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1. Introduction

In this paper we study a penalized boundary obstacle problem of interest in thermics, fluid
mechanics, and electricity. Given a domain Ω in Rn, n ≥ 2, with sufficiently regular boundary
∂Ω = Γ1 ∪ Γ2 and unit outer normal ν, we consider the following stationary problem:

∆u = f in Ω,

u = g on Γ1
∂u
∂ν

= −k+ ((u − h)+)p−1 + k− ((u − h)−)p−1 on Γ2.

(1.1)

Here f : Ω → R, g : Γ1 → R and h : Γ2 → R are given functions, u+ = max{u, 0}, u− =

−min{u, 0} ≥ 0, k+ and k− are non-negative constants, and p > 1. Our goal is to establish optimal
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regularity of the solutions, and to study properties of the free boundary (∂{u > h} ∪ ∂{u < h}) ∩ Γ. We
begin by observing that in the limiting case k+ = k− = 0, u is clearly the solution of a classical Neumann
problem. The other limiting case, when k+ = 0 and k− = +∞ (or equivalently k+ = +∞ and k− = 0), is
more interesting. The boundary condition, in fact, becomes

u ≥ h,
∂u
∂ν
≥ 0, (u − h)

∂u
∂ν

= 0,

and u is a solution of the Signorini problem, also known as the thin obstacle problem. The Signorini
problem has received a resurgence of attention in the last decade, due to the discovery of several
families of powerful monotonicity formulas, which in turn have allowed to establish the optimal
regularity of the solution, a full classification of free boundary points, smoothness of the free
boundary at regular points, and the structure of the free boundary at singular points. We refer the
interested reader to [1, 3, 6, 11, 14, 16], see also the survey [10] and the references therein.

The general scheme of a solution to the Signorini problem provides a road map for the solution of
problem (1.1), but there are two new substantial difficulties. The first one is due to the
non-homogeneous nature of the boundary condition in (1.1), which in particular implies that this
problem does not admit global homogeneous solutions of any degree. This is in stark contrast with
the Signorini problem, where the existence and classification of such solutions play a pivotal role.
Moreover, in the thin obstacle problem it is readily seen that continuity arguments force u to be
always above h (hence the nomenclature), whereas the case h(x) > u(x) is no longer ruled out in (1.1).
Allowing for both constants k+, k− to be finite (even when one of the two vanishes) de facto destroys
the one-phase character of the problem. In order to focus the attention on these new aspects, it is
useful to understand first a simplified local version of (1.1), posed in the upper half ball

B+
1 = {x ∈ B1 | xn > 0},

with f = h = 0. In this setting problem (1.1) becomes
∆u = 0 in B+

1

u = g on (∂B1)+

∂u
∂xn

= k+(u+)p−1 − k−(u−)p−1 on Γ.

(1.2)

Here

(∂B1)+ = {x ∈ ∂B1 | xn > 0},
Γ = {x ∈ B1 | xn = 0}.

An alternate perspective is given by the associated energy. We seek to minimize

J(v) =
1
2

(ˆ
B1

|∇v|2 dx +

ˆ
Γ

(
k̃−(v−)p + k̃+(v+)p

)
dx′

)
(1.3)

over all v ∈ W1,q(B1) with q = max{2, p} and v − g ∈ W1,q
0 (B1) for given boundary data g. Here

k̃± = 2k±/p, and x = (x′, xn). In this context we think of the data in (1.2) as extended to all of B1 by
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even reflection. A minimizer to this energy will be symmetric about Γ and u will correspond to the
restriction to B+

1 .

Our first main result is the following:

Theorem 1.1. Let g ∈ W1,q(Ω), 0 ≤ k± < ∞, k+ , k−, and p > 1. Then there exists a unique
minimizer u ∈ W1,q(B1) of the energy J(v) in (1.3). If p is an integer, then u ∈ Cp−1,α(B+

1/2) for every
α < min{1, p − 1}, and there exists a constant C = C(n) > 0 such that

‖u‖Cp−1,α(B+
1/2) ≤ C

(
‖u‖L2(B+

1 ) + ‖u‖Lp(Γ)

)
. (1.4)

If instead p is not an integer, then u ∈ Cbp−1c,α(B+
1/2) for every α < p − 1 − bp − 1c, and there exists a

constant C = C(n) > 0 such that

‖u‖Cbp−1c,α(B+
1/2) ≤ C

(
‖u‖L2(B+

1 ) + ‖u‖Lp(Γ)

)
. (1.5)

Additionally, if p is a positive integer and k− = k+, or if g does not change sign, then u ∈ C∞(B+
1/2).

In the case p = 2, we can in fact establish that the regularity is optimal at points where the gradient
does not vanish.

Theorem 1.2. Let u be the unique solution to (1.2) (see Definition 3.2) when p = 2. If ∇x′u(x′, 0) , 0,
then u is not in C1,1 at (x′, 0).

As an immediate consequence of the regularity of the solution and of the implicit function theorem,
we obtain the following result on the regularity of the free boundary.

Definition 1.3. The regular set of the free boundary is defined as

R(u) = {(x′, 0) ∈ Γ | u(x′, 0) = 0, ∇x′u(x′, 0) , 0}

Theorem 1.4. Let u be the unique solution to (1.2), with p > 1. If x0 ∈ R, then in a neighborhood of
x0 the free boundary {u(x′, 0) = 0} is a C1,α− graph for all α < 1.

We next turn our attention to the study of the singular set. To this end, in what follows we assume
p ≥ 2.

Definition 1.5. For

N x0(r; u) = r

´
B+

r (x0) |∇u|2 dx´
(∂Br(x0))+ u2 dσ(x)

and
µ = N x0(0+; u) = lim

r→0
N x0(r; u),

we define the set of singular points with frequency µ as

Σµ(u) = {x0 ∈ Γ | u(x0) = 0, ∇x′u(x0) = 0, and N x0(0+; u) = µ}.
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The dimension of Σµ(u) at a point x ∈ Σ(u) is

dx0
µ = dim{ζ ∈ Rn | 〈ζ,∇x′ px0

µ (x′, 0)〉 = 0 for all x′ ∈ Rn−1},

where px0
µ is a homogeneous polynomial of degree µ as in Theorem 7.1. Finally, we introduce

Σd
µ(u) = {x0 ∈ Σµ | dx0

µ = d}.

We observe here that the existence of the limit in Definition 1.5 is guaranteed by Corollary 4.3,
and that it follows from the proof of Theorem 5.1 below that µ is necessarily a positive integer. The
structure of the singular set is described in the following result.

Theorem 1.6. Let u be the unique solution to (1.2), with p ≥ 2. Then for every µ ∈ N and d =

0, 1, . . . , n − 2, the set Σd
µ(u) is contained in the countable union of d-dimensional C1-submanifolds of

Γ.

The proof of Theorem 1.6 follows the ideas of the corresponding result in [14] for the Signorini
problem. It hinges on the monotonicity (or almost-monotonicity) of a perturbed Almgren functional
and a Monneau-type functional (see Theorem 4.1 and Corollary 6.2). From these results we infer the
growth rate and nondegeneracy of the solution near the free boundary. In turn, these properties allow
to prove uniqueness and continuous dependance on the singular point of the blow-up limits. The rest
of the proof is based on Whitney’s extension and the implicit function theorem.

To conclude, we remark that considering a more general situation as in (1.1) introduces significant
technical difficulties. A standard approach, under suitable smoothness assumptions, consists in
flattening Γ2, which in turn leads to the study of a variable-coefficient operator and flat portion of the
boundary. This problem, also with non-vanishing h, is the object of the recent paper [9].

1.1. Structure of the paper

The paper is organized as follows. In Section 2 we describe some applications to problems of semi-
permeable membranes and of temperature control, which motivate the study of (1.1). In Section 3
we establish existence and uniqueness of solutions, and prove Theorems 1.1 and 1.2. In Section 4 we
prove the monotonicity of the perturbed functional of Almgren type, and infer some properties of the
solution as a consequence. In Section 5 we introduce the Almgren rescalings, and discuss their blow-
up limits. In Section 6 we prove the almost-monotonicity of a Monneau-type functional, and establish
nondegeneracy of solutions. Finally, Section 7 is devoted to the proof of Theorem 1.6.

2. Motivation

2.1. Semi-permeable membranes

Following [12, Section 2.2.2], we briefly describe the process of osmosis through semi-permeable
walls. By Ω we denote a domain in Rn, n ≥ 2, with sufficiently regular boundary ∂Ω. The region
Ω consists of a porous medium occupied by a viscous fluid which is only slightly compressible, and
we denote its pressure field by u(x). We assume that a portion Γ of ∂Ω consists of a semi-permeable
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membrane of finite thickness, i.e., the fluid can freely enter in Ω, but the outflow of fluid is prevented.
Combining the law of conservation of mass with Darcy’s law, one finds that u satisfies the equation

∆u −
∂u
∂t

= f in Ω,

where f = f (x, t) is a given function. When a fluid pressure h(x), for x ∈ Γ, is applied to Γ on the
outside of Ω, one of two cases holds:

h(x) < u(x, t) or h(x) ≥ u(x, t).

In the former, the semi-permeable wall prevents the fluid from leaving Ω, so that the flux is null. If we
let ν denote the outer unit normal to Γ, we then have

∂u
∂ν

= 0. (2.1)

In the latter case, the fluid enters Ω. It is reasonable to assume the outflow to be proportional to the
difference in pressure, so that

−
∂u
∂ν

= k(u − h), (2.2)

where k > 0 measures the conductivity of the wall. Combining (2.1) and (2.2), we obtain the boundary
condition

∂u
∂ν

= k(u − h)− on Γ. (2.3)

In our model (1.1), we allow for fluid flow to occur both into and out of Ω with different permeability
constants, under the assumption that the flux in each direction is proportional to a power of the pressure.

2.2. Temperature control

An alternative interpretation of the model is as a boundary temperature control problem, which
we only briefly outline here. We assume that a continuous medium occupies a region Ω in Rn, with
boundary Γ and outer unit normal ν. Given a reference temperature h(x), for x ∈ Γ, it is required that
the temperature at the boundary u(x, t) deviates as little as possible from h(x). To this end, thermostatic
controls are placed on the boundary to inject an appropriate heat flux when necessary. The controls are
regulated as follows:

(i) If u(x, t) = h(x), no correction is needed and therefore the heat flux is null.

(ii) If u(x, t) , h(x), a quantity of heat proportional to the difference between u(x, t) and h(x) is
injected.

We can thus write the boundary condition as

−
∂u
∂ν

= Φ(u),

where

Φ(u) =


k−(u − h) if u < h

0 if u = h

k+(u − h) if u > h
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More in general, one can assume that Φ(u) is a continuous and increasing function of u. For further
details, we refer to [12, Section 2.3.1], see also [1] for the limiting case k− = 0 and k+ = +∞, [4] for
the case p = 1 in (1.3), and [2] for different boundary conditions Φ(u).

3. Optimal regularity of solutions

We begin this section by proving existence and uniqueness of minimizers to (1.3). We let K = {v ∈
W1,2(B1) | v − g ∈ W1,2

0 (B1)}.

Lemma 3.1. There exists a unique minimizer u ∈ K for the energy J(v) given by (1.3).

Proof. Throughout this proof we will pass to subsequences whenever necessary without comment. Let
ul be a minimizing sequence. Then ‖∇ul‖2 is clearly bounded owing to the form of the energy itself.
By using the Poincaré inequality on ul − g we deduce that the sequence ul is bounded in the W1,2(B1)
norm. Thus there exists a weak limit u which is necessarily in K . We may assume that ul → u in L2

and a.e. The weak convergence of ul to u in W1,2 and the strong convergence in L2 imply that
ˆ

B1

|∇u|2 dx ≤ lim inf
l→∞

ˆ
B1

|∇ul|
2 dx.

This clearly follows from the property of weak convergence

‖u‖W1,2(B1) ≤ lim inf
l→∞

‖ul‖W1,2(B1)

and, because of the strong L2 convergence, the inequality must fall on the gradient part of the norm.
To prove that u is a minimizer we must show then that

ˆ
Γ

(u±)p dx′ ≤ lim inf
l→∞

ˆ
Γ

(u±l )p dx′.

It will suffice to demonstrate this for u−; the result for u+ is proved in an analogous fashion. The trace
operator T : W1,2(B+

1 )→ L2(∂B+
1 ) is a bounded linear operator, since the half ball is a Lipschitz domain.

Furthermore, in this setting it is a compact operator, and thus takes weakly convergent sequences to
strongly convergent ones. Suppressing the Tul notation and simply writing ul we then have that

ul → u in L2(Γ).

From this we may assume that ul → u a.e. on Γ. But then clearly (u−l )p → (u−)p a.e. and applying
Fatou’s Lemma we have ˆ

Γ

(u−)p dx′ ≤ lim inf
ˆ

Γ

(u−l )p dx′

which completes the proof of existence.
Uniqueness follows by observing that ( f +g)± ≤ f ±+g±, and then applying standard arguments. �

Next, we recall the definition of a weak solution (see [17]):
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Definition 3.2. We say that u is a weak solution to∆u = 0 in B+
1

uxn = f on Γ

if for every ξ ∈ C∞(B+
1 ) vanishing on (∂B1)+ we have

ˆ
B+

1

∇u∇ξ dx = −

ˆ
Γ

f ξ dx′

It is easy to show that the minimizer u is a weak solution to our problem.

Lemma 3.3. The minimizer u obtained in Lemma 3.1 is a weak solution to (1.2). That is,
ˆ

B+
1

∇u∇ξ dx = −

ˆ
Γ

(−k−(u−)p−1 + k+(u+)p−1)ξ dx′ (3.1)

for all ξ ∈ C∞(B+
1 ) vanishing on (∂B1)+.

Proof. This is a standard variational fact. See for example the proof of Lemma 4.1 in [4]. �

Remark 3.4. The −k− term appears since u− = −min{u, 0}.

We now turn to the regularity of the solution. Our strategy will be to first prove an initial Hölder
regularity which will improve afterwards. The first step is an energy estimate for u.

Lemma 3.5. Let u be the minimizer of (1.3). Then we have for any B2r ⊂ B1ˆ
Br

|∇u|2 dx ≤
c
r2

ˆ
B2r

u2 dx.

Proof. We first prove the corresponding estimate for u− = −min{u, 0}. Let η ∈ C∞0 (B2r) with

η ≡ 1 in Br, |∇η| ≤
c
r2 .

Taking ξ = u−η2 and using (3.1) we have
ˆ

B1

∇u∇(u−η2) dx = −

ˆ
Γ

(−k−(u−)p−1 + k+(u+)p−1)u−η2 dx′

= −

ˆ
Γ

(−k−(u−)p−1)u−η2 dx′ ≥ 0.

Expanding yields
ˆ

B1

(
η2∇u∇u− + 2u−η∇u∇η

)
dx =

ˆ
B1

−|∇u−|2η2 − 2u−η∇u−∇η dx ≥ 0

or ˆ
B1

|∇u−|2η2 dx ≤ −
ˆ

B1

2u−η∇u−∇η dx.
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At this point standard energy arguments imply
ˆ

Br

|∇u−|2 dx ≤
c
r2

ˆ
B2r

(u−)2 dx.

A similar argument implies the same inequality with u+; together they yield the energy estimate for
u. �

Next, we use the energy estimate to prove an initial Hölder modulus of continuity for u. This
regularity is much lower than optimal, but it will allows us to bootstrap to obtain higher regularity.

Lemma 3.6. The solution to (1.2) is in C0,1/2(B1/2).

Proof. Let Br := Br(x) for r < 1/4 and x ∈ B1, and let v be the harmonic replacement of u in Br. Set
Γr = Br ∩ Γ. By minimality we have

ˆ
Br

(
|∇u|2 − |∇v|2

)
dx ≤

ˆ
Γr

(
k−((v−)p − (u−)p) + k+((v+)p − (u+)p)

)
dx′. (3.2)

However, since v is harmonic we have
ˆ

Br

∇v · ∇(v − u) dx = 0,

and thus ˆ
Br

|∇u − ∇v|2 dx =

ˆ
Br

(
|∇u|2 − |∇v|2

)
dx. (3.3)

Next, since v is the harmonic lifting of u, |v| ≤ |u| in Br. In turn, the computation used in Lemma 3.5
demonstrated that u± are subharmonic, and therefore |u| = u+ + u− is as well. Thus, by the maximum
principle, supB1

|u| ≤ sup∂B1
|u| = sup g, the given boundary data in (1.2). In particular,

ˆ
Γr

(
k−((v−)p − (u−)p) + k+((v+)p − (u+)p)

)
dx′ ≤ Crn−1,

with C independent of x and v. From this fact, combined with (3.2) and (3.3), we infer
ˆ

Br

|∇u − ∇v|2 dx ≤ Crn−1.

At this point, we can mimic the derivation in [5, Theorem 3.1] to deduce that
ˆ

Br

|∇u|2 dx ≤ Crn−1.

In turn Morrey’s Dirichlet Growth Theorem (see for instance [15, Corollary 9.1.6]) implies the desired
Hölder-1/2 regularity inside B1/2. �

We have reached the proof of our main result:
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Proof of Theorem 1.1. Existence and uniqueness follow from Lemma 3.1. Thus, we need only to show
the desired regularity. From Lemma 3.3 we know that u is a weak solution to our problem on B+

1 .
Moreover, u is C0,1/2(B1/2) by Lemma 3.6. The ‘±′ operation preserves Hölder regularity (with the
same Hölder norm) so u± ∈ C0,1/2(B1/2) and in particular on the thin region Γ. This implies that

− k−(u−)p−1 + k+(u+)p−1 (3.4)

is Hölder continuous of order γ, although γ will in general not be 1/2.
Nevertheless, this implies that u is a weak solution to an oblique derivative problem with Hölder

continuous boundary data, namely −k−(u−)p−1 + k+(u+)p−1. Regularity theory for such a problem (see
e.g., [17, Proposition 5.53]) then yields that u must be C1,γ up to the boundary, with

|u|1+γ ≤ C
(
sup |u| + |u|γ

)
.

But in turn this implies that u is Lipschitz up to the boundary, in which case (3.4) is Hölder continuous
of order p − 1 when p ≤ 2; if p > 2 this is to be interpreted as differentiablity with a Hölder modulus
of continuity. Applying the regularity theory once again we have the result of the theorem.

Now suppose that g does not change sign. We aim to show that u does not change sign either, in
which case u± = u (and thus u± is as smooth as u is) and the regularity result above can be bootstrapped
to prove that u is smooth. To this end, suppose that g ≥ 0, but u attains a minimum value which is
negative, say u(z) = m < 0. Then z must lie on Γ. In particular, z ∈ ΓR = Γ ∩ BR for some 0 < R < 1.
Now, trivial modifications to the above arguments allow to show u ∈ C1,α(BR), and therefore we can
assume that the restriction of u to ΓR is C1,α. Next, we apply the Hopf Lemma. Since u is harmonic in
the interior we must have

∂u
∂ν

(z) < 0.

Here ν is the outer normal vector, which at the point z is −en. Thus

∂u
∂xn

(z) > 0.

However, the boundary condition along Γ is given by

∂u
∂xn

= k+(u+)p−1 − k−(u−)p−1,

which holds in a classical sense since u is C1,α in a neighborhood of z. But u(z) < 0, and therefore the
boundary condition at z is uxn = −k−u−(z) < 0, a contradiction. We have thus shown that, if g ≥ 0, u
cannot be negative along Γ. As a consequence, u is non-negative everywhere, so that u± = u and higher
regularity follows by bootstrapping.

A similar argument shows that if g ≤ 0 then u ≤ 0 everywhere, which again implies higher
regularity. Finally, the case p integer and k+ = k− follows immediately from a repeated application
of [17, Proposition 5.53].

�

We now show that, at least in the case p = 2, the regularity obtained in Theorem 1.1 is optimal at
points where the gradient of u is non-vanishing.

Mathematics in Engineering Volume 3, Issue 1, 1–23.



10

Proof of Theorem 1.2. We argue by contradiction, and assume that u ∈ C1,1(0), with∇u(0) , 0. Thanks
to Theorem 1.1, we know that u has a unique differential P = ∇u(0). Without loss of generality, we
may assume that P is also a superdifferential for u− (if not, consider u+). We refer, for instance,
to [8, Chapter 3] for the definition and properties of superdifferentials. We begin by observing that we
can write

∂u
∂xn

= k+u+ − k+u− + k+u− − k−u− = k+u + (k+ − k−)u−.

Thus,

(k+ − k−)u− =
∂u
∂xn
− k+u.

From this, applying the extension theorem in [7] (with a slight abuse of notation, u(x′) denotes the
restriction of u(x) = u(x′, xn) to xn = 0) and the semigroup property of (−∆)s, we deduce

(k+ − k−)[−(−∆x′)1/2u−(x′)] = [−(−∆x′)1/2] ◦ [−(−∆x′)1/2]u(x′) − k+[−(−∆x′)1/2]u(x′)

= ∆x′u(x′) − k+

∂u
∂xn

(x′, 0). (3.5)

Because of our C1,1 assumption, we have that C0 ≤ uττ(0) ≤ C1 for some constants C0,C1 > 0 and for
any tangential direction τ. Hence, keeping also Theorem 1.1 in mind, it follows from (3.5)

| − (−∆x′)1/2u−(0)| ≤ C2

for some C2 > 0. We now consider

ψ(x) =

[
u−(0) + min{P · x, 0} +

C1

2
|x|2

]
χB1 .

A straightforward computation yields

−(−∆x′)1/2ψ(0) = −∞.

In addition, u−(x) ≤ ψ(x), with equality at x = 0. From the definition of (−∆)1/2 , we infer

−(−∆x′)1/2u−(0) ≤ −(−∆x′)1/2ψ(0) = −∞.

But we showed above that −(−∆x′)1/2u−(0) ≥ −C2. We have thus reached a contradiction. �

4. Monotonicity of a perturbed Almgren frequency functional

In this section we establish some properties of the solution around free boundary points in the case
p ≥ 2. For u solution to (1.2), we define the coincidence set Λ(u) = {(x′, 0) | u(x′, 0) = 0}, and the
free boundary F (u) = ∂Λ(u). In the Signorini problem, the monotonicity of the Almgren’s Frequency
Functional

N(r; u) = N(r) = r

´
B+

r
|∇u|2 dx´

(∂Br)+ u2 dσ(x)
(4.1)

Mathematics in Engineering Volume 3, Issue 1, 1–23.



11

plays a fundamental role in the study of both the solution and the free boundary. In our setting, N(r)
may fail to be monotone, but a suitable perturbation is. We thus introduce the perturbed Almgren
Frequency Functional at the point x0 = 0 as

Ñ(r; u) = Ñ(r) = r

´
B+

r
|∇u|2 dx + 2

p

´
Γr

F(u) dx′´
(∂Br)+ u2 dσ(x)

, (4.2)

with F(u) = k−(u−)p + k+(u+)p and Br = Br(0).

Theorem 4.1. Let u be a solution to (1.2), with p ≥ 2. Then Ñ(r; u) is monotone increasing in r ∈ (0, 1).

Proof. Let

H(r) =

ˆ
(∂Br)+

u2 dσ(x), D(r) =

ˆ
B+

r

|∇u|2 dx.

We begin by observing

H′(r) =
n − 1

r
H(r) + 2

ˆ
(∂Br)+

uuν dσ(x). (4.3)

We also have

D(r) :=
ˆ

B+
r

|∇u|2 dx =

ˆ
B+

r

(|∇u|2 + u∆u) dx

=

ˆ
B+

r

∆(
u2

2
) dx =

ˆ
(∂Br)+

uuν dσ(x) +

ˆ
Γr

uuν dx′

=

ˆ
(∂Br)+

uuν dσ(x) +

ˆ
Γr

[k−(u−)p−1 − k+(u+)p−1]u dx′

=

ˆ
(∂Br)+

uuν dσ(x) −
ˆ

Γr

[k+(u+)p + k−(u−)p] dx′.

By Rellich’s Identity

D′(r) =

ˆ
(∂Br)+

|∇u|2 dσ(x)

=
n − 2

r

ˆ
B+

r

|∇u|2 dx + 2
ˆ

(∂Br)+

u2
ν dσ(x) −

2
r

ˆ
Γr

〈x,∇u〉uxn dx′

=
n − 2

r

ˆ
B+

r

|∇u|2 dx + 2
ˆ

(∂Br)+

u2
ν dσ(x) −

2
r

ˆ
Γr

〈x,∇u〉(−k−(u−)p−1 + k+(u+)p−1) dx′,

which we can rewrite as

D′(r) =
n − 2

r
D(r) + 2

ˆ
(∂Br)+

u2
ν dσ(x) −

2
pr

ˆ
Γr

[k−〈x,∇(u−)p〉 + k+〈x,∇(u+)p〉] dx′. (4.4)

Using integration by parts we note that
ˆ

Γr

〈x,∇(u±)p〉 dx′ =

ˆ
∂Γr

r(u±)p dσ(x′) − (n − 1)
ˆ

Γr

(u±)p dx′.
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Applying this fact in (4.4) we obtain

D′(r) =
n − 2

r
D(r) + 2

ˆ
(∂Br)+

u2
ν dσ(x) (4.5)

−
2
pr

[ˆ
∂Γr

r(k−(u−)p + k+(u+)p) dσ(x′) − (n − 1)
ˆ

Γr

(k−(u−)p + k+(u+)p)
]

dx′.

For the sake of brevity we will define

D̃(r) = D(r) +
2
p

ˆ
Γr

F(u) dx′.

A direct computation, together with (4.4) and (4.5), yields

Ñ′(r)
Ñ(r)

=
1
r

+
D̃′(r)
D̃(r)

−
H′(r)
H(r)

=
1
r

+
D′(r) + 2

p

´
∂Γr

F(u) dσ(x′)

D(r) + 2
p

´
Γr

F(u) dx′
−

n − 1
r
− 2

´
(∂Br)+ uuν dσ(x)´
(∂Br)+ u2 dσ(x)

=
1
r

+
n − 2

r
D(r)

D(r) + 2
p

´
Γr

F(u) dx′
+ 2

´
(∂Br)+ u2

ν dσ(x)

D(r) + 2
p

´
Γr

F(u) dx′

+
2(n − 1)

pr

´
Γr

F(u) dx′

D(r) + 2
p

´
Γr

F(u) dx′
+

1 − n
r
− 2

´
(∂Br)+ uuν dσ(x)´
(∂Br)+ u2 dσ(x)

.

Collecting terms we have

Ñ′(r)
Ñ(r)

=
1
r

1 − D(r)
D(r) + 2

p

´
Γr

F(u) dx′

 (4.6)

+ 2


´

(∂Br)+ u2
ν dσ(x)

D(r) + 2
p

´
Γr

F(u) dx′
−

´
(∂Br)+ uuν dσ(x)´
(∂Br)+ u2 dσ(x)


+

n − 1
r

 D(r)
D(r) + 2

p

´
∂Γr

F(u) dx′
+

2
p

´
Γr

F(u) dx′

D(r) + 2
p

´
Γr

F(u) dx′
− 1


Clearly the first term in (4.6) is non-negative, whereas the last one vanishes. On the other hand, from
(1.2) we know

ˆ
(∂Br)+

uuν dσ(x) = D(r) +

ˆ
Γr

F(u) dx′ ≥ D(r) +
2
p

ˆ
Γr

F(u) dx′, (4.7)

since p ≥ 2. In turn this implies
´

(∂Br)+ u2
ν dσ(x)

D(r) + 2
p

´
Γr

F(u) dx′
−

´
(∂Br)+ uuν dσ(x)´
(∂Br)+ u2 dσ(x)

≥

´
(∂Br)+ u2

ν dσ(x)´
(∂Br)+ uuν dσ(x)

−

´
(∂Br)+ uuν dσ(x)´
(∂Br)+ u2 dσ(x)

≥ 0

by the Cauchy-Schwartz inequality. Hence Ñ′(r)
N(r) ≥ 0, and the proof is complete. �
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We now state some consequences of Theorem 4.1. The first result shows that, even if the Almgren’s
Frequency Functional N(r) in (4.1) fails to be monotone, it still has a limit as r → 0+, and in fact its
limit coincides with the one of Ñ(r). In order to prove this result, we will need the following trace-type
inequality (see, for instance, [13, Lemma 2.5]).

Lemma 4.2. Let u ∈ W1,2(B+
r ). Then there is a bounded linear function T : W1,2(B+

r ) → L2(∂B+
r ) such

that T (u) is the restriction of u to ∂B+
r for any u ∈ C1(B+

r ). Moreover, there exists a constant C > 0
such that ˆ

Γr

u2 dx′ ≤ C
(
r
ˆ

B+
r

|∇u|2 +

ˆ
(∂Br)+

u2 dσ(x)
)
. (4.8)

Corollary 4.3. Let N(r) and Ñ(r) be given by (4.1) and (4.2), respectively. Define µ = limr→0+ Ñ(r).
Then there exists N(0+) := limr→0+ N(r), and N(0+) = µ.

Proof. We begin by observing that, since Ñ(r) ≥ 0, Theorem 4.1 guarantees that µ exists, and that
µ ∈ [0,∞). Since F(u) ≥ 0, trivially

N(r) ≤ Ñ(r). (4.9)

On the other hand, if we let k = max{k+, k−} and 0 < r < 1/2,
ˆ

Γr

F(u) dx′ ≤ k
ˆ

Γr

|u|p dx′ ≤ k sup
B+

1/2

|u|p−2
ˆ

Γr

|u|2 dx′.

Applying (4.8) we get
ˆ

Γr

F(u) dx′ ≤ C
(
r
ˆ

B+
r

|∇u|2 +

ˆ
(∂Br)+

u2 dσ(x)
)
. (4.10)

Using the notations introduced in the proof of Theorem 4.1, we thus obtain

Ñ(r) ≤ N(r) + Cr2 D(r)
H(r)

+ Cr = (1 + Cr)N(r) + Cr.

Hence,

N(r) ≥
Ñ(r) −Cr

1 + Cr
, (4.11)

and the desired conclusion follows from (4.9) and (4.11). �

Next, we introduce the quantity

ϕ(r) = ϕ(r; u) =

 
(∂Br)+

u2.

Corollary 4.4. Let µ = limr→0+ Ñ(r) ∈ [0,∞). The following hold:

(a) The function r 7→ r−2µϕ(r) is nondecreasing for 0 < r < 1/2. In particular,

ϕ(r) ≤ (r/2)2µϕ(1/2) ≤ Cn(r/2)2µ sup
B+

1/2

|u|2,

where Cn > 0 is a dimensional constant.
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(b) Let 0 < r < 1/2. Then for any δ > 0 there exists R0 = R0(δ) > 0 such that for all r < R ≤ R0

ϕ(R) ≤ e2C
(
1− 2

p

)
(µ+δ+1)(R−r)

(R
r

)2(µ+δ)

ϕ(r).

Here C is the constant appearing in (4.10).

Proof. We begin the proof of (a) by computing

ϕ′(r) =
d
dr

 
(∂Br)+

u2 = 2
 

(∂Br)+

uuν.

Hence, taking (4.7) into account, we have

d
dr

(r−2µϕ(r)) = −2µr−2µ−1ϕ(r) +
2r−2µ

|(∂Br)+|

(ˆ
B+

r

|∇u|2 +

ˆ
Γr

F(u) dx′
)

=
2r−2µ−1

|(∂Br)+|

(
−µ

ˆ
(∂Br)+

u2 + r
ˆ

B+
r

|∇u|2 + r
ˆ

Γr

F(u) dx′
)

=
2r−2µ−1

|(∂Br)+|

(
−µ

ˆ
(∂Br)+

u2 + r
ˆ

B+
r

|∇u|2 +
2
p

r
ˆ

Γr

F(u) dx′
)

+
2r−2µ

|(∂Br)+|

(
1 −

2
p

)ˆ
Γr

F(u) dx′ ≥ 0.

In the last inequality we have used Theorem 4.1 and the fact that p ≥ 2.
For the proof of (b), we compute

r
2
ϕ′(r)
ϕ(r)

= r

´
(∂Br)+ uuν dσ(x)´
(∂Br)+ u2 dσ(x)

(by (4.7)) = r
D(r) +

´
Γr

F(u) dx′´
(∂Br)+ u2 dσ(x)

= Ñ(r) + r
(
1 −

2
p

) ´
Γr

F(u) dx′´
(∂Br)+ u2 dσ(x)

(by (4.10)) ≤ Ñ(r) + Cr
(
1 −

2
p

)
(N(r) + 1) .

Thanks to Corollary 4.3, there exists R0 = R0(δ) > 0 such that N(r) ≤ Ñ(r) ≤ µ + δ for r < R ≤ R0. We
then have

d
dr

logϕ(u) ≤
2
r

(µ + δ) + 2C
(
1 −

2
p

)
(µ + δ + 1).

To conclude we integrate the inequality over (r,R). �

Corollary 4.5. Let u be a solution to (1.2). Then, for all x ∈ B+
r , 0 < r < 1/2,

|u(x)| ≤ Cn(r/2)µ sup
B+

1/2

|u|,

where Cn > 0 is a dimensional constant.
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Proof. We note that (u+)2 is a positive subharmonic function in the domain. Hence,

(u+)2(0) ≤
 

(∂Br)+

(u+)2 ≤ Cn(r/2)2µ sup
B+

1/2

|u|2,

by Corollary 4.4(a). A similar estimate holds for (u−)2. �

5. Almgren rescalings and blow-ups

The next step in our analysis is to study blow-up sequences around a free boundary point x0 ∈ F (u).
Without loss of generality, we may assume x0 = 0. We define, for 0 < r < 1, the Almgren rescalings

vr(x) =
u(rx)

[ϕ(r; u)]1/2 . (5.1)

We note that ‖vr‖L2((∂B1)+) = 1. Moreover, for R0 = R0(δ) as in Corollary 4.4(b), a fixed R > 1, and every
r > 0 such that rR ≤ R0, we have, thanks to Corollaries 4.3 and 4.4(b),ˆ

B+
R

|∇vr|
2 dx = Rn−2N(rR; u)

ϕ(rR; u)
ϕ(r, u)

≤ C(µ + δ)Rn−2+2(µ+δ).

Hence, after an even reflection across {xn = 0}, any sequence {vr j}, with r j → 0+ as j → ∞, is
equibounded in H1

loc(R
n), and by Theorem 1.1, it is also bounded in C1,α

loc (Rn). Thus, there exists a
subsequence, denoted by v j, and a function v∗ (which we will refer to as the Almgren blow-up), such
that

v j → v∗ and ∇v j → ∇v∗ as j→ ∞,

uniformly on every compact subset of Rn. We note that the fact ‖v j‖L2((∂B1)+) = 1 in particular implies
that the blow-up is nontrivial. In addition, by rescaling,

µ = lim
j→∞

N(r j; u) = lim
j→∞

N(1; v j) = lim
j→∞

ˆ
B+

1

|∇v j|
2 dx =

ˆ
B+

1

|∇v∗|2 dx,

and therefore we have (keeping in mind that u(0) = 0) µ > 0. A similar rescaling argument, in fact,
shows that for any ρ > 0

N(ρ; v∗) = lim
j→∞

N(ρ; v j) = lim
j→∞

N(r jρ; u) = µ (5.2)

Next, for a function ξ ∈ C∞0 (B1) we compute
ˆ

B+
1

∇vr(x)∇ξ(x) dx =
r

[ϕ(r; u)]1/2

ˆ
B+

1

∇u(rx)∇ξ(x) dx (5.3)

(by (3.1)) =
r

[ϕ(r; u)]1/2

ˆ
Γ

(−k−(u−)p−1(rx′, 0) + k+(u+)p−1(rx′, 0))ξ(x, 0) dx′.

We now assume p ≥ 3. An application of (4.8) yields∣∣∣∣∣∣∣
ˆ

B+
1

∇vr(x)∇ξ(x) dx

∣∣∣∣∣∣∣ ≤ C
r

[ϕ(r; u)]1/2 sup
B+

r

|u|p−3
ˆ

Γ

u2(rx′, 0) dx′ (5.4)
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≤ C
r2−n

[ϕ(r; u)]1/2 sup
B+

r

|u|p−3
ˆ

Γr

u2(x′, 0) dx′

≤ C
r2−n

[ϕ(r; u)]1/2 sup
B+

r

|u|p−3
(
r
ˆ

B+
r

|∇u(x)|2 dx +

ˆ
(∂Br)+

u2(x) dσ(x)
)

≤ Cr[ϕ(r; u)]1/2 sup
B+

r

|u|p−3 (N(r; u) + 1) .

Since [ϕ(r; u)]1/2 ≤ Crµ by Corollary 4.4(a) and supB+
r
|u| ≤ Crµ by Corollary 4.5, we conclude that the

last term in (5.4) goes to zero as r → 0+. Hence, if we extend v∗ by even reflection across {xn = 0}, then
v∗ is harmonic in B1. The same conclusion can be reached in the case 2 ≤ p < 3 by applying Hölder’s
inequality in the last integral in (5.3). Now, it is well known (see, for instance [18, Section 9.3.1]) that
a function harmonic in B1 and satisfying (5.2) is necessarily an homogeneous harmonic polynomial of
degree µ ∈ N (since we have already ruled out the possibility µ = 0). If we also assume ∇x′u(0) = 0,
from the uniform convergence of ∇v j to ∇v∗ we deduce µ ≥ 2. We have thus proved the following.

Theorem 5.1. Let u be a solution to (1.2), with u(0) = 0 and ∇x′u(0) = 0. If vr is as in (5.1), then for
any sequence r j → 0+ there exists a subsequence {v j} of {vr j} and a function v∗ such that

v j → v∗ in H1(B+
1 ) and in C1(B+

1 ).

Furthermore, the even reflection of v∗ across {xn = 0} is an homogeneous harmonic polynomial of
degree µ = N(0+; u) ∈ N, µ ≥ 2.

6. A Monneau-type monotonicity formula

Our next step consists in establishing almost-monotonicity of a functional of Monneau type. Using
the notations introduced in the proof of Theorem 4.1, we define the Weiss functional

Wµ(r; u) =
H(r; u)
rn−1+2µ (N(r; u) − µ).

Theorem 6.1. Let u be as in Theorem 5.1, and let pµ be an harmonic polynomial, homogeneous of
degree µ and even in xn. If we define the Monneau functional as

Mµ(r; u, pµ) =
1

rn−1+2µ

ˆ
(∂Br)+

(u − pµ)2 dσ(x),

then there exists C > 0 such that

d
dr

(
Mµ(r; u, pµ) + Cr

)
≥

2
r

Wµ(r; u). (6.1)

Proof. Let pµ be an harmonic polynomial, homogeneous of degree µ and even in xn. Since N(r; pµ) =

µ, we have Wµ(r; pµ) = 0. We now rewrite

Wµ(r; u) =
1

rn−2+2µ D(r; u) −
µ

rn−1+2µ H(r; u),
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and let w = u − pµ. Then

Wµ(r; u) = Wµ(r; u) −Wµ(r; pµ)

=
1

rn−2+2µ

ˆ
B+

r

(
|∇w|2 + 2∇w · ∇pµ

)
dx −

µ

rn−1+2µ

ˆ
(∂Br)+

(w2 + 2pµw) dσ(x).

Integrating by parts in the first integral, keeping in mind that pµ is harmonic and ∂pµ
∂xn

= 0 on Γr, we
obtain

Wµ(r; u) =
1

rn−2+2µ

ˆ
(∂Br)+

w∇w ·
x
r

dσ(x) −
1

rn−2+2µ

ˆ
Γr

∂u
∂xn

(u − pµ) dx′

+
2

rn−2+2µ

ˆ
(∂Br)+

w∇pµ ·
x
r

dσ(x) −
µ

rn−1+2µ

ˆ
(∂Br)+

(w2 + 2pµw) dσ(x).

Noting that ∇pµ · x = µpµ, we infer

Wµ(r; u) =
1

rn−1+2µ

ˆ
(∂Br)+

w∇w · x dσ(x) −
1

rn−2+2µ

ˆ
Γr

∂u
∂xn

(u − pµ) dx′ (6.2)

−
µ

rn−1+2µ

ˆ
(∂Br)+

w2 dσ(x).

We now observe the following facts:

1
rn−1+2µ

ˆ
(∂Br)+

w(∇w · x − µw) dσ(x) =
r
2

d
dr

(
1

rn−1+2µ

ˆ
(∂Br)+

w2 dσ(x)
)
, (6.3)

ˆ
Γr

u
∂u
∂xn

dx′ =

ˆ
Γr

F(u) dx′ ≥ 0, (6.4)
ˆ

Γr

pµ
∂u
∂xn

dx′ ≤ Crn−1+pµ. (6.5)

In (6.5) we have used the boundary condition in (1.2), Corollary 4.5, and the fact that pµ is
homogeneous of degree µ. As a consequence, the constant in (6.5) will depend on supB+

1/2
|u| and

‖pµ‖L1(Γ). Using (6.3)–(6.5) in (6.2), we obtain

Wµ(r; u) ≤
r
2

d
dr

(
1

rn−1+2µ

ˆ
(∂Br)+

w2 dσ(x)
)

+ Cr1+µ(p−2). (6.6)

An application of (6.6) yields

d
dr

(
1

rn−1+2µ

ˆ
(∂Br)+

w2
)
≥

2
r

Wµ(r, u) −Crµ(p−2) ≥
2
r

Wµ(r; u) −C,

thus concluding the proof. �

Corollary 6.2. Under the assumption of Theorem 6.1, there exists C > 0 such that

d
dr

(
Mµ(r; u, pµ) + Cr

)
≥ 0.

In particular, there exists limr→0+ Mµ(r; u, pµ).
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Proof. Thanks to the inequality (4.11) and Theorem 4.1, we have for 0 < r < 1/2

N(r; u) ≥
Ñ(r; u) −Cr

1 + Cr
≥
µ −Cr
1 + Cr

and therefore
N(r; u) − µ ≥ −

C(µ + 1)r
1 + Cr

. (6.7)

Thus, using (6.7) and Corollary 4.4(a), we obtain

Wµ(r; u) ≥ −
C(µ + 1)r

1 + Cr
H(r; u)
rn−1+2µ ≥ −Cr. (6.8)

Inserting this information in (6.1) gives the desired conclusion. �

With Corollary 6.2 at our disposal, we can prove nondegeneracy of the solution at free boundary
points.

Lemma 6.3. Let u be as in Theorem 5.1. There exists C > 0 and 0 < R0 < 1, depending possibly on u,
such that

sup
(∂Br)+

|u| ≥ Crµ (6.9)

for all 0 < r < R0.

Proof. Arguing by contradiction, assume that (6.9) does not hold. We thus have, for a sequence
r = r j → 0+,

ϕ(r) = o(r2µ). (6.10)

Possibly passing to a subsequence, Theorem 5.1 guarantees that the Almgren rescalings ur(x)
introduced in (5.1) converge uniformly, as r → 0+, to a nontrivial harmonic polynomial pµ,
homogeneous of degree µ and even in xn. We now compute Mµ(0+; u, pµ) = limr→0 Mµ(r; u, pµ),
whose existence follows from Corollary 6.2. We have

Mµ(r; u, pµ) =
1

rn−1+2µ

ˆ
(∂Br)+

u2 dσ(x) +
1

rn−1+2µ

ˆ
(∂Br)+

(−2upµ + p2
µ) dσ(x). (6.11)

We observe that the first integral in (6.11) goes to 0 as r → 0+ because of (6.10). Moreover, the
homogeneity of pµ implies

1
rn−1+2µ

ˆ
(∂Br)+

p2
µ dσ(x) =

ˆ
(∂B1)+

p2
µ dσ(y), (6.12)

and therefore

1
rn−1+2µ

ˆ
(∂Br)+

|upµ| dσ(x) ≤
(

1
rn−1+2µ

ˆ
(∂Br)+

u2 dσ(x)
)1/2 (

1
rn−1+2µ

ˆ
(∂Br)+

p2
µ dσ(x)

)1/2

→ 0. (6.13)

Combining (6.11)–(6.13) we infer

Mµ(0+; u, pµ) =

ˆ
(∂B1)+

p2
µ dσ(y) =

1
rn−1+2µ

ˆ
(∂Br)+

p2
µ dσ(x)

Mathematics in Engineering Volume 3, Issue 1, 1–23.



19

for all 0 < r < 1/2. An application of Corollary 6.2 then yields

1
rn−1+2µ

ˆ
(∂Br)+

(u − pµ)2 dσ(x) + Cr ≥ Mµ(0+; u, pµ) =
1

rn−1+2µ

ˆ
(∂Br)+

p2
µ dσ(x),

which we can rewrite as
1

rn−1+2µ

ˆ
(∂Br)+

(u2 − 2upµ) dσ(x) ≥ −Cr.

Rescaling according to (5.1), we obtain

1
r2µ

ˆ
(∂B1)+

(
ϕ(r)v2

r − 2[ϕ(r)]1/2rµvr pµ
)

dσ(x) ≥ −Cr,

or equivalently ˆ
(∂B1)+

(
[ϕ(r)]1/2

rµ
v2

r − 2vr pµ

)
dσ(x) ≥ −C

rµ+1

[ϕ(r)]1/2 . (6.14)

At this point we observe that, thanks to Corollary 4.4(b), for each 0 < δ < 1 there exist C = C(p, µ, δ),
and R0 = R0(δ) > 0 such that ϕ(r) ≥ C1r2(µ+δ) for all 0 < r < R0. Hence, letting r → 0+ in (6.14) we
conclude

−

ˆ
(∂B1)+

p2
µ ≥ 0,

which is a contradiction since pµ is nonzero. �

Corollary 6.4. Let u and µ be as in Theorem 5.1. The set Σµ(u) (see Definition 1.5) is of type Fσ, i.e.,
it is the union of countably many closed sets.

Proof. The proof follows the lines of the one of Lemma 1.5.3 in [14], and it is omitted. �

7. The structure of the singular set

To continue with our analysis, we introduce the homogeneous rescalings

v(µ)
r (x) =

u(rx)
rµ

, 0 < r < 1, (7.1)

and show existence and uniqueness of the blow-ups with respect to this family of rescalings.

Theorem 7.1. Let u and µ be as in Theorem 5.1. If v(µ)
r is as in (7.1), then there exists a unique function

v0 such that
v(µ)

r (x)→ v0 in H1(B+
1 ) and in C1(B+

1 ).

Furthermore, the even reflection of v0 across {xn = 0} is an homogeneous harmonic polynomial of
degree µ.

Proof. By Corollary 4.4(a) and Lemma 6.3, there exist constants C1, C2 > 0 such that

C1rµ ≤ [ϕ(r)]1/2 ≤ C2rµ, 0 < r < 1.
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From this it follows that any limit of the rescalings v(µ)
r over any sequence r j → 0+ is a positive

multiple of the Almgrens rescalings vr as in (5.1). By Theorem 5.1, we know that the even reflection
of v0 across {xn = 0} is an homogeneous harmonic polynomial of degree µ, and that the convergence is
both in H1(B+

1 ) and in C1(B+
1 ). At this point, we only need to show uniqueness. To this end, we apply

Corollary 6.2 with pµ = v0. We thus have

Mµ(0+, u, v0) = lim
r j→0+

Mµ(r j, u, v0) = lim
r j→0+

ˆ
(∂B1)+

(u(µ)
r j
− u0)2 dσ(x) = 0,

where the last equality follows from the first part of the proof. In particular, we have that

Mµ(r, u, v0) =

ˆ
(∂B1)+

(u(µ)
r − u0)2 dσ(x)→ 0

as r → 0+, and not only over r j → 0+. If v′0 is a limit of v(µ)
r over another sequence r′j → 0+, we infer

that ˆ
(∂B1)+

(u′0 − u0)2 dσ(x) = 0.

Hence, u′0 = u0 and the proof is complete. �

The next step consists in showing the continuous dependance of the blow-ups. In what follows, we
denote by Pµ, with µ ∈ N, the class of harmonic polynomials homogeneous of degree µ and even in xn.

Theorem 7.2. Let u be a solution to (1.2), µ ∈ N with µ ≥ 2, and x0 ∈ Σµ(u). Denote by px0
µ the

blow-up of u at x0 as in Theorem 7.1, so that

u(x) = px0
µ (x − x0) + o(|x − x0|

µ).

Then the mapping x0 7→ px0
µ from Σµ(u) to Pµ is continuous. Moreover, for any compact set K ⊂

Σµ(u) ∩ B1 there exists a modulus of continuity ωµ, with ωµ(0+) = 0, such that∣∣∣u(x) − px0
µ (x − x0)

∣∣∣ ≤ ωµ(|x − x0|)|x − x0|
µ

for any x0 ∈ K.

Proof. We begin by observing that Pµ is a convex subset of the finite-dimensional vector space of all
polynomials homogeneous of degree µ, and therefore all norms are equivalent. We choose to endow it
with the norm in L2((∂B1)+). We begin by fixing x0 ∈ Σµ(u) and ε > 0 sufficiently small. Then there is
rε = rε(x0) > 0 such that

Mx0
µ (rε; u, px0

µ ) :=
1

rn−1+2µ
ε

ˆ
(∂Brε )+

(
u(x + x0) − px0

µ

)2
dσ(x) < ε.

In turn, there exists δε = δε(x0) > 0 such that if x1 ∈ Σµ(u) ∩ Bδε(x0), then

Mx1
µ (rε; u, px0

µ ) =
1

rn−1+2µ
ε

ˆ
(∂Brε )+

(
u(x + x1) − px0

µ

)2
dσ(x) < 2ε. (7.2)
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Corollary 6.2 yields that Mx1
µ (r; u, px0

µ ) < 3ε, provided that 0 < r < rε and rε is small enough. Rescaling
and passing to the limit as r → 0+ , we obtainˆ

(∂B1)+

(
px1
µ − px0

µ

)2
dσ(x) = Mx1

µ (0+; u, px0
µ ) ≤ 3ε (7.3)

and the first part of the theorem is proved. In order to establish the second part, we observe that, for
|x1 − x0| < δε and 0 < r < rε, combining (7.2) and (7.3) we obtain

‖u(· + x1) − px1
µ ‖L2((∂Br)+) ≤ ‖u(· + x1) − px0

µ ‖L2((∂Br)+) + ‖px0
µ − px1

µ ‖L2((∂Br)+)

≤ 2(3ε)1/2r
n−1

2 +µ.

Integrating in r we obtain
‖u(· + x1) − px1

µ ‖L2((Br)+) ≤ Cε1/2rn/2+µ, (7.4)

with C = C(n, µ) > 0. Letting

v(µ)
r,x1

(x) =
u(rx + x1)

rµ
,

we infer from (7.4)
‖v(µ)

r,x1
(x) − px1

µ ‖L2(B+
1 ) ≤ Cε1/2. (7.5)

At this point we observe that the difference wr = v(µ)
r,x1(x) − px1

µ is a weak solution to
∆wr = 0 in B+

1 ,

∂wr

∂ν
= r

[
−k+

((
v(µ)

r,x1

)+
)p−1

+ k−
((

v(µ)
r,x1

)−)p−1
]

on Γ.

By the L∞−L2 interior estimates (see, for instance [17, Theorem 5.36]), there exists a positive constant
C = C(n, k+, k−) such that, for some q > n − 1,

‖v(µ)
r,x1

(x) − px1
µ ‖L∞((B1/2)+) ≤ C

(
‖v(µ)

r,x1
(x) − px1

µ

∥∥∥L2((B1)+) + r‖|v(µ)
r,x1
|p−1

∥∥∥
Lq(Γ)

)
. (7.6)

To estimate the right-hand side in (7.6), we recall that |v(µ)
r,x1 | ≤ C by Corollary 4.5, and thus

r‖|v(µ)
r,x1
|p−1‖Lq(Γ) ≤ Cr1+ n−1

q . (7.7)

Combining (7.6) with (7.5) and (7.7), we obtain

‖v(µ)
r,x1

(x) − px1
µ ‖L∞((B1/2)+) ≤ Cε (7.8)

for 0 < r < rε sufficiently small, and Cε → 0 as ε → 0. To conclude, we cover the compact set
K ⊂ Σµ(u)∩B1 with a finite number of balls Bδε(xi

0)(xi
0) for some choice of xi

0 ∈ K, i = 1, . . . ,N. Hence,
for r < rK

ε := min{rε(xi
0)|i = 1, . . . ,N}, we have that (7.8) holds for all x1 ∈ K. The desired conclusion

readily follows. �

Proof of Theorem 1.6. The proof of the structure of Σd
µ is centered on Corollary 6.4, Theorem 7.2,

Whitney’s extension theorem, and the implicit function theorem. Since the arguments are essentially
identical to the ones in the proof of Theorem 1.3.8 in [14], we omit the details and refer the interested
reader to that source. �
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