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1. Introduction

The purpose of this paper is to provide a review of a few classical and some quite recent results about
the validity of the weak Maximum Principle in a rather general setting involving non smooth functions
satisfying fully nonlinear degenerate elliptic partial differential inequalities in the viscosity sense in an
unbounded domain Ω. Since no regularity assumption will be made on ∂Ω the classical methods based
on the construction of suitable distance-like barrier functions are not viable in our framework.

Consider the set US C(Ω) of upper semicontinuous functions on Ω and a mapping

F : Ω × R × Rn × Sn → R

where Sn is the space of n × n symmetric matrices and F is degenerate elliptic, that is
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F(x, s, p,Y) ≥ F(x, s, p, X) if Y − X is non-negative definite (1.1)

In this context, the weak Maximum Principle for (F,Ω) is the validity of the following sign
propagation property:

u ∈ US C(Ω) : F(x, u,Du,D2u) ≥ 0 in Ω , u ≤ 0 on ∂Ω

implies
u ≤ 0 in Ω

The partial differential inequality above involving in a nonlinear way the gradient and the Hessian
matrix of u will be always understood in the Crandall-Ishii-Lions viscosity sense, see [15]. The
motivation for considering non-smooth functions is of course a strong one when dealing with fully
nonlinear partial differential inequalities or equations but is also a relevant one in the linear case, as
pointed out by E. Calabi in his 1958 paper [10] on entire solutions of some elliptic partial differential
inequalities. In that paper, brought to my attention by N. Garofalo, some version of the Hopf
Maximum Principle is indeed proved to hold for upper semicontinuous functions u satisfying the
linear partial differential inequality

Tr(A(x)D2u) + b(x) · Du + c(x)u ≥ 0 ,

in an appropriately defined weak sense.
It is worth to note from an historical point of view that the weak notion introduced by Calabi is in fact

similar although somehow stronger than the Crandall-Lions viscosity notion, see [17] for comments in
this respect.

In Section 2 I recall a few results concerning Alexandrov-Bakelman-Pucci estimate, in short (ABP),
and as a by-product the weak Maximum Principle in the uniformly elliptic case for possibly unbounded
domains satisfying a measure-type condition. Section 3 reviews more recent results concerning a class
of directionally degenerate elliptic operators in domains satisfying geometric conditions related to the
directions of ellipticity. Section 4 is the announcement of a recently obtained result in collaboration
with A. Vitolo concerning the weak Maximum Principle in the case of cooperative systems.

Due to the expository character of the paper the proofs of the reviewed results are just sketched; for
full details we refer the interested reader to the original papers [11–14].

2. (ABP) and the weak Maximum Principle: the uniformly elliptic case

It is well-known that the weak Maximum Principle may not hold in unbounded domains: just
observe that

u(x) = 1 −
1
|x|n−2

with n ≥ 3 satisfies ∆u = 0 in the exterior domain Ω = Rn \ B1(0), u ≡ 0 on ∂Ω but u > 0 in Ω.
Some remarkable results concerning the validity of (ABP) estimates and the weak Maximum

Principle for linear uniformly elliptic operators in unbounded domains are due to X. Cabré [7]. He
considered domains satisfying the following measure-geometric condition:
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(G) for fixed numbers σ, τ ∈ (0, 1), there exists a positive real number R(Ω) such that for any y ∈ Ω

there exists an n-dimensional ball BRy of radius Ry ≤ R(Ω) satisfying

y ∈ BRy , |BRy \Ωy,τ| ≥ σ|BRy |

where Ωy,τ is the connected component of Ω ∩ BRy/τ containing y.
The above measure-type condition introduced in [3] requires, roughly speaking, that there is enough

boundary near every point in Ω allowing, so to speak, to carry over the information on the sign of u
from the boundary to the interior of the domain.

Note that (G) holds in particular in the following cases:

• Ω is bounded: R(Ω) = C(n)diam(Ω)
• Ω is unbounded with finite Lebesgue measure: R(Ω) = C(n)|Ω|

1
n

• Ω is a cylinder with diam(Ω) = |Ω| = +∞ such as {x = (x1, x′) : a < x1 < b} : R(Ω) = b − a

Since (G) implies the metric condition supΩ dist(y, ∂Ω) < +∞, (G) does not hold on cones. Note also
that the periodically perforated plane

R2
per = R2 \

⋃
(i, j)∈Z2

Br(i, j)

as well as its n−dimensional analogues or variants are (G) domains while of course this is not the case
for exterior domains such as Rn \ Br(0).

For domains satisfying condition (G), X.Cabré [7] proved an Alexandrov-Bakelman-Pucci estimate
for strong solutions:

Theorem 2.1. Let Ω satisfy (G), f ∈ Ln(Ω) and c ≤ 0. If u ∈ W2,n(Ω) satisfies almost everywhere the
uniformly elliptic partial differential inequality

Tr(A(x)D2u) + b(x) · Du + c(x) u ≥ f (x) in Ω

with
A(x)ξ · ξ ≥ λ|ξ|2 , λ > 0 ,

then
(ABP) sup

Ω

u ≤ sup
∂Ω

u+ + C R(Ω) || f ||Ln(Ω) (2.1)

If f ≡ 0 and u ≤ 0 on ∂Ω, the validity of weak Maximum Principle follows from (2.1) in the case
of linear uniformly elliptic operators. Observe also that (2.1) extends to the case of (G) domains the
classical (ABP) estimate for bounded domains, see [16].

Some of the results of [7] have been later generalised in two directions in the paper [11]:

• viscosity solutions of fully nonlinear uniformly elliptic inequalities
• more general domains satisfying a weaker form of (G)

The above mentioned condition, which differs from (G) since does not require a priori the
boundedness of the radii Ry reads as
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(wG) there exist constants σ, τ ∈ (0, 1) such that for all y ∈ Ω there is a ball BRy of radius Ry

containing y such that
|BRy \Ωy,τ| ≥ σ|BRy |

where Ωy,τ is the connected component of Ω ∩ BRy/τ containing y.
If supy∈Ω Ry < +∞ , then (wG) boils down to condition (G). Relevant examples of unbounded

domains satisfying condition (wG) but not (G) are cones of Rn and their unbounded subsets. Indeed,
condition (wG) is satisfied in this case of cones with Ry = O(|y|) as |y| → ∞.

A less standard example which shows that there is no a priori restriction on the growth at infinity of
Ry is the plane domain described in polar coordinates as

Ω = R2 \
{
% = eθ , θ ≥ 0

}
Here (wG) holds with Ry = O

(
e|y|

)
as |y| → ∞.

In order to state the main result in [11] concerning a nonlinear version of the Alexandrov-Bakelman-
Pucci we assume that the structure conditions (SC) hold:

• F is continuous with respect to all variables x, t, p, X
• uniform ellipticity: λTr (Q) ≤ F(x, t, p, X + Q) − F(x, t, p, X) ≤ Λ Tr (Q)

for all Q positive semidefinite and some 0 < λ ≤ Λ

• properness: t 7→ F(x, t, p, X) is nonincreasing
• linear growth with respect to the gradient F(x, 0, p,O) ≤ β(x) |p| for some bounded β

Under the assumptions above we proved the following form of the (ABP) estimate for bounded above
viscosity subsolutions:

Theorem 2.2. Let u ∈ US C(Ω) with supΩ u < +∞ satisfy in the viscosity sense

F(x, u,Du,D2u) ≥ f (x) , x ∈ Ω

where f ∈ C(Ω) ∩ L∞(Ω). If Ω satisfies (wG) for some σ, τ ∈ (0, 1), F satisfies (SC) and, moreover,

(C) sup
y∈Ω

Ry ‖β‖L∞(Ωy,τ) < ∞

then
sup

Ω

u ≤ sup
∂Ω

u+ + C sup
y∈Ω

Ry ‖ f −‖Ln(Ωy,τ)

for some positive constant C depending on n, λ, Λ, σ, τ and sup
y∈Ω

Ry ‖β‖L∞(Ωy,τ) .

For u ≤ 0 on ∂Ω and f ≥ 0 the above yields the weak Maximum Principle.

To obtain the (ABP) estimate in this more general case we will assume, besides condition (wG)
on the domain, the extra condition (C) which can be seen as a control of the interplay between the
geometrical size of the domain (the opening, in the case of cones) and the growth of the first order
transport term.

This condition is trivially satisfied if supy∈Ω Ry ≤ R0 < +∞ in (wG), i.e., if Ω satisfies (G) or, for
example, when b ≡ 0, namely when F does not depend on the first order transport term. Let us observe
also that condition (C) is unavoidable in general, as shown by by the next
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Example 2.3. The function u(x) = u(x1, x2) =
(
1 − e1−xα1

) (
1 − e1−xα2

)
, with 0 < α < 1, is bounded and

strictly positive in the cone Ω =
{
x = (x1, x2) ∈ R2 : x1 > 1, x2 > 1

}
and satisfies

u ≡ 0 on ∂Ω, ∆u + b(x) · Du = 0 in Ω

where the vectorfield b is given by b(x, y) =

(
α

x1−α
1

+ 1−α
x1
, α

x1−α
2

+ 1−α
x2

)
.

As observed above, Ω satisfies (wG) with Rz = O(|z|) as |z| → ∞. Since ||b||L∞(Ωz,τ) = 1 the interplay
condition (C) fails in this example.

Some non trivial cases in which condition (C) is fulfilled are:

(a) the cylinder Ω =
{
x = (x′, xn) ∈ Rn−1 × R : |x′| < 1 , xn > 0

}
is a (G) domain and therefore

condition (C) is obviously satisfied,
(b) Ω =

{
(x′, xn) ∈ Rn−1 × R : xn > |x′|q

}
with q > 1, This non convex conical set is a genuine (wG)

domain with radii Ry = O
(
|y|1/q

)
as |y| → ∞.

In this case, (C) imposes to the function β a rate of decay β(y) = O
(
1/|y|1/q

)
as |y| → ∞.

(c) Ω is the strictly convex cone {x ∈ Rn \ {0} : x/|x| ∈ Γ} where Γ is a proper subset of the unit half-
sphere S n−1

+ =
{
x = (x′, xN) ∈ Rn−1 × R : |x| = 1 , xn > 0

}
.

In this case (wG) is satisfied with Ry = O(|y|) for |y| → ∞ and condition (C) requires the rate of
decay β(y) = O (1/|y|) as |y| → ∞.

Note that cases (a) and (c) can be seen as limiting cases of situation (b) when, respectively, q → +∞

and q = 1.
The proof of Theorem 2.2 is based on several viscosity calculus tools but not on the Comparison

Principle for viscosity sub and supersolutions. It relies indeed on rescaled versions of the weak Harnack
and of the boundary weak Harnack inequality for operators including first order terms, see [11] and [8]
for the case of Pucci operators.

Let us briefly sketch the main steps of the proof with the aid of the following three lemmas. The
minimal Pucci operator with parameters 0 < λ ≤ Λ is defined by

P−λ,Λ(X) = λTr(X+) − Λ Tr(X−)

where X+ and X− are nonnegative definite matrices such that X = X+ − X− and X+X− = O. Under our
assumption the following holds:

Lemma 2.4. If w ∈ US C(Ω) satisfies

F(x,w(x),Dw(x),D2w(x)) ≥ 0 , x ∈ Ω

in the viscosity sense, then for each M ∈ R the function u = M − w+ ∈ LS C(Ω) satisfies

P−λ,Λ(D2u) − β(x)|Du| ≤ f −(x) , x ∈ Ω

The proof is a direct application of the viscosity notions.
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Lemma 2.5 (the rescaled weak Harnack inequality). Let R > 0, τ ∈ (0, 1) and f ∈ C(BR/τ)∩ L∞(BR/τ).
If u ∈ LS C(BR/τ), u ≥ 0 is a viscosity solution of

P−λ,Λ(D2u) − β(x)|Du| ≤ f −(x) , x ∈ BR/τ

then (
1
|BR|

∫
BR

up

)1/p

≤ C∗
(
inf
BR

u + R ‖ f −‖LN (BR/τ)

)
(2.2)

where p and C∗ are positive constants depending on λ,Λ, n, τ and on the product R ‖β‖L∞(BR/τ).

Inequality (2.2) is a consequence of the weak Harnack inequality for nonnegative viscosity solutions
in a cube Q1 with side-length 1

‖u‖L p̂(Q1/4) ≤ Ĉ
(
inf
Q1/2

u + ‖ f −‖LN (Q1)

)
,

where p̂ and Ĉ depend on λ, Λ, N as well as on ‖β‖L∞(Q1), see [8]. Inequality (2.2) is indeed obtained
from the above by rescaling and using the positive homogeneity of the operator P−λ,Λ and a standard
covering argument.

Let A be a bounded domain in Rn and BR , BR/τ be concentric balls such that

A ∩ BR , ∅ , BR/τ\A , ∅ .

For u ∈ LS C(Ā), u ≥ 0, consider the following lower semicontinuous extension u−m of function u

u−m(x) =

{
min(u(x); m) if x ∈ A
m if x < A

where m = infx∈∂A∩BR/τ u(x) .

Lemma 2.6. With the above notations, if g ∈ C(A) ∩ L∞(A) and u ∈ LS C(Ā) satisfy

u ≥ 0 , P−λ,Λ(D2u) − b(x)|Du| ≤ g(x) in A

in the viscosity sense, then( 1
|BR|

∫
BR

(u−m)p
)1/p
≤ C∗

(
inf

A∩BR
u + R ‖g+‖Ln(A∩BR/τ)

)
where p and C∗ are positive constants depending on λ,Λ, n, τ and on the product R ‖β‖L∞(BR/τ).

It is not hard to check, see [8] for the case b ≡ 0, that u−m is a viscosity solution of

u−m ≥ 0 , P−(D2u−m) − χA(x) b(x) |Du−m| ≤ χA(x) g+(x) in BR/τ

where χA is the characteristic function of A. The statement follows then by applying the weak Harnack
inequality (2.2) to u−m , observing that infBR u−m ≤ infA∩BR u and that χA g+ ≡ 0 outside A.
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The role of Lemma 2.6 in the proof of Theorem 2.2 is a crucial one, in connection with the (wG)
condition, in establishing a localized form of the (ABP) estimate. Indeed, if w ∈ US C(Ω) satisfies
F(x,w,Dw,D2w) ≥ f then, as we have seen above, for u(x) = supΩ w+ − w(x) ≥ 0 we have

P−λ,Λ(D2u) − β(x)|Du| ≤ f −(x) , x ∈ Ω

Apply now Lemma 2.6 with A = Ωy,τ and g = f − to obtain 1
|BRy |

∫
BRy

(u−m)p

1/p

≤ C∗y

(
inf

Ωy,τ∩BRy

u + Ry ‖ f −‖LN (Ωy,τ)

)
for positive constants p and C∗y depending on N, λ, Λ, τ and Ry ‖b‖L∞(Ωy,τ).

The left-hand side of the above inequality can be of course estimated from below as follows 1
|BRy |

∫
BRy

(u−m)p

1/p

≥

 1
|BRy |

∫
BRy\Ωy,τ

(u−m)p

1/p

= m
(
|BRy \Ωy,τ|

|BRy |

)1/p

where m = infx∈∂Ωy,τ∩BR/τ u(x) . Hence, using condition (wG) , 1
|BRy |

∫
BRy

(u−m)p

1/p

≥ mσ1/p

At this point a few technicalities lead to estimate the value of w+ at any y ∈ Ω as follows:

w+(y) ≤ (1 − θy) sup
Ω

w+ + θy sup
∂Ω

w+ + Ry ‖ f −‖LN (Ωy,τ) (2.3)

for suitable choice of θy ∈ (0, 1) depending on n, λ, Λ, σ, τ and on y through the quantity Ry ‖b‖L∞(Ωy,τ)

which appears in the statement of Theorem 2.2. The proof of the theorem is easily deduced from (2.3)
through the use of condition (C).

3. Degenerate ellipticity

This section is about the validity of the weak Maximum Principle for degenerate elliptic operators
F which are strictly elliptic on unbounded domains Ω of Rn whose geometry is related to the direction
of ellipticity. Some results of that kind for one-directional elliptic operators in bounded domains have
been previously established, among other qualitative properties, by Caffarelli-Li-Nirenberg [9].

We assume:
F is continuous with respect to (x, t, p, X) (3.1)

the following standard monotonicity conditions on F

F(x, s, p,Y) ≥ F(x, s, p, X) if Y ≥ X (3.2)

F(x, s, p, X) ≤ F(x, r, p, X) if s > r (3.3)

and, just for simplicity,
F(x, 0, 0,O) = 0 ∀ x ∈ Ω (3.4)
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where O is the null matrix. Our last requirement is on a Lipschitz behavior of F with respect to the
gradient variable,

there exists γ > 0 : |F(x, 0, p, X) − F(x, 0, 0, X)| ≤ γ |p| for all p ∈ Rn (3.5)

The class of domains that will be considered in this section is conveniently described by
decomposing Rn as Rn = U

⊕
U⊥, where U is a k-dimensional subspace and U⊥ is its orthogonal

complement and denoting by P and P⊥ the projection matrices on U and U⊥, respectively.
We will consider the open domains Ω which are contained in unbounded slabs whose k-dimensional

sections are cube of edge d, namely

Ω ⊂ {x ∈ Rn : a ≤ x · νh ≤ a + dh, h = 1, . . . , k} := C for some a ∈ R, dh > 0 , (3.6)

where {ν1, . . . , νk} is an orthonormal system for the subspace U. We will refer to vectors in U⊥ as
unbounded directions.

Such domains may of course be unbounded and of infinite Lebesgue measure but they do satisfy
the measure-geometric (wG) condition of the previous section. Note once more that no regularity
requirement is made on ∂Ω.

3.1. Directional ellipticity and control in the unbounded directions

The next assumptions are crucial ones in establishing our results on the weak maximum and on
Phragmèn-Lindelöf principles

there exist ν ∈ U and λ > 0 : F(x, 0, p, X + tν ⊗ ν) − F(x, 0, p, X) ≥ λ t (3.7)

for all t > 0.
Observe that the matrix ν ⊗ ν is the orthogonal projection over the one dimensional subspace

generated by ν: the strict directional ellipticity condition (3.7) related to the geometry of Ω will play a
crucial role in our results.

there exists Λ > 0 : F(x, 0, 0, X + tP⊥) − F(x, 0, 0, X) ≤ Λt |x| (3.8)

for all t > 0, as |x| → ∞.
The above one-sided Lipschitz condition is satisfied in the linear case if the coefficients

corresponding to second derivatives in the unbounded directions (i.e., belonging to U⊥) have at most
linear growth with respect to x. It is worth to observe that ν ⊗ ν and P⊥ are symmetric and positive
semidefinite matrices and that (3.7), (3.8) form a much weaker condition than uniform ellipticity.
Indeed, they comprise a control from below only with respect to a single direction ν ∈ U together with
control from above in the directions of U⊥, a much weaker condition on F than uniform ellipticity
which would indeed require a uniform control of the difference quotients both from below and from
above with respect to all possible increments with positive semidefinite matrices.

We will refer collectively to conditions (3.1) to (3.8) above as (SC).
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3.2. A few examples

The following very basic two dimensional example is useful to clarify our structural assumptions.
Let U = {x = (x1, x2) : x2 = 0} and consider the linear operator

F(x, u,Du,D2u) =
∂2u
∂x2

1

+ H(x,Du) + c(x)u

where H, c are continuous and bounded with respect to x. Obviously, F satisfies (3.1), (3.2), (3.4) and
(3.3) if c(x) ≤ 0 and H(x, 0) = 0. The strict ellipticity condition (3.7) is trivially satisfied by ν = (1, 0)
and λ = 1. Condition (3.7) is fulfilled with Λ = 1 since

F(x, 0, 0, X + tP⊥) − F(x, 0, 0, X) = t Tr(P⊥)

and P⊥ is the matrix (
0 0
0 1

)
Condition (3.5) is trivially satisfied if H is Lipschitz continuous.

Operators of this kind arise in the dynamic programming approach to the optimal control of a
deterministic system in Rn which is perturbed by a lower dimensional Brownian motion. A more
general example is

F(x, u,Du,D2u) = Tr(AD2u) + H(x,Du) + c(x)u

with

A =

(
Ik 0
0 ϕ(x) In−k

)
The structure condition (3.7) requires in this case a sublinear growth of the coefficient ϕ in the
unbounded directions of the domain.

The Bellman-Isaacs operators are an important class of fully nonlinear operators arising in the
theory of differential games. They have the following form

F(x, u,Du,D2u) = sup
α

inf
β

[
Tr(AαβD2u) + bαβ(x)Du) + cαβu(x)

]
with constant coefficients depending α and β running in some sets of indexesA,B.

It is not hard to check that condition (SC) is satisfied in any domain Ω contained in a (n− k)-infinite
slab as in (3.6) if all matrices Aαβ, whose entries are denoted by aαβi j (x), are positive semidefinite and

Aαβνh · νh ≥ λ > 0 h = 1, . . . , k,
n∑

i, j=1

aαβi j ν
h
i ν

h
ja
αβ
i j ν

h
i ν

h
j ≤ Λ|x|, h = k + 1, . . . , n

|bαβ(x)| ≤ γ, cαβ(x) ≤ 0,

where λ,Λ, γ are independent on α, β and {ν1, . . . , νk} is an orthonormal basis of U.
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3.3. Directional ellipticity and the weak Maximum in special domains

The main results concerning the validity of (wMP) are stated in the following theorems:

Theorem 3.1. Let Ω be a domain of Rn satisfying condition (3.6):

Ω ⊂ {x ∈ Rn : a ≤ x · νh ≤ a + dh, h = 1, . . . , k} for some a ∈ R, dh > 0 ,

and assume that F satisfies the structure condition (SC).
Then (wMP) holds for any u ∈ US C(Ω) such that u+(x) = o(|x|) as |x| → ∞.

Note that some restriction on the behaviour of u at infinity is unavoidable. Observe indeed that
u(x1, x2, x3) = ex1 sin x2 sin x3 solves the degenerate Dirichlet problem

∂2u
∂x2

1

+
∂2u
∂x2

2

= 0 in Ω, u(x1, x2, x3) = 0 on ∂Ω

in the 1-infinite cylinder Ω = R × (0, π)2 ⊂ R3 and u(x1, x2, x3) > 0 in Ω so (wMP) fails in this case.
As a consequence of the previous Theorem a quantitative estimate can be obtained:

Theorem 3.2. Let Ω be a domain of Rn satisfying condition (3.6) and assume that F satisfies the
structure condition (SC).
If

F(x, u,Du,D2u) ≥ f (x) in Ω

where f is continuous and bounded from below and u+(x) = o(|x|) as |x| → ∞, then

sup
Ω

u ≤ sup
∂Ω

u+ + e
sup f −(x)

λ
d2

where d = minh dh and f −(x) = −min( f (x), 0).

The method of proof of the above theorems is considerably different from that of the analogous
results in Section 2 since tools as Harnack inequalities are not available in the present degenerate
elliptic setting.

In order to simplify the notations a sketch of the proof of Theorem 3.1 is given below for the case
F = F(x,∇2u) + c(x)u where c ≤ 0 and Ω = {x ∈ R2 : −d/2 < x1 < d/2}. So we take ν = (1, 0) and the
projection matrix on U is

ν ⊗ ν = P =

(
1 0
0 0

)
Arguing by contradiction we suppose that u(x0) = k > 0 at some x0 ∈ Ω.

Let us consider then, for ε > 0, the function uε(x) = u(x) − εφ(x) where φ(x) =

√
x2

2 + 1 is smooth
function penalising the unbounded variable x2. The prescribed behavior of u at infinity implies then
that there exists a bounded domain Ωε ⊂ Ω such that uε ≤ 0 outside Ωε. Hence, for ε < k

2φ(x0) ,

sup
Ω

uε = max
Ω
ε

uε = uε(xε) ≥ k/2
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Since φ is smooth it is easy to check that

F(x,∇2uε(x) + ε∇2φ(x)) + c(x)(uε(x) + εφ(x)) ≥ 0 (3.9)

in the viscosity sense. The next step is to construct a smooth function hε, depending on a positive
parameter α to be chosen later, to be used as a test function replacing uε in 3.9. At this purpose, set

hε(x) = kε(1 + e−αd) − kεeα(x1−xε1)−αd

where kε = uε(xε). We have

hε(xε) = uε(xε) and hε ≥
k
2

e−2αd on Ω

Modulo a translation by a nonnegative constant δε we can find some point xε such that hε + δε + εφ

touches uε from above at xε . So, by definition of viscosity subsolution and using the assumption that
the zero-order coefficient c is ≤ 0 and that hε, δε and εφ are positive,

F(xε,∇2hε + ε∇2φ) ≥ 0 at xε. (3.10)

Observe now that ∇2hε(xε) = −α2kεeα(xε1−xε1)−αd ν⊗ ν and apply the directional ellipticity assumption
(3.7) with X = ∇2hε(xε) + ε∇2φ(xε) and t = k

2e−2αd to obtain, taking (3.10) into account,

0 ≤ F(xε,∇2hε(xε) + ε∇2φ(xε)) ≤ F(xε, ε∇2φ(xε)) − λα2 k
2

e−2αd (3.11)

In order to let ε → 0 in the above let us consider first the case where xε is bounded and therefore, at
least for a subsequence xε → x as ε→ 0+.

By continuity of F and ∇2φ we obtain thanks to (3.4) the contradiction

0 < λα2 k
2

e−2αd ≤ F(x,O) = 0

and the Theorem is proved in this case.
Suppose now that xε is unbounded and observe that 1

φ(x) P
⊥ ≥ ∇2φ(x) in the matrix ordering as in

(3.2) where

P⊥ =

(
0 0
0 1

)
Hence, by degenerate ellipticity and (3.11),

λα2 k
2

e−2αd ≤ F(xε, ε∇2φ(xε)) ≤ F(xε, ε
1

φ(xε)
P⊥)

Using condition (3.8) with t = ε
φ(xε) and X = O we have

F(xε, ε
1

φ(xε)
P⊥) = F(xε, ε

1
φ(xε)

P⊥) − F(xε,O) ≤ Λ
ε

φ(xε)
|xε|
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Since |xε |
φ(xε) remains bounded as ε→ 0, using the above estimate we derive the contradiction

0 < λα2 k
2

e−2αd ≤ lim inf
ε→0

F(xε, ε
1

φ(xε)
P⊥) = 0 .

�
Let us now sketch the proof of Theorem 3.2 in the setting adopted for the proof of Theorem 3.1

and assume as a further simplification that Ω is the strip (0, 1) × R. The first step is to show by simple
viscosity calculus that if u satisfies F(x,D2u) + c(x)u ≥ f (x) in Ω with c ≤ 0, then u+ = max(u, 0)
satisfies

F(x,D2u+) ≥ − f −(x) . (3.12)

Consider the auxiliary function

w(x) = u+(x) − sup
∂Ω

u+ + C(ex1 − e)

where C is a positive constant to be chosen in the sequel.
The structure condition (SC) yields

F(x,∇2w) ≥ F(x,∇2u+) + λCex1 ≥ − f −(x) + λC in Ω

Choosing C = supΩ
f −

λ
we obtain

F(x,∇2w) ≥ 0 in Ω, w ≤ 0 on ∂Ω

By Theorem 3.1 we conclude that w ≤ 0 in Ω, yielding

u(x) ≤ u+(x) ≤ sup
∂Ω

u+ + e sup
Ω

f −

λ

which proves the statement in this slightly simplified case. The case d , 1 can be dealt by working
with the rescaled variable y = x

d since the function v(x) = u(dy) satisfies the inequality

G(y,∇2v(y) ≥ d2 f (dy)

for y ∈ d−1Ω ⊂ (0, 1) × R where G(y, X) = d2F(dx, d−2X).
�

It is well-known that the weak Maximum Principle for linear uniformly elliptic operators

Tr(A(x)D2u) + b(x) · Du + c(x)u in Ω

in bounded domains may hold by replacing the standard assumption c ≤ 0 by suitable alternative
conditions, see for example [3, 18].

The next result which easily follow from the previous Theorem go in this direction.

Theorem 3.3. Let Ω satisfy (3.6) and assume that F satisfies (SC) with (3.3) replaced by the weaker
condition

F(x, s, p,M) − F(x, r, p,M) ≤ c(x) (s − r) (3.13)

for some continuous bounded function c(x) > 0 and for all s > r.
Then (wMP) holds for u ∈ US C(Ω), u bounded above, provided 1

λ
min d2

h supΩ c(x) is small enough.
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As already observed F(x, u,Du,D2u) ≥ 0 implies F(x, u+,Du+,D2u+) ≥ 0 and so, by (3.13) with
r = 0, s = u+,

F(x, 0,Du+,D2u+) ≥ F(x, u+,Du+,D2u+) − cu+ ≥ −cu+.

Since u+ = 0 on ∂Ω, Theorem (3.2) applies with f = −c u+ leading to

sup
Ω

u+ ≤
ed2C
λ

sup
Ω

u+

where C ≥ c(x). From this estimate the statement follows if K = ed2C
λ

< 1. �
For fixed C > 0 this results applies to narrow domains, that is those whose thickness d is sufficiently

small. Conversely, for fixed d > 0 (wMP) holds provided C is a sufficiently small positive number.
The estimate above shows also that (wMP) holds if the directional ellipticity constant λ is large.

4. Weak Maximum Principle for some cooperative systems

In a work in progress with A.Vitolo [14] we consider systems of elliptic partial differential
inequalities of the form

F[u] + C(x)u ≥ 0 (4.1)

in a bounded domain Ω ⊂ Rn. Here u = (u1, ..., uN) is a vector function u : Rn → RN , C(x) = (ci j(x)) is
a N × N matrix and F = (F1, ..., FN) are second order operators acting on u of the form

Fi[u] = Fi(x,∇ui,∇
2ui) (i = 1, ...,N)

It is well-known that the validity of the weak Maximum Principle, namely the sign propagation
property

ui ≤ 0 in ∂Ω implies ui ≤ 0 in Ω (i = 1, ...,N)

may fail for general matrices C. Several papers, see for example [1,5,19] for linear Fi and [6] for fully
nonlinear differential operators, considered such systems in the case C(x) is a cooperative matrix, often
called essentially positive, see [4], that is

ci j(x) ≥ 0 for all i , j ,
N∑

j=1

ci j(x) ≤ 0 (4.2)

in order to establish the validity of the weak Maximum Principle. The results obtained in those papers
require uniform ellipticity of the operators Fi.

In our work in progress we select a sufficient condition guaranteing the validity of a vector form of
the weak Maximum Principle for upper semicontinuous viscosity solutions of systems (4.1), where the
interaction matrix satisfies (4.2), in the more general context of operators Fi which are just degenerate
elliptic, namely

0 ≤ Fi(x, p, X + Q) − Fi(x, p, X) (i = 1, ...,N)

for all matrix Q ≥ O. A basic example of such operators are Bellman operators

Fi(x,∇2ui) = sup
γ∈Γ

Tr
(
Aγ

i (x)∇2ui
)

+ bγi (x) · ∇ui + cγi (x)ui
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where Aγ
i (x) are symmetric positive semidefinite and γ is a parameter running in an arbitrary set Γ.

For the proof of that result, which seems to be new even in the linear case

Fi(x,∇ui,∇
2ui) = Tr

(
Ai(x)∇2ui

)
+ bi(x) · ∇ui + ci(x)ui

where Ai(x) are symmetric positive semidefinite matrices, the reader is referred to [14].
It relies on a suitable combination of results in [2] concerning the validity of the weak Maximum

Principle for scalar degenerate elliptic operators with ideas in [6] and some viscosity calculus to exploit
conveniently the cooperativity assumption.
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