Lemmas 2.1 and 2.2 for operators L as above
with ‖b‖Lq , ‖d‖Lq/2 sufficiently small. The proofs are identical since the presence of such lower order
terms does not affect the energy estimates.

A counterexample of Bass and Burdzy in [4] shows that Theorem 1.1 does not hold in general for
nondivergence equations when α < 1

2 . Here we remark that Theorem 1.1 remains valid with α > 0 for
nondivergence linear operators which are translation invariant in the vertical direction.

Theorem 4.2. The statement of Theorem 1.1 holds for linear nondivergence uniformly elliptic
operators of the form

Lu = tr (A(x′)D2u).

In this theorem we assume that the coefficient matrix A depends continuously on its argument,
although the estimates do not depend on its modulus of continuity. Since u, v might not be continuous
at all points on Γ, the hypothesis that u, v vanish on the boundary is understood in the sense that their
extensions with 0 below Γ are bounded subsolutions for L, see [7].

In this case we provide the corresponding lemmas of Section 2 by defining the capacity (with respect
to L) as

cap3/4(E) = inf
Q1/4

φ,

where φ solves
Lφ = 0 in Q1 \ (E ∩ Q3/4), φ = 1 in E ∩ Q3/4, φ = 0 on ∂Q1.

Then Lemma 2.2 follows directly from the definition of the capacity, with c(δ) = δ. For Lemma 2.1
we see that (2.4) is satisfied since by the Weak Harnack inequality the set {φ > c0} must have small
measure in Q1 if δ is sufficiently small. The rest of the proof is the same.

The arguments of Section 3 can be repeated in the same way. The invariance of the operator L with
respect to the vertical direction and the graph property of the boundary imply that the capacity of the
complement E in the cubes Qrβ/α(ten) is monotone in t. We can apply again Lemma 2.1 for the top
cubes with t ≥ t0 and Lemma 2.2 for the bottom cubes with t ≤ t0, and carry on as before.

We also discuss the case of fully nonlinear operators

F(D2u) = 0 in C1, (4.1)

with F uniformly elliptic with constants λ,Λ, and homogenous of degree 1.
We can prove the lemmas of Section 2 for the operator F by using as capacity the definition above

with Lφ = F(−D2φ). Then Lemma 2.2 follows again directly from the definition. For the proof
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of Lemma 2.1 we choose the function ψ to satisfy M−
λ/n,Λ(ψ) = 0. Here as usual, M− denotes the

extremal Pucci operator,
M−

λ,Λ(M) = inf
A

tr(AM),

with A a symmetric matrix whose eigenvalues belong to [λ,Λ].
Then ψ − φ is a subsolution

F(D2(ψ − φ)) ≥ F(D2(−φ)) +M−
λ/n,Λ(ψ) ≥ 0,

and the rest of proof remains as before. However in the proof of the main Theorem 1.1 only Step 2, the
Carleson estimate, can be carried out in this setting, since for Step 1 we need the lemmas of Section 2
to hold not only for solutions of the operator F but for the difference of two such solutions as well.

Theorem 4.3 (Carleson estimate). Assume that u ≥ 0 satisfies (4.1) and u vanishes on Γ. Then

u ≤ Cu
(
1
2

en

)
in C1/2,

with C depending on n, α, ‖g‖Cα , λ and Λ.

Finally we mention that in R2 Theorem 1.1 holds under very mild assumptions on the domain and
the operator. Here we state a version for L∞ graphs and linear operators.

Theorem 4.4. Assume Γ ⊂ R2 is the closure of the graph of a function g with ‖g‖L∞ ≤ 1/4. Then the
statement of Theorem 1.1 holds for uniformly elliptic linear operators L in divergence or nondivergence
form with constant C depending only on the ellipticity constants of L.

We only sketch Steps 1 and 2 of Section 3 in this setting which can be adapted to more general
situations. They are based on topological considerations and do not require an iterative argument.

Step 1. If Lw = 0 and w ≥ −1 in C1, and w vanishes continuously on Γ, then w > 0 in C1/2 provided
that u( 1

2e2) is large.

"
¥÷iIm

Figure 3. Proof of Theorem 4.4.
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To prove this, we assume by contradiction that there is a connected component U of {w < 0} which
intersects C1/2. This connected component must exit C1 and since u( 1

2e2) � 1, U must stay close to Γ.
Thus we can find a nonintersecting polygonal line `, say included in

l ⊂
{

1
2
≤ x1 ≤

3
4

}
∩ U,

which connects the two lateral sides x1 = 1
2 and x1 = 3

4 (see Figure 3). The line ` splits the cylinder

D :=
(
1
2
,

3
4

)
×

(
1
2
,

1
2

)
into two disjoint sets, and we define w̃ to be equal to w on the set “above” ` and w̃ = min{w, 0} on the
set “below” `. Then w̃ is a supersolution of L in D. Since w̃ is sufficiently large in a ball above `, and
w̃ ≥ −1 in D we find that w̃ ≥ 0 on the segment{

x1 =
5
8

}
∩

{
|x2| ≤

3
8

}
.

We reached a contradiction at the point where ` intersects this segment.
Step 2. Assume Lu = 0 and u ≥ 0 in C1, and u vanishes continuously on Γ, with u( 1

2e2) = 1. Then
u ≤ C in C1/2, for some large C.

This follows similarly as in Step 1. If {u > C} has a connected component that intersects C1/2, then
we can find a polygonal line ` as above where u is large. Thus min{u,C} extended by C below ` is
a supersolution for L in D, and the maximum principle implies that u is large at the point (5/8, 1/2).
Therefore by Harnack inequality u(0, 1/2) is large as well, and we reach a contradiction.
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