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Abstract: For a vectorial Bernoulli-type free boundary problem, with no sign assumption on the
components, we prove that flatness of the free boundary implies C1,α regularity, as well-known in
the scalar case [1, 4]. While in [15] the same result is obtained for minimizing solutions by using a
reduction to the scalar problem, and the NTA structure of the regular part of the free boundary, our
result uses directly a viscosity approach on the vectorial problem, in the spirit of [8]. We plan to use
the approach developed here in vectorial free boundary problems involving a fractional Laplacian, as
those treated in the scalar case in [10, 11].
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1. Introduction

This note is concerned with the vector valued one-phase free boundary problem,∆U = 0 in Ω(U) := Ω ∩ {|U | > 0};
|∇|U || = 1 on F(U) := Ω ∩ ∂Ω(U).

(1.1)

Here U(x) := (u1(x), . . . , um(x)), x ∈ Ω, with Ω a bounded domain in Rn. In the scalar case, m = 1,
(1.1) is the Euler-Lagrange equation associated to the classical one-phase Bernoulli energy functional
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(u ≥ 0),

J(u,Ω) :=
∫

Ω

(|∇u|2 + χ{u>0}) dx. (1.2)

Minimizers of J were first investigated systematically by Alt and Caffarelli. Two fundamental
questions are answered in the pioneer article [1], that is the Lipschitz regularity of minimizers and the
regularity of “flat” free boundaries, which in turns gives the almost-everywhere regularity of
minimizing free boundaries. The viscosity approach to the associated free boundary problem was
later developed by Caffarelli in [2–4]. In particular in [4] the regularity of flat free boundaries is
obtained. There is a wide literature on this problem and the corresponding two-phase problem, and
we refer the reader to the paper [9] for a comprehensive survey.

The system (1.1) can also be seen as the Euler-Lagrange equations associated to a vectorial
Alt-Caffarelli type functional. Namely, given a regular open set Ω ⊂ Rn and
Φ = (ϕ1, . . . , ϕm) ∈ H1/2(∂Ω,Rm), one can consider the vectorial free boundary problem

min
{∫

Ω

|∇U |2 dx + |Ω(U)| : U ∈ H1(Ω,Rm), U = Φ on ∂Ω

}
. (1.3)

In [6, 14], the authors initiated the study of this problem where several flows are involved, and
interact whenever there is a phase transition. In particular, they applied a reduction method to reduce
the problem to its scalar counterpart by assuming nonnegativity of the components of U. More
precisely, under this assumption, the components are weak solutions of

∆ui = wiHn−1 (Ω ∩ ∂∗{|U | > 0}), for i = 1, . . . ,m,

with

wi(x) = lim
y∈{|U |>0},y→x

ui(y)
|U | (y)

.

Recently in [15], a different group of authors removed the sign assumption on the components.
As expected, in this case the structure of the singular set changes and the set of branching points
Sing2(F(U)) arises, as natural in two-phase problems (see also the recent work [7]). More precisely,
the following theorem holds.

Theorem 1.1 ( [15]). The problem (1.3) admits a solution U ∈ H1(Ω;Rm). Moreover, any solution is
Lipschitz continuous in Ω ⊂ Rn and the set Ω(U) has a locally finite perimeter in Ω. More precisely,
the free boundary F(U) is a disjoint union of a regular part Reg(F(U)), a (one-phase) singular set
Sing1(F(U)) and a set of branching points Sing2(F(U)):

(1). Reg(F(U)) is an open subset of F(U) and is locally the graph of a smooth function.
(2). Sing1(F(U)) consists only of points in which the Lebesgue density of Ω(U) is strictly between 1/2

and 1. Moreover, there is n∗ ∈ {5, 6, 7} such that:

• if n < n∗, then Sing1(F(U)) is empty;
• if n = n∗, then Sing1(F(U)) contains at most a finite number of isolated points;
• if n > n∗, then the (n − n∗)-dimensional Hausdorff measure of Sing1(F(U)) is locally finite in

Ω.

(3). Sing2(F(U)) is a closed set of locally finite (n− 1)-Hausdorff measure in Ω and consists of points
in which the Lebesgue density of Ω(U) is 1 and the blow-up limits are linear functions.
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As pointed out in [14], problem (1.3) is also related to a class of shape optimization problems
involving the eigenvalues of the Dirichlet Laplacian. Precisely, if U∗ is the vector whose components
are the Dirichlet eigenfunctions on the set Ω∗ which solves the shape optimization problem

min

 m∑
i=1

λi(Ω) : Ω ⊂ Rn open, |Ω| = 1

 , (1.4)

then U∗ can be seen as quasi-minimizers of (1.3). Indeed, [15] follows some of the main ideas
developed in [14]. In [12, 13], a different set of authors considered an even more general class of
spectral functionals than (1.4) and used a viscosity approach based on an Harnack inequality and a
linearization, in the same spirit of the method developed in [8] by the first author.

In this note, we are also inspired by [8], and we use a vectorial viscosity approach which does not
reduce the problem to the scalar one-phase problem, as done in [15]. Since we work directly on the
problem (1.1), our proof (in particular the choice of barriers, e.g., Theorem 2.1) is more straightforward
then the one in [12, 13] as it takes advantage of the fact that the norm |U | is a viscosity subsolution to
the scalar one-phase problem.

As in [8], the approach carries on in other settings, for example in the presence of a right hand side
or even when all components satisfy a uniformly elliptic equation Lui = fi in the positivity set (for the
same operator L). One can also allow a more general free boundary condition as in [8].

One of the objectives of this note is indeed to develop a method suitable for other vectorial problems,
for example Bernoulli-type problems involving nonlocal diffusion. In particular, in [5, 10, 11] the
authors studied the regularity of a one-phase scalar free boundary problem for the fractional Laplacian.
While in [5] general properties like optimal regularity, nondegeneracy and classification of global
solutions were proved, in [10, 11] the authors developed a viscosity approach in order to prove that
flat free boundaries are actually C1,α. In a forthcoming paper, we plan to extend these results to the
vectorial case, following the approach developed in this paper.

We now state our main theorem. From now on, we denote by {ei}i=1,...,n,{ f i}i=1,...,m canonical basis
in Rn and Rm respectively. Unit directions in Rn and Rm will be typically denoted by e and f . The
Euclidean norm in either space is denoted by | · |, while the dot product is denoted by 〈·, ·〉.

Definition 1.2. We say that U ∈ C(Ω,Rm) is a viscosity solution to (1.1) in Ω if

∆ui = 0 in Ω(U), ∀i = 1, . . . ,m;

and the free boundary condition is satisfied in the following sense. Given x0 ∈ F(U), and a test function
ϕ ∈ C2 in a neighborhood of x0, with |∇ϕ|(x0) , 0, then

(i) If |∇ϕ|(x0) > 1, then for all unit directions f in Rm, 〈U, f 〉 cannot be touched by below by ϕ at x0.

(ii) If |∇ϕ|(x0) < 1, then |U | cannot be touched by above by ϕ at x0.

Our main theorem reads as follows.

Theorem 1.3. Let U be a viscosity solution to (1.1) in B1. There exists a universal constant ε̄ > 0 such
that if U is ε̄ flat in B1, i.e., for some unit directions e ∈ Rn, f ∈ Rm

|U(x) − f 〈x, e〉+| ≤ ε̄, in B1, (1.5)
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and
|U | ≡ 0 in B1 ∩ {〈x, e〉 < −ε̄} (1.6)

then F(U) ∈ C1,α in B1/2.

We remark that condition (1.6) is satisfied by flat minimizing solutions in view of non-degeneracy
[15, Section 2.1].

Notice that in [15] the authors used a smaller class of viscosity solutions in which property (i) is
replaced by the following:

(i’) If |∇ϕ|(x0) > 1, then |U | cannot be touched by below by ϕ at x0.

Indeed, in [15, Lemma 3.2.] they proved that if U is a minimizing free boundary, then for every
x0 ∈ Reg(F(U)) ∪ Sing1(F(U)) there exists a small radius r > 0 such that U is a viscosity solution of∆U = 0 in Ω(U) ∩ Br(x0);

|∇|U || = 1 on F(U) ∩ Br(x0),
(1.7)

in the sense of (i’)–(ii). The larger class in Definition 1.2 is better suited for the strategy of our proof,
which relies on a vectorial Harnack inequality and improvement of flatness technique. Details of the
Harnack inequality are carried on in Section 2, while the improvement of flatness argument is presented
in Section 3.

2. Harnack type inequality

In this Section we will prove a Harnack type inequality for solutions to problem (1.1). Precisely,
the following is our main theorem. Notice that our strategy consists in tracking the improvement of
|U |, rather than working component-wise as in [12, 13]. By working with |U |, we avoid some of the
difficulties related to the no-sign assumption.

Theorem 2.1. There exists a universal constant ε > 0 such that, if U solves (1.1) in B1, and for some
point x0 ∈ B1(U) ∪ F(U),

xn + a0 ≤ u1 ≤ |U | ≤ (xn + b0)+ in Br(x0) ⊂ B1, (2.1)

with
b0 − a0 ≤ ε̄r,

and

|ui| ≤ r
(
b0 − a0

r

)3/4

in B1/2(x0), i = 2, . . . ,m,

then
xn + a1 ≤ u1 ≤ |U | ≤ (xn + b1)+ in Br/20(x0), (2.2)

with
a0 ≤ a1 ≤ b1 ≤ b0, b1 − a1 = (1 − c)(b0 − a0),

for 0 < c < 1 universal.
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We briefly postpone the proof of Theorem 2.1, and obtain the key corollary which will be used
in the improvement of flatness argument. First, the following lemma allows to translate the flatness
assumption on the vector-valued function U into the property that one of its components is trapped
between nearby translation of a one-plane solution, while the remaining ones are small.

Lemma 2.2. Let U be a solution to (1.1) in B1 such that for ε > 0

|U − f 1x+
n | ≤ ε, in B1, (2.3)

and
|U | ≡ 0 in B1 ∩ {xn < −ε}. (2.4)

Then

i. For i = 2, . . . ,m,
|ui| ≤ Cε(xn + ε)+ in B3/4; (2.5)

ii.
(xn − ε) ≤ u1 ≤ |U | ≤ (xn + 2ε)+ in B1. (2.6)

Proof. The bounds in (ii) are an immediate consequence of the assumptions. For (i), let v be the
harmonic function in B1 ∩ {xn > −ε} with smooth boundary data v̄, 0 ≤ v̄ ≤ 1 such thatv̄ = 0 on B1−ε ∩ {xn = −ε};

v̄ = 1 on ∂B1 ∩ {xn > −ε}.

Since |ui| is subharmonic and by (2.3)–(2.4)

|ui| ≤ ε, ui ≡ 0 on {xn = −ε},

by comparison and boundary regularity we get

|ui| ≤ εv ≤ Cε(xn + ε) in B1/2 ∩ {xn > −ε}.

�

Now denote by,

ũ1 :=
u1 − xn

ε
, |̃U | :=

|U | − xn

ε
, x ∈ B1(U) ∪ F(U).

The following corollary is a consequence of the results above.

Corollary 2.3. Let U be a solution to (1.1) in B1 such that for ε > 0

|U − f 1x+
n | ≤ ε, in B1, (2.7)

and
|U | ≡ 0 in B1 ∩ {xn < −ε}. (2.8)

There exists ε̄ > 0 small universal, such that if ε ≤ ε̄, then ũ1 and |̃U | have a universal Hölder modulus
of continuity at x0 ∈ B1/2 outside a ball of radius rε, with rε → 0 as ε→ 0.
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Proof. In view of Lemma 2.2, u1,U satisfy the assumptions of Theorem 2.1 (for ε̄ possibly smaller
than the one in Theorem 2.1), with

a0 = −ε, b0 = 2ε, r = 1/4, x0 ∈ B1/2.

Hence, by applying repeatedly Theorem 2.1,

xn + ak ≤ u1 ≤ |U | ≤ (xn + bk)+ in Brρk(x0), ρk = 20−k, (2.9)

with
bk − ak = (1 − c)k(b0 − a0),

for 0 < c < 1 universal as long as,

20k(1 − c)kε ≤ ε̄, ε ≤ C̄
(
(1 − c)3

20

)k

,

with C̄ universal. This implies that for such cases, in (Ω(U) ∪ F(U)) ∩ Brρk(x0) the oscillation of the
functions ũ1 and |̃U | are less or equal than (1 − c)k = 20−αk = ραk , as we claimed. �

The next lemma is the main ingredient in the proof of Theorem 2.1. It uses the observation that |U |
is subharmonic in Ω(U), as it can be easily verified with a straightforward computation.

Lemma 2.4. Let U be a solution to (1.1) in B1 such that for ε > 0

p(x) ≤ u1 ≤ |U | ≤ (p(x) + ε)+ in B1, p(x) := xn + σ, |σ| < 1/10, (2.10)

and
|ui| ≤ ε3/4 in B1/2, i = 2, . . . ,m, (2.11)

with C > 0 universal. There exists ε̄ > 0, such that if 0 < ε ≤ ε̄, then at least one of the following holds
true:

p(x) + cε ≤ u1 ≤ |U | in B1/2, (2.12)

or
u1 ≤ |U | ≤ (p(x) + (1 − c)ε)+, in B1/2,

for 0 < c < 0 small universal.

Proof. We distinguish two cases. If at x̄ = 1
5en

u1(x̄) ≤ p(x̄) +
ε

2
, (2.13)

then we will show that
|U | ≤ (p(x) + (1 − c)ε)+ in B1/2 . (2.14)

Similarly, if
u1(x̄) ≥ p(x̄) +

ε

2
, (2.15)
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we will show that
u1 ≥ p(x) + cε in B1/2.

In either case, we let A = B3/4(x̄) \ B1/20(x̄) and

w =


1 in B1/20(x̄);
|x − x̄|γ − (3/4)γ
(1/20)γ − (3/4)γ in A;

0 on ∂B3/4(x̄).

(2.16)

with γ < 0 be such that ∆w > 0 in A.
Case 1. If u1(x̄) ≥ p(x̄) + ε

2 , the argument in [8, Lemma 3.3] carries on, even if u1 may change sign.
For completeness, we provide the details.

Since |σ| < 1/10 and by the flatness assumption

u1 − p ≥ 0 in B1, (2.17)

we immediately deduce that B1/10(x̄) ⊂ B1(U). Notice that, by definition of x̄, we have

B1/2 ⊂⊂ B3/4(x) ⊂⊂ B1. (2.18)

Hence, in view of (2.17), by Harnack inequality applied to u1 − p we get for c0 > 0 universal

u1(x) − p(x) ≥ c(u1(x) − p(x)) ≥ c0ε in B1/20(x̄), (2.19)

where in the second inequality we used assumption (2.15).
Now, let us set

vt(x) = p(x) + c0ε(w(x) − 1) + t in B3/4(x̄) (2.20)

for t ≥ 0. Thus, we deduce that ∆vt = ∆p + c0ε∆w > 0 on A and, by (2.17), we get

v0 ≤ p ≤ u1 in B3/4(x).

Thus, let t > 0 be the largest t > 0 such that vt ≤ u1 in B3/4(x). We want to show that t ≥ c0ε. Indeed,
by the definition of vt, we will get

u1 ≥ vt ≥ p + c0εw in B3/4(x).

In particular, by (2.18), since w ≥ c1 on B1/2, we get

u1 ≥ p + cε in B1/2,

as we claimed.
Suppose by contradiction that t̄ < c0ε. Let x̃ ∈ B3/4(x̄) be the touching point between vt and u, i.e.,

u(x̃) = vt(x̃),

we want to prove that it can only occur on B1/20(x). Since w ≡ 0 on ∂B3/4(x) and t < c0ε we get

vt = p − c0ε + t < u on ∂B3/4(x),
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thus it is left to exclude that x̃ belongs to the annulus A. By the definition (2.20), we get

|∇vt| ≥ |vn| ≥ |1 + c0εwn| in A. (2.21)

Since w is radially symmetric wn = |∇w| νx · en in A, where νx is the unit direction of x− x. On one side,
from the definition of w, we get that |∇w| > c on A and on the other νx · en is bounded by below in the
region {vt ≤ 0} ∩ A, since xn = 1/5 and for ε small,

{vt ≤ 0} ∩ A ⊂ {p − c0ε ≤ 0} ∩ A = {xn ≤ −σ + c0ε} ∩ A ⊂ {xn < 3/20}.

Hence, we infer that |∇vt| ≥ 1 + c2(γ)ε in {vt ≤ 0} ∩ A and consequently

|∇vt| > 1 on F(vt) ∩ A. (2.22)

Finally, since we observed that ∆vt > ε
2 in A, and vt̄ ≤ u1, we deduce that the touching cannot occur in

A ∩ B1(U) where u1 is harmonic. In view of (2.22) and Definition 1.2, we conclude that the touching
cannot occur on A ∩ F(U) as well. Therefore x̃ ∈ B1/20(x) and

u1(x̃) = vt(x̃) = p(x̃) + t < p(x̃) + c0ε,

in contradiction with (2.19).
Case 2. If u1(x̄) ≤ p(x̄) + ε

2 , by the lower bound in (2.10), |u1| = u1 in B1/10(x̄) ⊂ B1(U). Thus by
Harnack inequality and assumption (2.13)

p + ε − |u1| ≥ 2c0ε in B1/20(x̄). (2.23)

Since the desired bound clearly holds in {p ≤ −ε}, where all the ui ≡ 0, it is enough to restrict to the
region {p > −ε}. Below, the superscript ε denotes such restriction.

Now, let us consider for t ≥ 0

vt(x) = p(x) + ε − c0ε(w(x) − 1) − t in Bε
3/4(x̄). (2.24)

Thus, we have ∆vt = −c0ε∆w < 0 on Aε and

v0 ≥ p + ε ≥ |U | in Bε
3/4(x).

Now, let t̄ > 0 be the largest t > 0 such that |U | ≤ vt in Bε
3/4(x). We want to show that t ≥ c0ε. Indeed,

by the definition of vt, this would give

|U | ≤ vt̄ ≤ p + ε − c0εw in Bε
3/4(x).

In particular, by (2.18), since w ≥ c1 on B1/2, we get

|U | ≤ p + (1 − c)ε in Bε
1/2,

as we claimed.
We are left with the proof that t ≥ c0ε. Suppose by contradiction that t̄ < c0ε. Let x̃ ∈ Bε

3/4(x̄) be
the first touching point between vt̄ and |U | in Bε

3/4(x̄), i.e.,

|U | (x̃) = vt̄(x̃).
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We prove that such touching point can only occur on B1/20(x). Since w ≡ 0 on ∂B3/4(x), |U | ≡ 0 on
{p = −ε} and t̄ < c0ε we get

vt̄ > |U | on ∂Bε
3/4(x),

thus we need to exclude that x̃ belongs to Aε. By the definition (2.24), we get

|∇vt̄|
2 = 1 − 2c0εwn + O(ε2) in Aε. (2.25)

On the other hand, it easily follows from the definition (2.24) that

{vt̄ = 0} ⊂ {p + (1 − c0)ε < 0} ⊂
{

xn <
1

10
− (1 − c0)ε

}
,

thus we can estimate that
wn ≥ c3(γ) > 0 on Aε ∩ {vt̄ = 0}.

Hence, we infer that for ε small,

0 , |∇vt̄| < 1 on F(vt̄) ∩ Aε. (2.26)

Finally, since we observed that ∆vt̄ < 0 in Aε, and vt̄ ≥ |U |, we deduce that x̃ < Aε ∩ B1(U). Moreover,
by (2.26) and Definition 1.2, we also conclude that x̃ < Aε ∩ F(U).

Therefore, x̃ ∈ B1/20(x̄) and

|U |(x̃) = vt̄(x̃) = p(x̃) + ε − t̄ > p(x̃) + ε − c0ε,

that is
p(x̃) + ε − |U |(x̃) < c0ε.

This implies, using (2.11) and the fact that |u1| is bounded,

p(x̃) + ε − |u1|(x̃) −Cε3/2 < c0ε,

and we contradict (2.23), for ε small and C universal constant. �

We are now ready to prove Theorem 2.1.

Proof. Let us rescale,

ui
r(x) :=

1
r

ui(rx + x0), x ∈ B1, i = 1, . . . ,m.

Then,
p(x) ≤ u1

r ≤ |Ur| ≤ (p(x) + ε)+ in B1, (2.27)

with
ε := r−1(b0 − a0) ≤ ε̄, p(x) = xn + σ, σ = r−1a0

and
|ui

r| ≤ ε
3/4 in B1/2. (2.28)
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If
|a0| ≤

r
10
,

then we can apply Lemma 2.4 and reach the desired conclusion. If a0 < −r/10 then for ε small,

|Ur| ≡ 0 in B1/20,

and again we obtain the claim. We are left with the case a0 > r/10. Then B1/10 ⊂ B1(Ur) and u1
r > 0

and harmonic in B1/10. Hence by standard Harnack inequality, either

u1
r ≥ p(x) + cε in B1/20,

and we are done, or
u1

r ≤ p(x) + (1 − c)ε in B1/20.

Finally, by (2.28), for ε sufficiently small

|Ur| ≤ u1
r + Cε3/2 ≤ p(x) +

(
1 −

c
2

)
ε in B1/20,

with C, c > 0 universal. �

3. The Improvement of flatness

In this section we prove our main result, an improvement of flatness lemma, from which the desired
Theorem 1.3 follows by standard techniques.

First, we recall some known facts. Consider the following boundary value problem, which is the
linearized problem arising from our improvement of flatness technique:∆Ũ = 0 in B1/2 ∩ {xn > 0},

∂
∂xn

(ũ1) = 0, ũi = 0 i = 2, . . . ,m on B1/2 ∩ {xn = 0},
(3.1)

with Ũ = (ũ1, . . . , ũm) ∈ C(B1/2 ∩ {xn ≥ 0},Rm). The Neumann problem for ũ1 is satisfied in the
following viscosity sense.

Definition 3.1. If P(x) is a quadratic polynomial touching ũ1 by below (resp. above) at x̄ ∈ B1/2∩{xn ≥

0}, then

(i) if x̄ ∈ B1/2 ∩ {xn > 0} then ∆P ≤ 0, (resp. ∆P ≥ 0) i.e ũ1 is harmonic in the viscosity sense;

(ii) if x̄ ∈ B1/2 ∩ {xn = 0} then Pn(x̄) ≤ 0 (resp. Pn(x̄) ≥ 0.)

As usual, in the definition above we can choose polynomials P that touch ũ1 strictly by below/above.
Also, it suffices to verify that (ii) holds for polynomials P̃ with ∆P̃ > 0.

Since the linearized problem (3.1) is a system completely decoupled, the regularity of solutions
follows immediately by standard theory (see also [8, Lemma 2.6].)

Lemma 3.2. Let Ũ be a viscosity solution to (3.1) in Ω. Then Ũ is a classical solution to (3.1) and
Ũ ∈ C∞(B1/2 ∩ {xn ≥ 0};Rm).
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We are now ready to state and prove our key lemma.

Lemma 3.3 (Improvement of Flatness). Let U be a viscosity solution to (1.1) in B1 satisfying the
ε-flatness assumption in B1

|U − f 1x+
n | ≤ ε in B1, (3.2)

and
|U | ≡ 0 in B1 ∩ {xn < −ε}, (3.3)

with 0 ∈ F(U). If 0 < r ≤ r0 for a universal r0 > 0, and 0 < ε ≤ ε0 for some ε0 depending on r, then

|U − f̄ 〈x, ν〉+| ≤ ε
r
2

in Br, (3.4)

and
|U | ≡ 0 in Br ∩

{
〈x, ν〉 < −ε

r
2

}
, (3.5)

with |ν − en| ≤ Cε, | f̄ − f 1| ≤ Cε, for a universal constant C > 0.

Proof. Following the strategy of [8], we divide the proof in three different steps.
Step 1 - Compactness. Fix r ≤ r0 with r0 universal (the value of r0 will be given in Step 3), suppose

by contradiction that there exists εk → 0 and a sequence of solutions (Uk)k of (1.1) such that 0 ∈ F(Uk)
and (3.2) and (3.3) are satisfied for every k, i.e.,

|Uk − f 1x+
n | ≤ εk, in B1, (3.6)

and
|Uk| ≡ 0 in B1 ∩ {xn < −εk}, (3.7)

but the conclusions (3.4) and (3.5) of the Lemma do not hold.
Let us set

Ũk =
Uk − f 1xn

εk
, Vk =

|Uk| − xn

εk
in Ω(Uk) := B1(Uk) ∪ F(Uk) ⊂ {xn ≥ −εk}. (3.8)

By the flatness assumptions (3.6)–(3.7), (Uk)k and (Vk)k are uniformly bounded in B1. Moreover,
F(Uk) converges to B1 ∩ {xn = 0} in the Hausdorff distance. Now, by Corollary 2.3 and Ascoli-
Arzelà, it follows that, up to a subsequence, the graphs of the components ũi

k of Ũk and of Vk over
B1/2∩ (B1(Uk)∪F(Uk)) converge in the Hausdorff distance to the graph of Holder continuous functions
ũi
∞,V∞ on B1/2 ∩ {xn ≥ 0}, for every i = 1, . . . ,m. Moreover, by Corollary 2.3,

V∞ ≡ ũ1
∞ in B1/2 ∩ {xn ≥ 0}. (3.9)

Step 2 - Linearized problem. We show that Ũ∞ satisfies the following problem in the viscosity sense:∆Ũ∞ = 0 in B1/2 ∩ {xn > 0},
∂
∂xn

(ũ1
∞) = 0, ũi

∞ = 0 i = 2, . . . ,m on B1/2 ∩ {xn = 0}.
(3.10)

In view of Lemma 2.2, part (i), the conclusion for i = 2, . . . ,m is immediate. We are left with the case
i = 1.

First, let us consider the case a polynomial P touches ũ1 at x ∈ B1/2 ∩ {xn ≥ 0} strictly by below.
Then the arguments of [8] apply. Indeed, we need to show that
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i. if P touches ũ1
∞ at x ∈ B1/2 ∩ {xn > 0}, then ∆P(x) ≤ 0,

ii. if P touches ũ1
∞ on {xn = 0}, then Pn(x) ≤ 0,

Since ũ1
k → ũ1

∞ uniformly on compacts, there exists (xk)k ⊂ B1/2 ∩ (B1(Uk) ∪ F(Uk)), with xk → x, and
ck → 0 such that

ũ1
k(xk) = P(xk) + ck,

and ũ1
k ≥ P+ck in a neighborhood of xk. From the definition of the sequence ũ1

k , we infer u1
k(xk) = Q(xk)

and u1 ≥ Q in a neighborhood of xk, with

Q(x) = xn + εk(P(x) + ck) (3.11)

If x ∈ B1/2 ∩ {xn > 0}, then xk ∈ B1/2(Uk), for k sufficiently large, and hence since Q touches u1
k by

below at xk

∆Q(xk) = εk∆P(xk) ≤ 0,

which leads to ∆P(x) ≤ 0 as k → ∞.
Instead, if x ∈ B1/2 ∩ {xn = 0}, then we can assume ∆P > 0. It is not restrictive to suppose that, for

k sufficiently large, xk ∈ F(Uk). Otherwise xkn ∈ B1/2(Ukn) for a subsequence kn → ∞ and in that case
∆P(xkn) ≤ 0, in contradiction with the strict subharmonicity of P.

Thus, for k large, xk ∈ F(Uk). Then noticed that ∇Q = en + ε∇P and |∇Q| > 0 for k sufficiently
large, since Q touches u1

k by below, by Definition 1.2 we deduce that |∇Q|2 (xk) ≤ 1, i.e.,

εk |∇P|2 (xk) + 2Pn(xk) ≤ 0.

Passing to the limit as k → ∞ we obtain the desired conclusion.
Consider now the case when P touches ũ1

∞ at x ∈ B1/2 ∩ {xn ≥ 0} strictly by above. Since the
case x ∈ B1/2 ∩ {xn > 0} follows the same reasoning of the previous part, we move on to the case
x ∈ B1/2 ∩ {xn = 0} and assume that ∆P < 0. We claim that

Pn(x) ≥ 0.

Since ũ1
∞ = V∞, for k sufficiently large we get |Uk| (xk) = Q(xk) and |Uk| ≤ Q in a neighborhood of

xk → x̄, with
Q(x) = xn + εk(P − ck), ck → 0.

As before, since |Uk| is subharmonic, we can assume that xk ∈ F(Uk). By the definition of viscosity
solution, we deduce that |∇Q|2 (xk) ≥ 1, i.e.

εk |∇P|2 (xk) + 2Pn(xk) ≥ 0,

which leads to the claimed result as k → ∞. .
Step 3 - Improvement of flatness. Since (Ũk)k is uniformly bounded in B1, we get a uniform bound

on |ũi
∞|, for every i = 1, . . . ,m. Furthermore, since 0 ∈ F(Ũ∞), by the regularity result in Lemma 3.2

we deduce that ∣∣∣ũi
∞(x) − 〈∇ũi

∞(0), x〉
∣∣∣ ≤ C0r2 in Br ∩ {xn ≥ 0}, i = 1, . . . ,m
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for a universal constant C0 > 0. On one side, since ∂xn(ũ
1
∞) = 0 on B1/2 ∩ {xn = 0}, we infer

〈x′, ν̃1〉 −C0r2 ≤ ũ1
∞(x) ≤ 〈x′, ν̃1〉 + C0r2 in Br ∩ {xn ≥ 0},

where ν̃1 = ∇ũ1
∞(0) is a vector in the variables x1, . . . , xn−1, with

∣∣∣ν̃1
∣∣∣ ≤ M, for some M universal

constant. Thus, fixed the notation x′ = (x1, · · · , xn−1), for k sufficiently large there exists C1 such that

〈x′, ν̃1〉 −C1r2 ≤ ũ1
k(x) ≤ 〈x′, ν̃1〉 + C1r2 in Ω(Uk) ∩ Br

and exploiting the definition of ũ1
k we read

xn + εk〈x′, ν̃1〉 − εkC1r2 ≤ u1
k(x) ≤ xn + εk〈x′, ν̃1〉 + εkC1r2 in Ω(Uk) ∩ Br.

Thus, called

ν =
(εkν̃

1, 1)√
1 + ε2

k

∣∣∣ν̃1
∣∣∣2 ∈ S n,

since for k sufficiently large 1 ≤
√

1 +
∣∣∣ν̃1

∣∣∣2 ε2
k ≤ 1 + M2ε2

k/2, we deduce that

〈x, ν〉 −
r
2

M2ε2
k − εkC1r2 ≤ u1

k(x) ≤ 〈x, ν〉 +
r
2

M2ε2
k + εkC1r2 in Ω(Uk) ∩ Br. (3.12)

It follows that, for r0 ≤ 1/(8C1) and k large,

F(Uk) ∩ Br ⊂

{
|〈x, ν〉| ≤ εk

r
4

}
(3.13)

and since |Uk| ≡ 0 in {xn < −εk} and |Uk| > 0 in {xn > εk}, we conclude that

|Uk| ≡ 0 in Br ∩

{
〈x, ν〉 < −εk

r
4

}
, (3.14)

and
|Uk| > 0 in Br ∩

{
〈x, ν〉 > εk

r
4

}
. (3.15)

Also, for r0 < 1/(8C1) and k large,

〈x, ν〉 −
r
8
εk ≤ u1

k(x) ≤ 〈x, ν〉 +
r
8
εk in Ω(Uk) ∩ Br. (3.16)

On the other, since ũi
∞ = 0 on B1/2 ∩ {xn = 0}, for i = 2, . . . ,m we get

〈x, ν̃i〉 −C0r2 ≤ ũi
∞(x) ≤ 〈x, ν̃i〉 + C0r2 in Br ∩ {xn ≥ 0},

where ν̃i = Mien, |Mi| ≤ M, for M universal constant, and for k sufficiently large

|ui
k(x) − Mixnεk| ≤

r
8
εk in Ω(Uk) ∩ Br. (3.17)

Finally, set

f̄ 1
k =

1√
1 + ε2

k

∑m
i=2 |Mi|

2
and f̄ i

k = εk
Mi√

1 + ε2
k

∑m
i=2 |Mi|

2
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for i = 2, . . . ,m. Thus, by (3.16) we get for k large,

∣∣∣u1
k − f̄ 1

k 〈x, ν〉
∣∣∣ ≤ ∣∣∣u1

k − 〈x, ν〉
∣∣∣ +

(m − 1)M2

2
ε2

kr ≤
r
4
εk, in Ω(Uk) ∩ Br, (3.18)

and similarly, by (3.17), we obtain for the other components∣∣∣ui
k − f̄ i

k〈x, ν〉
∣∣∣ ≤ ∣∣∣u1

k − εkMixn

∣∣∣ + εkMr
∣∣∣en − f 1

k ν
∣∣∣

≤
r
8
εk +

m
2
ε3

k M3r ≤
r
4
εk, in Ω(Uk) ∩ Br.

(3.19)

Summing (3.18) and (3.19) for all i = 2, · · · ,m we finally get

|Uk − fk〈x, ν〉| ≤ εk
r
4

in Ω(Uk) ∩ Br.

In view of (3.14), we only need to show that we can replace 〈x, ν〉 with its positive part, in the region

−
r
4
εk < 〈x, ν〉 < 0.

Since in this region,
|Uk| ≤ |Uk − f̄k〈x, ν〉| + | f̄k〈x, ν〉| < εk

r
4
,

we obtain,
|Uk − f̄k〈x, ν〉+| ≤ εk

r
2
, in Ω(Uk) ∩ Br.

In view of (3.15), this inequality holds in Br, which combined with (3.14) leads us to a contradiction.
�

Theorem 1.3 now follows from a standard iterative argument, which we briefly sketch below.
Choose ε̄ = ε0, then by rescaling and iterating Lemma 3.3 we conclude that (say 0 ∈ F(U))

|U − f̃ k〈x, νk〉
+| ≤ ε02−krk

0, in Brk
0
,

with
|νk − νk+1| ≤ Cε02−k, | f̃ k − f̃ k+1| ≤ Cε02−k.

From this we deduce the existence of limiting ν∗0, f̃0 such that for γ = γ(r0),

|U − f̃0〈x, ν∗0〉
+| ≤ Cε0r1+α, in Br, r ≤ 1.

By repeating the same argument at all x0 ∈ F(U) ∩ B1/2, we conclude that

|U − f̃x0〈x, ν
∗
x0
〉+| ≤ Cε0r1+α, in Br(x0), r ≤ 1/2.

Moreover,
|U | ≡ 0, in Br(x0) ∩ {〈x, ν∗x0

〉 < −cε0r1+α}.

Now a standard argument gives that |ν∗x0
− ν∗y0

| ≤ Cε0|x0 − y0|
α, with x0, y0 ∈ F(U) ∩ B1/2 and the claim

follows.
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