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Abstract: We consider a class of equations in divergence form with a singular/degenerate weight

−div(|y|aA(x, y)∇u) = |y|a f (x, y) + div(|y|aF(x, y)) .

Under suitable regularity assumptions for the matrix A, the forcing term f and the field F, we prove
Hölder continuity of solutions which are odd in y ∈ R, and possibly of their derivatives. In addition,
we show stability of the C0,α and C1,α a priori bounds for approximating problems in the form

−div((ε2 + y2)a/2A(x, y)∇u) = (ε2 + y2)a/2 f (x, y) + div((ε2 + y2)a/2F(x, y))

as ε→ 0. Our method is based upon blow-up and appropriate Liouville type theorems.
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1. Introduction and main results

Let z = (x, y) ∈ Rn+1, with x ∈ Rn and y ∈ R, n ≥ 1, a ∈ R. Our aim is to study the boundary
behaviour of solutions to a class of problems involving singular/degenerate operators in divergence
form including

Lau := div(|y|aA(x, y)∇u),

and their regularizations. The boundary here coincides with Σ := {y = 0} the characteristic manifold,
where the weight becomes degenerate or singular, and this happens respectively when a > 0 and a < 0.
Accordingly, this class of operators is called degenerate elliptic.

The first motivation for this work is to complete the study started in [21] on local regularity for
solutions to degenerate/singular problems including the following

− div (|y|a∇u) = |y|a f + div (|y|aF) in B1. (1.1)

In [21], we treated the regularity of even-in-y solutions (corresponding to Neumann boundary
conditions), including the case of variable coefficients. We provided local C0,α and C1,α estimates,
which are uniform as the parameter ε → 0+, for even solutions of regularized uniformly elliptic
problems of the form

− div
(
ρa
ε(y)A(x, y)∇uε

)
= ρa

ε(y) fε + div
(
ρa
ε(y)Fε

)
in B1, (1.2)

where the regularized family of weights ρa
ε is defined as:

ρa
ε(y) :=

(ε2 + y2)a/2 min{ε−a, 1} if a ≥ 0,
(ε2 + y2)a/2 max{ε−a, 1} if a ≤ 0.

(1.3)

A further motivation comes from a remarkable link between our operators and fractional powers
of the Laplacian, from a Dirichlet-to-Neumann point of view, as highlighted in [4], when our weights
belong to the A2-class; i.e., a ∈ (−1, 1).

Goal of this paper is to deal with odd-in-y solutions to (1.1) (corresponding to Dirichlet boundary
conditions), providing local regularity, when possible in the ε-stable sense, by proving uniform bounds
for solutions to (1.2). Odd solutions make sense as energy solutions in the natural weighted Sobolev
spaces whenever a ∈ (−∞, 1) (in the sense of §2). At first, we notice that can not expect, for the
odd solutions, the same estimates as for the even ones, where the regularity results from the combined
effect of the ellipticity and the boundary condition. In fact, the function y|y|−a is La-harmonic with
finite energy when a < 1 (in case of A = I), and for a ∈ (0, 1) is no more than Hölder continuous. We
will refer to this special solution as the characteristic odd comparison solution. Similar, yet smoother,
characteristic odd comparison solutions exist for the full regularized family of ε-problems (in a rather
general setting). Nonetheless, one major obstruction in the study of regularity is the fact that our
weights need not to be locally integrable when a ≤ −1, preventing the application of classical regularity
theory such as that developed for degenerate weights of the A2-Muckenhoupt class, starting from the
seminal papers [8–10]. We point out that our singular/degenerate operators fall within the class of
edge operators whose calculus was developed by Mazzeo and his collaborators (see in particular [7,
15,16] and references therein). We shall adopt here a different perspective, exploiting suitably tailored
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Liouville type theorems as main tools (similarly to [20]). To this aim, a major hindrance is that the
measure |y|adz is not absolutely continuous with respect to the Lebesgue measure. In order to overcome
this difficulty, one can be guided by the following insight:

Proposition 1.1. Let a ∈ (−∞, 1) and u ∈ H1,a(B1) be an odd energy solution to (1.1) in B1 (for
simplicity with F = 0). Then for any r < 1 the ratio w = u/y|y|−a ∈ H1,2−a(Br) and it is an even energy
solution to

− div
(
|y|2−a∇w

)
= |y|2−a f̄ = |y|2−a f

y|y|−a in Br. (1.4)

Proposition 1.1 allows the application of the results for even solutions already proved in [21],
providing regularity up to the multiplicative factor y|y|−a. Thanks to this observation it is natural to
shift the study of regularity for odd solutions to that of even solutions of the auxiliary problem above.
A similar perspective has been adopted in [19] for the obstacle problem in the same
singular/degenerate setting.

As an example, by the Schauder estimates in [21], when the forcing f̄ =: f /y|y|−a in (1.4) is Ck,α,
then the ratio w = u/y|y|−a is locally Ck+2,α. Thus, we understand that the correct way to face the
regularity of odd solutions consists in seeking C0,α and C1,α bounds for the ratio between the solution
and the characteristic odd one, depending on the regularity of the same ratio of the right hand side.
This point of view corresponds to (possibly higher order and/or non homogeneous) boundary Harnack
principle at Σ in the sense of [3,6,10,13,14]. It is worthwhile noticing that, when a ∈ (−∞, 1), then the
exponent 2−a belongs to (1,+∞), placing Eq (1.4) in the so called super degenerate case, again outside
the land of A2-Muckenhoupt weights theory, and which has been treated in [21] when associated with
Neumann boundary conditions. Furthermore, looking at the right hand side of (1.4), we realize that the
transition from the odd to the even case requires to pay a cost in terms of more stringent conditions on
the forcing term f , in the sense that the ratio f

y|y|−a must possess some regularity (integrability at least);
in other words, when a < 0, it means that the forcing term is vanishing with a certain rate at Σ. In this
regard, our results are connected with the recent paper [1], where a boundary Harnack principle with
right hand side is established in the uniformly elliptic case.

As already pointed out, our results are not limited to the A2-Muckenhoupt class of weights, which
restricts a in the interval (−1, 1). Nonetheless, we wish to state the following corollary, which joins
the results contained in this paper with the Schauder theory for even solutions developed in [21],
concerning full regularity for energy solutions of degenerate or singular problems when the weight is
A2-Muckenhoupt and A = I.

Corollary 1.2. Let a ∈ (−1, 1), k ∈ N ∪ {0}, α ∈ (0, 1) and consider u ∈ H1,a(B1) an energy solution to

−div (|y|a∇u) = |y|a f in B1.

Let us consider the even and odd parts∗ (with respect to y) of the forcing term f . Let

f = fe + fo = fe + y|y|−a f̃e with fe, f̃e ∈ Ck,α(B1).
∗Even and odd parts (in y) of a function are defined as usual as

fe(x, y) =
f (x, y) + f (x,−y)

2
, fo(x, y) =

f (x, y) − f (x,−y)
2

.
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Then
u = ue + uo = ue + y|y|−aũe, with ue, ũe ∈ Ck+2,α

loc (B1).

As a next step, we aim at deepening the ε-stability of these estimates with respect to the family of
regularized weights (1.3) (also including the variable coefficient case). In other words, we deal with
odd-in-y solutions to the family of Eq (1.2). We will provide local uniform-in-ε regularity estimates,
enlightening their delicate link with curvature issues related with the matrix A. As we shall see, also
the notion of characteristic solution must be suitably adjusted in order to deal with the variable
coefficient cases. Finally, we will apply our results to a family of degenerate/singular equations
naturally associated with the euclidean Laplacian expressed in Fermi coordinates in the
neighbourhood of an embedded hypersurface.

Below we set the minimal assumptions on the matrix A that we need throughout the paper:

Assumption 1.3 (HA). The matrix A = (ai j) is (n + 1, n + 1)-dimensional and symmetric A = AT , has
the following symmetry with respect to Σ: we have

A(x, y) = JA(x,−y)J, with J =

(
In 0
0 −1

)
.

Moreover, A is continuous and satisfies the uniform ellipticity condition λ1|ξ|
2 ≤ A(x, y)ξ · ξ ≤ λ2|ξ|

2,
for all ξ ∈ Rn+1, for every (x, y) and some ellipticity constants 0 < λ1 ≤ λ2. Therefore, the characteristic
manifold Σ is assumed to be invariant with respect to A when y = 0; that is, there exists a suitable scalar
function µ such that

A(x, 0) · ey = µ(x, 0)ey.

Whenever the hypothesis on A are not specified, we always imply Assumption (HA). From now on,
through out the paper, whenever not otherwise specified, in order to simplify the notations, we will
work with A = I every time this condition is not playing a role in the proofs. In the perspective of
Proposition 1.1, but considering odd solutions for the family of regularized problems in (1.2), it will
be convenient to adopt the following notation on the matrix A.

Notation 1.4 (HA+). The matrix A is written as:

A(x, y) = µ(x, y)B(x, y),

with
1
C
≤ µ(x, y) ≤ C, (1.5)

B(x, y) =

(
B̃(x, y) T (x, y)
T (x, y) 1

)
,

where B̃ is a (n, n)-dimensional matrix and T : Rn+1 → Rn (we denote by Ã = µB̃). We remark here
that under our hypothesis on the symmetries of coefficients; one has, for y < 0

A(x, y) = µ(x,−y)
(

B̃(x,−y) −T (x,−y)
−T (x,−y) 1

)
.
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The structural assumption on the matrix A is consistent with [5]. Moreover, it fits also with the
metric induced by Fermi’s coordinates, which allow to study phenomena of singularity or
degeneration on a characteristic manifold Σ which is a generic (regular enough) n-dimensional
hypersurface embedded in Rn+1. Hence, the objective will be to consider the ratio wε between odd
solutions uε to (1.2) and functions of the form

va
ε(x, y) = (1 − a)

∫ y

0
ρ−a
ε (s)µ(x, s)−1ds, (1.6)

which play now the role of the characteristic odd solution for the regularized family of weights in the
variable coefficients case. It is worthwhile stressing that the characteristic solutions va

ε do not longer
solve the homogenous problem, as a dependence on the curvature appears.

As said, we wish to obtain uniform local regularity estimates for wε which will be even solutions to
an auxiliary weighted problems having the following structure

− div
(
ρa
ε(v

a
ε)

2A∇wε

)
= ρa

ε(v
a
ε)

2 fε + div
(
ρa
ε(v

a
ε)

2Fε

)
+ ρa

ε(v
a
ε)

2bε · ∇wε. (1.7)

The new weights appearing in the auxiliary equation are equivalent, though not equal, (using (1.5)) to

ωa
ε(y) = ρa

ε(y)(1 − a)2(χa
ε(y))2 (1.8)

where we have defined
χa
ε(y) :=

∫ y

0
ρ−a
ε (s)ds . (1.9)

We remark that, as a ∈ (−∞, 1), such a class of weights is always super degenerate; indeed, at Σ, they
behave like

ωa
ε(y) ∼

y2 if ε > 0
|y|2−a if ε = 0,

with 2 − a ∈ (1,+∞).
Our first main result concerns in fact the even solutions to the auxiliary family of Eq (1.7). It

essentially consists in extending (in a non trivial way) the analogous result already obtained in [21] to
the new family of weights ρa

ε(v
a
ε)

2.

Theorem 1.5. Let a ∈ (−∞, 1) and, as ε→ 0, let {wε} be a family of solutions in B+
1 of (1.7) which are

even-in-y; that is, satisfying the boundary condition

ρa
ε(v

a
ε)

2∂ywε = 0 on ∂0B+
1 .

1) Let r ∈ (0, 1), β > 1, p1 >
n+3+(−a)+

2 , p2, p3 > n+3+(−a)+, and α ∈ (0, 2− n+3+(−a)+

p1
]∩(0, 1− n+3+(−a)+

p2
]∩

(0, 1 − n+3+(−a)+

p3
]. Let’s moreover take A with continuous coefficients and ‖bε‖Lp3 (B+

1 ,ω
a
ε(y)dz) ≤ b. There is

a positive constant c depending on a, b, n, β, p1, p2, p3, α and r only such that functions wε satisfy

‖wε‖C0,α(B+
r ) ≤ c

(
‖wε‖Lβ(B+

1 ,ω
a
ε(y)dz) + ‖ fε‖Lp1 (B+

1 ,ω
a
ε(y)dz) + ‖Fε‖Lp2 (B+

1 ,ω
a
ε(y)dz)

)
.

2) Let r ∈ (0, 1), β > 1, p1, p2 > n + 3 + (−a)+, and α ∈ (0, 1 − n+3+(−a)+

p1
] ∩ (0, 1 − n+3+(−a)+

p2
]. Let

Fε = (F1
ε , ..., F

n+1
ε ) with the y-component vanishing on Σ: Fn+1

ε (x, 0) = Fy
ε(x, 0) = 0 in ∂0B+

1 . Let’s
moreover take A with α-Hölder continuous coefficients and ‖bε‖L2p2 (B+

1 ,ω
a
ε(y)dz) ≤ b. There is a positive

constant c depending on a, b, n, β, p1, p2, α and r only such that functions wε satisfy

‖wε‖C1,α(B+
r ) ≤ c

(
‖wε‖Lβ(B+

1 ,ω
a
ε(y)dz) + ‖ fε‖Lp1 (B+

1 ,ω
a
ε(y)dz) + ‖Fε‖C0,α(B+

1 )

)
.
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We would like to remark here that local C2,α uniform estimates (up to Σ) with respect to the
regularization can not be proven (for a counterexample we refer to [21, Remark 5.4]).

When applying Theorem 1.5 to the quotient

wε =
u
va
ε

(1.10)

of a solution of (1.2) and the characteristic solution (1.6), we realise that the actual terms appearing
in right hand side of (1.7) depend on the original forcings f , F jointly with the parameters µ,T, B of
the matrix A written as in Notation (HA+). In particular, as shown in (2.8), we see the appearance of
a drift term involving the x-derivatives of µ which, consequently, need to satisfy a C0,α condition. Our
main result is Theorem 4.4. We give here below a simplified statement, suitable to be applied to the
case of Laplacians in Fermi coordinates treated in subsection §1.1.

Theorem 1.6. Let a ∈ (−∞, 1), the matrix A written as in Notation (HA+) with T ≡ 0. As ε → 0 let
{uε} be a family of solutions in B+

1 of−div
(
ρa
εA∇uε

)
= ρa

ε fε + div
(
ρa
εFε

)
in B+

1

uε = 0 on ∂0B+
1 .

Let also {va
ε} be the family of solutions defined in (1.6) in B+

1 . Denote

wε =
uε
va
ε

.

1) Assume µ be Lipschitz continuous, r ∈ (0, 1), β > 1, p1 > n+3+(−a)+

2 , p2 > n + 3 + (−a)+, and
α ∈ (0, 2 − n+3+(−a)+

p1
] ∩ (0, 1 − n+3+(−a)+

p2
]. Let’s moreover take A with continuous coefficients. There is a

positive constant c depending on a, n, β, p1, p2, α and r only such that the wε satisfy

‖wε‖C0,α(B+
r ) ≤ c

(
‖wε‖Lβ(B+

1 ,ω
a
ε(y)dz) + ‖ fε/va

ε‖Lp1 (B+
1 ,ω

a
ε(y)dz)

+‖Fy
ε/(yva

ε)‖Lp1 (B+
1 ,ω

a
ε(y)dz) + ‖Fε/va

ε‖Lp2 (B+
1 ,ω

a
ε(y)dz)

)
.

2) Assume µ ∈ C1,α(B+
1 ), and let r ∈ (0, 1), β > 1, p1 > n + 3 + (−a)+, and α ∈ (0, 1 − n+3+(−a)+

p1
]. Let

Fε = (F1
ε , ..., F

n+1
ε ) with the α-Hölder continuous ratio between the y-component and va

ε vanishing on Σ:
Fn+1
ε (x, 0)/va

ε = Fy
ε(x, 0)/va

ε = 0 in ∂0B+
1 . Let’s moreover take A with α-Hölder continuous coefficients.

There is a positive constant c depending on a, n, β, p1, α and r only such that

‖wε‖C1,α(B+
r ) ≤ c

(
‖wε‖Lβ(B+

1 ,ω
a
ε(y)dz) + ‖ fε/va

ε‖Lp1 (B+
1 ,ω

a
ε(y)dz)

+‖Fy
ε/(yva

ε)‖Lp1 (B+
1 ,ω

a
ε(y)dz) + ‖Fε/va

ε‖C0,α(B+
1 )

)
.

It is worthwhile noticing here that any energy odd solution to (1.2) for ε = 0 (under suitable
conditions on the matrix and the right hand side) can be approximated by a ε-sequence of solutions to
(1.2) satisfying the hypothesis in our regularity results. The same happens for the auxiliary weighed
problems solved by the even functions w = u/y|y|−a. This is done in details in [21, Section 2 and 6].
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Remark 1.7. A special, yet fundamental, case is when we take A = I, so that µ ≡ 1 and the family of
fundamental comparison odd solutions va

ε’s are in fact the χa
ε’s. Nevertheless, it has to be noticed that,

in the presence of non trivial curvature, the ratio va
ε/χ

a
ε may not be uniformly (in ε) bounded in

C1,α(B+
1 ). Furthermore, in the variable coefficient case, the χa

ε’s are not in the kernel of the
corresponding operators, as a (possibly weird) right hand side appears.

Theorem 1.6 finds a natural application to the study of the boundary behaviour of solutions of
operators degenerate/singular at embedded manifolds, as shown by the following result.

Corollary 1.8. Let Σ be an n-dimensional hypersurface embedded in Rn+1, of class C3,α and let dΣ(X)
denote the signed distance of X to Σ. Let a ∈ (−∞, 1), R > 0 sufficiently small, and consider, as ε→ 0,
a family of solutions to−div

(
ρa
ε ◦ dΣ∇uε

)
= ρa

ε ◦ dΣ fε + div
(
ρa
ε ◦ dΣFε

)
in BR ∩ {dΣ(X) > 0}

uε = 0 on BR ∩ Σ.

Let also {χa
ε} be the family of functions defined in (1.9) in BR. Denote

wε =
uε

χa
ε ◦ dΣ

,

1) The same conclusion of point 1) of Theorem 1.6 holds with va
ε replaced by χa

ε, y by dΣ(X) and en+1

by the normal ν at Σ.
2) The same conclusion of point 2) of Theorem 1.6 holds in C1,α(Br ∩{y ≥

√
ε}) where c is independent

of ε, and, again, va
ε replaced by χa

ε, y by dΣ(X) and en+1 by the normal ν at Σ.

Remark 1.9. In particular, letting ε → 0 we find C1,α(B+
r ) estimates in the degenerate/singular case,

though not in the full ε-stable sense. The reason is the possible lack of uniform-in-ε smoothness of the
ratio va

ε/χ
a
ε.

1.1. Proof of Corollary 1.8

As already mentioned, the structural assumption on the matrix A done in Assumption (HA) with
Notation (HA+) fits also with the metric induced by Fermi’s coordinates around the characteristic
manifold Σ (see [18]). Let Σ be an oriented regular enough hypersurface embedded in Rn+1. We are
concerned with operators associated with Dirichlet energies of the form∫

{dΣ(X)>0}
(ρa

ε ◦ dΣ)(X)|∇u|2,

with a ∈ R, X ∈ Rn+1 and dΣ(·) the signed distance function to Σ. Let ge be the Euclidean metric
on Rn+1 and denote by ν the unit normal vector field on Σ. We define Fermi coordinates in a tubular
neighborhood of Σ as follows: let z ∈ Σ and y ∈ R, and define

Z(z, y) := z + y ν(z).

Points z and y ν(z) belong to Rn+1. Given y ∈ R, we define

Σy := {Z(z, y) ∈ Rn+1 : z ∈ Σ}.

Mathematics in Engineering Volume 3, Issue 1, 1–50.
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Following Lemma 6.1 in [18], one has that the induced metric on Σy is given by

gy = g0 − 2yh0 + y2h0 ⊗ h0,

where g0 is the induced metric on Σ, h0 is the second fundamental form on Σ and h0 ⊗ h0 its square;
namely we have

h0(t1, t2) = −g0(∇t1ν, t2)

for all t1, t2 on the tangent bundle of Σ. Notice in particular that, in local coordinates, the terms
g0, h0, h0 ⊗ h0 depend only on z. Therefore, invoking Lemma 6.3 in [18], one finally has

Z∗ge = gy + dy2

where gy is considered as a family of metrics on the tangent bundle of Σ, depending smoothly on y in
a neighborhood of 0 in R.

In other words, we are obtaining a quadratic form for v(z, y) = u(Z(z, y)) of the form∫ y0

0
ρa
ε(y)

∫
Σy

(
|∇gyv|2 + |∂yv|2

) √
detgy.

Recall that the variation with respect to y of of the volume form of the parallel hypersurfaces Σy

satisfy the equation:

Hy = −
1√

detgy

d
dy

√
detgy. (1.11)

Hence, by considering a parametrization of Σ of the form z = ψ(x) with x ∈ Rn, then one obtains for
w(x, y) = v(ψ(x), y) ∫

ρa
ε(y)A∇w · ∇w,

where

A(x, y) =

(
Ã(x, y) 0

0 1

)
·
√

det gy.

We remark that the matrix A satisfies Assumption (HA), and can be expressed as in Notation (HA+)
with µ(x, y) =

√
det gy. As Σ ∈ C3,α, we have µ ∈ C1,α(B+

r0
) for r0 small enough. Hence we are in the

position to apply Theorem 1.6. Next we have to compare the two families va
ε and χa

ε. At first, in order to
prove point 1) we remark that Proposition A.3 ensures uniform-in-ε C0,α estimates for the ratio va

ε/χ
a
ε.

Using (1.11), we infer that ∂yµ(·, 0) ∈ C1,α(B+
r0

) and finally, by virtue of Proposition A.4, we obtain that
also the ratio va

ε/χ
a
ε satisfies the desired uniform bounds in C1,α(Br ∩ {y ≥

√
ε}), for r < r0.

1.2. Notations

Below is the list of symbols we shall use throughout this paper.
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Rn+1
+ = Rn × (0,+∞) z = (x, y) with x ∈ Rn, y > 0

Σ = {y = 0} characteristic manifold
B+

r = Br ∩ {y > 0} half ball
∂+B+

r = S n
+(r) = ∂Br ∩ {y > 0} upper boundary of the half ball

∂0B+
r = Br ∩ {y = 0} flat boundary of the half ball

ρa
ε(y) =

(
ε2 + y2

)a/2
regularized weight

ωa
ε(y) = ρa

ε(y)πa
ε(y) regularized auxiliary weight

Lρa
ε
u = div

(
ρa
ε(y)A(x, y)∇u

)
regularized operator

H1(Ω, ρa
ε(y)dz) weighted Sobolev space given by the completion of C∞(Ω)

H1
0(Ω, ρa

ε(y)dz) weighted Sobolev space given by the completion of C∞c (Ω)
H̃1(Ω, ρa

ε(y)dz) weighted Sobolev space given by the completion of C∞c (Ω \ Σ)
H1,a(Ω) = H1(Ω, |y|adz) weighted Sobolev space for ε = 0
∂a

yu = |y|a∂yu ”weighted” derivative
y|y|−a characteristic odd solution
va
ε characteristic odd solution in presence of A and ε > 0

a+ = max{a, 0}

2. Functional setting and preliminary results

In this section we collect the natural notions of Sobolev spaces, and their main properties, needed
to work in our degenerate or singular context (for further details see [21, Section 2]). Let Ω ⊂ Rn+1 be
non empty, open and bounded. Denoting by C∞(Ω) the set of real functions u defined on Ω such that
the derivatives Dαu can be continuously extended to Ω for all multiindices α, then for any a ∈ R, ε ≥ 0
we define the weighted Sobolev space H1(Ω, ρa

ε(y)dz) as the closure of C∞(Ω) with respect to the norm

‖u‖H1(Ω,ρa
ε(y)dz) =

(∫
Ω

ρa
εu

2 +

∫
Ω

ρa
ε|∇u|2

)1/2

.

To simplify the notation we will denote

H1,a(Ω) = H1(Ω, |y|adz) = H1(Ω, ρa
0(y)dz).

In the same way, we define H1
0(Ω, ρa

ε(y)dz) as the closure of C∞c (Ω) with respect to the norm

‖u‖H1
0 (Ω,ρa

ε(y)dz) =

(∫
Ω

ρa
ε|∇u|2

)1/2

.

We will denote by H̃1(Ω, ρa
ε(y)dz) the closure of C∞c (Ω \ Σ) with respect to the norm ‖ · ‖H1(Ω,ρa

ε(y)dz). In
particular, when a < 1, there is a natural isometry (on balls B centered in a point on Σ of any radius)

T a
ε : H̃1(B, ρa

ε(y)dz)→ H̃1(B) : u 7→ v =
√
ρa
εu,

where H̃1(B) is endowed with the equivalent norm with squared expression

Qε(v) =

∫
B
|∇v|2 +

(∂yρ
a
ε

2ρa
ε

)2

+ ∂y

(
∂yρ

a
ε

2ρa
ε

) v2 −

∫
∂B

∂yρ
a
ε

2ρa
ε

yv2 ,
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(this is detailed in the appendix B.5). We remark that both in the super singular and super degenerate
cases, that is when a ∈ (−∞,−1] ∪ [1,+∞) and ε = 0, when the weight is taken outside the A2-
Muckenhoupt class, one has

H1,a(Ω) = H̃1,a(Ω) . (2.1)

This happens for very opposite reasons: roughly speaking, when a ≤ −1 then the singularity is so
strong to force the function to annihiliate on Σ (we will call this case the super singular case). Instead,
when a ≥ 1, then the strong degeneracy leaves enough freedom to the function to allow it to be very
irregular through Σ (we will call this case the super degenerate case). In the latter case, Σ has vanishing
capacity with respect to the energy

∫
|y|a|∇u|2.

The Sobolev embedding theorems are stated in details in [21] as inequalities which are uniform in
ε. This point is fundamental in order to develop a local regularity theory which is stable with respect
to the regularization parameter ε. Hence, following some results contained in [12], the critical Sobolev
exponents do depend on how the weighted measures dµ = ρa

ε(y)dz scale on balls of small radius r > 0:
one can check that there exists b, d > 0 independent from ε ≥ 0 (in the locally integrable case a > −1)
such that for small radii

µ(Br(z)) ≥ brd.

So, we can define the effective dimension

d = n + 1 + a+ = n∗(a),

and the Sobolev optimal exponent is

2∗(a) =
2d

d − 2
=

2(n + 1 + a+)
n + a+ − 1

.

For details one can refer to Theorems 2.4 and 2.5 in [21].
In the very same way one can define weighted Sobolev spaces for the class of weights ωa

ε; that is,
the spaces H1(Ω, ωa

ε(y)dz) = H̃1(Ω, ωa
ε(y)dz) (the equality is due to the fact that ωa

ε is always a super
degenerate weight as a < 1) and H1

0(Ω, ωa
ε(y)dz).

In this case one can check that there exist two positive constants b, d > 0 independent on ε ≥ 0 such
that dµ = ωa

ε(y)dz has the following growth condition on small balls of radius r > 0

µ(Br(z)) ≥ brd,

and the effective dimension is given by d = n + 1 + 2 + (−a)+ = n + 3 + (−a)+ = n∗(a). Hence one can
state the following

Theorem 2.1. Let a ∈ (−∞, 1), n ≥ 1, ε ≥ 0 and u ∈ C1
c (Ω). Then there exists a constant which does

not depend on ε ≥ 0 such that(∫
Ω

ωa
ε|u|

2
∗
(a)

)2/2
∗
(a)

≤ c(d, b,Ω)
∫

Ω

ωa
ε|∇u|2,

where the optimal embedding exponent is

2
∗
(a) =

2d

d − 2
=

2(n + 3 + (−a)+)
n + (−a)+ + 1

.
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2.1. Energy solutions

Throughout the paper, we are going to consider different elliptic equations depending on different
families of weights. Nevertheless, we will deal with right hand sides having forcing terms, terms
expressed by the divergence of a given field and drift terms (we will see that any other possible term
that will appear can be translated in one of these). In order to give an unified definition of energy
solutions to weighted problems, we will consider a generic measurable weight function w, and define
an energy solution u in B1 to

− div (wA∇u) = w f + div (wF) + w b · ∇u in B1. (2.2)

We say that u ∈ H1(B1,wdz) is an energy solution to (2.2) if∫
B1

wA(x, y)∇u ·∇φ =

∫
B1

w fφ−
∫

B1

wF ·∇φ+

∫
B1

w(b ·∇u)φ, ∀φ ∈ C∞c (B1)∩H1(B1,wdz), (2.3)

any time the terms in the right hand side give sense to the previous integrals. We remark that we are not
assuming local integrability of the weight, and this is the reason why we must consider test functions
in the suitable weighted Sobolev space.

Now, we recall the consequent definition of energy solutions in case the weight term is given by
ρa
ε(y), with a ∈ R and ε ≥ 0 (the following definition is contained in [21]). Let us consider the following

problem

− div
(
ρa
εA∇u

)
= ρa

ε f + div
(
ρa
εF

)
in B1. (2.4)

We say that u ∈ H1(B1, ρ
a
ε(y)dz) is an energy solution to (2.4) if∫

B1

ρa
εA(x, y)∇u · ∇φ =

∫
B1

ρa
ε fφ −

∫
B1

ρa
εF · ∇φ, ∀φ ∈ C∞c (B1) ∩ H1(B1, ρ

a
ε(y)dz). (2.5)

We remark that the condition in (2.5) can be equivalently expressed testing with any φ ∈ C∞c (B1 \ Σ)
if a ∈ (−∞,−1] ∪ [1,+∞) and ε = 0. In order to give a sense to energy solutions to (2.4) we need the
following minimal hypothesis on the right hand side.

Assumption 2.2 (H fρa
ε). Let a ∈ (−1,+∞). Then if n ≥ 2 or n = 1 and a+ > 0, the forcing term f in

(2.4) belongs to Lp(B1, ρ
a
ε(y)dz) with p ≥ (2∗(a))′ the conjugate exponent of 2∗(a); that is,

(2∗(a))′ =
2(n + 1 + a+)

n + a+ + 3
.

If n = 1 and a+ = 0 then f ∈ Lp(B1, ρ
a
ε(y)dz) with p > 1.

Let a ∈ (−∞,−1]. Then if n ≥ 2, the condition on the forcing term is (ρa
ε)

1/2 f ∈ Lp(B1) with
p ≥ (2∗(a))′ = (2∗)′. If n = 1, then any p > 1 is allowed.

Assumption 2.3 (HFρa
ε). Let a ∈ (−1,+∞). The condition on the field F = (F1, ..., Fn+1) in (2.4) is

F ∈ Lp(B1, ρ
a
ε(y)dz) with p ≥ 2. Let a ∈ (−∞,−1]. Then the condition is (ρa

ε)
1/2F ∈ Lp(B1) with p ≥ 2.
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2.2. Some preliminary results on the auxiliary equation

We are concerned with local regularity of energy odd solutions to (2.4) with a ∈ (−∞, 1) and ε ≥ 0.
Our analysis relies in the validity of suitable Liouville type theorems which hold true whenever a > −1;
that is, when the weight |y|a is locally integrable. In order to ensure regularity results also in the super
singular case a ≤ −1, we will consider the ratio w between the odd solution u and the function va

ε

defined in (1.6) which is odd and satisfies

div
(
ρa
εA · ∇va

ε

)
= divx

(
ρa
εµB̃ · ∇xva

ε

)
+ divx(T ) in B1, (2.6)

whenever the right hand side in the equation satisfies suitable integrability assumptions and the matrix
A is written as in Notation (HA+). As we have already remarked in the introduction, such a function
va
ε plays the role of the characteristic odd solution y|y|−a in presence of a matrix and of regularization.

The following Lemma is a formal computation

Lemma 2.4. Let a ∈ R, ε > 0 and let u, v be solutions to

−div
(
ρa
εA∇u

)
= ρa

ε f , −div
(
ρa
εA∇v

)
= ρa

εg in B1,

with v > 0 and A satisfying Assumption (HA). Then the function w = u/v is solution to

−div
(
ρa
εv

2A∇w
)

= ρa
εv f − ρa

εug in B1.

Proof. Let recall ρ = ρa
ε. Then

−div
(
ρv2A∇w

)
= −div

(
ρv2A

(
∇u
v
−

u∇v
v2

))
= −div (ρvA∇u − ρuA∇v)

= −vdiv (ρA∇u) − ρ∇v · (A∇u) + udiv (ρA∇v) + ρ∇u · (A∇v)
= −vdiv (ρA∇u) − ρ∇v · (A∇u) + udiv (ρA∇v) + ρ∇v · (AT∇u)
= ρv f − ρug.

�

The new class of weights appearing in the auxiliary equation for the ratio w = u/va
ε is given by

ρa
ε(v

a
ε)

2 and it will be equivalent (using (1.5)) to

ωa
ε(y) = ρa

ε(y)πa
ε(y) = ρa

ε(y)(1 − a)2(χa
ε(y))2 = ρa

ε(y)
(
(1 − a)

∫ y

0
ρ−a
ε (s)ds

)2

.

We remark that, considering a ∈ (−∞, 1), such a class of weights is always super degenerate; that is, at
Σ

ωa
ε(y) ∼

y2 if ε > 0
|y|2−a if ε = 0,

with 2 − a ∈ (1,+∞).
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Formal computations show that the auxiliary equation for w (which corresponds to Eq (1.4) in
Proposition 1.1 for ε = 0 and A = I) in Br for any r < 1 is given by

− div
(
ρa
ε(v

a
ε)

2A∇w
)

= ρa
ε(v

a
ε)

2

 f + Vw −
F · ∇va

ε

va
ε

 + div
(
ρa
ε(v

a
ε)

2F
)

in Br, (2.7)

with
f :=

f
va
ε

, F :=
F
va
ε

and

V :=
divx

(
µB̃ · ∇xva

ε

)
va
ε

+
divx(T )
ρa
εva
ε

.

Actually we can rewrite the 0-order term, obtaining that the auxiliary equation for w in Br is given by

−div
(
ρa
ε(v

a
ε)

2A∇w
)

= ρa
ε(v

a
ε)

2

 f −
F · ∇va

ε

va
ε

 + div
(
ρa
ε(v

a
ε)

2F
)

+divx

(
ρa
ε(v

a
ε)

2bÃw
)
− ρa

ε(v
a
ε)

2
(
bÃ · bIw + bÃ · ∇xw

)
+divx

(
ρa
ε(v

a
ε)

2Tw
)
− ρa

ε(v
a
ε)

2
(
T · bIw + T · ∇xw

)
, (2.8)

where for a (n, n)-dimensional matrix M

bM = M ·
∇xva

ε

va
ε

, and T =
T
ρa
εva
ε

.

Thus we can write the equation the following form:

−div
(
ρa
ε(v

a
ε)

2A∇w
)

= ρa
ε(v

a
ε)

2 f + div
(
ρa
ε(v

a
ε)

2F1

)
+divx

(
ρa
ε(v

a
ε)

2F2w
)

+ ρa
ε(v

a
ε)

2Vw + ρa
ε(v

a
ε)

2b · ∇xw. (2.9)

We would like to prove that w is an even energy solution to (2.9) in Br in the sense that
w ∈ H1(Br, ω

a
ε(y)dz) and satisfies∫

Br

ρa
ε(v

a
ε)

2A∇w · ∇φ =

∫
Br

ρa
ε(v

a
ε)

2 fφ −
∫

Br

ρa
ε(v

a
ε)

2F1 · ∇φ

−

∫
Br

ρa
ε(v

a
ε)

2F2w · ∇xφ

+

∫
Br

ρa
ε(v

a
ε)

2Vwφ +

∫
Br

ρa
ε(v

a
ε)

2(b · ∇xw)φ,

for any φ ∈ C∞c (Br \Σ) (as we have already remarked, super degeneracy allows us to take test functions
compactly supported away from Σ). In order to give a sense to energy solutions to (2.9) we need the
following minimal hypothesis on the right hand side.

Assumption 2.5 (H fωa
ε). Let a ∈ (−∞, 1). Then the forcing term f in (2.9) belongs to Lp(B1, ω

a
ε(y)dz)

with p ≥ (2
∗
(a))′ the conjugate exponent of 2

∗
(a); that is,

(2
∗
(a))′ =

2(n + 3 + (−a)+)
n + (−a)+ + 5

.
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Assumption 2.6 (HF1ω
a
ε). Let a ∈ (−∞, 1). Then the field term F1 in (2.9) belongs to Lp(B1, ω

a
ε(y)dz)

with p ≥ 2.

Assumption 2.7 (HF2ω
a
ε). Let a ∈ (−∞, 1). Then the field term F2 in (2.9) belongs to Lp(B1, ω

a
ε(y)dz)

with p ≥ d = n + 3 + (−a)+.

Assumption 2.8 (HVωa
ε). Let a ∈ (−∞, 1). Then the 0-order term V in (2.9) belongs to Lp(B1, ω

a
ε(y)dz)

with

p ≥
d
2

=
n + 3 + (−a)+

2
.

Assumption 2.9 (Hbωa
ε). Let a ∈ (−∞, 1). Then the field b the drift term in (2.9) belongs to

Lp(B1, ω
a
ε(y)dz) with p ≥ d = n + 3 + (−a)+.

We will need the following important result, which contains also Proposition 1.1 when ε = 0 and
A = I.

Proposition 2.10. Let a ∈ (−∞, 1), ε ≥ 0 and let uε ∈ H1(B1, ρ
a
ε(y)dz) be an odd energy solution to

(2.4) in B1. Then, fixed 0 < r < 1, the function wε = uε/va
ε is an even energy solution in H1(Br, ω

a
ε(y)dz)

to (2.8), provided that the right hand side satisfies the suitable integrability assumptions stated above.

Proof. First, we want to show that wε ∈ H1(Br, ρ
a
ε(y)(va

ε)
2(x, y)dz). We remark that since 1

C ≤ µ ≤ C
and since the weight is super degenerate, we have that at Σ

ρa
ε(v

a
ε)

2 ∼ ωa
ε ∼

|y|2−a if ε = 0
|y|2 if ε > 0,

with 2− a ∈ (1,+∞), then the (H=W)-property does not necessarily hold (due to the lack of a Poincaré
inequality, see [21]). Nevertheless, we can argue as follows: let η ∈ C∞c (B1) be a radial decreasing cut
off function such that 0 ≤ η ≤ 1 and η ≡ 1 in Br. Let also for δ > 0

fδ(y) =


0 in B1 ∩ {|y| ≤ δ}

log y
δ

in B1 ∩ {δ ≤ |y| ≤ δe}

1 in B1 ∩ {δe ≤ |y|}.

Let ϕδ = η fδ, then |ϕδ| ≤ 1 and |∇ϕδ| ≤ c/y uniformly in δ > 0. We remark that one can replace fδ with
a function with the same properties which is C∞(B1). So,∫

B1

ρa
ε(v

a
ε)

2|ϕδwε|
2 ≤

∫
B1

ρa
εu

2
ε ≤ c. (2.10)

Obviously in B1 \ Σ Eq (2.8) holds. It is an easy consequence of Lemma 2.4, using that va
ε is an odd

energy solution to (2.6) in B1 and that va
ε > 0 in B1 \Σ. Then, testing the equation with ϕ2

δwε, we obtain∫
B1

ρa
ε(v

a
ε)

2A∇(ϕδwε) · ∇(ϕδwε) =

∫
B1

ρa
ε(v

a
ε)

2
(
ϕ2
δA∇wε · ∇wε + 2ϕδwεA∇wε · ∇ϕδ + w2

εA∇ϕδ · ∇ϕδ
)

=

∫
B1

(RHS )ϕ2
δwε +

∫
B1

ρa
ε(v

a
ε)

2w2
εA∇ϕδ · ∇ϕδ
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≤

∫
B1

(RHS )ϕ2
δwε + c

∫
B1

ρa
ε

y2 u2
ε ≤ c, (2.11)

and this is true by the weighted Hardy inequality in (B.12), weighted Sobolev embeddings (Theorem
2.1) and Assumptions (H fωa

ε), (HF1ω
a
ε), (HF2ω

a
ε), (HVωa

ε) and (Hbωa
ε) which give a bound on the

term with (RHS ) of Eq (2.8). We remark that, fixed δ > 0, the boundedness in norm
H1(B1, ρ

a
ε(y)(va

ε)
2(x, y)dz) is enough to ensure that ϕδwε belongs to the same space. In fact, they have

compact support away from Σ, and hence these norms are equivalent to the usual H1-norm. Since the
bounds in (2.10) and (2.11) are uniform in δ > 0, this is enough to have weak convergence for the
sequence ϕδwε in H1(Br, ρ

a
ε(y)(va

ε)
2(x, y)dz) as δ → 0 and of course the limit is wε (it is almost

everywhere pointwise limit).
We have already remarked that in Br \ Σ Eq (2.8) holds. Then, one can conclude since the weighted

Sobolev space H1(Br, ρ
a
ε(y)(va

ε)
2(x, y)dz) is super degenerate, and consequently test functions can be

taken in C∞c (Br \ Σ). �

3. Liouville type theorems

In this section we present two important results which will be our main tool in order to prove
regularity local estimates which are uniform with respect to ε ≥ 0.

Theorem 3.1. Let a ∈ (−1, 1), ε ≥ 0 and w be a solution to−div(ρa
ε(y)∇w) = 0 in Rn+1

+

w(x, 0) = 0,

and let us suppose that for some γ ∈ [0, 1 − a), C > 0 it holds

|w(z)| ≤ C(1 + |z|γ) (3.1)

for every z. Then w is identically zero.

Proof. It is enough to prove the result only for ε ∈ {0, 1}. In fact for any other value of ε > 0 we can
normalize the problem falling in the case ε = 1.
Case 1 : ε = 0.
Let us consider w ∈ H1,a

loc (Rn+1
+ ) satisfying the conditions of the statement, that is, solution in the

following sense ∫
Rn+1

+

ya∇w · ∇φ = 0 ∀φ ∈ C∞c (Rn+1
+ ).

Let us define

E(r) =
1

rn+a−1

∫
B+

r

ya|∇w|2, H(r) =
1

rn+a

∫
∂+B+

r

yaw2.

Note that, as the weight ya is locally integrable, (3.1) implies

H(r) ≤ C(1 + r2γ) ,∀r > 0 . (3.2)
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Now, defining wr(x) = w(rx), we have

E(r) =

∫
B+

1

ya|∇wr|2 and H(r) =

∫
S n

+

ya(wr)2,

and hence

H′(r) =
2
r

E(r).

We are looking for the best constant in the following trace Poincaré inequality∫
B+

1

ya|∇u|2 ≥ λ(a)
∫

S n
+

yau2, ∀ u ∈ H̃1,a(B+
1 ). (3.3)

Actually we are able to provide the best constant λ(a) in (3.3), since it is given by the homogeneity of
the unique (up to multiplicative constants) solution in H̃1,a(B+

1 ) to
−Lau = 0 in B+

1

u > 0 in B+
1

u(x, 0) = 0
∇u · ν = λ(a)u in S n

+,

which is u(x, y) = y1−a with λ(a) = 1 − a. However λ(a) is the same as (B.9). Hence H′(r) ≥ 2λ(a)
r H(r),

and integrating, then we infer
H(r)

r2(1−a) ≥ H(1).

We obtain that if w is not trivial, the growth of H at infinity is at least r2(1−a), in contradiction with (3.2)
taking r large.
Case 2 : ε = 1.
Let us define

E(r) =
1

rn+a−1

∫
B+

r

(1 + y2)a/2|∇w|2, H(r) =
1

rn+a

∫
∂+B+

r

(1 + y2)a/2w2.

Note that, as a > −1, the ρa
ε’s are uniformly locally integrable and thus (3.1) implies again

H(r) ≤ C(1 + r2γ) ,∀r > 0 ,with γ < 1 − a. (3.4)

Hence,

H′(r) =
2
r

E(r) −
a

rn+a+1

∫
∂+B+

r

(1 + y2)a/2−1w2. (3.5)

Moreover, defining wr(x) = w(rx) one has

E(r) =

∫
B+

1

(
1
r2 + y2

)a/2

|∇wr|2 and H(r) =

∫
S n

+

(
1
r2 + y2

)a/2

(wr)2.
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By Lemma B.4 and Remark B.5, one can find for any radius r > 0 the best constant λr(a) such that∫
B+

1

(
1
r2 + y2

)a/2

|∇u|2 ≥ λr(a)
∫

S n
+

(
1
r2 + y2

)a/2

u2. (3.6)

Defining ρk(y) =

(
1
r2

k
+ y2

)a/2
with rk → +∞ as k → +∞, one can see

λ(a) = min
v∈H̃1(B+

1 )\{0}

Qa(v)∫
S n

+

v2
and λk(a) = min

v∈H̃1(B+
1 )\{0}

Qρk(v)∫
S n

+

v2
.

By Lemma B.4, λk(a)→ λ(a) = 1 − a as k → +∞.

Now we want to prove that the correction term in (3.5) is of lower order as r → +∞. By (B.13), we
have that in C̃∞c (B+

1 ) ∫
B+

1

ρr|∇u|2 ≥ c0

∫
∂B+

1

ρr

y
u2.

Hence ∣∣∣∣∣∣ a
rn+a+1

∫
∂+B+

r

(
1 + y2

)a/2−1
w2

∣∣∣∣∣∣ ≤ |a|
rn+a+1

∫
∂+B+

r

(
1 + y2

)a/2−1/2
w2

=
|a|
r2

∫
S n

+

(
1
r2 + y2

)a/2−1/2

(wr)2

≤
|a|
r2

∫
S n

+

(
1
r2 + y2

)a/2

y−1(wr)2

≤
|a|

c0r2

∫
B+

1

(
1
r2 + y2

)a/2

|∇wr|2

=
|a|

c0r2 E(r).

Hence for r large enough

H′(r) ≥
2λr(a)

r
H(r),

and since λr(a) → λ(a) = 1 − a, by integrating the above expression we deduce that, for all small δ,
there exists r0 > 0 such that, for every r > r0

H(r)
r2(1−a−δ) ≥ H(r0),

which says that if w is not trivial, the growth of H at infinity is at least r2(1−a−δ). Taking δ > 0 so small
that 1 − a − δ > γ we find a contradiction with (3.4). �

Theorem 3.2. Let a ∈ (−∞, 1), ε ≥ 0 and w be a solution to−div((ωa
ε(y))−1∇w) = 0 in Rn+1

+

w = 0 in Rn × {0},
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and let us suppose that for some γ ∈ [0, 1), C > 0 it holds

|w(z)| ≤ Cωa
ε(y)(1 + |z|γ) (3.7)

for every z = (x, y). Then w is identically zero.

Proof. By a simple normalization argument, it is enough to prove the result only for ε ∈ {0, 1}. We
start with
Case 1 : ε = 0.
The case falls into the proof of Case 1 in [21, Theorem 3.4] replacing a ∈ (−∞, 1) with (a − 2) ∈
(−∞,−1).
Case 2 : ε = 1.
Let us now define

E(r) =
1

rn+(a−2)−1

∫
B+

r

(ωa
1(y))−1|∇w|2, and H(r) =

1
rn+(a−2)

∫
∂+B+

r

(ωa
1(y))−1w2.

Note that, defining wr(x) = w(rx) one has

E(r) =

∫
B+

1

(ωa
1/r(y))−1|∇wr|2, and H(r) =

∫
S n

+

(ωa
1/r(y))−1(wr)2.

First we remark that the growth condition (3.7) implies the following upper bound

H(r) ≤ Cr−2(a−2)(1 + r2γ) ,∀r > 0 , (3.8)

(due to the local integrability of y2−a) and heence∫
S n

+

ωa
1/r(y) ≤ c

uniformly in r > 0. Therefore,

H′(r) =
2
r

E(r) +

∫
S n

+

d
dr

[(ωa
1/r(y))−1](wr)2. (3.9)

By Lemma B.7 and Lemma B.8, one can find for any radius r > 0 the best constant µr(a) such that∫
B+

1

(ωa
1/r(y))−1|∇u|2 ≥ µr(a)

∫
S n

+

(ωa
1/r(y))−1|u|2. (3.10)

Defining (ωa
k(y))−1 = (ωa

1/rk
(y))−1 and µk = µrk with rk → +∞ as k → +∞, by Lemma B.8, µk(a) →

µ(a) = 1 − (a − 2) = 3 − a as k → +∞.
Now we want to prove that the correction term in (3.9) is of lower order as r → +∞. By (B.27), we
have that ∫

B+
1

(ωa
1/r(y))−1|∇u|2 ≥ c0

∫
S n

+

(ωa
1/r(y))−1

y
u2.
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Using ∫
S n

+

d
dr

[(ωa
1/r(y))−1](wr)2 =

a
r3

∫
S n

+

1(
1
r2 + y2

) (ωa
1/r(y))−1(wr)2

−
2a
r3

∫
S n

+

∫ y

0

(
1
r2 + s2

)−a/2−1

∫ y

0

(
1
r2 + s2

)−a/2 (ωa
1/r(y))−1(wr)2,

we can estimate the first term of the rest as follows∣∣∣∣∣∣∣∣ a
r3

∫
S n

+

1(
1
r2 + y2

) (ωa
1/r(y))−1(wr)2

∣∣∣∣∣∣∣∣ ≤ |a|
r2

∫
S n

+

1(
1
r2 + y2

)1/2 (ωa
1/r(y))−1(wr)2

≤
|a|
r2

∫
S n

+

(ωa
1/r(y))−1

y
(wr)2 ≤

c
r2 E(r).

Moreover, when a ≤ 0 the second term of the rest can be estimated as∣∣∣∣∣∣∣∣2a
r3

∫
S n

+

∫ y

0

(
1
r2 + s2

)−a/2−1

∫ y

0

(
1
r2 + s2

)−a/2 (ωa
1/r(y))−1(wr)2

∣∣∣∣∣∣∣∣ ≤ 2|a|
r2

∫
S n

+

ry
∫ ry

0

(
1 + s2

)−a/2−1∫ ry

0

(
1 + s2)−a/2

(ωa
1/r(y))−1

y
(wr)2

≤
2|a|
r2

∫
S n

+

(ωa
1/r(y))−1

y
(wr)2 ≤

c
r2 E(r),

and this is due to the fact that, calling z = ry ∈ [0,+∞), by the fact that

f (z) =
z
∫ z

0

(
1 + s2

)−a/2−1∫ z

0

(
1 + s2)−a/2

is continuous and such that f (0) = 0 and

f (z) ∼z→+∞


cza if a ∈ (−1, 0]
log z

z if a = −1
1
z if a < −1

and hence f (z) ≤ c in [0,+∞). Instead, when a ∈ (0, 1) the second term of the rest can be estimated as∣∣∣∣∣∣∣∣2a
r3

∫
S n

+

∫ y

0

(
1
r2 + s2

)−a/2−1

∫ y

0

(
1
r2 + s2

)−a/2 (ωa
1/r(y))−1(wr)2

∣∣∣∣∣∣∣∣ ≤ 2|a|
r2−a

∫
S n

+

(ry)1−a
∫ ry

0

(
1 + s2

)−a/2−1∫ ry

0

(
1 + s2)−a/2

(ωa
1/r(y))−1

y1−a (wr)2

≤
2|a|
r2−a

∫
S n

+

(ωa
1/r(y))−1

y1−a (wr)2 ≤
2|a|
r2−a

∫
S n

+

(ωa
1/r(y))−1

y
(wr)2

≤
c

r2−a E(r),
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using the fact that 0 ≤ y ≤ 1 and by the fact that

f (z) =
z1−a

∫ z

0

(
1 + s2

)−a/2−1∫ z

0

(
1 + s2)−a/2

is continuous and such that f (0) = 0 and

f (z) ∼z→+∞ c

and hence f (z) ≤ c in [0,+∞). Hence for r large enough

H′(r) ≥
2µr(a)

r
H(r),

and since µr(a)→ µ(a) = 1− (a−2), we can choose a small δ > 0 such that 1− (a−2)−δ > γ− (a−2).
Hence, by integrating the above expression we deduce that there exists r0 > 0 such that, for every
r > r0, we have µr(a) > 1 − (a − 2) − δ > γ − (a − 2) and

H(r)
r2(1−(a−2)−δ) ≥ H(r0), (3.11)

which is in contradiction with (3.8) for r large if w is not trivial. �

Corollary 3.3. Let a ∈ (−∞, 1), ε ≥ 0 and w be a solution to−div(ωa
ε(y)∇w) = 0 in Rn+1

+

ωa
ε∂yw = 0 in Rn × {0},

and let us suppose that for some γ ∈ [0, 1), C > 0 it holds

|w(z)| ≤ C(1 + |z|γ) (3.12)

for every z. Then w is constant.

Proof. Again, it is enough to treat the cases ε ∈ {0, 1}. Let us assume ε = 1, the case ε = 0 coincides
with the case ε = 0 in [21, Corollary 3.5], by replacing in the proof a ∈ (−1,+∞) by (2− a) ∈ (1,+∞).
Then we have (by an even reflection across Σ) an even solution w to

−div
(
ωa

1(y)∇w
)

= 0 in Rn+1.

Such a solution is w ∈ H1,2
loc (Rn+1) = H1

loc(R
n+1, |y|2dz), with the growth condition (3.12). Now we

observe that, as w is not constant with a sublinear growth at infinity, v = ωa
1(y)∂yw can not be trivial,

otherwise w would be globally harmonic and sublinear, in contradiction with the Liouville theorem
in [17]. Hence, if w is not constant, v must be an odd and nontrivial solution to−div

(
(ωa

1(y))−1∇v
)

= 0 in Rn+1
+

v = 0 in {y = 0}.
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By (3.11), we know that the weighted average of v2 must satisfy a minimal growth rate as

H(r) =
1

rn+(a−2)

∫
∂+B+

r

(ωa
1(y))−1v2 ≥ cr2(1−(a−2)−δ), 1 − δ > γ ,

for r ≥ r0 depending on δ > 0 chosen. Therefore, by integrating, we obtain∫
B+

r

ωa
1(y)(∂yw)2 =

∫ r

0
dt

∫
∂+B+

t

(ωa
1(y))−1v2 ≥ crn−(a−2)+2−2δ .

On the other hand, we have, by (3.12)∫
B+

r

ωa
1(y)(∂yw)2 ≤

∫
B+

r

ωa
1(y)|∇w|2

≤ c
∫

B+
2r

ωa
1(y)|w|2 ≤ c(1 + rn−(a−2)+2γ)

in contradiction with the previous inequality when r is large, since 1 − δ > γ. �

4. Local uniform bounds in Hölder spaces for the auxiliary problem

As a first step in our regularity theory for odd solutions, we state some results on local uniform
estimates for solutions to (1.7); that is,

−div
(
ρa
ε(v

a
ε)

2A∇uε
)

= ρa
ε(v

a
ε)

2 fε + div
(
ρa
ε(v

a
ε)

2Fε

)
+ ρa

ε(v
a
ε)

2bε · ∇uε in B1.

Using a Moser iteration argument (see also [11, Section 8.4]), one can prove the following nowadays
standard result.

Proposition 4.1. Let a ∈ (−∞, 1) and ε ≥ 0. Let u ∈ H1(B1, ω
a
ε(y)dz) be an energy solution to (1.7).

Let β > 1,

p1 >
d
2

=
n + 3 + (−a)+

2
, p2, p3 > d.

Let moreover ‖b‖Lp3 (B1,ω
a
ε(y)dz) ≤ b. Then, for any 0 < r < 1 there exists a positive constant independent

of ε (depending on n, a, p1, p2, p3, β, b, r and α) such that

‖u‖L∞(Br) ≤ c
(
‖u‖Lβ(B1,ω

a
ε(y)dz) + ‖ f ‖Lp1 (B1,ω

a
ε(y)dz) + ‖F‖Lp2 (B1,ω

a
ε(y)dz)

)
.

Proof. The proof follows the same steps as in [21, Proposition 2.17], but iterating the Sobolev
embedding in Theorem 2.1. �

4.1. Local uniform bounds in C0,α spaces

Now we show how the uniform local boundedness of solutions to (1.7) yields also local uniform
bounds in Hölder spaces.
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Theorem 4.2. Let a ∈ (−∞, 1). As ε → 0, let {uε} be a family of solutions in B+
1 of (1.7) satisfying

boundary conditions (evenness)

ρa
ε(v

a
ε)

2∂yuε = 0 on ∂0B+
1 .

Let r ∈ (0, 1), β > 1, p1 > d
2 =

n+3+(−a)+

2 , p2, p3 > d, and α ∈ (0, 1) ∩ (0, 2 − n+3+(−a)+

p1
] ∩ (0, 1 −

n+3+(−a)+

p2
] ∩ (0, 1 − n+3+(−a)+

p3
]. Let ‖b‖Lp3 (B1,ω

a
ε(y)dz) ≤ b. Let moreover A satisfy assumption (HA) with

continuous coefficients. Then, there is a positive constant depending on a, n, β, p1, p2, p3, b, α and r
only such that

‖uε‖C0,α(B+
r ) ≤ c

(
‖uε‖Lβ(B+

1 ,ω
a
ε(y)dz) + ‖ fε‖Lp1 (B+

1 ,ω
a
ε(y)dz) + ‖Fε‖Lp2 (B1,ω

a
ε(y)dz)

)
.

Proof. The proof follows the very same steps as in the proof of [21, Theorem 4.1]. First, one has to
remark that the suitable Hölder continuity for ε ≥ 0 fixed is given by the theory developed for even
solutions to degenerate problems in [21]. Then, one can argue by contradiction with the usual blow up
argument considering two blow up sequences

vk(z) =
(ηuk)(zk + rkz) − (ηuk)(zk)

Lkrαk
, wk(z) =

η(zk)(uk(zk + rkz) − uk(zk))
Lkrαk

,

(with the same asymptotic behaviour on compact sets) defined in the rescaled domains B(k) = B−zk
rk

(where B = B 1+r
2

and {zk} is one of the two sequences of points where Hölder seminorms blow up), the
first possessing some uniform Hölder continuity, and the second one satisfying suitable problems on
rescaled domains which blow up. In order to complete the proof we prove some steps.
Step 1: blow-ups. The first thing to do is to characterize the possible asymptotic behaviours of the
weights ρa

ε(v
a
ε)

2 in the rescaled points: that is,

pk(z) := ρa
ε(yk + rky)(va

ε(zk + rkz))2

=
(
ε2

k + (yk + rky)2
)a/2

(∫ yk+rky

0

(
ε2

k + s2
)−a/2

µ(xk + rkx, s)−1ds
)2

.

To this end, let us define by Γk = (εk, yk, rk) and denote νk = |Γk|. The latter is a bounded sequence and,
up to subsequences, has finite limit ν = |(0, y∞, 0)| ≥ 0 (where we have assumed zk → z∞ = (x∞, y∞)).
Taking possibly another subsequence, we may assume that the normalized sequence

Γ̃k =
Γk

νk
= (ε̃k, ỹk, r̃k) =

(
εk

νk
,

yk

νk
,

rk

νk

)
has a limit

Γ̃k → Γ̃ = (ε̃, ỹ, r̃) ∈ S 2 ,

and moreover that
lim

k→+∞

ỹk

r̃k
= l̃ ∈ [0,+∞].

Thus we can consider Σ̃ = lim Σk; that is,

Σ̃ =

{(x, y) ∈ Rn+1 : y = −l̃} if l̃ < +∞,

∅ if l̃ = +∞.
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After rescaling the independent variables, we find new weights having the form:

pk(z) = ν2−a
k

(
ε̃2

k + (ỹk + r̃ky)2
)a/2

(∫ ỹk+r̃ky

0

(
ε̃2

k + t2
)−a/2

µ(xk + rkx, νkt)−1dt
)2

,

and, in order to study their asymptotics, we have to distinguish between different cases:
Case 1. ν > 0. Then, r̃ = ε̃ = 0 and ỹ = 1. Moreover, it is easy to see, using that 1/µ is continuous,
that pk(z) = c + o(1).
Case 2. ν = 0 and ε̃ = 0 (ỹ , 0 ∨ r̃ , 0). Using the continuity of 1/µ, up to a vertical translation of −l̃,
one obtains

pk(z) = ν2−a
k p̃(y)(1 + o(1))

where

p̃(y) =

c if r̃ = 0,
c|y|2−a if r̃ , 0.

Case 3. ν = 0 and ε̃ ∈ (0, 1). Using again the continuity of 1/µ, , up to a vertical translation of −l̃, we
obtain

pk(z) = ν2−a
k p̃(y)(1 + o(1))

where

p̃(y) =

c if r̃ = 0,
c ωa

1(y) if r̃ , 0.

in the second case up to a dilation of ε̃
r̃ .

Case 4. ν = 0 and ε̃ = 1 (ỹ = 0∧ r̃ = 0). As usual, by the continuity of 1/µ, , up to a vertical translation
of −l̃, one obtains, if r̃k = o(ỹk)

pk(z) = ν2−a
k ỹ2

kc(1 + o(1)),

and otherwise
pk(z) = ν2−a

k r̃2
kc|y|2(1 + o(1)).

Let us define

hk =


ν2−a

k in Cases 1, 2, 3,
ν2−a

k ỹ2
k in Case 4, and r̃k = o(ỹk)

ν2−a
k r̃2

k in Case 4, otherwise,

and p̃k =
pk
hk

. We have shown that, up to the suitable normalization, the rescaled weights p̃k do converge
uniformly to p̃ on compact sets of Rn+1 \ Σ̃ (or the whole Rn+1 whenever Σ̃ = ∅). Note that this latter
case is equivalent to the limiting weight p̃ be constant.
Step 2: the limiting equation and uniform-in-k energy estimates. The equation for the rescaled
variable wk becomes:

−div( p̃kA(zk + rk·)∇wk)(z) =
η(zk)

Lk
r2−α

k p̃k(z) fk(zk + rkz)
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+div
(
η(zk)

Lk
r1−α

k p̃k(·)Fk(zk + rk·)
)

(z)

+rk p̃k(z)bk(zk + rkz) · ∇wk(z). (4.1)

By a Caccioppoli type inequality, easily obtained by multiplying (4.1) by η2wk, being η a cut-off

function, taking into account that the wk are uniformly bounded and that

• the first term in the right hand side of (4.1) is bounded in L1
loc;

• the field η(zk)
Lk

r1−α
k Fk(zk + rk·) in the second term in the right hand side of (4.1) is bounded in

L2
loc( p̃(z)dz);

• rkbk(zk + rk·) is bounded in L2
loc(p̃k(z)dz);

then we obtain uniform-in-k energy bounds holding on compact subsets of Rn+1:

∀R > 0, ∃c > 0, ∀k,
∫

BR

p̃kA(zk + rkz)∇wk · ∇wk ≤ c .

The computations are very similar to the ones done in the following step.
Step 3: the right hand side vanishes as k → +∞. Next we wixh to check that the right hand sides in
the rescaled equations vanish in L1

loc(R
n+1 \ Σ̃) (or L1

loc(R
n+1) whenever Σ̃ = ∅), and that consequently

the limit w is an energy solution of

− div ( p̃A(z∞)∇w) = 0 in Rn+1 \ Σ̃, (4.2)

even with respect to Σ̃ (when not empty). We use the continuity of the matrix A in order to obtain a
constant coefficients matrix in the limit Eq (4.2) together with the fact that Σ̃ is invariant with respect
to the limit matrix to have evenness across the characteristic hyperplane.

Let us show that the right hand sides vanish in L1
loc at least for one of the cases (the other cases are

very similar), for instance when hk = ν2−a
k ỹ2

k; that is, Case 4, when r̃k = o(ỹk). Indeed, let φ ∈ C∞c (Rn+1):
using the fact that for k large enough supp(φ) ⊂ BR ⊂ B(k), using Hölder inequality, we have∣∣∣∣∣∣

∫
BR

p̃k(z) fεk(zk + rkz)φ(z)dz

∣∣∣∣∣∣
≤ ‖φ‖L∞(BR)

 1
rn+1

k hk

∫
BrkR(zk)

ρa
εk

(ζn+1)(va
εk

(ζ))2| fεk(ζ)|p1dζ
1/p1 (∫

BR

p̃k(z)dz
)1/p′1

≤ cr
− n+1

p1
k ν

− 2−a
p1

k ỹ
− 2

p1
k ,

and hence the first term in the right hand side converges to zero since α ≤ 2− n+3+(−a)+

p1
, r̃k = rk

νk
, the fact

that 0 ≤ rk ≤ νk and having

η(zk)
Lk

r
2−α− n+3+(−a)+

p1
k

r(−a)+

k

ν−a
k

1/p1 (
r̃k

ỹk

)2/p1

→ 0.

With analogous computations one can check that also the second term in the right hand side vanishes.
Concerning the third term, one can estimate the integral as follows

(4.3)
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rk

∣∣∣∣∣∣
∫

BR

p̃k(z)bk(zk + rkz) · ∇wk(z)φ(z)

∣∣∣∣∣∣
≤ rk‖φ‖L∞(BR)

(∫
BR

p̃k|∇wk|
2
) 1

2
(∫

BR

p̃k

) p3−2
2p3

 1
hkrn+1

k

∫
BrkR(zk)

ρa
εk

(ζn+1)(va
εk

(ζ))2|bεk(ζ)|p3

 1
p3

≤ cb
1

p3 r
1− n+3+(−a)+

p3
k

r(−a)+

k

ν−a
k

1/p3 (
r̃k

ỹk

)2/p3
(∫

BR

p̃k|∇wk|
2
)1/2

= tk

(∫
BR

p̃k|∇wk|
2
)1/2

.

The sequence tk converges to zero, having p3 > n + 3 + (−a)+. Moreover, the full term vanishes using
the uniform energy bound obtained in the previous step.
Step 4: the limit belongs to H1

loc(R
n+1, p̃dz). At this point, always up to subsequences, we know that

the (pointwise) convergence to w holds also in the weak H1
loc(R

n+1 \ Σ̃) topology. Now we wish to infer
that the limit w belongs to the space H1

loc(R
n+1, p̃dz) as the closure of C∞ with respect to the weighted

norm (as defined in §2). Let us start with the easiest case when Σ̃ = ∅ and the limiting weight p̃ is
constant. Moreover, we know tha p̃k converge uniformly to p̃ on compact sets. Thus the sequence wk

converges weakly H1 to w on each compact subset. The convergence to the case when Σ̃ , ∅ requires a
more thorough analysis. In order to ensure that w ∈ H1

loc(R
n+1, p̃(y)dz) also when Σ̃ , ∅, one can argue

as follows: using the fact that µ is continuous with 1
C < µ < C, then fixed a compact set of Rn+1, we can

find positive constants ck,Ck (which are uniformly bounded from above and below by two constants
respectively 0 < c1 < c2 < +∞) such that

ckω̃εk(yk + rky) ≤ p̃k(x, y) ≤ Ckω̃εk(yk + rky) and
Ck

ck
→ 1.

where we have denoted
ω̃k =

ωεk

hk
. (4.4)

Now, reabsorbing the weights as in (B.30) and using the family of isometries given by

T k(wk) = (ω̃k(yk + rky))1/2 wk = Wk,

one obtains uniform boundedness of the Wk’s in H1
loc(R

n+1), and hence they weakly converge in the
same space to W. Coming back with the inverse isometry associated with the limit weight

T (w) = ( p̃(y))1/2w = W,

we obtain w ∈ H1
loc(R

n+1, p̃(y)dz).
Step 5: end of the proof. Next we wish to show that w solves the equation in (4.2) also across the
limiting characteristic hyperplane Σ̃. Indeed, using w ∈ H1

loc(R
n+1, p̃(y)dz) jointly with Eq (4.2) holding

in Rn+1 \ Σ, using that C∞c (BR \ Σ) is actually dense in H1(BR, p̃(y)dz) (all the weights here, including
the limit one, are super degenerate), as we have already remarked in (2.1). Eventually, one can reach
a contradiction by applying the suitable Liouville theorems in [17, 21] and Corollary 3.3 for the case
p̃(y) = ωa

1(y). �
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4.2. Local uniform bounds in C1,α spaces

As a further step we now provide C1,α uniform estimates.

Theorem 4.3. Let a ∈ (−∞, 1). As ε → 0, let {uε} be a family of solutions in B+
1 of (1.7) satisfying

boundary conditions (evenness)

ρa
ε(v

a
ε)

2∂yuε = 0 on ∂0B+
1 .

Let r ∈ (0, 1), β > 1, p1, p2 > d = n + 3 + (−a)+. Let ‖b‖L2p2 (B1,ω
a
ε(y)dz) ≤ b. Let Fε = (F1

ε , ..., F
n+1
ε ) with

the y-component vanishing on Σ: Fn+1
ε (x, 0) = Fy

ε(x, 0) = 0 in ∂0B+
1 . Let moreover A satisfy assumption

(HA) with α-Hölder continuous coefficients and α ∈ (0, 1 − n+3+(−a)+

p1
] ∩ (0, 1 − n+3+(−a)+

p2
]. Then, there is

a positive constant depending on a, n, β, p1, p2, b, α and r only such that

‖uε‖C1,α(B+
r ) ≤ c

(
‖uε‖Lβ(B+

1 ,ω
a
ε(y)dz) + ‖ fε‖Lp1 (B+

1 ,ω
a
ε(y)dz) + ‖Fε‖C0,α(B+

1 )

)
.

Proof. We wish to follow the same steps of proof of [21, Theorems 5.1 and 5.2]. Among others,
we have to deal with an additional difficulty; that is, our weights here do depend on the full variable
z = (x, y) and not on y only. For our purposes, we can take advantage of the fact that the ratio

γa
ε(x, y) =:

va
ε(x, y)
χa
ε(y)

=

∫ y

0
ρ−a
ε (s)µ−1(x, s)ds∫ y

0
ρ−a
ε (s)ds

(4.5)

is uniformly bounded in C0,α with respect to ε (just apply Lemma A.3, using the fact that µ−1 ∈ C0,α

since the matrix A possesses α-Hölder continuous coefficients). Hence, one can rewrite our operator as

div(ρa
ε(y)(va

ε(x, y))2A(x, y)∇uε) = div(ωa
ε(y)Aε(x, y)∇uε), (4.6)

where, up to constants, the new family of matrices is defined as

Aε(x, y) = (γa
ε(x, y))2A(x, y), (4.7)

with coefficients which are uniformly bounded in C0,α with respect to ε.
With these premises, we are now able to follow the construction made in [21, Theorems 5.1 and

5.2]. Just to give the idea, the contradiction argument uses two blow-up sequences

vk(z) =
η(ẑk + rkz)

Lkr1+α
k

(uk(ẑk + rkz) − uk(ẑk)) , wk(z) =
η(ẑk)

Lkr1+α
k

(uk(ẑk + rkz) − uk(ẑk)) ,

for z ∈ B(k) := B−ẑk
rk

. Hence, one has to work with

vk(z) = vk(z) − ∇vk(0) · z, wk(z) = wk(z) − ∇wk(0) · z,

or
vk(z) = vk(z) − ∇xvk(0) · x, wk(z) = wk(z) − ∇xwk(0) · x,

respectively when d(zk ,Σ)
rk
→ +∞ (in this case we choose ẑk = zk), or d(zk ,Σ)

rk
≤ c uniformly in k (in this

case we choose ẑk = (xk, 0) to be the projection on Σ of zk, where zk = (xk, yk)).
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Hence, reasoning as in the previous Theorem 4.2, one can characterize all possible rescalings of the
weights (in facts the possible scalings of weights pk and ωk are the same), and prove that the limit w is
an energy entire solution to the suitable limiting problem.

We remark that in order to show that the limit equation has a constant coefficient matrix one has to
reason as in [21, Remark 5.3], using the α-Hölder continuity of coefficients of the matrix (in this case
we will invoke the uniform bounds with respect to ε in C0,α for the coefficients of Aεk).

Nevertheless, we need also to deal with drift terms in the rescaled equations, and we wish to show
that they vanish once testing with the suitable test function φ supported in BR. We assume here that
hk = ν2−a

k (one of the possible cases). Hence, also in this case we use the fact that we know a priori
that the sequence {uk} is uniformly locally bounded in C0,β spaces, for any choice of β ∈ (0, 1) (follows
from Theorem 4.2). Reasoning as in [21, Remark 5.3], this gives the following energy estimate∫

Br

pk(z)|∇uk|
2 ≤

c
r2(1−β)

∫
B2r

pk(z). (4.8)

Hence, we can estimate

rk

∣∣∣∣∣∣
∫

BR

p̃k(z)bk(ẑk + rkz) · ∇wk(z)φ(z)

∣∣∣∣∣∣
≤

r1−α
k η(ẑk)

Lk
‖φ‖L∞(BR)

∫
BR

p̃k(z)|bk(ẑk + rkz)| · |∇uk(ẑk + rkz)|

≤
cr1−α

k

Lk

(∫
BR

p̃k(z)|bk(ẑk + rkz)|2
)1/2 (∫

BR

p̃k(z)|∇uk(ẑk + rkz)|2
)1/2

≤
cr1−α

k

Lk

(∫
BR

p̃k(z)
)1/2p′2

 1
rn+1

k hk

∫
BrkR(ẑk)

ρa
εk

(ζn+1)(va
εk

(ζ))2|bk(ζ)|2p2

1/2p2

·
c

r1−β
k

(∫
2BR

p̃k(z)
)1/2

≤
c
Lk

(
rk

νk

)1/p2
r(−a)+

k

ν−a
k

1/2p2

r
1
2

(
1−α− n+3+(−a)+

p2

)
k rβ−

1+α
2

k → 0

since Lk → +∞, νk ≤ rk, p2 > n + 3 + (−a)+, α ≤ 1 − n+3+(−a)+

p2
and choosing β > 1+α

2 . �

4.3. Local regularity for the auxiliary equation

The following is the main result of the paper (we have already stated it in a simplified version in
Theorem 1.6 in the introduction). Let a ∈ (−∞, 1), the matrix A written as in Notation (HA+) and let
uε be an odd energy solution to (1.2) in B+

1 ; that is,−div
(
ρa
εA∇uε

)
= ρa

ε fε + div
(
ρa
εFε

)
in B+

1

uε = 0 on ∂0B+
1 .

(4.9)

Let also va
ε be defined as in (1.6) in B+

1 . Then, we have already showed (in Proposition 2.10) that under
suitable integrability assumptions on the terms in the right hand side and on coefficients of the matrix
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A, then functions
wε =

uε
va
ε

are even energy solutions (for any R < 1) to Eq (2.8); that is,

−div
(
ρa
ε(v

a
ε)

2A∇wε

)
= ρa

ε(v
a
ε)

2

 f ε −
Fε · ∇va

ε

va
ε

 + div
(
ρa
ε(v

a
ε)

2Fε

)
+divx

(
ρa
ε(v

a
ε)

2(bÃ
ε + T ε)wε

)
− ρa

ε(v
a
ε)

2
(
(bÃ

ε + T ε) · bIεwε + (bÃ
ε + T ε) · ∇xwε

)
,

with boundary condition
ρa
ε(v

a
ε)

2∂ywε = 0 on ∂0B+
R,

and where we denote by

f ε =
fε
va
ε

, Fε =
Fε

va
ε

, bM
ε = M ·

∇xva
ε

va
ε

, and T ε =
T
ρa
εva
ε

,

(M is a general (n, n)-dimensional matrix).

Theorem 4.4. Let a ∈ (−∞, 1), the matrix A written as in Notation (HA+) and as ε → 0 let {uε} be a
family of solutions in B+

1 of (4.9).
1) Let r ∈ (0, 1), β > 1, p1, p2 >

n+3+(−a)+

2 , p3, p4 > n + 3 + (−a)+, and α ∈ (0, 2 − n+3+(−a)+

p1
] ∩ (0, 2 −

n+3+(−a)+

p2
] ∩ (0, 1 − n+3+(−a)+

p3
] ∩ (0, 1 − n+3+(−a)+

p4
]. Let also

‖(bÃ
ε + T ε) · bIε‖Lp2 (B+

1 ,ω
a
ε(y)dz) ≤ b1, ‖bÃ

ε + T ε‖Lp4 (B+
1 ,ω

a
ε(y)dz) ≤ b2.

Let us moreover take A with continuous coefficients. There is a positive constant depending on a, n, β,
p1, p2, p3, p4, b1, b2, α and r only such that functions

wε =
uε
va
ε

satisfy

‖wε‖C0,α(B+
r ) ≤ c

‖wε‖Lβ(B+
1 ,ω

a
ε(y)dz) +

∥∥∥∥∥∥ f ε −
Fε · ∇va

ε

va
ε

∥∥∥∥∥∥
Lp1 (B+

1 ,ω
a
ε(y)dz)

+ ‖Fε‖Lp3 (B+
1 ,ω

a
ε(y)dz)

 .
2) Let r ∈ (0, 1), β > 1, p1, p2 > n + 3 + (−a)+, and α ∈ (0, 1 − n+3+(−a)+

p1
] ∩ (0, 1 − n+3+(−a)+

p2
]. Let

Fε = (F
1
ε, ..., F

n+1
ε ) with the y-component vanishing on Σ: F

n+1
ε (x, 0) = F

y
ε(x, 0) = 0 in ∂0B+

1 . Let also

‖(bÃ
ε + T ε) · bIε‖Lp2 (B+

1 ,ω
a
ε(y)dz) ≤ b1, ‖bÃ

ε + T ε‖C0,α(B+
1 ) ≤ b2.

Let’s moreover take A with α-Hölder continuous coefficients. There is a positive constant depending
on a, n, β, p1, p2, b1, b2, α and r only such that functions

wε =
uε
va
ε

satisfy

‖wε‖C1,α(B+
r ) ≤ c

‖wε‖Lβ(B+
1 ,ω

a
ε(y)dz) +

∥∥∥∥∥∥ f ε −
Fε · ∇va

ε

va
ε

∥∥∥∥∥∥
Lp1 (B+

1 ,ω
a
ε(y)dz)

+ ‖Fε‖C0,α(B+
1 )

 .
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We remark that uniform estimates with respect to the regularization are optimal in C1,α-spaces
(in [21, Remark 5.4] we provided a counterexample which show that C2,α estimates could not be
uniform up to Σ as ε→ 0).

In order to prove our main result we have the following useful preliminary result on equations of
the form

− div
(
ρa
ε(v

a
ε)

2A∇uε
)

= ρa
ε(v

a
ε)

2Vuε + div
(
ρa
ε(v

a
ε)

2Fuε
)

in B1. (4.10)

Lemma 4.5. Let a ∈ (−∞, 1) and ε ≥ 0. Let u ∈ H1(B1, ω
a
ε(y)dz) be an energy solution to (4.10), where

V ∈ Lp1(B1, ω
a
ε(y)dz) with p1 >

d
2 =

n+3+(−a)+

2 and F ∈ Lp2(B1, ω
a
ε(y)dz) with p2 > d = n + 3 + (−a)+. Let

‖V‖Lp1 (B1,ω
a
ε(y)dz) ≤ b1, ‖F‖Lp2 (B1,ω

a
ε(y)dz) ≤ b2.

1) Then, for any 0 < r < 1 and β > 1 there exists a positive constant independent of ε (depending on
n, a, r, β, p1, p2, b1, b2), m1 >

d
2 and m2 > d such that

‖Vu‖Lm1 (Br ,ω
a
ε(y)dz) + ‖Fu‖Lm2 (Br ,ω

a
ε(y)dz) ≤ c‖u‖Lβ(B1,ω

a
ε(y)dz).

2) If moreover p1 > d = n + 3 + (−a)+ and F ∈ C0,α(B1) for some α ∈ (0, 1),

‖V‖Lp1 (B1,ω
a
ε(y)dz) ≤ b1, ‖F‖C0,α(B1) ≤ b2,

then for any 0 < r < 1 and β > 1 there exists a positive constant independent of ε (depending on n, a,
r, β, p1, α, b1, b2), and m1 > d such that

‖Vu‖Lm1 (Br ,ω
a
ε(y)dz) + ‖Fu‖C0,α(Br) ≤ c‖u‖Lβ(B1,ω

a
ε(y)dz).

Proof. The proof is done applying Moser iterations on a finite number of small enough balls which
cover Br. The radius of such balls is chosen in order to ensure coercivity of the quadratic forms.
Hence, using the fact that the weighted integrability of V and F is suitably large, by a finite number of
Moser iterations one can promote the integrability of u itself, up to guarantee that the products Vu and
Fu have the desired integrability (this type of argument is classic, see for instance [11, Section 8.4]).
Since the number of iterations is finite, one can control uniformly the constants in the iterative process,
proving point 1). At to point 2), thanks to point 1) we can apply Theorem 4.2 in order to obtain that
the solution is C0,α with a bound which is independent from ε. Hence, we obtain the second inequality
taking into account the Hölder continuity of F. �

A relevant consequence of this result is that, under suitable conditions on the 0-order terms and
divergence terms with the solution itself inside (the conditions stated in Theorem 4.4), we can treat
Vw and div(ρv2Fw) respectively as a fixed forcing term and a divergence term with a given field. As a
consequence, we obtain uniform local regularity estimates in Theorem 4.4 for solutions wε to (2.7) by
simply applying Theorems 4.2 and 4.3.

4.3.1. A criterion for local C1,α estimates

We would like to show an example of a set of hypothesis for which part 2) of our main Theorem 4.4
holds true; that is, local uniform C1,α estimates for the ratio of odd solutions and the fundamental ones.

We remark that, as a→ −∞, the decay of the data on Σ becomes stronger and stronger.
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Assumption 4.6 (C1,α). Let fε := ymax{1,1−a}gε with gε uniformly bounded in Lp(B+
1 , ω

a
ε(y)dz) as ε → 0

and
p > n + 3 + (−a)+.

Let Fε := ymax{1,1−a}Gε with Gε uniformly bounded in C0,α(B+
1 ) as ε→ 0 and

α > 1 −
1 + min{2, 2 − a}

n + 3 + (−a)+
.

Nevertheless, the matrix A, which satisfies Assumption (HA+), must also satisfy some regularity
assumptions: A ∈ C0,α(B+

1 ) with ∇xµ ∈ C0,α(B+
1 ) and T = yT̃ with T̃ ∈ C0,α(B+

1 ).

4.4. Local uniform bounds in Hölder spaces for odd solutions in the A2 case

Moreover, when the weight is locally integrable; that is, a ∈ (−1, 1), we obtain local estimates for
odd solutions working directly on the equation.

Theorem 4.7. Let a ∈ (−1, 1) and as ε→ 0 let {uε} be a family of solutions in B+
1 of either

− div
(
ρa
εA∇uε

)
= ρa

ε fε + div
(
ρa
εFε

)
(4.11)

satisfying the Dirichlet boundary condition

uε = 0 on ∂0B+
1 .

Let r ∈ (0, 1), β > 1, p1 >
n+1+a+

2 , p2 > n+1+a+ and α ∈ (0, 1)∩(0, 1−a)∩(0, 2− n+1+a+

p1
]∩(0, 1− n+1+a+

p2
].

Let moreover A satisfy assumption (HA) with continuous coefficients. There are constants depending
on a, n, β, p1, p2, α and r only such that

‖uε‖C0,α(B+
r ) ≤ c

(
‖uε‖Lβ(B+

1 ,ρ
a
ε(y)dz) + ‖ fε‖Lp1 (B+

1 ,ρ
a
ε(y)dz) + ‖Fε‖Lp2 (B+

1 ,ρ
a
ε(y)dz)

)
.

Proof. The proof is obtained by contradiction following the very same passages of [21, Theorem 4.1],
observing that in presence of the zero Dirichlet boundary condition at Σ we obtain a contradiction by
applying the Liouville Theorem 3.1. The blow-up sequences invoked are centered in points ẑk ∈ B+ =

B 1+r
2
∩ {y ≥ 0}; that is,

vk(z) =
(ηuk)(ẑk + rkz) − (ηuk)(ẑk)

Lkrαk
, wk(z) =

η(ẑk)(uk(ẑk + rkz) − uk(ẑk))
Lkrαk

,

with
z ∈ B(k) :=

B − ẑk

rk
.

Moreover, if yk/rk → +∞ (where zk = (xk, yk)), then we choose ẑk = zk, while if yk/rk ≤ c uniformly,
then we choose ẑk = (xk, 0). In this second case, we remark that vk and wk are antisymmetric with
respect to {y = 0} so that the limit w will be odd in y. �
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A. Some special functions

In this appendix we are going to state and prove some technical results which will allow us to
compare, from the regularity point of view, the variable coefficient case with the constant one.

Remark A.1. Let a ∈ (−∞, 1), ε ≥ 0. Then the family of functions

ψa
ε(y) :=

yρ−a
ε (y)∫ y

0
ρ−a
ε (s)ds

(A.1)

are monotone in y and uniformly bounded in L∞(B+
1 ) by a constant which does not depend on ε. In

fact, denoting t = y/ε, we have

ψa
ε(y) = ψa

1

(y
ε

)
= ψa

1 (t) =
t(1 + t2)−a/2∫ t

0
(1 + s2)−a/2ds

.

The latter function is continuous and monotone nondecreasing if a < 0 and nonincreasing if a ∈ (0, 1).
Since ψa

1 has limit 1 as t → 0 and limit 1 − a as t → +∞, then

sup
t>0

ψa
1(t) = max{1, 1 − a} and inf

t>0
ψa

1(t) = min{1, 1 − a}.

Finally, note that the family ψa
ε can not be equicontinuous, nor uniformly bounded in C0,α(B+

1 ), while
it enjoys the following property:

∃c > 0 : ∀ε ∈ [0, ε0) , ‖ψa
ε‖Lip(B1∩{y>

√
ε}) < c , (A.2)

due to the fact that ψa
1 is bounded, has a finite limit as t → +∞ and its derivative vanishes as 1/t2.

Lemma A.2. Let a ∈ (−∞, 1), ε ≥ 0, α ∈ (0, 1) and let g(x, y, s) ∈ C0,α
x,y (B+

1 ) uniformly in s ∈ [0, y],
such that |g(x, y, s)| ≤ c|y|α for (x, y) ∈ B+

1 uniformly in s ∈ [0, y]. Then the family of functions

Gε(x, y) =

∫ y

0
ρ−a
ε (s)g(x, y, s)ds∫ y

0
ρ−a
ε (s)ds

is uniformly bounded in C0,α(B+
1 ) by a constant which does not depend on ε.
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Proof. We remark that the proof follows some ideas of the proof in [21, Lemma 7.5], where the case
ε = 0 is done. The uniform Hölder continuity in the x-variable is trivial. Hence, fixed 0 < δ < 1, let us
consider the following two sets

I1 = {(y1, y2) : 0 ≤ y1 ≤ y2 < 1, y2 − y1 ≥ δy2}

and
I2 = {(y1, y2) : 0 ≤ y1 ≤ y2 < 1, y2 − y1 < δy2}.

If we consider (y1, y2) ∈ I1, using that for i = 1, 2, in the interval (0, yi) it holds |g(x, yi, s)| ≤ cyαi and
thanks to the inequalities (y2 − y1)α ≥ δαyα2 ≥ δ

αyαi , then

|Gε(x, y1) − Gε(x, y2)|
(y2 − y1)α

≤
1

(y2 − y1)α

2∑
i=1

|Gε(x, yi)|

≤
c
δα

2∑
i=1

yαi
∫ yi

0
ρ−a
ε (s)

yαi
∫ yi

0
ρ−a
ε (s)

=
2c
δα
.

If we consider (y1, y2) ∈ I2, then

|Gε(x, y1) − Gε(x, y2)|
(y2 − y1)α

≤
1

(y2 − y1)α

∫ y2

0
ρ−a
ε (s)|g(x, y2, s) − g(x, y1, s)|∫ y2

0
ρ−a
ε (s)

+
1

(y2 − y1)α

∫ y2

y1
ρ−a
ε (s)|g(x, y1, s)|∫ y2

0
ρ−a
ε (s)

+
1

(y2 − y1)α

(∫ y1

0
ρ−a
ε (s)|g(x, y1, s)|

) (∫ y2

y1
ρ−a
ε (s)

)
(∫ y1

0
ρ−a
ε (s)

) (∫ y2

0
ρ−a
ε (s)

)
= J1 + J2 + J3.

Hence, J1 can be bounded using the fact that |g(x, y2, s)−g(x, y1, s)| ≤ c(y2−y1)α. Working on J2, there
exists y1 ≤ ξ ≤ y2 such that

J2 ≤ c(y2 − y1)1−α ρ
−a
ε (ξ)yα1∫ y2

0
ρ−a
ε (s)

≤ c
(
y2 − y1

y2

)1−α y2ρ
−a
ε (ξ)∫ y2

0
ρ−a
ε (s)

≤ cδ1−α max{1, (1 − δ)−a}
y2ρ

−a
ε (y2)∫ y2

0
ρ−a
ε (s)

using the fact that y2 − y1 < δy2, the inequalities

1 − δ <
y1

y2
≤
ξ

y2
≤ 1,
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and the fact that ρ−a
ε (ξ) ≤ max{1, (1 − δ)−a}ρ−a

ε (y2) (easy to check). Eventually, recalling y2/ε = t ∈
[0,+∞), we have already remarked that the function defined in (A.1) is bounded uniformly in ε

y2ρ
−a
ε (y2)∫ y2

0
ρ−a
ε (s)

=
t(1 + t2)−a/2∫ t

0
(1 + s2)−a/2

= ψ(t) ≤ max{1, 1 − a}.

With analogous computations we can bound also J3. �

Proposition A.3. Let a ∈ (−∞, 1), ε ≥ 0, α ∈ (0, 1) and let γ ∈ C0,α(B+
1 ). Then the family of functions

Gε(x, y) =

∫ y

0
ρ−a
ε (s) (γ(x, s) − γ(x, 0)) ds∫ y

0
ρ−a
ε (s)ds

is uniformly bounded in C0,α(B+
1 ) by a constant which does not depend on ε.

Proof. Just notice that, since g(x, y, s) := γ(x, s)−γ(x, 0) for s ≤ y, g satisfies conditions of the previous
Lemma A.2. Indeed is α-Hölder continuous in (x, y) uniformly in s ≤ y and

|g(x, y, s)| = |γ(x, s) − γ(x, 0)| ≤ c|s|α ≤ c|y|α.

�

Proposition A.4. Let a ∈ (−∞, 1), ε ≥ 0, α ∈ (0, 1) and let γ ∈ C1,α(B+
1 ) with ∂yγ(x, 0) ∈ C1,α(B+

1 ).
Consider the family of functions

Gε(x, y) =

∫ y

0
ρ−a
ε (s) (γ(x, s) − γ(x, 0)) ds∫ y

0
ρ−a
ε (s)ds

.

Then there exists c > 0 such that, for every ε ∈ [0, ε0], Gε is uniformly bounded in C1,α(B1 ∩ {y ≥
√
ε})

by c.

Proof. One can rewrite our function as

Gε(x, y) =

∫ y

0
ρ−a
ε (s)

(
γ(x, s) − γ(x, 0) − ∂yγ(x, 0)s

)
ds∫ y

0
ρ−a
ε (s)ds

+ ∂yγ(x, 0)

∫ y

0
ρ−a
ε (s)s ds∫ y

0
ρ−a
ε (s)ds

=

∫ y

0
ρ−a
ε (s)

(∫ s

0
(∂yγ(x, τ) − ∂yγ(x, 0))dτ

)
ds∫ y

0
ρ−a
ε (s)ds

+ ∂yγ(x, 0)

∫ y

0
ρ−a
ε (s)s ds∫ y

0
ρ−a
ε (s)ds

= Hε(x, y) + ∂yγ(x, 0)

∫ y

0
ρ−a
ε (s)s ds∫ y

0
ρ−a
ε (s)ds

.

First we show that the second term has the desired property uniformly in ε. At first we remark that
∂yγ(x, 0) ∈ C1,α(B+

1 ). Now consider that the family of functions

ξa
ε(y) :=

∫ y

0
ρ−a
ε (s)s ds∫ y

0
ρ−a
ε (s)ds
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is uniformly bounded in L∞(B+
1 ). In fact, denoting t = y/ε,

ξa
ε(y) = εξa

1(t) = ε

∫ t

0
(1 + s2)−a/2s ds∫ t

0
(1 + s2)−a/2ds

= y
ξa

1(t)
t
,

is bounded in B+
1 (uniformly with respect to ε ≥ 0). In fact, the first factor y is obviously bounded in

[0, 1] and the second one is bounded for t ∈ [0,+∞). Now, let us consider the derivative in y,

∂yξ
a
ε(y) = (ξa

1)′(t) = ψa
1(t)

1 −
∫ t

0
(1 + s2)−a/2s ds

t
∫ t

0
(1 + s2)−a/2ds

 .
We claim that ∂yξ

a
ε enjoys the property stated in (A.2), being the product of two functions, both

bounded, having a finite limit as t → +∞ and derivatives vanishing as 1/t2. .
Eventually we considerHε. Computing the gradient ∇xHε, we obtain

∇xHε(x, y) =

∫ y

0
ρ−a
ε (s) (γ̃(x, s) − γ̃(x, 0)) ds∫ y

0
ρ−a
ε (s)ds

where
γ̃(x, s) = ∇xγ(x, s) − ∇x∂yγ(x, 0)s ∈ C0,α(B+

1 ),

and satisfies the assumptions in Proposition A.3.

It remains to consider the partial derivative in y ofHε; that is,

∂yHε(x, y) =
yρ−a

ε (y)∫ y

0
ρ−a
ε (s)ds

·

∫ y

0
ρ−a
ε (s)

(
1
y

∫ y

s
(∂yγ(x, τ) − ∂yγ(x, 0))dτ

)
ds∫ y

0
ρ−a
ε (s)ds

= ψa
ε(y) · Iε(y).

By Remark A.1, the family of functions ψa
ε enjoy the desired propery (A.2). Now we wish to conclude

that Iε is uniformly bounded in C0,α(B+
1 ). To this aim, it is enough to prove that the function

g(x, y, s) =
1
y

∫ y

s
(∂yγ(x, τ) − ∂yγ(x, 0))dτ

satisfies conditions in Lemma A.2. Using the Hölder continuity of ∂yγ, obviously

|g(x, y, s)| ≤
1
y

∫ y

s
|∂yγ(x, τ) − ∂yγ(x, 0)|dτ ≤

c|y|α(y − s)
y

≤ c|y|α.

The Hölder continuity of g in the x-variable is trivial. Nevertheless, following the reasonings in the
proof of Lemma A.2, fixed 0 < δ < 1, let us consider the following two sets

I1 = {(y1, y2) : 0 ≤ y1 ≤ y2 < 1, y2 − y1 ≥ δy2}

and
I2 = {(y1, y2) : 0 ≤ y1 ≤ y2 < 1, y2 − y1 < δy2}.
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If we consider (y1, y2) ∈ I1, using that for i = 1, 2 it holds |g(x, yi, s)| ≤ cyαi and thanks to the inequalities
(y2 − y1)α ≥ δαyα2 ≥ δ

αyαi , then

|g(x, y1, s) − g(x, y2, s)|
(y2 − y1)α

≤
1

(y2 − y1)α

2∑
i=1

|g(x, yi, s)|

≤
c
δα

2∑
i=1

yαi
yαi

=
2c
δα
.

If we consider (y1, y2) ∈ I2, then, using the fact that y2 − y1 < δy2

|g(x, y1, s) − g(x, y2, s)|
(y2 − y1)α

≤
1

(y2 − y1)αy2

∫ y2

y1

|∂yγ(x, τ) − ∂yγ(x, 0)|dτ

+
1

(y2 − y1)α

∣∣∣∣∣ 1
y2
−

1
y1

∣∣∣∣∣ ∫ y1

s
|∂yγ(x, τ) − ∂yγ(x, 0)|dτ

≤ cδ1−α + c
δ1−α

1 − δ
.

�

B. Quadratic forms, stability and isometries

In this appendix we are going to prove some useful inequalities, needed when working in weighted
Sobolev spaces, specially whenever the weight does not belong to the A2 class. These results will be
the key of the validity of Liouville type theorems in Section 3.

B.1. Hardy type inequalities

At first, we deal with the validity of Hardy (trace) type inequalities and their spectral stability. These
results will be the key tools in order to establish a class of Liouville theorems contained in this section.
Let Rn+1

+ = Rn+1 ∩ {y > 0}, B+
1 = B1 ∩ {y > 0} and S n

+ = S n ∩ {y > 0}. We define the space H̃1(B+
1 ) as

the closure of C∞c (B
+

1 \ Σ) with respect to the norm∫
B+

1

|∇v|2
1/2

.

Then, we remark that the following trace Poincaré inequality holds

c
∫

S n
+

v2 ≤

∫
B+

1

|∇v|2. (B.1)

We first state the following Hardy inequality.

Lemma B.1 (Hardy inequality). Let v ∈ H̃1(B+
1 ). Then

1
4

∫
B+

1

v2

y2 ≤

∫
B+

1

|∇v|2. (B.2)
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Proof. The proof is an easy exercise based on the well known Hardy inequality on the half space

1
4

∫
Rn+1

+

v2

y2 ≤

∫
Rn+1

+

|∇v|2,

and using the Kelvin transform. �

Next, we will need a boundary version of the Hardy inequality

Lemma B.2 (Boundary Hardy inequality). There exists c0 > 0 such that, for every v ∈ H̃1(B+
1 ), there

holds

c0

∫
S n

+

v2

y
≤

∫
B+

1

|∇v|2. (B.3)

Proof. By taking the harmonic replacement of v on B+
1 , we may assume without loss of generality that

∆v = 0 in B+
1 . Now we consider the following inversion (stereographic projection) Φ : B+

1 ⊂ R
n+1 →

Rn+1 such that
Φ : z = (x, y) = (x1, ..., xn, y) 7→ z̃ = (x̃, ỹ) = (x̃1, ..., x̃n, ỹ),

with

Φ(z) =
z + e1

|z + e1|
2 −

e1

2
and Φ−1(z̃) =

z̃ + e1
2

|z + e1
2 |

2 − e1.

This map is conformal and such that Φ(B+
1 ) = {x̃1 > 0} ∩ {ỹ > 0} and Φ(S n

+) = {x̃1 = 0} ∩ {ỹ > 0}.
Hence, the Kelvin transform

w(z̃) = Kv(z̃) :=
1

|z̃ + e1
2 |

n−1 v(Φ−1(z̃))

is harmonic in {x̃1 > 0} ∩ {ỹ > 0} and such that∫
B+

1

|∇v|2dz =

∫
{x̃1>0}∩{ỹ>0}

|∇w|2dz̃.

Using a fractional Hardy inequality (see [2]) on the n-dimensional half space {x̃1 = 0} ∩ {ỹ > 0}, up to
extending the function w = 0 in {x̃1 = 0} ∩ {ỹ < 0}, we have∫

{x̃1>0}∩{ỹ>0}
|∇w|2dz̃ ≥ c

"
({x̃1=0}∩{ỹ>0})2

|w(ζ̃1) − w(ζ̃2)|2

|ζ̃1 − ζ̃2|
n+1

dζ̃1dζ̃2

≥ c
∫
{x̃1=0}∩{ỹ>0}

w2(z̃)
ỹ

dz̃.

Finally we compute∫
S n

+

v2(z)
y

dσ(z)

=

∫
{x̃1=0}∩{ỹ>0}

w2(z̃)
ỹ

∣∣∣∣∣z̃ +
e1

2

∣∣∣∣∣2(n−1)+2

· |Φ−1
x̃2

(z̃) ∧ Φ−1
x̃3

(z̃) ∧ ... ∧ Φ−1
x̃n

(z̃) ∧ Φ−1
ỹ (z̃)|dz̃

≤

∫
{x̃1=0}∩{ỹ>0}

w2(z̃)
ỹ

dz̃.

�
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B.2. A stability result

The following Lemma is a stability result for quadratic forms which is usueful for our Liouville
theorems.

Lemma B.3. Let {Qk}k∈N be a family of quadratic forms Qk : H̃1(B+
1 )→ [0,+∞) defined by

Qk(v) =

∫
B+

1

|∇v|2 +

∫
B+

1

Vkv2 +

∫
S n

+

Wkv2.

Assume that the family {Qk} satisfies the following conditions:

i) |Wk| ≤ c on S n
+ and |Vk| ≤

c
y2 in B+

1 uniformly on k ∈ N;
ii) there exists a constant C > 0 which does not depend on k ∈ N such that for any v ∈ H̃1(B+

1 )

1
C
‖v‖2H̃1(B+

1 ) ≤ Qk(v) ≤ C‖v‖2H̃1(B+
1 ); (B.4)

iii) Vk → V in B+
1 and Wk → W on S n

+ pointwisely as k → +∞, where

Q(v) =

∫
B+

1

|∇v|2 +

∫
B+

1

Vv2 +

∫
S n

+

Wv2,

with Q : H̃1(B+
1 )→ [0,+∞) satisfying |W | ≤ c on S n

+, |V | ≤ c
y2 in B+

1 and

1
C
‖v‖2H̃1(B+

1 ) ≤ Q(v) ≤ C‖v‖2H̃1(B+
1 ).

Let
λk = min

v∈H̃1(B+
1 )\{0}

Qk(v)∫
S n

+

v2
, λ = min

v∈H̃1(B+
1 )\{0}

Q(v)∫
S n

+

v2
.

Then, λk → λ.

Proof. Let {vk} ⊂ H̃1(B+
1 ) \ {0} be a sequence of minimizers for λk; that is, such that

λk = Qk(vk) =

∫
B+

1

|∇vk|
2 +

∫
B+

1

Vkv2
k +

∫
S n

+

Wkv2
k ,

and
∫

S n
+

v2
k = 1. Since by compact embedding H̃1(B+

1 ) ↪→ L2(S n
+) the minimum

min
v∈H̃1(B+

1 )\{0}

‖v‖2
H̃1(B+

1 )∫
S n

+

v2
=
‖u‖2

H̃1(B+
1 )∫

S n
+

u2
= ν > 0

is achieved by u ∈ H̃1(B+
1 ) \ {0} and it is strictly positive by the trace Poincaré inequality, then there

exists a positive constant C independent from k such that

ν

C
≤ λk ≤ Cν.
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Moreover, we have that
1
C
‖vk‖

2
H̃1(B+

1 ) ≤ λk ≤ Cν

and so there exists v ∈ H̃1(B+
1 ) such that vk ⇀ v in H̃1(B+

1 ) and, up to passing to a subsequence, vk → v
in L2(S n

+). Moreover, the limit is non trivial by the condition
∫

S n
+

v2
= 1.

We want to prove that the convergence is strong in H̃1(B+
1 ). Testing the eigenvalue equation solved

by vk with vk − v, we have∫
B+

1

∇vk · ∇(vk − v) +

∫
B+

1

Vkvk(vk − v) +

∫
S n

+

Wkvk(vk − v) = λk

∫
S n

+

vk(vk − v).

Using the fact that |Wk|, |λk| ≤ c uniformly in k, the strong convergence and the normalization in L2(S n
+),

by the Hölder inequality the terms over the half sphere S n
+ go to 0 in the limit. So∫

B+
1

∇vk · ∇(vk − v) +

∫
B+

1

Vkvk(vk − v)→ 0. (B.5)

Hence,

Qk(vk − v) =

∫
B+

1

|∇(vk − v)|2 +

∫
B+

1

Vk(vk − v)2 +

∫
S n

+

Wk(vk − v)2

=

∫
B+

1

∇vk · ∇(vk − v) +

∫
B+

1

Vkvk(vk − v) −
∫

B+
1

∇v · ∇(vk − v)

−

∫
B+

1

Vv(vk − v) +

∫
B+

1

(V − Vk)v(vk − v) +

∫
S n

+

Wk(vk − v)2 → 0. (B.6)

In fact, the sum of the first two terms goes to 0 by (B.5), the sum of the second two by weak convergence
in H̃1(B+

1 ). The third term is such that∫
B+

1

(V − Vk)v(vk − v) ≤
∫

B+
1

(V − Vk)v
2
1/2 ∫

B+
1

(V − Vk)(vk − v)2

1/2

≤ c
∫

B+
1

(V − Vk)v
2
1/2

→ 0.

We used that Vk → V , the fact that |Vk − V | ≤ c
y2 and the Hardy inequality to ensure the dominated

convergence theorem. Eventually the last term in (B.6) goes to 0 by the strong convergence in L2(S n
+).

Hence we obtain the strong convergence by (B.4).
It is easy to see that Qk(vk) → Q(v). This is enough to conclude because if we consider ṽ the

normalized in L2(S n
+) minimizer of λ, since it is competitor for the minimization of any Qk, then

λk = Qk(vk) ≤ Qk(ṽ),

and since Qk(vk) → Q(v) and Qk(ṽ) → Q(ṽ), then by Q(v) ≤ Q(ṽ), and by the minimality of v, we
finally obtain that v = ṽ with λk → λ. �
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B.3. Quadratic forms for the odd case

Let a ∈ (−∞, 1), ε ≥ 0 and consider a function u ∈ C∞c (B
+

1 \Σ) and define v = (ρa
ε)

1/2u ∈ C∞c (B
+

1 \Σ).
Let us define the quadratic form∫

B+
1

ρa
εu

2 = Qρa
ε
(v) =

∫
B+

1

|∇v|2 +

∫
B+

1

Vρa
ε
v2 +

∫
S n

+

Wρa
ε
v2, (B.7)

where

Vρa
ε
(y) =

(ρa
ε)
′′

2ρa
ε

−

(
(ρa

ε)
′

2ρa
ε

)2

=
a[(a − 2)y2 + 2ε2]

4(ε2 + y2)2

and

Wρa
ε
(y) = −

(ρa
ε)
′y

2ρa
ε

= −
ay2

2(ε2 + y2)
.

Let
Qa(v) =

∫
B+

1

|∇v|2 +

∫
B+

1

Vav2 +

∫
S n

+

Wav2,

with Va(y) =
a(a−2)

4y2 = Vρa
0
(y) and Wa(y) = −a

2 = Wρa
0
(y). Eventually consider a sequence εk → 0 as

k → +∞ and define ρk = ρa
εk

. Let us recall Qk = Qρk and Q = Qa.

Lemma B.4. Under the previous hypothesis, the family {Qk} = {Qρεk
} defined in (B.7) and its limit Q

satisfy the conditions in Lemma B.3.

Proof. Condition i) is trivially satisfied. Moreover, combining i), the trace Poincaré and the Hardy
inequalities, we easily obtain the upper bound in ii) for any k ∈ N with a constant independent on εk;
that is,

Qk(v) ≤ c‖v‖2H̃1(B+
1 ).

Let us consider Q = Qa and let us define u = y−a/2v ∈ C∞c (B
+

1 \ Σ).

Qa(v) =

∫
B+

1

|∇v|2 +

(
a2

4
−

a
2

) ∫
B+

1

v2

y2 −
a
2

∫
S n

+

v2 (B.8)

=

∫
B+

1

|∇v|2 +

(
a2

4
−

a
2

) ∫
B+

1

v2

y2 −
a
2

∫
B+

1

div
(
v2

y
~en

)
=

∫
B+

1

ya|∇u|2.

First of all we notice that if a ≤ 0 the lower bound follows trivially. So we can suppose that a ∈ (0, 1).
Since for a , 1, (a2

4 −
a
2 ) > −1

4 , hence by the Hardy inequality in (B.2), the quantity

Ga(v) =

∫
B+

1

|∇v|2 +

(
a2

4
−

a
2

) ∫
B+

1

v2

y2

defines an equivalent norm in H̃1(B+
1 ). Hence by the compact embedding H̃1(B+

1 ) ↪→ L2(S n
+) we have

that the minimum in
ξ(a) = min

v∈H̃1(B+
1 )\{0}

Ga(v)∫
S n

+

v2
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is achieved. In fact, considering a minimizing sequence, we can take it such that
∫

S n
+

v2
k = 1 and

also such that vk ∈ C∞c (B
+

1 \ Σ). So it is uniformly bounded in H̃1(B+
1 ) and vk ⇀ v ∈ H̃1(B+

1 ) with
Ga(vk)→ ξ(a). Moreover the convergence is strong in L2(S n

+) by compact embedding. Since
∫

S n
+

v2
k = 1,

we also obtain convergence of the H̃1
0-norms of the vk to that of the limit, yielding strong convergence

in H̃1(B+
1 ). In fact, by the lower semicontinuity of the norm

ξ(a) ≤
Ga(v)∫

S n
+

v2 ≤ lim inf
k→+∞

Ga(vk)∫
S n

+

v2
k

= ξ(a).

Obviously by the condition
∫

S n
+

v2
= 1 the limit v is not trivial. This proves that v achieves the minimum.

Moreover, defining

λ(a) = min
v∈H̃1(B+

1 )\{0}

Qa(v)∫
S n

+

v2
= ξ(a) −

a
2
≥ 0, (B.9)

we want to prove that actually λ(a) > 0. First of all, such a minimum is nonnegative since the
minimizing sequence can be taken in C∞c (B

+

1 \ Σ) and so the equalities in (B.8) give this condition. By
contradiction let λ(a) = 0. Hence the minimizing sequence is such that Qa(vk) → 0. Defining
uk = y−a/2vk, one has

∫
B+

1
ya|∇uk|

2 → 0. Moreover, the strong convergence in H̃1(B+
1 ) gives the almost

everywhere convergence of ∇vk → ∇v which of course implies that ∇uk → ∇(y−a/2v) almost
everywhere in B+

1 . Hence, since ∇(y−a/2v) = 0 almost everywhere, v = cya/2, but ∇v does not belong to
L2(B+

1 ). This is a contradiction. So λ(a) > 0. So we have the inequality

Qa(v) ≥ λ(a)
∫

S n
+

v2,

which says that

Qa(v) ≥
λ(a)

a
2 + λ(a)

∫
B+

1

|∇v|2 +

(
a2

4
−

a
2

) ∫
B+

1

v2

y2

 ,
and by the equivalence of the norms we obtain the result for a constant which depends on a and λ(a).
Eventually, we have proved that also Qa is an equivalent norm on H̃1(B+

1 ).
In order to find a lower bound for Qk which is uniform in k, it is enough to remark that if a ≥ 0,

then Qk ≥ Qa. If a < 0, then one can check that

Qk(v) ≥
∫

B+
1

|∇v|2 −
∫

B+
1

a
4(a − 4)

v2

y2 ,

with a
4(a−4) <

1
4 and hence by the Hardy inequality in (B.2) we have also in this case an equivalent

norm. �

Let us recall the definition of H̃1(B+
1 , ρ

a
ε(y)dz) as the closure of C∞c (B

+

1 \ Σ) with respect to the norm∫
B+

1

ρa
ε|∇u|2.
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Lemma B.5. Let a ∈ (−∞, 1), ε ≥ 0 and u ∈ H̃1(B+
1 , ρ

a
ε(y)dz). Then the following inequalities hold

true for a positive constant c independent of ε ∈ [0, 1]

c
∫

B+
1

ρa
εu

2 ≤

∫
B+

1

ρa
ε|∇u|2, (B.10)

c
∫

S n
+

ρa
εu

2 ≤

∫
B+

1

ρa
ε|∇u|2, (B.11)

c
∫

B+
1

ρa
ε

y2 u2 ≤

∫
B+

1

ρa
ε|∇u|2, (B.12)

c
∫

S n
+

ρa
ε

y
u2 ≤

∫
B+

1

ρa
ε|∇u|2, (B.13)

∫
B+

1

(ρa
ε)

2∗/2|u|2
∗

2/2∗

≤ c
∫

B+
1

ρa
ε|∇u|2, (B.14)

which are respectively the Poincaré inequality, the trace Poincaré inequality, the Hardy inequality, the
trace Hardy inequality and a Sobolev type inequality.

Proof. The proof is performed for functions u ∈ C∞c (B
+

1 \ Σ) and then extending the inqualities to
u ∈ H̃1(B+

1 , ρ
a
ε(y)dz) by a density argument. By Lemma B.4 there exists a positive constant uniform in

ε such that ∫
B+

1

ρa
ε|∇u|2 = Qρa

ε
((ρa

ε)
1/2u) ≥ c

∫
B+

1

|∇((ρa
ε)

1/2u)|2, (B.15)

then all the inequalities are obtained by the validity of them in H̃1(B+
1 ). �

B.4. Quadratic forms for the auxiliary weights

Consider now a ∈ (−∞, 1) and define

πa
ε(y) =

(
(1 − a)

∫ y

0
ρ−a
ε (s)ds

)2

,

and
ωa
ε(y) = ρa

ε(y)πa
ε(y).

We observe that this weight is super degenerate; that is, at Σ

ωa
ε(y) ∼

|y|2−a if ε = 0
|y|2 if ε > 0,

with 2 − a ∈ (1,+∞).
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B.4.1. Super singular weights (ωa
ε)
−1

Let us consider u ∈ C∞c (B
+

1 \ Σ) and define v = (ωa
ε)
−1/2u ∈ C∞c (B

+

1 \ Σ). Then we consider the
quadratic form ∫

B+
1

(ωa
ε)
−1|∇u|2 = Qωa

ε
(v) =

∫
B+

1

|∇v|2 +

∫
B+

1

Vωa
ε
v2 +

∫
S n

+

Wωa
ε
v2, (B.16)

with
Vωa

ε
=

1
4

[(logωa
ε)
′]2 −

1
2

(logωa
ε)
′′,

and
Wωa

ε
=

1
2

(logωa
ε)
′y.

Hence
Vωa

0
(y) =

(2 − a)(4 − a)
4y2 , and Wωa

0
(y) =

2 − a
2

.

Eventually consider a sequence εk → 0 as k → +∞ and define ωk = ωa
εk

. Let us name Qk = Qωk and
Q = Qωa

0
. In what follows it would be useful to consider for t > 0, the continuous function defined in

(A.1); that is,

ψ(t) =
t(1 + t2)−a/2∫ t

0
(1 + s2)−a/2ds

,

which is monotone nondecreasing if a < 0 and nonincreasing if a ∈ (0, 1). Since ψ has limit 1 as t → 0
and limit 1 − a as t → +∞, then

sup
t>0

ψ(t) = max{1, 1 − a} and inf
t>0
ψ(t) = min{1, 1 − a}.

Let us finally define for any k ∈ N

Q̃k(v) = Qk(v) +

(
−

a
2

)+
∫

S n
+

v2. (B.17)

First we need the following technical result.

Lemma B.6. Let us define for a ∈ (−∞, 1) and t ∈ [0,+∞) the function

Φa(t) =


√

2t(1 + t2)−a/2∫ t

0
(1 + s2)−a/2

+
at2

√
2(1 + t2)


2

+
at2[(2 − a)t2 − 2]

4(1 + t2)2 . (B.18)

Hence there exists a positive constant c1(a) > −1
4 such that

inf
t>0

Φa(t) = c1(a). (B.19)

Proof. Step 1: a ∈ (−3, 1).
Whenever 0 ≤ a < 1, there holds

min
t>0

fa(t) = min
t>0

at2[(2 − a)t2 − 2]
4(1 + t2)2 = fa

(
1

√
3 − a

)
=

a
4(a − 4)

> −
1
4
.
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Moreover, if a < 0,

inf
t>0

fa(t) = lim
t→+∞

fa(t) =
a(2 − a)

4
.

Hence, whenever 1 −
√

2 < a < 0, then, the infimum remains strictly larger that −1/4.

Moreover, for a < 0, then fa(t) ≥ 0 in
[
0,

√
2

2−a

]
. From now on we will consider a < 0 and t >

√
2

2−a .
Now, let us compute the square in (B.18), and add 1/4; that is

Φa(t) +
1
4

=
2t2(1 + t2)−a(∫ t

0
(1 + s2)−a/2

)2 +
2at3(1 + t2)−1−a/2∫ t

0
(1 + s2)−a/2

+
a2t4

2(1 + t2)2 + fa(t) +
1
4

=
2t3(1 + t2)−1−a/2(∫ t

0
(1 + s2)−a/2

)2 · ga(t) +
t4(a2 + 2a + 1) + t2(−2a + 2) + 1

4(1 + t2)2

= Ia(t) + Ja(t),

with

ga(t) =

(
(1 + t2)1−a/2

t
+ a

∫ t

0
(1 + s2)−a/2

)
.

It is easy to see that

inf
t>0

Ja(t)

> 0 if a , −1
= 0 if a = −1.

Nevertheless, since

g′a(t) =
(1 + t2)−a/2

t2 (t2 − 1),

then ga has its global minimum in t = 1, and hence it is easy to see that

ga(1) = 21−a/2 + a
∫ 1

0
(1 + s2)−a/2 ≥ 21−a/2 + a

∫ 1

0
(1 + s)−a/2 = 21−a/2 2 + a

2 − a
−

2a
2 − a

> 0,

surely if a > −3. Hence, when a ∈ (−3,−1) ∪ (−1, 0), we have the result since inft>0 Ia(t) ≥ 0 and
inft>0 Ja(t) > 0. In the case a = −1 one can see that

inf
t>0

I−1(t) = min
t>0

I−1(t) > 0,

using the explicit form

I−1(t) =
2t3(1 + t2)−1−a/2

1
4

(
t
√

t2 + 1 + log(
√

t2 + 1 + t)
)2

(
(1 + t2)1−a/2

t
−

1
2

(
t
√

t2 + 1 + log(
√

t2 + 1 + t)
))
.

Step 2: a ≤ −3.
We can express

Φa(t) +
1
4

=
t4

(1 + t2)2

2
 (1 + t2)−

a
2 +1

t
∫ t

0
(1 + s2)−

a
2

+
a
2


2

+
a(2 − a)

4
−

a
2t2 +

1
4

(1 + t2)2

t4

 .
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Hence

Φ̃a(t) =
(1 + t2)2

t4

(
Φa(t) +

1
4

)
,

and γa(t) = Φ̃a(t/
√
−a) − 0.001

4
(−a+t2)2

t4 ; that is,

γa(t) = 2a2

 (1 + t2
−a )−

a
2 +1

t
∫ t

0
(1 + s2

−a )−
a
2

−
1
2


2

+
a(2 − a)

4
+

a2

2t2 +
0.999

4
(−a + t2)2

t4 . (B.20)

First need to highlight some fundamental properties of the functions

wa(t) =
(1 + t2

−a )−
a
2 +1

t
∫ t

0
(1 + s2

−a )−
a
2

.

As a→ −∞ one has the pointwise convergence wa(t)→ v(t) in (0,+∞) (which is however uniform on
compact subsets) with

v(t) =
e

t2
2

t
∫ t

0
e

s2
2

.

We wish to prove the following
Claim: wa/v ≥ 1 in [0,+∞). At first, elementary computations show that, in a neighbourhood of t = 0,
the expansion

wa(t) =
1
t2 +

1
2

+
1
−a

+ o(1) and v(t) =
1
t2 +

1
2

+ o(1),

holds, while in a neighbourhood of t = +∞ we have

wa(t) =
1 − a
−a

+ o(1) and v(t) = 1 + o(1),

implying that wa/v > 1 near zero and at infinity. Thus, the claim is false if and only if there exists
t0 > 0 such that wa(t0) = va(t0)(

wa
v

)′
(t0) ≤ 0.

(B.21)

Remark that, wa and v solve respectively the following differential equations

w′a(t) =
1

t(1 + t2
−a )

(
1 − a
−a

t2 − 1
)

wa(t) −
t

1 + t2
−a

w2
a(t)

and

v′(t) =
t2 − 1

t
v(t) − tv2(t).

Using these equations we obtain(wa

v

)′
=

wa

v

 t
−a + t2 (2 − t2) −

t

1 + t2
−a

wa + tv

 ,
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and (B.21) holds if and only if

v(t0) ≤ 1 −
2
t2
0

.

Now we are going to show that, on the contrary,

v(t) > z(t) := 1 −
2
t2 . (B.22)

In (0,
√

2) we have v > 0 and z < 0. Moreove the inequality (B.22) can be checked numerically (with
error estimate) on [

√
2,
√

6], and is also valid in a neighbourhood of t = +∞, by the exapnsion

v(t) = 1 −
1
t2 + o

(
1
t2

)
> z(t).

This was proved with the aid of the computing system Mathematica, by numerical computations with
error estimates. So, the function v − z is positive near 0 and at +∞, and hence denying (B.22) yields
the existence of t1 ≥

√
6 such that v(t1) = z(t1)

(v − z)′(t1) ≤ 0.

It is easy to see that at such a point t1 one has (v−z)′(t1) > 0 if t1 ≥
√

6 (using the fact that v(t1) = z(t1)).
Finally, we observe that the function v changes monotonicity only once on (0,+∞) and its absolute
minimum value 0, 77836 ± 10−5 is larger than 1/2.

Now we can turn back to (B.20), obtaining that

γa(t) ≥ 2a2
(
v(t) −

1
2

)2

+
a(2 − a)

4
+

a2

2t2 +
0.999

4
(−a + t2)2

t4 . (B.23)

In order to complete the proof, we need to prove positivity of the right hand side. To this end
we take advantage once more of numerical computations with error estimates. At first, as v(5.1) =

0.95774 ± 10−5 and v′(5.1) = 0.001860 ± 10−5 > 0, since v changes monotonicity only once, we infer
positivity of the right hand side for all t ∈ [5.1,+∞), for all a ≤ −2.96767. The remaining values (a, t)
lay in the compact rectangle [−43.3272,−2.96767] × [1, 5.1] and can be easily dealt numerically with
error controlled minimization.

�

Lemma B.7. Let a ∈ (−∞, 1). The family {Q̃k} = {Q̃ωεk
} defined in (B.17) and its limit Q̃ satisfy the

conditions in Lemma B.3.

Proof. First, we want to prove property i); that is, there exists a positive constant c > 0 uniform in
ε→ 0 such that

|Vωa
ε
(y)| ≤

c
y2 and |Wωa

ε
(y)| ≤ c.

We remark that there exists a positive constant c > 0 uniform in ε→ 0 such that

|(log ρa
ε)
′| =

∣∣∣∣∣∣ (ρa
ε)
′

ρa
ε

∣∣∣∣∣∣ ≤ |a| y
ε2 + y2 ≤

c
y
.
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Moreover

|(log ρa
ε)
′′| ≤

∣∣∣∣∣∣ (ρa
ε)
′

ρa
ε

∣∣∣∣∣∣ ·
∣∣∣∣∣∣ (ρa

ε)
′′

(ρa
ε)′

∣∣∣∣∣∣ +

∣∣∣∣∣∣ (ρa
ε)
′

ρa
ε

∣∣∣∣∣∣2 ≤ c
y2 .

It remains to prove the following uniform bounds∣∣∣∣∣∣ (πa
ε)
′

πa
ε

∣∣∣∣∣∣ ≤ c
y
, and

∣∣∣∣∣∣ (πa
ε)
′′

(πa
ε)′

∣∣∣∣∣∣ ≤ c
y
.

Then the result follows since we are considering the logarithm of a product by linearity of the
derivative.

|(log πa
ε)
′| =

∣∣∣∣∣∣ (πa
ε)
′

πa
ε

∣∣∣∣∣∣ = 2
ρ−a
ε (y)∫ y

0
ρ−a
ε (s)ds

=
2
y

y
ε
(1 +

(
y
ε

)2
)−a/2∫ y

ε

0
(1 + s2)−a/2ds

≤
2
y

sup
t>0

t(1 + t2)−a/2∫ t

0
(1 + s2)−a/2ds

≤
2 max{1, 1 − a}

y
.

Moreover, ∣∣∣∣∣∣ (πa
ε)
′′

(πa
ε)′

∣∣∣∣∣∣ ≤ ρ−a
ε (y)∫ y

0
ρ−a
ε (s)ds

+ |a|
y

ε2 + y2 ≤
max{1, 1 − a} + |a|

y
.

Eventually

|(log πa
ε)
′′| ≤

∣∣∣∣∣∣ (πa
ε)
′

πa
ε

∣∣∣∣∣∣ ·
∣∣∣∣∣∣ (πa

ε)
′′

(πa
ε)′

∣∣∣∣∣∣ +

∣∣∣∣∣∣ (πa
ε)
′

πa
ε

∣∣∣∣∣∣2 ≤ c
y2 .

Obviously, point i) implies the uniform upper bound in (B.4) by trace Poincaré and the Hardy
inequalities. In order to prove the uniform lower bound and eventually proving ii), we only have to
prove that there exists a positive constant c1 > −

1
4 uniform in ε→ 0 such that

Vωa
ε
(y) ≥

c1

y2 .

In fact,

Wωa
ε
(y) +

(
−

a
2

)+

≥ 0.

Let t = y/ε > 0. Then

Vωa
ε
(y) =

Φa(t)
y2 ,

with Φa as in definition (B.18). We can conclude by applying Lemma B.6.
Eventually we remark that also condition iii) holds true. �

Let us define H̃1(B+
1 , (ω

a
ε(y))−1dz) as the closure of C∞c (B

+

1 ) with respect to the norm∫
B+

1

(ωa
ε)
−1|∇u|2.
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Lemma B.8. Let a ∈ (−∞, 1) and u ∈ H̃1(B+
1 , (ω

a
ε(y))−1dz). Then the following inequalities hold true

for a positive constant c independent of ε ∈ [0, 1]

c
∫

B+
1

(ωa
ε)
−1u2 ≤

∫
B+

1

(ωa
ε)
−1|∇u|2, (B.24)

c
∫

S n
+

(ωa
ε)
−1u2 ≤

∫
B+

1

(ωa
ε)
−1|∇u|2, (B.25)

c
∫

B+
1

(ωa
ε)
−1

y2 u2 ≤

∫
B+

1

(ωa
ε)
−1|∇u|2, (B.26)

c
∫

S n
+

(ωa
ε)
−1

y
u2 ≤

∫
B+

1

(ωa
ε)
−1|∇u|2, (B.27)

c
∫

B+
1

((ωa
ε)
−1)2∗/2|u|2

∗

2/2∗

≤

∫
B+

1

(ωa
ε)
−1|∇u|2, (B.28)

which are respectively the Poincaré inequality, the trace Poincaré inequality, the Hardy inequality, the
trace Hardy inequality and a Sobolev type inequality.

Proof. First, we prove (B.25). Thanks to Lemma B.7 we can define for a sequence εk → 0

µ̃k = min
v∈H̃1(B+

1 )\{0}

Q̃k(v)∫
S n

+

v2
= min

v∈H̃1(B+
1 )\{0}

Qk(v)∫
S n

+

v2
+

(
−

a
2

)+

= µk +

(
−

a
2

)+

,

and

µ̃ = min
v∈H̃1(B+

1 )\{0}

Q̃(v)∫
S n

+

v2
= min

v∈H̃1(B+
1 )\{0}

Q(v)∫
S n

+

v2
+

(
−

a
2

)+

= µ +

(
−

a
2

)+

.

Actually, we are able to provide the value of µ since u(x, y) = y1−(a−2) is the unique function in
H̃1,a−2(B+

1 ) \ {0} which solves 
−La−2u = 0 in B+

1

u > 0 in B+
1

u(x, 0) = 0
∇u · ν = µu in S n

+,

with µ = 1 − (a − 2) = 3 − a. Hence, by Lemma B.3, since µ̃k → µ̃, then µk → µ = 3 − a > 0 and
one can find ε0 > 0 such that for 0 ≤ εk ≤ εk = ε0 one has µk ≥ µk > 0. Hence one has (B.25) with a
constant µk > 0 uniform in 0 ≤ ε ≤ ε0. For the other inequalities, the proof is done taking functions
u ∈ C∞c (B

+

1 \Σ) and then passing to functions u ∈ H̃1(B+
1 , (ω

a
ε(y))−1dz) by density. By Lemma B.7 there

exists a positive constant uniform in ε such that∫
B+

1

(ωa
ε)
−1|∇u|2 +

(
−

a
2

)+
∫

S n
+

(ωa
ε)
−1u2 = Q̃ωa

ε
((ωa

ε)
−1/2u) ≥ c

∫
B+

1

|∇((ωa
ε)
−1/2u)|2, (B.29)

then all the inequalities are obtained by the validity of them in H̃1(B+
1 ) and using the trace Poincaré

inequality (B.25). �

Mathematics in Engineering Volume 3, Issue 1, 1–50.



49

B.4.2. Super degenerate weights ωa
ε

Let a ∈ (−∞, 1) and let us consider u ∈ C∞(B+
1 ) and define v = (ωa

ε)
1/2u ∈ C∞c (B

+

1 \ Σ). Then we
consider the quadratic form∫

B+
1

ωa
ε

(
|∇u|2 + u2

)
= Qωa

ε
(v) =

∫
B+

1

(
|∇v|2 + v2

)
+

∫
B+

1

Vωa
ε
v2 +

∫
S n

+

Wωa
ε
v2, (B.30)

with

Vωa
ε

=
1
4

[(logωa
ε)
′]2 +

1
2

(logωa
ε)
′′ =

a
4

(a − 2)y2 + 2ε2

(ε2 + y2)2 ,

and
Wωa

ε
= −

1
2

(logωa
ε)
′y.

We remark that Vωa
ε

= Vρa
ε

in (B.7). It is easy to check that the family of quadratic forms Qωa
ε

are
equivalent norms in H̃1(B+

1 ) with constants which are uniform in ε; i.e., the following holds

Lemma B.9. Let a ∈ (−∞, 1). The family {Qk} = {Qωεk
} defined in (B.30) and its limit Q satisfy the

conditions in Lemma B.3.

B.5. Isometries

In this last section, we express a fundamental consequence of the previous estimate on uniform-in-ε
equivalence of norms. Indeed, for all exponents a , 0, the nature of the weighted Sobolev spaces
changes drastically when switching between ε > 0 and ε = 0. For this reason, we need to embed them
isometrically in the common space H̃1 uniformly as ε → 0. To this aim, we can take advantage of
some fundamental isometries between weighted spaces to H̃1, which allow, by reabsorbing the weight,
to obtain uniform estimates in a common space to any element in the approximating sequence. Fixed
a ∈ (−∞, 1) and ε ≥ 0, then the map

T a
ε : H̃1(B+

1 , ρ
a
ε(y)dz)→ H̃1(B+

1 ) : u 7→ v = T a
ε (u) = (ρa

ε)
1/2u

is an isometry when we endow the space H̃1(B+
1 ) with the squared norm Qρa

ε
. Indeed we have:∫

B+
1

ρa
ε|∇u|2 = Qρa

ε
(v).

Is is worthwhile noticing that the family of quadratic forms Qρa
ε

is uniformly bounded (above and
below) with respect to ε ∈ [0, 1].

Eventually, we remark that, similarily, fixed a ∈ (−∞, 1) and ε ≥ 0, then the map

T
a
ε : H1(B+

1 , ω
a
ε(y)dz)→ H̃1(B+

1 ) : u 7→ v = T
a
ε(u) = (ωa

ε)
1/2u (B.31)

is also an isometry when the latter space is endowed with the squared norm Qωa
ε
(v) as we have∫

B+
1

ωa
ε

(
|∇u|2 + u2

)
= Qωa

ε
(v).
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Again, Qωa
ε

is uniformly bounded (above and below) with respect to ε ∈ [0, 1]. Once again, we remark
that for these super degenerate weights Poincaré type inequalities do not hold true (see [21]) and hence
we can not consider only the weighted L2-norm of the gradient in the equation above.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematics in Engineering Volume 3, Issue 1, 1–50.

http://creativecommons.org/licenses/by/4.0

	Introduction and main results
	Proof of Corollary 1.8
	Notations

	Functional setting and preliminary results
	Energy solutions
	Some preliminary results on the auxiliary equation

	Liouville type theorems
	Local uniform bounds in Hölder spaces for the auxiliary problem
	Local uniform bounds in C0, spaces
	Local uniform bounds in C1, spaces
	Local regularity for the auxiliary equation
	A criterion for local C1, estimates

	Local uniform bounds in Hölder spaces for odd solutions in the A2 case

	Some special functions
	Quadratic forms, stability and isometries
	Hardy type inequalities
	A stability result
	Quadratic forms for the odd case
	Quadratic forms for the auxiliary weights
	Super singular weights (a)-1
	Super degenerate weights a

	Isometries


