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1. Introduction

In this paper we study a penalized boundary obstacle problem of interest in thermics, fluid
mechanics, and electricity. Given a domain Q in R", n > 2, with sufficiently regular boundary

0Q =T'; UT, and unit outer normal v, we consider the following stationary problem:

Au =f in Q,
u =g onI’ (1.1)
I (TR )N (R ) onTy.
Here f : Q - R, g : Iy - Rand h : I, — R are given functions, u* = max{u,0}, u= =
—min{u, 0} > 0, k, and k_ are non-negative constants, and p > 1. Our goal is to establish optimal
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regularity of the solutions, and to study properties of the free boundary (0{u > h} U d{u < h}) N T". We
begin by observing that in the limiting case k, = k- = 0, u is clearly the solution of a classical Neumann
problem. The other limiting case, when k* = 0 and k= = +co (or equivalently k* = +oc0 and k™ = 0), is
more interesting. The boundary condition, in fact, becomes
ou ou
u>h, 520, (u—h)g—o,

and u is a solution of the Signorini problem, also known as the thin obstacle problem. The Signorini
problem has received a resurgence of attention in the last decade, due to the discovery of several
families of powerful monotonicity formulas, which in turn have allowed to establish the optimal
regularity of the solution, a full classification of free boundary points, smoothness of the free
boundary at regular points, and the structure of the free boundary at singular points. We refer the
interested reader to [1,3,6, 11, 14, 16], see also the survey [10] and the references therein.

The general scheme of a solution to the Signorini problem provides a road map for the solution of
problem (1.1), but there are two new substantial difficulties. The first one is due to the
non-homogeneous nature of the boundary condition in (1.1), which in particular implies that this
problem does not admit global homogeneous solutions of any degree. This is in stark contrast with
the Signorini problem, where the existence and classification of such solutions play a pivotal role.
Moreover, in the thin obstacle problem it is readily seen that continuity arguments force u to be
always above / (hence the nomenclature), whereas the case A(x) > u(x) is no longer ruled out in (1.1).
Allowing for both constants k*, k™ to be finite (even when one of the two vanishes) de facto destroys
the one-phase character of the problem. In order to focus the attention on these new aspects, it is
useful to understand first a simplified local version of (1.1), posed in the upper half ball

B} ={x€ B, | x, >0},
with f = h = 0. In this setting problem (1.1) becomes

Au=0  inB}
u=g on (0B))*

5 (1.2)
Lok =k onT.
0x,
Here
(0B1)" = {x € 0B, | x, > 0},
I'={xeB;|x,=0}
An alternate perspective is given by the associated energy. We seek to minimize
1 - -
J(v) = = ( / IV? dx + / (k) + kv7Y) dx’) (1.3)
2 B Tr

over all v € W(B)) with ¢ = max{2,p}and v — g € Wé’q(Bl) for given boundary data g. Here

k. = 2k./p, and x = (x’, x,,). In this context we think of the data in (1.2) as extended to all of By by
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even reflection. A minimizer to this energy will be symmetric about I" and u will correspond to the
restriction to Bj.
Our first main result is the following:

Theorem 1.1. Let g € W'(Q), 0 < k. < oo, k, # k_, and p > 1. Then there eﬂs a unique
minimizer u € WY4(B)) of the energy J(v) in (1.3). If p is an integer, then u € C”’l"’(B;“/z)for every
a < min{l, p — 1}, and there exists a constant C = C(n) > 0 such that

lellcrreqsy ) < € (lullzapy + Ml - (1.4)

If instead p is not an integer, then u € C*~"(B} ,) for every @ < p — 1 — |p — 1], and there exists a
constant C = C(n) > 0 such that

lellew-seqs: ) < C (lallzga) + Nl - (1.5)

Additionally, if p is a positive integer and k_ = k., or if g does not change sign, then u € C‘X’(Bfﬂ).

In the case p = 2, we can in fact establish that the regularity is optimal at points where the gradient
does not vanish.

Theorem 1.2. Let u be the unique solution to (1.2) (see Definition 3.2) when p = 2. If V. u(x’,0) £ 0,
then u is not in C"' at (x',0).

As an immediate consequence of the regularity of the solution and of the implicit function theorem,
we obtain the following result on the regularity of the free boundary.

Definition 1.3. The regular set of the free boundary is defined as

R(u) ={(x',0) €T | u(x’,0) = 0, Vyu(x',0) # 0}
Theorem 1.4. Let u be the unique solution to (1.2), with p > 1. If xo € R, then in a neighborhood of
xo the free boundary {u(x’,0) = 0} is a C"*— graph for all a < 1.

We next turn our attention to the study of the singular set. To this end, in what follows we assume
p=>2.

Definition 1.5. For
meo) [Vul?> dx

N®(r;u) =r
S0,y 1 dO(X)

and
u=N°0+;u) = lin&N"O(r; u),

we define the set of singular points with frequency u as

2, (u) ={xg €' | u(xp) =0, Vyu(xy) =0, and N*(0+;u) = u}.
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The dimension of X,(u) at a point x € X(u) is
X0 . A3 n X ’ _ ’ n—1
d) =dim{{ € R" |{{,Vyp(x',0)) = 0 forall X € R"},
where p, is a homogeneous polynomial of degree y as in Theorem 7.1. Finally, we introduce
w) = {xo € 5, | dY = d).

We observe here that the existence of the limit in Definition 1.5 is guaranteed by Corollary 4.3,
and that it follows from the proof of Theorem 5.1 below that u is necessarily a positive integer. The
structure of the singular set is described in the following result.

Theorem 1.6. Let u be the unique solution to (1.2), with p > 2. Then for every u € N and d =

0,1,...,n =2, the set ZZ(u) is contained in the countable union of d-dimensional C'-submanifolds of
I.

The proof of Theorem 1.6 follows the ideas of the corresponding result in [14] for the Signorini
problem. It hinges on the monotonicity (or almost-monotonicity) of a perturbed Almgren functional
and a Monneau-type functional (see Theorem 4.1 and Corollary 6.2). From these results we infer the
growth rate and nondegeneracy of the solution near the free boundary. In turn, these properties allow
to prove uniqueness and continuous dependance on the singular point of the blow-up limits. The rest
of the proof is based on Whitney’s extension and the implicit function theorem.

To conclude, we remark that considering a more general situation as in (1.1) introduces significant
technical difficulties. A standard approach, under suitable smoothness assumptions, consists in
flattening I',, which in turn leads to the study of a variable-coeflicient operator and flat portion of the
boundary. This problem, also with non-vanishing £, is the object of the recent paper [9].

1.1. Structure of the paper

The paper is organized as follows. In Section 2 we describe some applications to problems of semi-
permeable membranes and of temperature control, which motivate the study of (1.1). In Section 3
we establish existence and uniqueness of solutions, and prove Theorems 1.1 and 1.2. In Section 4 we
prove the monotonicity of the perturbed functional of Almgren type, and infer some properties of the
solution as a consequence. In Section 5 we introduce the Almgren rescalings, and discuss their blow-
up limits. In Section 6 we prove the almost-monotonicity of a Monneau-type functional, and establish
nondegeneracy of solutions. Finally, Section 7 is devoted to the proof of Theorem 1.6.

2. Motivation

2.1. Semi-permeable membranes

Following [12, Section 2.2.2], we briefly describe the process of osmosis through semi-permeable
walls. By Q we denote a domain in R"”, n > 2, with sufficiently regular boundary 0Q. The region
Q consists of a porous medium occupied by a viscous fluid which is only slightly compressible, and
we denote its pressure field by u(x). We assume that a portion I' of Q2 consists of a semi-permeable
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membrane of finite thickness, i.e., the fluid can freely enter in Q, but the outflow of fluid is prevented.
Combining the law of conservation of mass with Darcy’s law, one finds that u satisfies the equation

8
M—%:fmﬁ

where f = f(x,t) is a given function. When a fluid pressure A(x), for x € I, is applied to I" on the
outside of Q, one of two cases holds:

h(x) < u(x,t) or h(x) > u(x,t).

In the former, the semi-permeable wall prevents the fluid from leaving €, so that the flux is null. If we
let v denote the outer unit normal to I, we then have

ou

—=0. 2.1

5 (2.1)
In the latter case, the fluid enters Q. It is reasonable to assume the outflow to be proportional to the

difference in pressure, so that

0
— 2 = k-, 2.2)
ov
where k > 0 measures the conductivity of the wall. Combining (2.1) and (2.2), we obtain the boundary

condition
ou _
— =k(u—h)" onT. (2.3)
ov
In our model (1.1), we allow for fluid flow to occur both into and out of Q with different permeability

constants, under the assumption that the flux in each direction is proportional to a power of the pressure.

2.2. Temperature control

An alternative interpretation of the model is as a boundary temperature control problem, which
we only briefly outline here. We assume that a continuous medium occupies a region €2 in R", with
boundary I" and outer unit normal v. Given a reference temperature h(x), for x € I, it is required that
the temperature at the boundary u(x, f) deviates as little as possible from A(x). To this end, thermostatic
controls are placed on the boundary to inject an appropriate heat flux when necessary. The controls are
regulated as follows:

(1) If u(x, t) = h(x), no correction is needed and therefore the heat flux is null.

(1) If u(x,tr) # h(x), a quantity of heat proportional to the difference between u(x,t) and h(x) is
injected.

We can thus write the boundary condition as

—% = O(u),
where
k_(u—h) ifu<h
O(u) =40 fu=nh
ki(u—h) ifu>h
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More in general, one can assume that ®(u) is a continuous and increasing function of u. For further
details, we refer to [12, Section 2.3.1], see also [1] for the limiting case k- = 0 and k, = +oo, [4] for
the case p = 1 in (1.3), and [2] for different boundary conditions ®(u).

3. Optimal regularity of solutions

We begin this section by proving existence and uniqueness of minimizers to (1.3). We let K = {v €
W'(B)) | v - g € Wy*(B))).

Lemma 3.1. There exists a unique minimizer u € K for the energy J(v) given by (1.3).

Proof. Throughout this proof we will pass to subsequences whenever necessary without comment. Let
u; be a minimizing sequence. Then ||Vu||; is clearly bounded owing to the form of the energy itself.
By using the Poincaré inequality on u; — g we deduce that the sequence u; is bounded in the W'?(B;)
norm. Thus there exists a weak limit # which is necessarily in %K. We may assume that u; — u in L2
and a.e. The weak convergence of u; to u in W' and the strong convergence in L? imply that

IVul? dx < lign inf [ |Vu| dx.

B o B

This clearly follows from the property of weak convergence

llllwi2g,) < Himinf {lug]lyi2g,)
[—o0

and, because of the strong L? convergence, the inequality must fall on the gradient part of the norm.
To prove that u is a minimizer we must show then that

/(ui)” dx’ < liminf /(uli)p dx’'.
r l—o00 r

It will suffice to demonstrate this for u~; the result for u* is proved in an analogous fashion. The trace
operator T : WI’Z(BT) - Lz(aBT) is a bounded linear operator, since the half ball is a Lipschitz domain.
Furthermore, in this setting it is a compact operator, and thus takes weakly convergent sequences to
strongly convergent ones. Suppressing the 7'u; notation and simply writing u; we then have that

w — u in LX(D).

From this we may assume that u; — u a.e. on I'. But then clearly («;)” — (u7)” a.e. and applying
Fatou’s Lemma we have

/(u‘)” dx < liminf /(u[)” dx
r r

which completes the proof of existence.
Uniqueness follows by observing that (f+g)* < f*+g*, and then applying standard arguments. O

Next, we recall the definition of a weak solution (see [17]):
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Definition 3.2. We say that u is a weak solution to

{Au =0in By

u, =fonl

n

if for every & € C*(BY) vanishing on (0B,)" we have

/ VuVé dx = —/ffdx'
Bt r

It is easy to show that the minimizer u is a weak solution to our problem.

Lemma 3.3. The minimizer u obtained in Lemma 3.1 is a weak solution to (1.2). That is,

/ VuVédx = - /(—k_(u_)"_1 +k (uh)y e dx (3.1)
Bt r

forall ¢ € C*(BY) vanishing on (0B;)".

Proof. This is a standard variational fact. See for example the proof of Lemma 4.1 in [4]. O
Remark 3.4. The —k_ term appears since u~ = — min{u, O}.

We now turn to the regularity of the solution. Our strategy will be to first prove an initial Holder
regularity which will improve afterwards. The first step is an energy estimate for u.

Lemma 3.5. Let u be the minimizer of (1.3). Then we have for any B,, C B

c
/IVu|2 de—Q/ u’ dx.
B, r Byr

Proof. We first prove the corresponding estimate for u~ = —min{u, 0}. Let 5 € C°(B,,) with
j— b c
n=1linB, |Vp < el
Taking & = u~n* and using (3.1) we have
/ VuV(u ) dx = — / (=k_(u )P + k()" Dun? dx’
B r
=— / (=k_(u)P MYun* dx’ > 0.
r
Expanding yields

/ (nzww- + 2u-nwvn) dx = / —|\Vu ** = 2u pVu Vipdx > 0
B

B
or
IVu ’n* dx < —/ 2u nVu Vn dx.

B B
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At this point standard energy arguments imply

/ Vu P dx < < / W) dx.
B, r By,

A similar argument implies the same inequality with u*; together they yield the energy estimate for
u. O

Next, we use the energy estimate to prove an initial Holder modulus of continuity for u. This
regularity is much lower than optimal, but it will allows us to bootstrap to obtain higher regularity.

Lemma 3.6. The solution to (1.2) is in C*'*(B,).

Proof. Let B, := B,(x) for r < 1/4 and x € By, and let v be the harmonic replacement of « in B,. Set
I', = B, N I'. By minimality we have

/ (|Vu|2 - |Vv|2) dx < / k()P =@ )P) + ko (WP = (u™)P)) dx'. (3.2)
B, T,
However, since v is harmonic we have
/ V- Vv—u)dx =0,
Br

and thus
/ \Vu — VP dx = / (qu|2 - |Vv|2) dx. (3.3)
B, B,

Next, since v is the harmonic lifting of u, |v| < |u| in B,. In turn, the computation used in Lemma 3.5
demonstrated that u* are subharmonic, and therefore |u| = u* + u~ is as well. Thus, by the maximum
principle, supy, |u| < supyp |u| = sup g, the given boundary data in (1.2). In particular,

/ k()Y =@ )?) + k(0D = (wh)P)) dx' < crt,
r,
with C independent of x and v. From this fact, combined with (3.2) and (3.3), we infer
/ |Vu — Vv|* dx < Cr*'.
B,
At this point, we can mimic the derivation in [5, Theorem 3.1] to deduce that
/ \Vul* dx < Cr"".
B,

In turn Morrey’s Dirichlet Growth Theorem (see for instance [15, Corollary 9.1.6]) implies the desired
Holder-1/2 regularity inside By s. O

We have reached the proof of our main result:
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Proof of Theorem 1.1. Existence and uniqueness follow from Lemma 3.1. Thus, we need only to show
the desired regularity. From Lemma 3.3 we know that u is a weak solution to our problem on By.
Moreover, u is C*'/2(B; ;) by Lemma 3.6. The ‘+’ operation preserves Holder regularity (with the
same Holder norm) so u* € C%!/2(B; ) and in particular on the thin region I'. This implies that

— k)P + k(P! (3.4)

is Holder continuous of order vy, although y will in general not be 1/2.

Nevertheless, this implies that u is a weak solution to an oblique derivative problem with Holder
continuous boundary data, namely —k_(u~)?~' + k,(u*)?~!. Regularity theory for such a problem (see
e.g., [17, Proposition 5.53]) then yields that u must be C' up to the boundary, with

uliey < C (suplul + lul,).

But in turn this implies that u is Lipschitz up to the boundary, in which case (3.4) is Holder continuous
of order p — 1 when p < 2; if p > 2 this is to be interpreted as differentiablity with a Holder modulus
of continuity. Applying the regularity theory once again we have the result of the theorem.

Now suppose that g does not change sign. We aim to show that # does not change sign either, in
which case u™ = u (and thus u™* is as smooth as u is) and the regularity result above can be bootstrapped
to prove that u is smooth. To this end, suppose that g > 0O, but « attains a minimum value which is
negative, say u(z) = m < 0. Then z must lie on I'. In particular, z € I'x = I' N Bg for some 0 < R < 1.
Now, trivial modifications to the above arguments allow to show u € C"*(Bg), and therefore we can
assume that the restriction of u to I'g is C'®. Next, we apply the Hopf Lemma. Since u is harmonic in
the interior we must have

ou
—(2) <0.
é)V( )
Here v is the outer normal vector, which at the point z is —e,. Thus

ou
ox,

(z) > 0.

However, the boundary condition along I" is given by

ou
ox,

= ko Y™ = k()"

which holds in a classical sense since u is C'® in a neighborhood of z. But u(z) < 0, and therefore the
boundary condition at z is u,, = —k_u"(z) < 0, a contradiction. We have thus shown that, if g > 0, u
cannot be negative along I'. As a consequence, u is non-negative everywhere, so that u* = u and higher
regularity follows by bootstrapping.

A similar argument shows that if g < O then u < 0 everywhere, which again implies higher
regularity. Finally, the case p integer and k, = k_ follows immediately from a repeated application
of [17, Proposition 5.53].

O

We now show that, at least in the case p = 2, the regularity obtained in Theorem 1.1 is optimal at
points where the gradient of u is non-vanishing.
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Proof of Theorem 1.2. We argue by contradiction, and assume that u € C'*'(0), with Vu(0) # 0. Thanks
to Theorem 1.1, we know that u has a unique differential P = Vu(0). Without loss of generality, we
may assume that P is also a superdifferential for u~ (if not, consider u*). We refer, for instance,
to [8, Chapter 3] for the definition and properties of superdifferentials. We begin by observing that we

can write
ou

T ko —kou +kou —kou =kou+ (ke —ku.

Thus,

_ Ou
(ky —ku = PP —k,u.

n

From this, applying the extension theorem in [7] (with a slight abuse of notation, u(x") denotes the
restriction of u(x) = u(x’, x,,) to x,, = 0) and the semigroup property of (-A)*, we deduce

(ks = k[=(=AN"2u” ()] = [=(=A) ] o [=(=A) P Tu(x) = ki [—(=A) " Ju(x)

ou
—_ Ax’ / k+
M(X ) 9

(x, 0). (3.5)

Xn

Because of our C!! assumption, we have that Cy < u..(0) < C; for some constants Cy, C; > 0 and for
any tangential direction 7. Hence, keeping also Theorem 1.1 in mind, it follows from (3.5)

| = (=AU (0) < G,

for some C, > 0. We now consider
Y(x) = |u”(0) + min{P - x, 0} + %m2 XB:-

A straightforward computation yields

~(=A)2(0) = —eo.
In addition, u~(x) < ¥(x), with equality at x = 0. From the definition of (~A)!/? , we infer

—(=A)"Pum(0) < =(=A)"y(0) = —co.

But we showed above that —(=A,.)"/?u~(0) > —C,. We have thus reached a contradiction. o
4. Monotonicity of a perturbed Almgren frequency functional

In this section we establish some properties of the solution around free boundary points in the case
p > 2. For u solution to (1.2), we define the coincidence set A(u) = {(x’,0) | u(x’,0) = 0}, and the
free boundary ¥ (u) = dA(u). In the Signorini problem, the monotonicity of the Almgren’s Frequency

Functional
S IVul* dx

N(r,u)=N(r)=r —f(aB,)+ pyrm—

(4.1)
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plays a fundamental role in the study of both the solution and the free boundary. In our setting, N(7)
may fail to be monotone, but a suitable perturbation is. We thus introduce the perturbed Almgren
Frequency Functional at the point xy = 0 as

th |Vul* dx + % fl“r F(u) dx'

N = N = e do

, 4.2)

with F(u) = k_(u™)? + k,(u™)? and B, = B,(0).
Theorem 4.1. Let u be a solution to (1.2), with p > 2. Then N(r; u) is monotone increasing in r € (0, 1).
Proof. Let
H(r) = / u* do(x), D(r) = / IVul* dx.
©B,)" Bt

We begin by observing

By =""Lae +2 / uit, do(x). (4.3)
r (9B,)*

We also have

D(r) := / [Vul? dx = / (IVul® + uAu) dx
B} B

r

2
:/ A(u—) dx=/ uu, dO'(x)+/ uu, dx’
B 2 @B,)" r,

= / utt, do(x) + / e_(u™)?™" = ko (utY " u dx’
(0Br)+ F’
= / uu, do(x) — / [k (uhY + k_(u)!] dx'.
(0B,)* I,
By Rellich’s Identity

D'(r) = / IVul? do(x)
0B,)*

-2 2
_n / IVul? dx + 2/ uf do(x) — - / (x, Vuyu,, dx’
r JBt @B, rJr,

-2 2
_ \Vul* dx +2 / u do(x) - = / (x, Vuy(=k_ ()™ + k()P d,
Bf @B,)* rJr,

r

which we can rewrite as

D'(r) = #D(r) + 2/ u% do(x) — pg / [k_{x, V)P + k,{x, Vu")P)] dx’. 4.4)

(3B))* rJr,

Using integration by parts we note that
/(x, V(u*)’ydx' = / r(u) do(x')—(n—1) / ()P dx’.
T, ar, T,
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Applying this fact in (4.4) we obtain

D) =""2D(r) + 2 / W2 dor(x) (4.5)
r (0B,)*

B 3[/ r(k-u™)? + k (u*)’) do(x') = (n — 1)/(k—(u_)p + ko)) dx’.
pr1Jer, L

For the sake of brevity we will define
_ 2 ,
D(r) = D(r) + —/ F(u) dx'.
T,
A direct computation, together with (4.4) and (4.5), yields
N _1, Do) Ho)
N@r) r D@ H®

1 D'(r) + % or, F) do(x) 5 4 2](33,)* uut, do(x)
r D(r) + 2 [ F(u) dx’ r Jeop,y w2 dor(x)
_ 1 n-2 D(r) Jeom, - 5 dor(x)
S r 1 D)+2 [ Fwydy D)+ 2 [ F(u)dx
2(1’1 - 1) fl", F(u) dx’ + 1-n _ f(aB,)* utty dO'()C)
pr D) +% [ Fwdx — r Jom, - 12 do(x)
Collecting terms we have
N’ 1 D
PR P D) (4.6)
N@r) r D(r)+ 2 fr, F(u) dx'

[ Jiany 8540 Jigp, - uny dor()
D(r)+2 [ Faydx'  [yp u? do(x)
n-1 [ D(r) 2 Jp Fwdx }
+ + = _
D(r)+ % [or, F) dx' pD(r) + 3 [ F(u) dx

r

Clearly the first term in (4.6) is non-negative, whereas the last one vanishes. On the other hand, from
(1.2) we know

/ uu, do(x) = D(r) + / F(u) dx' > D(r) + z / F(u) dx’, 4.7)
(0B,)*

p P Jr,

since p > 2. In turn this implies

f(@B,)* u% do(x) f(aB,ﬁ uu, do(x) f(aB,)+ u%, do(x) fme uu, do(x) s
D)+ 2 [ Fa)ydx' [up e 2 do(x) [ g sty do(x)  fiop o u? do(x)

Y > 0, and the proof is complete. ]

by the Cauchy-Schwartz inequality. Hence 35 >
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We now state some consequences of Theorem 4.1. The first result shows that, even if the Almgren’s
Frequency Functional N(r) in (4.1) fails to be monotone, it still has a limit as » — 0%, and in fact its
limit coincides with the one of N(r). In order to prove this result, we will need the following trace-type
inequality (see, for instance, [13, Lemma 2.5]).

Lemma 4.2. Let u € W'*(BY). Then there is a bounded linear function T : W"*(B}) — L*(0B}) such
that T (u) is the restriction of u to OB} for any u € CY(B¥). Moreover, there exists a constant C > 0

such that
/ wdx <C (r IVul> + / u’ dO'(x)). (4.8)
r, B: @B,

Corollary 4.3. Let N(r) and N(r) be given by (4.1) and (4.2), respectively. Define u = lim,_q+ N(r).
Then there exists N(O+) := lim,_o+ N(r), and N(0+) = p.

Proof. We begin by observing that, since N(r) > 0, Theorem 4.1 guarantees that u exists, and that
u € [0, 00). Since F(u) > 0, trivially
N(r) < N(). (4.9)

On the other hand, if we let k = max{k*,k"}and 0 < r < 1/2,
/ F(u)dx <k / lul? dx’ < ksup |ulP~> / |ul* dx’.
T, T, B}, T,

Applying (4.8) we get

/ F(u)dx <C (r / \Vul* + / u? dO'(x)) : (4.10)
r, B! (0B,)*
Using the notations introduced in the proof of Theorem 4.1, we thus obtain
- D
Ny < Ny + 2D 4 cr = (4 crver +
H(r)
Hence, _
N(r)-Cr
N(r) > ——, 4.11
"==er 1)
and the desired conclusion follows from (4.9) and (4.11). O

Next, we introduce the quantity
@(r) = p(r;u) = ][ .
(0B))*
Corollary 4.4. Let u = lim,_o- N(r) € [0, ). The following hold:

(a) The function r w— r~*¢(r) is nondecreasing for 0 < r < 1/2. In particular;

o(r) < (r/2)%¢(1/2) < Co(r/2)* sup lul*,

By,

where C,, > 0 is a dimensional constant.
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(b) Let O < r < 1/2. Then for any 6 > 0 there exists Ry = Ro(6) > 0 such that for all r < R < Ry

R\2+0)
) @(r).

o(R) < eZC(l—i)(yﬂHl)(R—r)(_
.

Here C is the constant appearing in (4.10).

Proof. We begin the proof of (a) by computing

d
¢'(r) = —][ u = 2][ ui,,.
dr J s,y (0B,)*

Hence, taking (4.7) into account, we have

2 2u0r)) = 2 1) + 2 ( [ i+ [ Fw dx’)
dr @B\ /i r

2p 21
= @B (—u/ W +r |Vu|2 + r/ F(u) dx’)
r (0B,)* Bf T,
221 2
= (_ﬂ/ u2+r/ |Vul? + —r/ F(u) dx’)
|(0B,)*] (8B,)* By P Jr.

22 2
+ = (1——)/F(u)dx’20.
|(0B,)*| plJr,
In the last inequality we have used Theorem 4.1 and the fact that p > 2.
For the proof of (b), we compute

re'(n _ rf(ﬁBr)* uu, do(x)
29() 7 [ip w0 do(x)
D(r) + fl“r F(u) dx'

by (4.7 =
(by (4.7)) r fme o2 do()
F(u) dx
= N(r) + r(l - 3) fr, (w) dx
Pl fiop, u* do(x)
(by (4.10)) SN(r)+Cr(1 - %) (N(r)+1).

Thanks to Corollary 4.3, there exists Ry = Ry(5) > 0 such that N(r) < N(r) < u+ 6 for r < R < Ry. We
then have

ilogcp(u)s %(,u+6)+2C(1—z)(,u+6+1).
dr r p

To conclude we integrate the inequality over (r, R). O

Corollary 4.5. Let u be a solution to (1.2). Then, forall x € Bf, 0 <r < 1/2,

lu(x)| < C,(r/2)" sup |ul,

By,

where C,, > 0 is a dimensional constant.
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Proof. We note that (u*)? is a positive subharmonic function in the domain. Hence,

@")*0) < ][ (W")? < Cy(r/2)* sup |ul?,
@B,

BT/z

by Corollary 4.4(a). A similar estimate holds for (™). O
5. Almgren rescalings and blow-ups

The next step in our analysis is to study blow-up sequences around a free boundary point xy € 7 (u).
Without loss of generality, we may assume x, = 0. We define, for O < r < 1, the Almgren rescalings

u(rx)
[o(r; u)]'/?

We note that ||v,||;2(s5,)+) = 1. Moreover, for Ry = R(6) as in Corollary 4.4(b), a fixed R > 1, and every
r > 0 such that ¥R < R, we have, thanks to Corollaries 4.3 and 4.4(b),

(,O(I”R, I/)l) < C(/l + 6)Rn_2+2('u+6)-

v(x) = (5.1

IVv,|> dx = R">N(rR; u)

r
B}, oL,

Hence, after an even reflection across {x, = 0}, any sequence {v, }, with r; — 0% as j — oo, is
equibounded in H, (R"), and by Theorem 1.1, it is also bounded in C II{;‘C’(R”). Thus, there exists a
subsequence, denoted by v;, and a function v* (which we will refer to as the Almgren blow-up), such
that

v, =V and Vv, = Vv as j — oo,

uniformly on every compact subset of R". We note that the fact ||v,[|;2(gp,)+) = 1 in particular implies
that the blow-up is nontrivial. In addition, by rescaling,

u = lim N(rj;u) = lim N(1;v;) = ljm/ IVv,? dx:/ Vv dx,

and therefore we have (keeping in mind that #(0) = 0) 4 > 0. A similar rescaling argument, in fact,
shows that for any p > 0

N(p;v*) = lim N(p;v;) = im N(r;p;u) = u (5.2)
Jj—ooo J—

Next, for a function & € C’(B;) we compute

/B1+ Vv, (x)VE(x) dx = W / Vu(rx)VEé(x) dx (5.3)
(by (3.1)) —/( —k_ ()" N (rx’, 0) + k()P (rx’, 0)é(x, 0) dx'.
[(r; u)]'/?
We now assume p > 3. An application of (4.8) yields
/B r Vo, (0)VE) dxl| < cm sup ul"™> /r W20y, 0) dx’ (5.4)
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2—n

r
<C——— supul> / W (x',0) dx’
o] 2 L

2—n

SC———0 5 sup |ul”~ (r / \Vu(x)? dx + / 2 (x) dg(x))
[p(r; w)]'/? s B} @B,
< Crle(r; w)]"* sup |ul’=> (N(r;u) + 1) .
B}

Since [¢(r; u)]'/* < Cr* by Corollary 4.4(a) and sup,. [u| < Cr by Corollary 4.5, we conclude that the
last term in (5.4) goes to zero as r — 0*. Hence, if we extend v* by even reflection across {x, = 0}, then
v* is harmonic in B;. The same conclusion can be reached in the case 2 < p < 3 by applying Holder’s
inequality in the last integral in (5.3). Now, it is well known (see, for instance [18, Section 9.3.1]) that
a function harmonic in B; and satisfying (5.2) is necessarily an homogeneous harmonic polynomial of
degree u € N (since we have already ruled out the possibility u = 0). If we also assume V,.u(0) = 0,
from the uniform convergence of Vv; to Vv* we deduce p > 2. We have thus proved the following.

Theorem 5.1. Let u be a solution to (1.2), with u(0) = 0 and V,u(0) = 0. If v, is as in (5.1), then for
any sequence r; — 0" there exists a subsequence {v;} of {v,;} and a function v* such that

v; =V in H(B}) and in C'(BY).
Furthermore, the even reflection of v* across {x, = 0} is an homogeneous harmonic polynomial of
degree u = N(O+;u) e N, u > 2.
6. A Monneau-type monotonicity formula
Our next step consists in establishing almost-monotonicity of a functional of Monneau type. Using

the notations introduced in the proof of Theorem 4.1, we define the Weiss functional

H(r; u)
pn—1+42u

W, (r;u) = (N(r;u) — p).

Theorem 6.1. Let u be as in Theorem 5.1, and let p, be an harmonic polynomial, homogeneous of
degree u and even in x,. If we define the Monneau functional as

1
M, (r;u,p,) = P /(63 )+(u — pu)’ do(x),

then there exists C > 0 such that

d 2
- (Mu(riu, p) + Cr) 2 ~W(ru). (6.1)

Proof. Let p, be an harmonic polynomial, homogeneous of degree ¢ and even in x,. Since N(r; p,) =

u, we have W, (r; p,) = 0. We now rewrite

1
W (ru) = mD(r; u) -

H(r;u),

pr—1+2u

Mathematics in Engineering Volume 3, Issue 1, 1-23.



17

and let w = u — p,. Then

W, (r;u) = W,(riu) — W, (r; pu)
1

- - 2 . _ M 2
= /B: (|Vw| +2Vw Vpﬂ) dx sy /(aB,)+(W +2p,w) do(x).

Integrating by parts in the first integral, keeping in mind that p, is harmonic and % =0onl,, we

obtain

1 X 1 au /
W, (riu) = oy /(63 . wVw - - do(x) — =242 /r 8_x,,(u — py) dx
2

X J7i )
e V- S do(x) - A +2p,w) dor(x).
o /w VP o)~ /(a 07+ 2p0) do ()

Noting that Vp, - x = up,, we infer

1 1 ou
W, (riu) = ——— Vw - xd ——— | —(u- dx’
(s u) vy /((?Bmw w - x do(x) IR /r, Gx,,(u Pu) dx

H 2
- m / w dO'(.X)
r @B,)*

We now observe the following facts:
1 rd 1
—_— Vw - x — d =——|— *d ,
= 1+2u /(63,-)* W( wex MW) O'(X) 2dr (r.n—l+2/J /(530* w O-(X))

/u%dfi/HMMQQ
T, 3x,, T,

ou
dx’ < Crvem,
/rr p“@xn x' <

(6.2)

(6.3)

(6.4)

(6.5)

In (6.5) we have used the boundary condition in (1.2), Corollary 4.5, and the fact that p, is
homogeneous of degree u. As a consequence, the constant in (6.5) will depend on Supg: , |u| and

lpull @) Using (6.3)—(6.5) in (6.2), we obtain

d 1
W, (riu) < re (— / w? da(x)) + CrlHHe2,
(@By)*

~2dr rn—l+2;1

An application of (6.6) yields

d 1 ). 2 2 2
Z—— > 2w D S B ey

thus concluding the proof.

Corollary 6.2. Under the assumption of Theorem 6.1, there exists C > 0 such that

% (Mﬂ(r; u, py) + Cr) > 0.

In particular, there exists lim,_,o+ M, (r;u, p,,).

(6.6)
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Proof. Thanks to the inequality (4.11) and Theorem 4.1, we have for 0 < r < 1/2

N(riu) — Cr >,u—Cr

“u) >
Nz — e 2 Tvcr
and therefore Cu+ 1)
+ Dr
Nrsu)—pu > —————. 6.7
() —p 2~ (6.7)
Thus, using (6.7) and Corollary 4.4(a), we obtain

' Cu+ )rH(r;u)
W, (r;u) > — T3 Cr i > —Cr. (6.8)
Inserting this information in (6.1) gives the desired conclusion. O

With Corollary 6.2 at our disposal, we can prove nondegeneracy of the solution at free boundary
points.

Lemma 6.3. Let u be as in Theorem 5.1. There exists C > 0 and 0 < Ry < 1, depending possibly on u,
such that
sup |u| > Cr* (6.9)

(8B,)*
forall 0 < r < R,.

Proof. Arguing by contradiction, assume that (6.9) does not hold. We thus have, for a sequence

— +
ro=r;— 07,

@(r) = o(r™*). (6.10)

Possibly passing to a subsequence, Theorem 5.1 guarantees that the Almgren rescalings u,(x)
introduced in (5.1) converge uniformly, as r — 0%, to a nontrivial harmonic polynomial p,,
homogeneous of degree u and even in x,. We now compute M,(0+;u, p,) = lim, o M,(r;u, p,),
whose existence follows from Corollary 6.2. We have

1 1

We observe that the first integral in (6.11) goes to 0 as r — 0 because of (6.10). Moreover, the
homogeneity of p, implies

1
T2 /6 P, do(x) = /6 p. do(y), (6.12)
(0B,)* (0B1)*

and therefore

1 1 1/2 1 1/2
_ d <|—— 2d 2 d 0. (6.13

Combining (6.11)—(6.13) we infer

1
PZ do(y) = e / P,zl do(x)
r (@B

M,(0+;u,p,) = /

(0B1)*
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forall 0 < r < 1/2. An application of Corollary 6.2 then yields

1 1
/(93 )+(u — pu)? do(x) + Cr > M,(0+;u, p,) = o / P2 dor(x),

—-1+2
rie @B,y

which we can rewrite as
1

p—1+2u

/ (u* = 2up,) do(x) > -Cr.
(0B,)*

Rescaling according to (5.1), we obtain

1
=i | (e} =206 rv,p,) do) = ~Cr,
(@B)*
or equivalently
[p(M]'? *
o (=20 oo 2 € 61
1

At this point we observe that, thanks to Corollary 4.4(b), for each 0 < ¢ < 1 there exist C = C(p, u, 6),
and Ry = Ry(6) > 0 such that ¢(r) > C,r***9 for all 0 < r < R,. Hence, letting r — 0" in (6.14) we

conclude
- / Py 20,
0B+

which is a contradiction since p, is nonzero. |

Corollary 6.4. Let u and y be as in Theorem 5.1. The set X,(u) (see Definition 1.5) is of type F, i.e.,
it is the union of countably many closed sets.

Proof. The proof follows the lines of the one of Lemma 1.5.3 in [14], and it is omitted. O
7. The structure of the singular set

To continue with our analysis, we introduce the homogeneous rescalings

u(rx)
[

VA (x) = 0<r<l, (7.1)

and show existence and uniqueness of the blow-ups with respect to this family of rescalings.

Theorem 7.1. Let u and u be as in Theorem 5.1. If v is as in (1.1), then there exists a unique function
vo such that
v(x) > vy in H'(B}) and in C'(B}).

Furthermore, the even reflection of vy across {x, = 0} is an homogeneous harmonic polynomial of
degree L.

Proof. By Corollary 4.4(a) and Lemma 6.3, there exist constants Cy, C, > 0 such that

Cir* < [p(N)'? < Co*, 0<r<l.
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From this it follows that any limit of the rescalings v over any sequence r; — 07 is a positive

multiple of the Almgrens rescalings v, as in (5.1). By Theorem 5.1, we know that the even reflection
of vy across {x, = 0} is an homogeneous harmonic polynomial of degree u, and that the convergence is
both in H'(B}) and in C'(B}). At this point, we only need to show uniqueness. To this end, we apply
Corollary 6.2 with p,, = vo. We thus have

M, (0+,u, vp) = hm My(rj,u, vo) = lim U™ — up)* do(x) =
20" Jopyr

where the last equality follows from the first part of the proof. In particular, we have that
M) = [ @ = do) -0
(0B)*
as r — 07, and not only over r; — 0". If v is a limit of v over another sequence r; — 07, we infer

that
/ (g — uo)* dor(x) =
(@B)*
Hence, uj, = up and the proof is complete. O

The next step consists in showing the continuous dependance of the blow-ups. In what follows, we
denote by £, with 1 € N, the class of harmonic polynomials homogeneous of degree ¢ and even in x,,.

Theorem 7.2. Let u be a solution to (1.2), u € N with u > 2, and x, € X,(u). Denote by p) the
blow-up of u at xy as in Theorem 7.1, so that

u(x) = p,(x — xo) + o(lx — xol).

Then the mapping xo + p,’ from Z,(u) to P, is continuous. Moreover, for any compact set K C
%, (u) N By there exists a modulus of continuity w,, with w,(0+) = 0, such that

Ju(x) = P (x = x0)| < wu(lx = xolx = xol

for any xy € K.

Proof. We begin by observing that $, is a convex subset of the finite-dimensional vector space of all
polynomials homogeneous of degree y, and therefore all norms are equivalent. We choose to endow it
with the norm in L?>((0B;)"). We begin by fixing x, € 2, (u) and & > 0 sufficiently small. Then there is
re = r-(xp) > 0 such that

1
Mxo(rg,u px(’ = m/ (u(x + Xp) — ) do(x) < &.
Fe (0B,,)*

In turn, there exists 0, = 6,(xo) > 0 such that if x; € Z,(u) N Bs,(xy), then

1
M) =~ / (uCx +x0) = p) dor(w) < 26, (7.2)
Te (0By)*
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Corollary 6.2 yields that M, (r; u, p,’) < 3¢, provided that 0 < r < r, and r,. is small enough. Rescaling
and passing to the limit as r — 0* , we obtain

/ (P = p) dor(x) = MO+ u, p) < 3 (7.3)
(0B)*

and the first part of the theorem is proved. In order to establish the second part, we observe that, for
|x; — x| < 6, and O < r < r,, combining (7.2) and (7.3) we obtain

lloe(- + x1) — P,)jl 208, < llu(- + x1) — PZ0||L2((63,)+) + ||P,)j0 - PZIHLZ((aBm)
< 2(38)1/21’%“‘.

Integrating in r we obtain

(- + x1) = pitllrp,ys) < Ce'Pr>H, (7.4)
with C = C(n,u) > 0. Letting
u(rx + x1)
W) = =
we infer from (7.4)
IV () = pitllasr) < Ce''2. (7.5)

At this point we observe that the difference w, = vi’j?] (x) — p,' is a weak solution to
Aw, =0 in By,

ow, w Y w\)

o=l () ) e () onT,

By the L™ — L? interior estimates (see, for instance [17, Theorem 5.36]), there exists a positive constant
C = C(n,k,, k_) such that, for some g > n — 1,

V2, () = gl < € (M9, = o2 ey + AME P o) - (7.6)
To estimate the right-hand side in (7.6), we recall that |V£{21| < C by Corollary 4.5, and thus

n—1
AV P oy < CrH (7.7)

rX]

Combining (7.6) with (7.5) and (7.7), we obtain

IVEL () = Dl ) < Ce (7.8)

for 0 < r < r, sufficiently small, and C, — 0 as & — 0. To conclude, we cover the compact set
K C %,(u) N By with a finite number of balls Bég(xa)(xf)) for some choice of x € K,i = 1,...,N. Hence,
for r < r& := min{r,(x))li = 1,..., N}, we have that (7.8) holds for all x; € K. The desired conclusion
readily follows. m|

Proof of Theorem 1.6. The proof of the structure of ZZ is centered on Corollary 6.4, Theorem 7.2,
Whitney’s extension theorem, and the implicit function theorem. Since the arguments are essentially
identical to the ones in the proof of Theorem 1.3.8 in [14], we omit the details and refer the interested
reader to that source. O
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