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Abstract: We show a triviality result for “pointwise” monotone in time, bounded “eternal” solutions
of the semilinear heat equation

ut = ∆u + |u|p

on complete Riemannian manifolds of dimension n ≥ 5 with nonnegative Ricci tensor, when p is
smaller than the critical Sobolev exponent n+2

n−2 .
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1. Introduction

Let (M, g) be a complete Riemannian manifold with nonnegative Ricci tensor. We are going to
consider bounded “eternal” classical solutions u ∈ C2,1(M × R) of the semilinear heat equation

ut = ∆u + |u|p (1.1)

for p > 1 and T ≤ +∞, with particular attention to “triviality”, that is, to conditions forcing the
solutions to be identically zero.

A reason for the interest in such eternal (or also “ancient”) solutions is that they typically arise as
blow–up limits when the solutions of semilinear parabolic equations in time intervals as [0,T ) develop
a singularity at a certain time T ∈ R, i.e., the solution u becomes unbounded as t goes to T .
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In the Euclidean space, it is well known (see [14] and [7, Proposition B]) that noncostant, positive
global radial (static, solution of the elliptic problem) solutions on Rn × R exist for the “critical” or any
“supercritical” exponent p ≥ pS = n+2

n−2 (this latter is the critical Sobolev exponent), hence providing
a counterexample to triviality in such case. In the non–static (parabolic) situation, while triviality
of eternal radial (parabolic) positive solutions can be shown in the range of subcritical exponents
1 < p < pS , the same expected result for general (not necessarily radial) solutions is known only in
the range 1 < p < n(n+2)

(n−1)2 (see Remark 1.2 below). Indeed, such triviality when n(n+2)
(n−1)2 ≤ p < pS is a

quite long standing open problem (see [10, 11]), which might have been finally solved by Quittner in
the preprint [12], appeared during the redaction of this work.

We mention that these triviality issues for eternal (and also ancient) solutions have been recently
addressed and partially extended to the cases of compact or bounded geometry Riemannian manifolds,
by the first and third author in [4, 5].

Our aim in this paper is to show the following triviality theorem for eternal solutions, “pointwise”
monotone in time (mentioned without proof in [11, Remark 4.3 (b)] for M = Rn).

Theorem 1.1. Let (M, g) be a complete Riemannian manifold of dimension n ≥ 5 with nonnegative
Ricci tensor. Let u ∈ C2,1(M×R) be a bounded eternal solution of Eq (1.1) with ut ≥ 0 and 1 < p < pS .
Then, u ≡ 0.

Remark 1.2. We observe that, essentially with the same proof of [2], we can prove the following
result, extending to manifolds the analogous one in Rn.

Let (M, g) be a complete Riemannian manifold of dimension n ≥ 3 with nonnegative Ricci tensor.
Let u ∈ C2,1(M × R) be an eternal solution of Eq (1.1) with

1 < p <
n(n + 2)
(n − 1)2 .

Then, u ≡ 0.
Indeed, as observed in Remark 2.4, Lemma 3.1 in [3] and thus also Lemma 3 and Lemma 4 in [2],

hold true on any Riemannian manifolds with nonnegative Ricci tensor (since they are based only on
Bochner inequality). Moreover, thanks to [5, Theorem 2.6], we know that the solutions are either
strictly positive or identically zero. In particular, using good cutoff functions that can be constructed on
manifolds with nonnegative Ricci tensor (see Remark 2.9), from Lemma 4 in [2], given (x, t) ∈ M ×R,
for every ρ > 0 and every

1 < p <
n(n + 2)
(n − 1)2 ,

there exists a constant C = C(n, p) such that∫
B(x,ρ)×(t−ρ2,t+ρ2)

u2p ≤ Cρ2− 4p
p−1µ(B(x, ρ)),

where B(x, ρ) ⊆ M is the metric ball with center x and radius ρ and µ the canonical Riemannian
measure of (M, g). By Bishop–Gromov inequality (see [6]), we then obtain∫

B(x,ρ)×(t−ρ2,t+ρ2)
u2p ≤ Cρ2− 4p

p−1µ(B(x, ρ)) ≤ Cρn+2− 4p
p−1 .

Since p < pS , letting ρ→ +∞ we conclude that u = 0 in the whole M × R.
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2. Integral estimates

First of all, using [5, Theorem 2.6], we have that all solutions are either strictly positive or identically
zero. The following Hamilton–type gradient estimate can be shown analogously to Lemma 3.1 in [5]
and will be crucial in the proof of the integral estimate in Proposition 2.5.

Lemma 2.1. Let u ∈ C2,1(Ω×(0,T )), Ω ⊂ Rn, be a positive bounded solution of Eq (1.1) with 0 < u ≤ D
and let ρ > 0 such that B(x, 2ρ)× [t− 4ρ2, t + 4ρ2] ⊆ Ω× (0,T ). Then, for n ≥ 1 and p > 1, there exists
a constant C = C(n, p) > 0, such that

|∇u|
u
≤ C

(
1
ρ

+
√

pDp−1

) (
1 + log

D
u

)
in Q = B(x, ρ)× (t−ρ2, t +ρ2). In particular, for every δ > 0, there exists a constant C = C(n, p, δ) > 0,
such that

|∇u| ≤ C
(
1
ρ

+
√

pDp−1

)
u1−δ

in Q.

To keep track of the dependencies of the constants, we define

K = C
(
1
ρ

+
√

pDp−1

)
(2.1)

where C = C(n, p, δ) > 0 is given in the previous proposition. In particular, we have the gradient
estimate

|∇u| ≤ Ku1−δ. (2.2)

Notice that K actually depends only on n, p, δ,D and ρ0, if ρ is larger than some fixed constant ρ0 > 0.

Remark 2.2. The same result also holds on complete Riemannian manifolds with nonnegative Ricci
tensor (see [5]).

We recall the following technical lemma [3, Lemma 3.1].

Lemma 2.3. Let U be an open set of Rn. Then, for any positive function w ∈ C2(U), any nonnegative
η ∈ C2

c (U), any real numbers d,m ∈ R such that d , m + 2, the following inequality holds:

2(n − m)d − (n − 1)(m2 + d2)
4n

∫
U
ηwm−2|∇w|4 −

n − 1
n

∫
U
ηwm(∆w)2

−
2(n − 1)m + (n + 2)d

2n

∫
U
ηwm−1|∇w|2∆w

≤
m + d

2

∫
U

wm−1|∇w|2〈∇w,∇η〉 +
∫

U
wm∆w〈∇w,∇η〉 +

1
2

∫
U

wm|∇w|2∆η.

Remark 2.4. The proof is based on the Bochner formula

1
2

∆|∇ f |2 = |∇2 f |2 + 〈∇ f ,∇∆ f 〉 ≥
1
n

(∆ f )2 + 〈∇ f ,∇∆ f 〉,

hence, the conclusion of Lemma 2.3 is also true on Riemannian manifolds with nonnegative Ricci
tensor, since this inequality holds in such spaces (see [9], for instance).
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From the previous lemma and the pointwise gradient inequality (2.2), we can show the following
integral estimate which generalizes the one of Lemma 3 in [2] (we will use the same notation and line
of proof).

Proposition 2.5. Let Ω ⊆ Rn, with n ≥ 3 and u ∈ C2,1(Ω × (0,T )) be a solution of Eq (1.1), with
1 < p < pS and such that 0 < u ≤ D. We assume that for some ρ > 0 we have B(x, 2ρ) × [t −
4ρ2, t + 4ρ2] ⊆ Ω × (0,T ) and we let Q = B(x, ρ) × (t − ρ2, t + ρ2), with ρ larger than some ρ0 > 0.
Suppose that ζ ∈ C2

c (Q) takes values in [0, 1] and let r > 4, δ ∈ (0, 1/100), then there exist constants
m = m(n, p) > − 2

n−2 and C = C(n, p, r, δ,D, ρ0) > 0 such that∫
Q
ζrumu2

t +

∫
Q
ζrum−2|∇u|4 +

∫
Q
ζrum+p−1|∇u|2 (2.3)

≤ C
∫

Q
ζr−4um+2(1−δ)

(
|∇ζ |2 + |ζt| + (∆ζ)2 + |∇ζ |4 + ζ2

t

)
+ C

∫
Q
ζrum+1−2δ|u−t | (2.4)

where u−t = ut ∨ 0. In particular, the constants m and C are independent of ρ > ρ0.

Proof. By sake of clarity, we set U = B(x, ρ), t1 = t − ρ2 and t2 = t + ρ2.
Applying Lemma 2.3 to w = u(·, t) and η = ζr(·, t), for any t ∈ [t1, t2] and any reals d,m with d , m + 2,
we get

2(n − m)d − (n − 1)(m2 + d2)
4n

∫
U
ζrum−2|∇u|4 −

n − 1
n

∫
U
ζrum(∆u)2

−
2(n − 1)m + (n + 2)d

2n

∫
U
ζrum−1|∇u|2∆u

≤
m + d

2

∫
U

um−1|∇u|2〈∇u,∇(ζr)〉 +
∫

U
um∆u〈∇u,∇(ζr)〉 +

1
2

∫
U

um|∇u|2∆(ζr).

Hence, substituting ∆u = ut − up, we obtain

2(n − m)d − (n − 1)(m2 + d2)
4n

∫
U
ζrum−2|∇u|4

−
n − 1

n

∫
U
ζrumut∆u +

n − 1
n

∫
U
ζrum+p∆u

−
2(n − 1)m + (n + 2)d

2n

∫
U
ζrum−1|∇u|2ut

+
2(n − 1)m + (n + 2)d

2n

∫
U
ζrum+p−1|∇u|2

≤
m + d

2

∫
U

um−1|∇u|2〈∇u,∇(ζr)〉 +
∫

U
umut〈∇u,∇(ζr)〉

−

∫
U

um+p〈∇u,∇(ζr)〉 +
1
2

∫
U

um|∇u|2∆(ζr). (2.5)
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Integrating by parts in the two integrals in the second line above, we get

−
n − 1

n

∫
U
ζrumut∆u +

n − 1
n

∫
U
ζrum+p∆u

=
n − 1

n

∫
U
ζrum〈∇u,∇ut〉 +

m(n − 1)
n

∫
U
ζrum−1|∇u|2ut

+
n − 1

n

∫
U

umut〈∇u,∇(ζr)〉 −
n − 1

n

∫
U

um+p〈∇u,∇(ζr)〉

−
(m + p)(n − 1)

n

∫
U
ζrum+p−1|∇u|2.

Thus, substituting and setting

X =

∫
U
ζrum〈∇u,∇ut〉, Y =

∫
U
ζrum−1|∇u|2ut,

Z =

∫
U

umut〈∇u,∇(ζr)〉, V =

∫
U

um+p〈∇u,∇(ζr)〉,

W =

∫
U

um−1|∇u|2〈∇u,∇(ζr)〉, R =

∫
U

um|∇u|2∆(ζr),

the inequality (2.5) becomes

2(n − m)d − (n − 1)(m2 + d2)
4n

∫
U
ζrum−2|∇u|4

+
n − 1

n
X +

m(n − 1)
n

Y +
n − 1

n
Z −

n − 1
n

V

−
(m + p)(n − 1)

n

∫
U
ζrum+p−1|∇u|2 −

2(n − 1)m + (n + 2)d
2n

Y

+
2(n − 1)m + (n + 2)d

2n

∫
U
ζrum+p−1|∇u|2

≤
m + d

2
W + Z − V +

1
2

R,

Hence, rearranging and simplifying, we conclude

α

∫
U
ζrum−2|∇u|4 + β

∫
U
ζrum+p−1|∇u|2

≤ −
n − 1

n
X +

(n + 2)d
2n

Y +
1
n

Z −
1
n

V +
m + d

2
W +

1
2

R, (2.6)

where

α =
2(n − m)d − (n − 1)(m2 + d2)

4n
and β =

(n + 2)d − 2(n − 1)p
2n

.

We now choose
m = −

d
n − 1
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obtaining

α =
[2(n − 1) − (n − 2)d] d

4(n − 1)
and β =

(n + 2)d − 2(n − 1)p
2n

.

It is then easy to see that both constants α and β are positive if d satisfies

2(n − 1)p
n + 2

< d <
2(n − 1)

n − 2
(2.7)

which is a meaningful condition, since p < pS = n+2
n−2 . Thus, we set d to be equal to the average mean

of the two values, that is

d =
(n − 1)p

n + 2
+

n − 1
n − 2

and consequently

m = m(n, p) = −
p

n + 2
−

1
n − 2

, (2.8)

which implies d , m + 2. Indeed, d = m + 2 if and only if p =
(n+2)(n−4)

n(n−2) but this value is always smaller
than 1, for n ∈ N. Moreover, from the right inequality (2.7) we have

m = −
d

n − 1
> −

2
n − 2

.

To get the thesis we now bound some of the right–hand side terms in inequality (2.6).
By using Young’s inequality, for any ε > 0 and r > 4, there exists C(ε, r) > 0 such that

|V | ≤ ε
∫

U
ζrum+p−1|∇u|2 + C(ε)

∫
U
ζr−2um+p+1|∇ζ |2, (2.9)

W ≤ ε
∫

U
ζrum−2|∇u|4 + C(ε)

∫
U
ζr−4um+2|∇ζ |4, (2.10)

R = r(r − 1)
∫

U
ζr−2um|∇u|2|∇ζ |2 + r

∫
U
ζr−1um|∇u|2∆ζ

≤ ε

∫
U
ζrum−2|∇u|4 + C(ε)

∫
U
ζr−4um+2|∇ζ |4 + C(ε)

∫
U
ζr−2um+2(∆ζ)2

≤ ε

∫
U
ζrum−2|∇u|4 + C(ε)

∫
U
ζr−4um+2|∇ζ |4 + C(ε)

∫
U
ζr−4um+2(∆ζ)2

= ε

∫
U
ζrum−2|∇u|4 + C(ε)

∫
U
ζr−4um+2(|∇ζ |4 + (∆ζ)2) (2.11)

since ζ ≤ 1 everywhere. Moreover,

X =

∫
U
ζrum〈∇u,∇ut〉 =

d f
dt
− P −

m
2

Y (2.12)

with

f =
1
2

∫
U
ζrum|∇u|2 and P =

1
2

∫
U

um|∇u|2(ζr)t.
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Then, by equation ut = ∆u + up and integrating by parts the Laplacian from the second to the third line
as we did before, we get ∫

U
ζrumu2

t =

∫
U
ζrumut (∆u + up)

=

∫
U
ζrum+put +

∫
U
ζrumut∆u

=
dg
dt
− S − Z − X − mY

=
d(g − f )

dt
+ P − Z − S −

m
2

Y, (2.13)

where
g =

1
m + p + 1

∫
U
ζrum+p+1 and S =

1
m + p + 1

∫
U

um+p+1(ζr)t,

which implies

Z =
d(g − f )

dt
+ P − S −

m
2

Y −
∫

U
ζrumu2

t . (2.14)

We bound P as follows,

P =
r
2

∫
U
ζr−1ζtum|∇u|2 ≤ ε

∫
U
ζrum−2|∇u|4 + C(ε, r)

∫
U
ζr−2um+2ζ2

t . (2.15)

Substituting equalities (2.12), (2.14) and inequalities (2.9), (2.10), (2.11) into estimate (2.6), we obtain

α

∫
U
ζrum−2|∇u|4 + β

∫
U
ζrum+p−1|∇u|2

≤ −
n − 1

n

(d f
dt
− P −

m
2

Y
)

+
(n + 2)d

2n
Y

+
1
n

(d(g − f )
dt

+ P − S −
m
2

Y −
∫

U
ζrumu2

t

)
+
ε

n

∫
U
ζrum+p−1|∇u|2 +

(m + d + 1)ε
2

∫
U
ζrum−2|∇u|4

+ C
∫

U
ζr−4um+2

(
(∆ζ)2 + |∇ζ |4

)
+ C

∫
U
ζr−2um+p+1|∇ζ |2

≤ −
d f
dt

+
1
n

dg
dt

+
( (n − 1)m

2n
+

(n + 2)d
2n

−
m
2n

)
Y −

1
n

∫
U
ζrumu2

t

+
ε

n

∫
U
ζrum+p−1|∇u|2 +

(m + d + 3)ε
2

∫
U
ζrum−2|∇u|4

+ C
∫

U
ζr−4um+2

(
(∆ζ)2 + |∇ζ |4 + ζ2

t

)
+ C

∫
U
ζr−2um+p+1

(
|∇ζ |2 + |ζt|

)
for some constant C = C(n, p, r, ε), where we estimated S simply taking the modulus of the integrand
and used inequality (2.15) to deal with P. We notice that the coefficient of the term Y is given by

(n − 1)m
2n

+
(n + 2)d

2n
−

m
2n

=
nd

2(n − 1)
> 0
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as m = − d
n−1 .

Taking ε small enough and then “absorbing” the two integrals in ∇u in the left side of the inequality,
we can conclude that there exists a constant C1 depending only on n, p, r, such that for every t ∈ (t1, t2)
we have

α

2

∫
U
ζrum−2|∇u|4 +

β

2

∫
U
ζrum+p−1|∇u|2

≤ −
d f
dt

+
1
n

dg
dt

+
nd

2(n − 1)
Y −

1
n

∫
U
ζrumu2

t .

+ C1

∫
U
ζr−4um+2

(
(∆ζ)2 + |∇ζ |4 + ζ2

t

)
+ C1

∫
U
ζr−2um+p+1

(
|∇ζ |2 + |ζt|

)
(notice that possibly varying the constant C1, instead of the constants α/2 and β/2 in front of the first
two integrals we could have chosen α − δ and β − δ, for any δ > 0).

Integrating this inequality between t1 and t2 and observing that f (ti) = g(ti) = 0, for i = 1, 2, since
ζ ∈ C2

c (Q), we get

α

2

∫
Q
ζrum−2|∇u|4 +

β

2

∫
Q
ζrum+p−1|∇u|2

≤C1

∫
Q
ζr−4um+2

(
(∆ζ)2 + |∇ζ |4 + ζ2

t

)
+ C1

∫
Q
ζr−2um+p+1

(
|∇ζ |2 + |ζt|

)
+

nd
2(n − 1)

∫ t2

t1
Y −

1
n

∫
Q
ζrumu2

t . (2.16)

Finally, in order to estimate
∫ t2

t1
Y , we make use of the gradient estimate (2.2) from Lemma 2.1. For

any δ > 0 we have

Y =

∫
U
ζrum−1|∇u|2ut

≤

∫
U
ζrum−1|∇u|2u+

t

≤K2
∫

U
ζrum+1−2δu+

t ,

where K is defined in formula (2.1) and we set ut = u+
t + u−t , u+

t = ut ∧ 0 ≥ 0 and u−t = ut ∨ 0 ≤ 0. It
follows ∫ t2

t1
Y ≤ K2

∫
U

∫ t2

t1
ζrum+1−2δu+

t

= K2
∫

U

∫ t2

t1
ζrum+1−2δut − K2

∫
U

∫ t2

t1
ζrum+1−2δu−t

= K2
∫

U

∫ t2

t1

(
ζrum+2(1−δ)

)
t
− K2

∫
U

∫ t2

t1
um+2(1−δ)(ζr)t − K2

∫
U

∫ t2

t1
ζrum+1−2δu−t

≤ rK2
∫

Q
ζr−1um+2(1−δ)|ζt| − K2

∫
Q
ζrum+1−2δu−t (2.17)
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since ζ(x, ti) = 0, for i = 1, 2 and every x ∈ U.
Substituting in inequality (2.16) we get that there exists a constant C2 = C2(n, p, r, δ,D, ρ0) (since

we have seen after Lemma 2.1 that K depends on n, p, δ,D and ρ0) such that

1
n

∫
Q
ζrumu2

t +
α

2

∫
Q
ζrum−2|∇u|4 +

β

2

∫
Q
ζrum+p−1|∇u|2

≤ C2

(∫
Q
ζr−2um+p+1

(
|∇ζ |2 + |ζt|

)
+

∫
Q
ζr−4um+2

(
(∆ζ)2 + |∇ζ |4 + ζ2

t

))
+ C2

∫
Q
ζr−1um+2(1−δ)|ζt| −C2

∫
Q
ζrum+1−2δu−t .

Since u ≤ D, 0 ≤ ζ ≤ 1 and m + p + 1 > m + 2 > m + 2(1− δ) > 0, for δ sufficiently small, as m > − 2
n−2

and n ≥ 3, we have um+p+1 ≤ Cum+2(1−δ), then there exists a positive constant C3 = C3(n, p, r, δ,D, ρ0)
such that ∫

Q
ζrumu2

t +

∫
Q
ζrum−2|∇u|4 +

∫
Q
ζrum+p−1|∇u|2

≤ C3

∫
Q
ζr−4um+2(1−δ)

(
|∇ζ |2 + |ζt| + (∆ζ)2 + |∇ζ |4 + ζ2

t

)
−C3

∫
Q
ζrum+1−2δu−t ,

which is the thesis. �

Remark 2.6. The same proposition also holds for n = 1, 2, for every p > 1, considering m = 0, d = 1,
if n = 1 and m = −d with any d > 2(n − 1)p/(n + 2), when n = 2.

Now we see that the estimate of this proposition implies an interior integral estimate on u2p+m

(see [2, Lemma 4]).

Lemma 2.7. In the same setting and with m as in Proposition 2.5, if r > 2(2p+m)
p−1+δ

there exists a constant
C = C(n, p, r, δ,D, ρ0) > 0 such that∫

Q
ζru2p+m ≤C

∫
Q
ζr− 2(2+m)

p−1+δ

(
|∇ζ |2 + |ζt| + (∆ζ)2 + |∇ζ |4 + ζ2

t

) 2p+m
2p−2(1−δ)

+ C
∫

Q
ζrum+1−2δ|u−t |. (2.18)

Proof. Multiplying Eq (1.1) by ζrum+p and integrating on U, we obtain∫
U
ζru2p+m =

∫
U
ζrum+put −

∫
U
ζrum+p∆u

=
dg
dt
− S + V + (m + p)

∫
U
ζrum+p−1|∇u|2.

Estimating S and V as in the proof of Proposition 2.5, then integrating between t1 and t2 and using
estimate (2.4), we get∫

Q
ζru2p+m ≤ C

∫
Q
ζr−4um+2(1−δ)

(
|∇ζ |2 + |ζt| + (∆ζ)2 + |∇ζ |4 + ζ2

t

)
Mathematics in Engineering Volume 4, Issue 1, 1–15.
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+ C
∫

Q
ζrum+1−2δ|u−t |

with a constant C = C(n, p, r, δ,D, ρ0). Observing that

2p + m > m + 2(1 − δ),

the conclusion of the lemma follows easily by means of Young’s inequality. �

We then have the following integral decay estimate if u is “pointwise” monotone nondecreasing in
time, that is ut ≥ 0 everywhere.

Proposition 2.8. Let Ω ⊆ Rn, n ≥ 3, and u ∈ C2,1(Ω × (0,T )) be a positive solution of Eq (1.1) with
p < pS = n+2

n−2 , such that 0 < u ≤ D and ut ≥ 0. Let 0 < t < T, x ∈ Ω, m > − 2
n−2 as in (2.8),

δ ∈ (0, 1/100), r > 2(2p+m)
p−1+δ

and ρ0 > 0. Then there exists a constant C = C(n, p, r, δ,D, ρ0) > 0 such

that, for every ρ > ρ0 with B(x, 2ρ)×[t−4ρ2, t+4ρ2] ⊆ Ω×(0,T ), letting Q(ρ) = B(x, ρ)×(t−ρ2, t+ρ2),
there holds ∫

Q(ρ/2)
u2p+m ≤ Cρn+2− 2p+m

p−1+δ .

Proof. Since u−t = 0, we obtain the thesis by applying Lemma 2.7, choosing ζ(x, t) = ϕ(x)ψ(t) with
ϕ ∈ C2

c (B(x, ρ)) and ψ ∈ C1
c (t − ρ2, t + ρ2), both taking values in [0, 1], such that ϕ = 1 on B(x, ρ/2),

ψ = 1 on [t − ρ2/4, t + ρ2/4] and

|∆ϕ| + |∇ϕ|2 + |ψt| ≤ C(n)ρ−2. (2.19)

�

Remark 2.9. Given a complete Riemannian manifold with nonnegative Ricci tensor, it is possible to
construct cutoff functions satisfying conditions (2.19) (see [8, Theorem 2.2], for instance). In
particular, using Remarks 2.2 and 2.4, it is then clear that the same proof goes through also in this
case.

Proposition 2.10. Let u ∈ C2,1(Ω × (0,T )) be a positive bounded solution of Eq (1.1) with p < pS =
n+2
n−2 , such that 0 < u ≤ D and ut ≥ 0, where Ω is an open subset of a Riemannian manifold (M, g)
with nonnegative Ricci tensor of dimension n ≥ 3. Let 0 < t < T, x ∈ Ω, m > − 2

n−2 as in (2.8),
δ ∈ (0, 1/100), r > 2(2p+m)

p−1+δ
and ρ0 > 0. Then there exists a constant C = C(n, p, r, δ,D, ρ0) > 0 such

that, for every ρ > ρ0 with B(x, 2ρ)×[t−4ρ2, t+4ρ2] ⊆ Ω×(0,T ), letting Q(ρ) = B(x, ρ)×(t−ρ2, t+ρ2),
there holds ∫

Q(ρ/2)
u2p+m ≤ Cρ2− 2p+m

p−1+δµ(B(x, ρ)),

where B(x, ρ) ⊆ M is the metric ball with center x and radius ρ and µ the canonical Riemannian
measure of (M, g).

Remark 2.11. The assumption that u is “pointwise” monotone nondecreasing in time (that is, u−t is
identically zero, hence the second integral in the right hand side of formula (2.18) in Lemma 2.7
vanishes) can be weakened a little. Indeed, notice that if δ > 0 is sufficiently small, we have

m + 1 − 2δ > −
2

n − 2
+ 1 − 2δ > 0,

Mathematics in Engineering Volume 4, Issue 1, 1–15.
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when n > 4, hence, using Young’s inequality, we get

C
∫

Q
ζrum+1−2δ|u−t | ≤

1
2

∫
Q
ζru2p+m + C

∫
Q
ζr|u−t |

2p+m
2p−1+2δ

where C is the constant in formula (2.18). Then, we obtain

1
2

∫
Q
ζru2p+m ≤C

∫
Q
ζr− 2(2+m)

p−1+δ

(
|∇ζ |2 + |ζt| + (∆ζ)2 + |∇ζ |4 + ζ2

t

) 2p+m
2p−2(1−δ)

+ C
∫

Q
|u−t |

2p+m
2p−1+2δ ,

being 0 ≤ ζ ≤ 1.
Hence, if there exists a constant C̃ = C̃(n, p, r, δ,D, ρ0), such that, for ρ > ρ0 with B(x, 2ρ)× [t−4ρ2, t +

4ρ2] ⊆ Ω × (0,T ), there holds ∫
Q
|u−t |

2p+m
2p−1+2δ ≤ C̃ρ2− 2p+m

p−1+δµ(B(x, ρ)), (2.20)

then we have the same conclusion of the above proposition, along the same line of proof.

3. Weak Harnack inequality and the proof of Theorem 1.1

We are going to apply the following estimates of Aronson–Serrin in [1], which have been extended
to manifolds with Ricci tensor bounded from below by Saloff–Coste in [13]. For Ω ⊆ Rn, let u ∈
C2,1(Ω × (0,T )) be a positive bounded solution of Eq (1.1), with p < pS = n+2

n−2 . Following their
notation, we set

d = up−1 hence, ut = ∆u + up = ∆u + du.

Fixed a pair (x, t) ∈ Ω × (0,T ) and ρ > 0, we consider the parabolic cylinder

Q̃(ρ) = B(x, ρ) × (t − ρ2, t) ⊆ Q(ρ)

(where Q(ρ) = B(x, ρ) × (t − ρ2, t + ρ2) was the set defined in the previous section) and we will use the
symbol ‖ · ‖q,ρ to denote the Lq–norm of a function in Q̃(ρ). In [1] the following weak Harnack estimate
is proved (we mention that the assumption q > n+2

2 guarantees the validity of the assumption (4) in [1],
necessary for Lemma 3).

Theorem 3.1 ( [1, Theorem 2]). For Ω ⊆ Rn, let u ∈ C2,1(Ω × (0,T )) be a solution of equation
ut = ∆u + du. Suppose that Q̃(3ρ) ⊆ Ω × (0,T ), then, for any q > n+2

2 , there exists a constant
C = C(n, q, ρ, d) > 0 such that

|u(x, t)| ≤ Cρ−
n+2

2 ‖u‖2,3ρ

for every (x, t) ∈ Q̃(ρ).

Inspecting carefully the proof and keeping track of the dependencies of the constants, it follows that
the constant C can be made more explicit, that is,

C = C(n)ρ1− n+2
2q ‖d‖1/2q,3ρ,

Mathematics in Engineering Volume 4, Issue 1, 1–15.
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hence, in the same hypotheses of this theorem, we can conclude

|u(x, t)| ≤ Cρ1− n+2
2q −

n+2
2 ‖d‖1/2q,3ρ ‖u‖2,3ρ ≤ Cρ |Q̃(3ρ)|−

q+1
2q ‖d‖1/2q,3ρ ‖u‖2,3ρ,

for every (x, t) ∈ Q̃(ρ), with C = C(n), as |Q̃(3ρ)| = (3ρ)2|B(x, 3ρ)| = ωn3n+2ρn+2 is the Lebesgue
measure of the parabolic cylinder Q̃(3ρ).

The same estimate can be extended to Riemannian manifolds (M, g) with nonnegative Ricci tensor,
see [13, Theorem 5.6] (with K = 0), obtaining

|u(x, t)| ≤ Cρ−
1
q µ(B(x, 3ρ))−

q+1
2q ‖d‖1/2q,3ρ ‖u‖2,3ρ,

where C = C(n,M) and B(x, ρ) ⊆ M is the metric ball with center x and radius ρ and µ the canonical
Riemannian measure of (M, g).

Setting then d = up−1 in this estimate we get the following corollary.

Corollary 3.2. Let (M, g) be a complete Riemannian manifold with nonnegative Ricci tensor. Let
u ∈ C2,1(M × R) be a nonnegative solution of equation ut = ∆u + up with p > 1, then for any q > n+2

2

there exists a positive constant C = C(n,M) > 0 such that in Q̃(ρ) we have the estimate,

u(x, t) ≤ Cρ−
1
q µ(B(x, 3ρ))−

q+1
2q ‖u‖

p−1
2

q(p−1),3ρ ‖u‖2,3ρ

for every ρ > 0.

We are then ready to show Theorem 1.1.

Proof of Theorem 1.1. Let (M, g) be a complete Riemannian manifold with nonnegative Ricci tensor.
Let u ∈ C2,1(M × R) be a bounded eternal solution of equation (1.1) such that ut ≥ 0, with 1 < p <

pS = n+2
n−2 and n ≥ 3. Then, by Theorem 2.6 in [5], the function u is identically zero or positive

everywhere. The conclusion in the case 1 < p < pBV =
n(n+2)
(n−1)2 is a consequence of the estimates in [2]

(see Theorem A in [11]) for the Euclidean setting, which can be extended to Riemannian manifolds
with nonnegative Ricci tensor as observed in Remark 1.2, in the introduction. Thus, we assume

n(n + 2)
(n − 1)2 ≤ p < pS .

We choose m = − d
n−1 > −

2
n−2 , as in (2.8) and we observe that

2p + m ≥
2n(n + 2)
(n − 1)2 −

2
n − 2

= 2
n3 − n2 − 2n − 1
(n − 2)(n − 1)2 = 2 +

2(3n2 − 7n + 1)
(n − 2)(n − 1)2 > 2

when n ≥ 3.
Now let γ > 0 such that

q = (1 + γ)
2p + m
p − 1

>
n + 2

2
(3.1)

and
1 +

2(1 + γ)
1 + 2γ

> p, (3.2)
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(we will discuss the existence of such γ later on).
It follows that

lim
δ→0+

(
1 −

p − 1
2(1 + γ)(p − 1 + δ)

−
1

p − 1 + δ

)
=

1 + 2γ
2(1 + γ)

−
1

p − 1
< 0,

hence, the quantity

σ = 1 −
p − 1

2(1 + γ)(p − 1 + δ)
−

1
p − 1 + δ

(3.3)

is negative, choosing δ > 0 sufficiently small.
Now, fixing (x, t) ∈ M × R and ρ > 0, from Holder’s inequality and Proposition 2.10 (notice that
Q̃(3ρ) ⊆ B(x, 3ρ) × [t − 9ρ2, t + 9ρ2]), we obtain

‖u‖2,3ρ =
(∫

Q̃(3ρ)
u2

)1/2

≤
(
ρ2µ(B(x, 3ρ))

) 2p+m−2
2(2p+m)

(∫
Q̃(3ρ)

u2p+m
) 1

2p+m

≤C
(
ρ2µ(B(x, 3ρ))

)1/2
ρ−

1
p−1+δ (3.4)

for every ρ > 0.
Then, using the fact that u is bounded and γ > 0, again by Holder’s inequality and Proposition 2.10 we
have

‖u‖p−1
q(p−1),3ρ =

(∫
Q̃(3ρ)

uq(p−1)
)1/q

=
(∫

Q̃(3ρ)
u(1+γ)(2p+m)

)1/q

≤C
(∫

Q̃(3ρ)
u2p+m

)1/q

≤C
(
ρ2µ(B(x, 3ρ))

)1/q
ρ−

p−1
(1+γ)(p−1+δ) . (3.5)

By Corollary 3.2, since q > n+2
2 , there exists a positive constant C = C(n,M) such that in Q̃(ρ) we have

u(x, t) ≤ Cρ−
1
q µ(B(x, 3ρ))−

q+1
2q ‖u‖

p−1
2

q(p−1),3ρ ‖u‖2,3ρ

hence, by estimates (3.4) and (3.5), we obtain that for every (x, t) ∈ Q̃(ρ) there holds

u(x, t) ≤Cρ−
1
q µ(B(x, 3ρ))−

q+1
2q ‖u‖

p−1
2

q(p−1),3ρ ‖u‖2,3ρ

≤Cρ−
1
q µ(B(x, 3ρ))−

q+1
2q

(
ρ2µ(B(x, 3ρ))

) 1
2q
ρ−

p−1
2(1+γ)(p−1+δ)

(
ρ2µ(B(x, 3ρ))

) 1
2
ρ−

1
p−1+δ

= Cρ1− p−1
2(1+γ)(p−1+δ)−

1
p−1+δ

= Cρσ

Mathematics in Engineering Volume 4, Issue 1, 1–15.
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where σ < 0 is defined by formula (3.3).
Since u is nonnegative, letting ρ→ +∞, we obtain u(x, t) = 0 for every (x, t) ∈ M × (−∞, t) and being
t ∈ R arbitrary, u = 0 everywhere.

Finally, one can check that, if n ≥ 5 and p < pS , there exists γ > 0 such that conditions (3.1)
and (3.2) are satisfied. In fact, in order to satisfy condition (3.1), thanks to the fact that 2p + m ≥ 2 and
p < n+2

n−2 , for any n ≥ 3 we can choose a γ > 0 such that

γ >
n + 2

4

(
n + 2
n − 2

− 1
)
− 1 =

4
n − 2

.

On the other hand, to fulfill condition (3.2) it is sufficient to choose γ that satisfies

1
1 + 2γ

> p − 2,

which, for p < n+2
n−2 and n ≥ 6, is true for any γ > 0. Finally, for n = 5, it is sufficient to choose

γ = 1. �
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