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1. Introduction

Mean-field games (MFG) is a tool to study the Nash equilibrium of infinite populations of rational
agents. These agents select their actions based on their state and the statistical information about
the population. Here, we study a price formation model for a commodity traded in a market under
uncertain supply, which is a common noise shared by the agents. These agents are rational and aim to
minimize the average trading cost by selecting their trading rate. The distribution of the agents solves
a stochastic partial differential equation. Finally, a market-clearing condition characterizes the price.

We let (Ω,F , (Ft)06t,P) be a complete filtered probability space such that (Ft)06t is the standard
filtration induced by t 7→ Wt, the common noise, which is a one-dimensional Brownian motion. We
consider a commodity whose supply process is described by a stochastic differential equation; that
is, we are given a drift bS : [0,T ]×R2 → R and volatility σS : [0,T ]×R2 → R+

0 , which are smooth
functions, and the supply Qs is determined by the stochastic differential equation

dQs = bS (Qs,$s, s)ds +σS (Qs,$s, s)dWs in [0,T ] (1.1)

with the initial condition q̄. We would like to determine the drift bP : [0,T ]×R2 → R, the volatility
σP : [0,T ]×R2→ R+

0 , and w̄ such that the price $s solves

d$s = bP(Qs,$s, s)ds +σP(Qs,$s, s)dWs in [0,T ] (1.2)

with initial condition w̄ and such that it ensures a market clearing condition. It may not be possible
to find bP and σP in a feedback form. However, for linear dynamics, as we show here, we can solve
quadratic models, which are of great interest in applications.

Let Xs be the quantity of the commodity held by an agent at time s for t 6 s 6 T . This agent trades
this commodity, controlling its rate of change, v, thus

dXs = v(s)ds in [t,T ]. (1.3)

At time t, an agent who holds x and observes q and w chooses a control process v, progressively
measurable with respect to Ft, to minimize the expected cost functional

J(x,q,w, t;v) = E

[∫ T

t
L(Xs,v(s)) +$sv(s)ds +Ψ (XT ,QT ,$T )

]
, (1.4)

subject to the dynamics (1.1), (1.2), and (1.3) with initial condition Xt = x, and the expectation is
taken w.r.t. Fr. The Lagrangian, L, takes into account costs such as market impact or storage, and the
terminal cost Ψ stands for the terminal preferences of the agent.

This control problem determines a Hamilton-Jacobi equation addressed in Section 2.1. In turn, each
agent selects an optimal control and uses it to adjust its holdings. Because the source of noise in Qt
is common to all agents, the evolution of the probability distribution of agents is not deterministic.
Instead, it is given by a stochastic transport equation derived in Section 2.2. Finally, the price is
determined by a market-clearing condition that ensures that supply meets demand. We study this
condition in Section 2.3.

Mathematically, the price model corresponds to the following problem.
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Problem 1. Given a Hamiltonian, H : R2 → R, H ∈ C∞, a commodity’s supply initial value, q̄ ∈ R,
supply drift, bS : R2 × [0,T ]→ R, and supply volatility, σS : R2 × [0,T ]→ R, a terminal cost, Ψ :
R3→ R, Ψ ∈C∞(R3), and an initial distribution of agents, m̄ ∈C∞c (R)∩P(R), find u : R3× [0,T ]→ R,
µ ∈ C([0,T ]×Ω;P(R3)), w̄ ∈ R, the price at t = 0, the price drift bP : R2 × [0,T ]→ R, and the price
volatility σP : R2× [0,T ]→ R solving

−ut + H(x,w + ux) = bS uq + bPuw + 1
2 (σS )2uqq +σSσPuqw + 1

2 (σP)2uww

dµt =

((
µ (σS )2

2

)
qq

+ (µσSσP)qw +

(
µ (σP)2

2

)
ww
−div(µb)

)
dt−div(µσ)dWt∫

R3 q + DpH(x,w + ux(x,q,w, t))µt(dx×dq×dw) = 0, a.e. ω ∈Ω, 0 6 t 6 T,

(1.5)

and the terminal-initial conditions u(x,q,w,T ) = Ψ(x,q,w)
µ0 = m̄×δq̄×δw̄,

(1.6)

where b = (−DpH(x,w + ux),bS ,bP), σ = (0,σS ,σP), and the divergence is taken w.r.t. (x,q,w).

Given a solution to the preceding problem, we construct the supply and price processes

Qt =

∫
R3

q µt(dx×dq×dw)

and
$t =

∫
R3

w µt(dx×dq×dw),

which also solve dQt = bS (Qt,$t, t)dt +σS (Qt,$t, t)dWt in [0,T ]
d$t = bP(Qt,$t, t)dt +σP(Qt,$t, t)dWt in [0,T ]

with initial conditions Q0 = q̄

$0 = w̄
(1.7)

and satisfy the market-clearing condition

Qt =

∫
R
−DpH(x,$t + ux(x,Qt,$t, t))µt(dx).

In [10], the authors presented a model where the supply for the commodity was a given deterministic
function, and the balance condition between supply and demand gave rise to the price as a Lagrange
multiplier. Price formation models were also studied by Markowich et al. [18], Caffarelli et al. [2],
and Burger et al. [1]. The behavior of rational agents that control an electric load was considered
in [16, 17]. For example, turning on or off space heaters controls the electric load as was discussed
in [13–15]. Previous authors addressed price formation when the demand is a given function of the
price [12] or that the price is a function of the demand, see, for example [5–8,11]. An N-player version
of an economic growth model was presented in [9].

Mathematics in Engineering Volume 3, Issue 4, 1–14.



4

Noise in the supply together with a balance condition is a central issue in price formation that could
not be handled directly with the techniques in previous papers. A probabilistic approach of the common
noise is discussed in Carmona et al. in [4]. Another approach is through the master equation, involving
derivatives with respect to measures, which can be found in [3]. None of these references, however,
addresses problems with integral constraints such as (1.7).

Our model corresponds to the one in [10] for the deterministic setting when we take the volatility
for the supply to be 0. Here, we study the linear-quadratic case, that is, when the cost functional
is quadratic, and the dynamics (1.1) and (1.2) are linear. In Section 3.2, we provide a constructive
approach to get semi-explicit solutions of price models for linear dynamics and quadratic cost. This
approach avoids the use of the master equation. The paper ends with a brief presentation of simulation
results in Section 4.

2. The model

In this section, we derive Problem 1 from the price model. We begin with standard tools of optimal
control theory. Then, we derive the stochastic transport equation, and we end by introducing the
market-clearing (balance) condition.

2.1. Hamilton-Jacobi equation and verification theorem

The value function for an agent who at time t holds an amount x of the commodity, whose
instantaneous supply and price are q and w, is

u(x,q,w, t) = inf
v

J(x,q,w, t;v) (2.1)

where J is given by (1.4) and the infimum is taken over the set A ((t,T ]) of all functions v : [t,T ]→
R, progressively measurable w.r.t. (Fs)t6s6T . Consider the Hamiltonian, H, which is the Legendre
transform of L; that is, for p ∈ R,

H(x, p) = sup
v∈R

[−pv−L(x,v)]. (2.2)

Then, from standard stochastic optimal control theory, whenever L is strictly convex, if u is C2, it
solves the Hamilton-Jacobi equation in R3× [0,T )

−ut + H(x,w + ux)−bPuw−bS uq−
(σP)2

2 uww−
(σS )2

2 uqq−σ
PσS uwq = 0 (2.3)

with the terminal condition
u(x,q,w,T ) = Ψ (x,q,w) . (2.4)

Moreover, as the next verification theorem establishes, any C2 solution of (2.3) is the value function.

Theorem 2.1 (Verification). Let ũ : [0,T ]×R3 → R be a smooth solution of (2.3) with terminal
condition (2.4). Let (X∗,Q,$) solve (1.3), (1.1) and (1.2), where X∗ is driven by the
(Ft)06t-progressively measurable control

v∗(s) := −DpH(X∗s,$s + ũx(X∗s,Qs,$s, s)).

Then
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1). v∗ is an optimal control for (2.1)
2). ũ = u, the value function.

2.2. Stochastic transport equation

Theorem 2.1 provides an optimal feedback strategy. As usual in MFG, we assume that the agents
are rational and, hence, choose to follow this optimal strategy. This behavior gives rise to a flow that
transports the agents and induces a random measure that encodes their distribution. Here, we derive a
stochastic PDE solved by this random measure. To this end, let u solve (2.3) and consider the random
flow associated with the diffusion

dXs = −DpH(Xs,$s + ux(Xs,Qs,$s, s))ds

dQs = bS (Qs,$s, s)ds +σS (Qs,$s, s)dWs

d$s = bP(Qs,$s, s)ds +σP(Qs,$s, s)dWs

(2.5)

with initial conditions 
X0 = x

Q0 = q̄

$0 = w̄.

That is, for a given realization ω ∈Ω of the common noise, the flow maps the initial conditions (x, q̄, w̄)
to the solution of (2.5) at time t, which we denote by

(
Xω

t (x, q̄, w̄),Qω
t (q̄, w̄),$ω

t (q̄, w̄)
)
. Using this map,

we define a measure-valued stochastic process µt as follows:

Definition 2.2. Let ω ∈Ω denote a realization of the common noise W on 0 6 s 6 T. Given a measure
m̄ ∈ P(R) and initial conditions q̄, w̄ ∈R take µ̄ ∈ P(R3) by µ̄= m̄×δq̄×δw̄ and define a random measure
µt by the mapping ω 7→ µωt ∈ P(R3), where µωt is characterized as follows:

for any bounded and continuous function ψ : R3→ R∫
R3
ψ(x,q,w)µωt (dx×dq×dw)

=

∫
R3
ψ
(
Xω

t (x,q,w),Qω
t (q,w),$ω

t (q,w)
)
µ̄(dx×dq×dw).

Remark 2.3. Because µ̄ = m̄×δq̄×δw̄, we have∫
R3
ψ
(
Xω

t (x,q,w),Qω
t (q,w),$ω

t (q,w)
)
µ̄(dx×dq×dw)

=

∫
R
ψ
(
Xω

t (x, q̄, w̄),Qω
t (q̄, w̄),$ω

t (q̄, w̄)
)
m̄(dx).

Moreover, due to the structure of (2.5),

µωt = (Xω
t (x, q̄, w̄)#m̄)×δQω

t (q̄,w̄)×δ$ω
t (q̄,w̄).

Definition 2.4. Let µ̄ ∈ P(R3) and write

b(x,q,w, s) = (−DpH(x,w + ux(x,q,w, s)),bS (q,w, s),bP(q,w, s)),
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σ(q,w, s) = (0,σS (q,w, s),σP(q,w, s)).

A measure-valued stochastic process µ = µ(·, t) = µt(·) is a weak solution of the stochastic PDE

dµt =

(
−div(µb) +

(
µ (σS )2

2

)
qq

+ (µσSσP)qw +

(
µ (σP)2

2

)
ww

)
dt−div(µσ)dWt, (2.6)

with initial condition µ̄ if for any bounded smooth test function ψ : R3× [0,T ]→ R∫
R3
ψ(x,q,w, t)µt(dx×dq×dw) =

∫
R3
ψ(x,q,w,0)µ̄(dx×dq×dw) (2.7)

+

∫ t

0

∫
R3
∂tψ+ Dψ ·b + 1

2 tr
(
σTσD2ψ

)
µs(dx×dq×dw)ds (2.8)

+

∫ t

0

∫
R3

Dψ ·σµs(dx×dq×dw)dWs, (2.9)

where the arguments for b, σ and ψ are (x,q,w, s) and the differential operators D and D2 are taken
w.r.t. the spatial variables x,q,w.

Theorem 2.5. Let m̄ ∈ P(R) and q̄, w̄ ∈R. The random measure from Definition 2.2 is a weak solution
of the stochastic partial differential equation (2.6) with initial condition µ̄ = m̄×δq̄×δw̄.

Proof. Let ψ : R3 × [0,T ]→ R be a bounded smooth test function. Consider the stochastic process
s 7→

∫
R3 ψ(x,q,w, s)µωs (dx×dq×dw). Let

(Xt(x, q̄, w̄),Qt(q̄, w̄),$t(q̄, w̄))

be the flow induced by (2.5). By the definition of µωt ,∫
R3
ψ(x,q,w, t)µωt (dx×dq×dw)−

∫
R3
ψ(x,q,w,0)µ̄(dx×dq×dw)

=

∫
R

[
ψ(Xω

t (x, q̄, w̄),Qω
t (q̄, w̄),$ω

t (q̄, w̄), t)−ψ(x, q̄, w̄,0)
]
m̄(dx).

Then, applying Ito’s formula to the stochastic process

s 7→
∫
R
ψ(Xs(x, q̄, w̄),Qs(q̄, w̄),$s(q̄, w̄), s)m̄(dx),

the preceding expression becomes∫ t

0
d
(∫
R
ψ(Xs(x, q̄, w̄),Qs(q̄, w̄),$s(q̄, w̄), s)m̄(dx)

)
=

∫ t

0

∫
R

[
Dtψ+ Dψ ·b + 1

2 tr(σTσD2ψ)
]
m̄(dx)ds

+

∫ t

0

∫
R

Dψ ·σm̄(dx)dWs
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=

∫ t

0

∫
R3

[
Dtψ+ Dψ ·b + 1

2 tr(σTσD2ψ)
]
µs(dx×dq×dw)ds

+

∫ t

0

∫
R3

Dψ ·σµs(dx×dq×dw)dWs,

where arguments of b, σ and the partial derivatives of ψ in the integral with respect to m̄(dx) are
(Xs(x, q̄, w̄),Qs(q̄, w̄),$s(q̄, w̄), s), and in the integral with respect to µt(dx× dq× dw) are (x,q,w, t).
Therefore, ∫

R3
ψ(x,q,w, t)µωt (dx×dq×dw)−

∫
R3
ψ(x,q,w,0)µ̄(dx×dq×dw)

=

∫ t

0

∫
R3

[
Dtψ+ Dψ ·b + 1

2 tr(D2ψ : (σ,σ))
]
µωs (dx×dq×dw)ds

+

∫ t

0

∫
R3

Dψ ·σµωs (dx×dq×dw)dWs.

Hence, (2.7) holds. �

2.3. Balance condition

The balance condition requires the average trading rate to be equal to the supply. Because agents
are rational and, thus, use their optimal strategy, this condition takes the form

Qt =

∫
R3
−DpH(x,w + ux(x,q,w, t))µωt (dx×dq×dw), (2.10)

where µωt is given by Definition 2.2. Because Qt satisfies a stochastic differential equation, the previous
can also be read in differential form as

bS (Qt,$t, t)dt +σS (Qt,$t, t)dWt = d
∫
R3
−DpH(x,w + ux(x,q,w, t))µωt (dx×dq×dw). (2.11)

The former condition determines bP and σP. In general, bP and σP are only progressively measurable
with respect to (Ft)06t and not in feedback form. In this case, the Hamilton–Jacobi (2.3) must be
replaced by either a stochastic partial differential equation or the problem must be modeled by the
master equation. However, as we discuss next, in the linear-quadratic case, we can find bP and σP in
feedback form.

3. Potential-free linear-quadratic price model

Here, we consider a price model for linear dynamics and quadratic cost. The Hamilton-Jacobi
equation admits quadratic solutions. Then, the balance equation determines the dynamics of the price,
and the model is reduced to a first-order system of ODE.

Suppose that L(x,v) = c
2v2 and, thus, H(x, p) = 1

2c p2. Accordingly, the corresponding MFG model
is 

−ut + 1
2c (w + ux)2−bPuw−bS uq−

1
2 (σP)2uww−

1
2 (σS )2uqq−σ

PσS uwq = 0

dµt =

((
µ (σS )2

2

)
qq

+ (µσSσP)qw +

(
µ (σP)2

2

)
ww
−div(µb)

)
dt−div(µσ)dWt

Qt = −1
c$t +

∫
R
−1

c ux(x,q,w, t)µωt (dx×dq×dw).

(3.1)
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Assume further that Ψ is quadratic; that is,

Ψ(x,q,w) = c0 + c1
1x + c2

1q + c3
1w + c1

2x2 + c2
2xq + c3

2xw + c4
2q2 + c5

2qw + c6
2w2.

3.1. Balance condition

Let
Πt =

∫
R3

ux(x,q,w, t)µt(dx×dq×dw).

The balance condition is Qt = −1
c ($t +Πt). Furthermore, Definition 2.2 provides the identity

Πt =

∫
R

ux(X∗t (x, q̄, w̄),Qt(q̄, w̄),$t(q̄, w̄), t)m̄(dx).

Lemma 3.1. Let (X∗,Q,$) solve (1.3), (1.1) and (1.2) with v = v∗, the optimal control, and initial
conditions q̄, w̄ ∈ R. Let u ∈C3(R3× [0,T ]) solve the Hamilton-Jacobi equation (2.3). Then

dΠt =

∫
R

(
uxqσ

S + uxwσ
P
)
m̄(dx)dWt, (3.2)

where the arguments for the partial derivatives of u are (X∗t (x, q̄, w̄),Qt(q̄, w̄),$t(q̄, w̄), t).

Proof. By Itô’s formula, the process t 7→ ux(X∗t ,Qt,$t, t) solves

d
(
ux(X∗t ,Qt,$t, t)

)
=

(
uxt + uxxv∗+ uxqbS + uxwbP + uxqq

1
2 (σS )2 + uxqwσ

SσP + uxww
1
2 (σP)2

)
dt+

+
(
uxqσ

S + uxwσ
P
)
dWt, (3.3)

with v∗(t) = −1
c ($t + ux(X∗t ,Qt,$t, t)). By differentiating the Hamilton-Jacobi equation, we get

−utx + 1
c ($t + ux)uxx−bPuwx−bS uqx−

(σP)2

2 uwwx−
(σS )2

2 uqqx−σ
PσS uwqx = 0.

Substituting the previous expression in (3.3), we have

d
(∫
R

ux(X∗t (x, q̄, w̄),Qt(q̄, w̄),$t(q̄, w̄), t)m̄(dx)
)

=

∫
R

(
1
c ($t + ux)uxx + uxxv∗

)
m̄(dx)dt +

∫
R

(
uxqσ

S + uxwσ
P
)
m̄(dx)dWt.

The preceding identity simplifies to∫
R

(
uxqσ

S + uxwσ
P
)
m̄(dx)dWt. �

Using Lemma 3.1, we have

−cdQt =

∫
R

(
uxqσ

S + uxwσ
P
)
m̄(dx)dWt + d$t;
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that is,

−cbS dt− cσS dWt =

(
σS

∫
R

uxqm̄(dx) +σP
∫
R

uxwm̄(dx)
)
dWt + d$t

= bPdt +

(
σS

∫
R

uxqm̄(dx) +σP
∫
R

uxwm̄(dx) +σP
)
dWt.

Thus,

bP = −cbS , (3.4)

σP = −σS
c +

∫
R

uxqm̄(dx)

1 +
∫
R

uxwm̄(dx)
.

3.2. Quadratic solutions to the Hamilton-Jacobi equation

If u is a second-degree polynomial with time-dependent coefficients, then∫
R

uxq(X∗t (x, q̄, w̄),Qt(q̄, w̄),$t(q̄, w̄), t)m̄(dx)

and ∫
R

uxw(X∗t (x, q̄, w̄),Qt(q̄, w̄),$t(q̄, w̄), t)m̄(dx)

are deterministic functions of time. Accordingly, bP and σP are given in feedback form by (3.4), thus,
consistent with the original assumption. Here, we investigate the linear-quadratic case that admits
solutions of this form.
Now, we assume that the dynamics are affine; that is,

bP(t,q,w) = bP
0 (t) + qbP

1 (t) + wbP
2 (t)

bS (t,q,w) = bS
0 (t) + qbS

1 (t) + wbS
2 (t)

σP(t,q,w) = σP
0 (t) + qσP

1 (t) + wσP
2 (t)

σS (t,q,w) = σS
0 (t) + qσS

1 (t) + wσS
2 (t).

(3.5)

Then, (3.4) gives

bP
0 = −cbS

0 , σP
0 = −σS

0

c +
∫
R

uxqm̄(dx)

1 +
∫
R

uxwm̄(dx)

bP
1 = −cbS

1 , σP
1 = −σS

1

c +
∫
R

uxqm̄(dx)

1 +
∫
R

uxwm̄(dx)

bP
2 = −cbS

2 , σP
2 = −σS

2

c +
∫
R

uxqm̄(dx)

1 +
∫
R

uxwm̄(dx)
.

Because all the terms in the Hamilton-Jacobi equation are at most quadratic, we seek for solutions of
the form

u(t, x,q,w) =a0(t) + a1
1(t)x + a2

1(t)q + a3
1(t)w
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+ a1
2(t)x2 + a2

2(t)xq + a3
2(t)xw + a4

2(t)q2 + a5
2(t)qw + a6

2(t)w2,

where a j
i : [0,T ]→ R. Therefore, the previous identities reduce to

bP
0 = −cbS

0 , σP
0 = −σS

0

c + a2
2

1 + a3
2

bP
1 = −cbS

1 , σP
1 = −σS

1

c + a2
2

1 + a3
2

bP
2 = −cbS

2 , σP
2 = −σS

2

c + a2
2

1 + a3
2

. (3.6)

Using (3.6) and grouping coefficients in the Hamilton-Jacobi PDE, we obtain the following ODE
system

ȧ1
2 =

2
(
a1

2

)2

c

ȧ2
2 =

c2a3
2bS

1−ca2
2bS

1 +2a1
2a2

2
c

ȧ3
2 =

c2a3
2bS

2−ca2
2bS

2 +2a1
2+2a1

2a3
2

c

ȧ1
1 =

c2a3
2bS

0−ca2
2bS

0 +2a1
1a1

2
c

ȧ4
2 =ca5

2bS
1 −2a4

2bS
1 +

a5
2

(
a2

2+c
)(
σS

1

)2

a3
2+1

− 1
4

(
4a6

2

(
a2

2+c
)2(
σS

1

)2(
a3

2+1
)2 + 4a4

2

(
σS

1

)2
)
+

(
a2

2

)2

2c

ȧ5
2 =2ca6

2bS
1 + ca5

2bS
2 −a5

2bS
1 −2a4

2bS
2 −

1
2

(
4a6

2

(
a2

2+c
)2
σS

1σ
S
2(

a3
2+1

)2 + 4a4
2σ

S
1σ

S
2

)
+

2a5
2

(
a2

2+c
)
σS

1σ
S
2

a3
2+1

+
a2

2

(
a3

2+1
)

c

ȧ6
2 =2ca6

2bS
2 −a5

2bS
2 −

1
4

(
4a6

2

(
a2

2+c
)2(
σS

2

)2(
a3

2+1
)2 + 4a4

2

(
σS

2

)2
)
+

a5
2

(
a2

2+c
)(
σS

2

)2

a3
2+1

+

(
a3

2+1
)2

2c

ȧ0 =ca3
1bS

0 −a2
1bS

0 +
a5

2

(
a2

2+c
)(
σS

0

)2

a3
2+1

− 1
2

(
2a6

2

(
a2

2+c
)2(
σS

0

)2(
a3

2+1
)2 + 2a4

2

(
σS

0

)2
)
+

(
a1

1

)2

2c

ȧ2
1 =ca5

2bS
0 + ca3

1bS
1 −2a4

2bS
0 −a2

1bS
1 +

2a5
2

(
a2

2+c
)
σS

0σ
S
1

a3
2+1

− 1
2

(
4a6

2

(
a2

2+c
)2
σS

0σ
S
1(

a3
2+1

)2 + 4a4
2σ

S
0σ

S
1

)
+

a1
1a2

2
c

ȧ3
1 =2ca6

2bS
0 + ca3

1bS
2 −a5

2bS
0 −a2

1bS
2 −

1
2

(
4a6

2

(
a2

2+c
)2
σS

0σ
S
2(

a3
2+1

)2 + 4a4
2σ

S
0σ

S
2

)
+

2a5
2

(
a2

2+c
)
σS

0σ
S
2

a3
2+1

+
a1

1

(
a3

2+1
)

c ,

with terminal conditions

a0(T ) = Ψ(0,0,0) = c0 a1
1(T ) = DxΨ(0,0,0) = c1

1

a2
1(T ) = DqΨ(0,0,0) = c2

1 a3
1(T ) = DwΨ(0,0,0) = c3

1

a1
2(T ) = 1

2 DxxΨ(0,0,0) = c1
2 a2

2(T ) = DxqΨ(0,0,0) = c2
2

a3
2(T ) = DxwΨ(0,0,0) = c3

2 a4
2(T ) = 1

2 DqqΨ(0,0,0) = c4
2

a5
2(T ) = DqwΨ(0,0,0) = c5

2 a6
2(T ) = 1

2 DwwΨ(0,0,0) = c6
2.
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While this system has a complex structure, it admits some simplifications. For example, the equation
for a1

2 is independent of other terms and has the solution

a1
2(t) =

cc1
2

c+2c1
2(T−t)

.

Moreover, we can determine a2
2 and a3

2 from the linear system

d
dt

[
a2

2
a3

2

]
=

[
−bS

1 + 2
c a1

2 cbS
1

−bS
2 cbS

2 + 2
c a1

2

] [
a2

2
a3

2

]
+

[
0

2
c a1

2

]
.

Lemma 3.1 takes the form

dΠt =
(
a2

2(t)σS (Qt,$t, t) + a3
2(t)σP(Qt,$t, t)

)
dWt.

Therefore,

Πt = Π0 +

∫ t

0

(
a2

2(r)σS (Qr,$r,r) + a3
2(r)σP(Qr,$r,r)

)
dWr

where

Π0 = a1
1(0) + 2a1

2(0)
∫
R

xm̄(dx) + a2
2(0)q̄ + a3

2(0)w̄.

Replacing the above in the balance condition at the initial time, that is w̄ = −cq̄−Π0, we obtain the
initial condition for the price

w̄ = −1
1+a3

2(0)

(
a1

1(0) + 2a1
2(0)

∫
R

xm̄(dx) + (a2
2(0) + c)q̄

)
. (3.7)

where a1
1 can be obtained after solving for a1

2, a2
2 and a3

2.
Now, we proceed with the price dynamics using the balance condition. Under linear dynamics, we

have

Qt = −1
c ($t +Π0)

− 1
c

∫ t

0
a2

2(r)
(
σS

0 (r) + Qrσ
S
1 (r) +$rσ

S
2 (r)

)
+ a3

2(r)
(
σP

0 (r) + Qrσ
P
1 (r) +$rσ

P
2 (r)

)
dWr.

Thus, replacing the price coefficients for (3.6), we obtain

d$t =− c
(
bS

0 (t) + bS
1 (t)Qt + bS

2 (t)$t
)
dt

−
c+a2

2(t)
1+a3

2(t)

(
σS

0 (t) +σS
1 (t)Qt +σS

2 (t)$t
)
dWt,

dQt =bS dt +σS dWt,

which determines the dynamics for the price.
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4. Simulation results

In this section, we consider the running cost corresponding to c = 1; that is,

L(v) = 1
2v2

and terminal cost at time T = 1
Ψ(x) = (x−α)2.

We take m̄ to be a normal standard distribution; that is, with zero-mean and unit variance. We assume
the dynamics for the normalized supply is mean-reverting

dQt = (1−Qt)dt + QtdWt,

with initial condition q̄ = 1. Therefore, the dynamics for the price becomes

d$t = −(1−Qt)dt−
1+a2

2
1+a3

2
QtdWt,

with initial condition w̄ given by (3.7), and a2
2 and a3

2 solve

ȧ2
2 =−a3

2 + a2
2(1 + 2a1

2)

ȧ3
2 =2a1

2(1 + a3
2),

with terminal conditions a2
2(1) = 0 and a3

2(1) = 0. We observe that the coefficient multiplying Qt in the
volatility of the price is now time-dependent.

For a fixed simulation of the supply, we compute the price for different values of α. Agents begin
with zero energy average. The results are displayed in Figure 1. As expected, the price is negatively
correlated with the supply. Moreover, as the storage target increases, prices increase, which reflects the
competition between agents who, on average, want to increase their storage.

0.2 0.4 0.6 0.8 1.0
t

-2

2

4

Qt

ωt (α=0)

ωt (α=0.25)

ωt (α=0.5)

ωt (α=0.75)

Figure 1. Supply vs. Price for the values α = 0, α = 0.1, α = 0.25, α = 0.5.
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