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Abstract: The first part of this paper contains a brief introduction to conservation law models of traffic
flow on a network of roads. Globally optimal solutions and Nash equilibrium solutions are reviewed,
with several groups of drivers sharing different cost functions. In the second part we consider a globally
optimal set of departure rates, for different groups of drivers but on a single road. Necessary conditions
are proved, which lead to a practical algorithm for computing the optimal solution.
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1. Introduction

Macroscopic models of traffic flow, first introduced in [26,28], have now become a topic of extensive
research. On a single road, the evolution of the traffic density can be described by a scalar conservation
law. In order to extend the model to a whole network of roads, additional boundary conditions must
be inserted, describing traffic flow at each intersection; see [10, 16, 20, 21, 23, 24] or the survey [4]. A
major eventual goal of these models is to understand traffic patterns, determined by the behavior of a
large number of drivers with different origins and destinations.

In a basic setting, one can consider N groups of drivers, say G1, . . . ,GN . Drivers from each group
have the same origin and destination, and a cost which depends on their departure and arrival time. For
such a model, two kind of solutions are of interest:

- The Nash equilibrium solution, where each driver chooses his own departure time and route to
destination, in order to minimize his own cost.
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- The global optimization problem, where a central planner seeks to schedule all departures in order
to minimize the sum of all costs.

In general, these criteria determine very different traffic patterns. To fix the ideas, let t 7→ ui(t), i =

1, . . . ,N, be the departure rate of drivers of the i-th group, so that∫ t

−∞

ui(s) ds

yields the total number of these drivers who depart before time t. We recall that the support of ui,
denoted by Supp(ui), is the closure of set of times t where ui(t) > 0.

Roughly speaking, the two above solutions can be characterized as follows.
(I) In a Nash equilibrium, all drivers within the same group pay the same cost. Namely, there exists

constants K1, . . . ,KN such that

• every driver of the i-th group, departing at a time t ∈ S upp(ui) bears the cost Ki.
• if a driver of the i-th group were to depart at any time t ∈ IR (possibly outside the support of ui),

he would incur in a cost ≥ Ki.

(II) For a global optima, there exist constants C1, . . . ,Cn (where Ci is the marginal cost for adding
one more driver of the i-th group) such that

• If one additional driver of the i-th group is added at any time t ∈ Supp(ui), then the total cost
increases by Ci.
• If one additional driver of the i-th group is added at any time t ∈ IR (possibly outside the support

of ui), then the increase in the total cost is greater or equal to Ci.

At an intuitive level, these conditions are easy to explain. In Figure 1 (left), the function Γi(t) denotes
the cost to an i-driver departing at time t. If Γi did not attain its global minimum simultaneously at all
points t ∈ [a, b] = Supp(ui), then we could find times t1 ∈ [a, b] and t2 ∈ IR such that Γi(t2) < Γi(t1). In
this case, the driver departing at time t1 could lower his own cost choosing to depart at time t2 instead.
This contradicts the definition of equilibrium.

In Figure 1 (right), the function Λi(t) denotes the marginal cost for inserting one additional driver
of the i-th family, departing at time t. This accounts for the additional cost to the new driver, and also
for the increase in the cost to all other drivers who are slowed down by the presence of one more car
on the road. If Λi did not attain its global minimum at all points in [c, d] = Supp(ui), then we could
find times t1 ∈ [c, d] and t2 ∈ IR such that Λi(t2) < Λi(t1). In this case we could consider a new traffic
pattern, with one less driver departing at time t1 and one more departing at time t2. This would achieve
a smaller total cost, contradicting the assumption of optimality.

While the criterion (I) for an equilibrium solution is easy to justify, a rigorous proof of the necessary
condition (II) for a global optimum faces considerable difficulties. Indeed, to compute the “marginal
cost” for adding one more driver, one should differentiate the solution of a conservation law w.r.t. the
initial data (or the boundary data). As it is well known, in general one does not have enough regularity
to carry out such a differentiation. To cope with this difficulty one can introduce a “shift differential”,
describing how the shock locations change, depending on parameters. See [8, 9, 13, 27, 30] for results
in this direction.
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Figure 1. Left: the rate of departures ui, for drivers of the i-th group, in a Nash equilibrium
solution. Each of these drivers starts at some time t ∈ [a, b]. To achieve an equilibrium,
the cost Γi(t) to any driver departing at time t must be constant inside [a, b] and larger
outside. Right: the rate of departures ui, in a globally optimal solution. Here Λi(t) denotes
the marginal cost for inserting an additional driver of the i-th group, departing at time t. To
achieve global optimality, Λi must be constant on the support of ui, and larger outside.

The first part of this paper contains an introduction to macroscopic models of traffic flow on a
network of roads. Section 2 starts by reviewing the classical LWR model for traffic flow on a single
road, in terms of a scalar conservation law for the traffic density. We then discuss various boundary
conditions, modeling traffic flow at an intersection. Finally, given a cost function depending on the
departure and arrival times of each driver, we review the concepts of globally optimal solution and of
Nash equilibrium solution.

The second part of paper contains original results. We consider here N groups of drivers traveling
along the same road, but with different departure and arrival costs. We seek departure rates
u1(·), . . . , uN(·) which are globally optimal. Namely, they minimize the sum of all costs to all drivers.
A set of necessary conditions for optimality is derived, thus extending the result in [5] to the case
where several groups of drivers are present. Relying on these conditions, in the last section we
introduce an algorithm that numerically computes such globally optimal solutions.

For an introduction to the general theory of conservation laws we refer to [3, 19, 29]. A more
comprehensive discussion of various models of traffic flow can be found in [1, 2, 18, 20].

2. Conservation law models for traffic flow

2.1. Traffic flow on a single road

According to the classical LWR model [26, 28], traffic density on a single road can be described in
terms of a scalar conservation law

ρt(t, x) + f (ρ(t, x))x = 0. (2.1)

Here t is the time, while x ∈ IR is the space variable along the road. Moreover

• ρ is the traffic density, i.e., the number of cars per unit length of the road.
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• v = v(ρ) is the velocity of cars, which we assume depends only on the traffic density.
• f = f (ρ) is the flux, i.e., the number of cars crossing a point x along the road, per unit time. We

have the identity

[flux] = [density]×[velocity] = ρ · v(ρ)

As shown in Figure 2, the velocity should be a decreasing function of the car density. Concerning the
flux function, a natural set of assumptions is

f ∈ C2, f ′′ < 0, f (0) = f (ρ jam) = 0. (2.2)

Here ρ jam is the maximum density of cars allowed on the k-th road. This corresponds to bumper-to-
bumper packing, where no car can move.

Smooth solutions of the conservation law (2.1) can be computed by the classical method of
characteristics. By the chain rule, one obtains

ρt + f ′(ρ)ρx = 0. (2.3)

Hence, if t 7→ x(t) is a curve such that

ẋ(t) �
d
dt

x(t) = f ′(ρ(t, x(t))), (2.4)

then the equation (2.3) yields

d
dt
ρ(t, x(t)) = ρt + ρx ẋ = 0.

In other words, the density is constant along each characteristic curve satisfying (2.4). Notice that the
assumptions (2.2) imply the inequality

[car speed] =̇ v(ρ) = f (ρ)/ρ ≥ f ′(ρ) = v(ρ) + ρ v′(ρ) = [characteristic speed].

With reference to Figure 2, let ρmax be the density at which the flux is maximum. We say that a state ρ
is

• free, if ρ < ρmax, hence the characteristic speed f ′(ρ) is positive,
• congested, if ρ > ρmax, hence the characteristic speed f ′(ρ) is negative.

Due to the non-linearity of the flux function f , it is well known that solutions can develop shocks in
finite time. The conservation law (2.1) must thus be interpreted in distributional sense. For the general
theory of entropy weak solutions to conservation laws, we refer to [3, 29].
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Figure 2. Left: the velocity of cars as a function of the traffic density. Notice that v is
maximum when ρ = 0 and the road is empty. The velocity decreases to zero as the density
approaches a critical density ρ jam, where cars are packed bumper-to-bumper and no one
moves. Right: the flux function f , depending on the density. Typically, this function is
concave down, vanishes at ρ = 0 and at ρ = ρ jam, and has a maximum at some intermediate
point ρmax.

2.2. Traffic flow at road intersections

To model vehicular traffic on an entire network of roads, the conservation laws describing traffic
flow on each road must be supplemented with boundary conditions, describing the behavior at road
intersections.

Consider an intersection, say with m incoming roads i ∈ {1, . . . ,m} = I and n outgoing roads
j ∈ {m + 1, . . . ,m + n} = O, see Figure 3. We shall use the space variable x ∈ ] − ∞, 0] for incoming
roads and x ∈ [0,+∞[ for outgoing roads. Throughout the following we assume that the density of
traffic on each road is governed by a conservation law

ρt + fk(ρ)x = 0, fk(ρ) = ρ vk(ρ), (2.5)

where the flux function fk satisfies (2.2), for every k = 1, . . . ,m + n.

i

j

Figure 3. An intersection with 3 incoming and 2 outgoing roads.

An appropriate model must depend on various parameters, namely

• ci = relative priority of drivers arriving from road i.
• θi j = fraction of drivers from road i that turn into road j.

For example, if the intersection is regulated by a crosslight, ci could measure the fraction of time when
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drivers from road i get green light, on average. It is natural to assume

ci, θi j ≥ 0,
∑
i∈I

ci = 1,
∑
j∈O

θi j = 1. (2.6)

Boundary conditions should determine the limit values of the traffic density on each of the m + n roads
meeting at the intersection:

ρi(t, 0−) = lim
x→0−

ρi(t, x), ρ j(t, 0+) = lim
x→0+

ρ j(t, x), for all i ∈ I, j ∈ O. (2.7)

At first sight, one might guess that m + n conditions will be required. However, this is not so, because
on some roads the characteristics move toward the intersection. For these roads, the limits in (2.7)
are already determined by integrating along characteristics. Boundary conditions are required only for
those roads where the characteristics move away from the origin. Recalling the definition of free and
congested states, we thus have

[# of boundary conditions needed to determine the flux at the intersection]

= [# of incoming roads which are congested ] + [# of outgoing roads which are free].

It now becomes apparent that, to assign a meaningful set of boundary conditions, several different cases
must be considered.

To circumvent these difficulties, an alternative approach developed by Coclite, Garavello, and
Piccoli [16, 21, 22] relies on the construction of a Riemann Solver. Instead of assigning a variable
number of boundary conditions, here the idea is to introduce a rule for solving all Riemann problems
(i.e., the initial-value problems where at time t = 0 the densities ρk and turning preferences θi j are
constant along each road). Relying on front-tracking approximations, under suitable conditions one
can prove that the solutions with general initial data are also uniquely determined.

We briefly review the main steps of this construction, for the constant initial data{
ρ1, . . . , ρm, ρm+1, . . . ρm+n = initial densities on the incoming and outgoing roads,
θi j = fraction of drivers from road i that turn into road j.

Step 1. Determine the maximum flux f max
i that can exit from each incoming road i ∈ I.

As shown in Figure 4, this is computed by

f max
i = f̂i(ρi) =

 fi(ρi) if ρi ≤ ρ
max
i ,

fi(ρmax
i ) if ρi > ρ

max
i .

Step 2: Determine the maximum flux f max
j that can enter each outgoing road j ∈ O.

As shown in Figure 5, this is computed by

f max
j = f̂ j(ρ j) =

 f j(ρ j) if ρi ≥ ρ
max
i ,

f j(ρmax
j ) if ρ j < ρ

max
j .
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Figure 4. Computing the maximum flux that can come out from a road i ∈ I.
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Figure 5. Computing the maximum flux that can get into a road j ∈ O.

Step 3: Given the maximum incoming and outgoing fluxes f max
i , f max

j , and the turning preferences
θi j, determine the region of admissible incoming fluxes (see Figure 6)

Ω �

( f1, . . . , fm) ; fi ∈ [0, f max
i ],

∑
i∈I

fiθi j ≤ f max
j for all j ∈ O

 . (2.8)

max

max
max

max

f

0
f
1

max

max
f
2

Ω

f

f

f

4

3

1

2

Figure 6. The region Ω ⊂ IRm of admissible incoming fluxes, defined at (2.8).

Step 4. To construct a Riemann solver, it now suffices to give a rule for selecting a point ω̄ =

( f1, . . . , fm) in the feasible region Ω. In general, this rule will depend on the priority coefficients
c1, . . . , cm assigned to incoming roads. Observe that, as soon as the incoming fluxes fi, i ∈ I, are given,
the outgoing fluxes are uniquely determined by the identities

f j =
∑
i∈I

fiθi j , j ∈ O. (2.9)
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Various ways to define a Riemann Solver are illustrated by the following examples.

Example 1: Given priority coefficients c1, . . . , cm, following [16] one can choose the vector of
incoming fluxes

ω̄ = ( f1, . . . , fm) � argmax
ω∈Ω

∑
i∈I

ci fi . (2.10)

In particular, if c1 = · · · = cm = 1
m , this means we are maximizing the total flux through the intersection

(see Figure 7 (left)).

Since in (2.10) we are maximizing a linear function over a polytope, in some cases the maximum can
be attained at multiple points. This somewhat restricts the applicability of this model. An alternative
model, with better continuity properties, is considered below.

Example 2: Given positive coefficients c1, . . . , cm as in (2.6), consider the one-parameter curve

s 7→ γ(s) = (γ1(s), . . . , γm(s)),

where
γi(s) � min{cis , f max

i }.

As shown in Figure 7 (right), we then choose the vector of incoming fluxes

ω = ( f1, . . . , fm), fi = γi(s̄), (2.11)

where

s̄ = max

s ≥ 0 ;
∑
i∈I

γi(s) θi j ≤ f max
j for all j ∈ O

 . (2.12)

Ω

f

Ω

f
2

max

1
f
1

max

max
f
2

max

00

ω

γ (s)

ω
_

_

Figure 7. Left: the point ω̄ ∈ Ω which maximizes the total flux through the intersection.
Right: the point ω̄ ∈ Ω constructed by the Riemann Solver at (2.11) and (2.12).

Example 3 : To model an intersection with two incoming and two outgoing roads, where road 2
has a stop sign, we choose the point ω = ( f1, f2) according to the following rules (see Figure 8).

f1 = max {ω1 ; (ω1, 0) ∈ Ω}. (2.13)
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Figure 8. A Riemann Solver modeling an intersection where the second road has a stop sign.

f2 =

 0 if f1 < f max
1 ,

max {ω2 ; ( f1, ω2) ∈ Ω} if f1 = f max
1

(2.14)

According to (2.13), as many cars as possible are allowed to arrive from road 1. According to (2.14),
if any available space is left, cars arriving from road 2 are allowed through the intersection.

2.3. Intersection models with buffers

Having defined a way to solve each Riemann problem, a major issue is whether the Cauchy problem
with general initial data is well posed. Assuming that the turning preferences θi j remain constant in
time, some results in this direction can be found in [16].

We remark, however, that in general these turning preferences may well vary in time. One should
thus regard θi j = θi j(t, x) as variables. Assuming that drivers know in advance their itinerary, the
conservation of the number of drivers on road i that will eventually turn into road j is expressed by the
additional conservation law

[ρiθi j]t + [ρivi(ρ)θi j]x = 0. (2.15)

Combining (2.15) with the conservation law

(ρi)t + [ρivi(ρ)]x = 0,

one obtains a linear transport equation for each of the quantities θi j, namely

(θi j)t + vi(ρ) (θi j)x = 0, i ∈ I, j ∈ O. (2.16)

A surprising counterexample constructed in [14] shows that, for a very general class of Riemann
Solvers, one can construct measurable initial data ρi(0, ·), ρ j(0, ·), and θi j(0, ·), so that the Cauchy
problem has two distinct entropy-admissible solutions.

The ill-posedness of these model equations represents a serious obstruction, toward the existence
of globally optimal traffic patterns, or Nash equilibria, on a general network of roads. To cope with
this difficulty, in [10] an alternative model was proposed, for traffic flow at an intersection. Namely,
it is assumed that the junction contains a buffer (say, a traffic circle), as shown in Figure 9. Incoming
cars are admitted at a rate depending of the amount of free space left in the buffer, regardless of their
destination. Once they have entered the intersection, cars flow out at the maximum rate allowed by the
outgoing road of their choice.
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More precisely, consider a constant M > 0, describing the maximum number of cars that can
occupy the intersection at any given time, and constants ci > 0, i ∈ I, accounting for priorities given
to different incoming roads. For j ∈ O, at any time t we denote by q j(t) ∈ [0,M] the number of cars,
already within the buffer, that seek to turn into road j.

As before, let f max
i and f max

j the maximum fluxes that can exit from road i ∈ I, or can enter into
road j ∈ O. We then require that the incoming fluxes fi satisfy

fi = min

 f max
i , ci

(
M −

∑
j∈O

q j

) , i ∈ I . (2.17)

In addition, the outgoing fluxes f j should satisfy
if q j > 0, then f j = f max

j ,

if q j = 0, then f j = min
{
f max

j ,
∑

i∈I fiθi j

}
,

j ∈ O . (2.18)

Having determined the incoming and outgoing fluxes fi, f j, the time derivatives of the queues q j are
then computed by

q̇ j =
∑
i∈I

fiθi j − f j , j ∈ O. (2.19)

The well-posedness of the intersection model with buffers, for general L∞ data, was proved in [10].
It is interesting to understand the relation between the intersection model with buffer, and the models

based on a Riemann Solver. The analysis in [12] shows that, letting the size of the buffer M → 0, the
solution of the problem with buffers converges to the solution determined by the Riemann Solver at
(2.11) and (2.12), described in Example 2.

5
q

q
4

1

5

2

3

4
ff

f

f
f

Figure 9. An intersection model with a buffer. Here the queue sizes q4, q5 account for the
number of cars that have already accessed the intersection, and are waiting to exit into roads
4 and 5 respectively.

2.4. Optima and equilibria on a network of roads

Consider a network of roads, with several intersections. We call γk, k = 1, . . . , k̄ the arcs
corresponding to the various roads, and A1, . . . , Aν the nodes corresponding to intersections. It is
assumed that, on the k-th road, the flux function has the form fk(ρ) = ρ vk(ρ), with vk a decreasing
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function of the density. As in the previous sections, traffic flow at each intersection can be modeled in
terms of a Riemann Solver, or by means of a buffer.

We consider N groups of drivers with different origins and destinations, and possibly different
departure and arrival costs. As shown in Figure 10:

• Drivers in the i-th group depart from the node Ad(i) and arrive at the node Aa(i).

• Their cost for departing at time t is ϕi(t), while their arrival cost is ψi(t).
• They can use different paths Γ1,Γ2, . . . to reach destination.

a(i)

A

A

Aj

d(i)

Figure 10. A network of roads, with several intersections at nodes A j. Drivers of the i-th
group depart from the node Ad(i) and arrive to node Aa(i). In this example they can choose two
distinct paths to reach destination.

In the following, ūi,p(·) will denote the departure rate of drivers of the i-th group, who choose the
path Γp to reach destination. Calling Gi the total number of drivers in the i-th group, we say that the
departure rates ūi,p are admissible if, for every i = 1, . . . ,N they satisfy the obvious constraints

ūi,p(t) ≥ 0,
∑

p

∫ +∞

−∞

ūi,p(t) dt = Gi . (2.20)

Given the departure rates, in principle one can then solve the equation of traffic flow on the whole
network and determine the arrival times of the various drivers. We call

τp(t) = arrival time of a driver departing at time t, traveling along the path Γp.

In practice, we always expect τp(t) < +∞. However, it is possible to envision a situation where traffic
becomes completely stuck, and τp becomes infinite. See [15] for a discussion of this issue.

With the above notations, we can introduce

Definition 2.1. An admissible family {ūi,p} of departure rates is globally optimal if it minimizes the
sum of the total costs of all drivers

J(ū) �
∑
i,p

∫ (
ϕi(t) + ψi(τp(t))

)
ūi,p(t) dt .
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Definition 2.2. An admissible family {ūk,p} of departure rates is a Nash equilibrium if no driver of
any group can lower his own total cost by changing departure time or switching to a different path to
reach destination.

From the above definition it follows the existence of constants C1, . . . ,CN such that

ϕk(t) + ψk(τp(t)) = Ck for all t ∈ Supp(ūk,p) ,

ϕk(t) + ψk(τp(t)) ≥ Ck for all t ∈ IR .

As remarked in the Introduction, a similar characterization for the globally optimal solution is much
harder to justify.

(t)ϕ

f

0 tmax
ρ ρ
k k

k
(ρ)

i
(t) ψi

jam

Figure 11. A flux function fk, a departure cost function ϕi, and and arrival cost function ψi,
satisfying the assumptions (A1) and (A2).

In the above setting, a natural set of assumptions is (see Figure 11)

(A1) On each road k = 1, . . . , k̄, the flux function fk satisfies

fk ∈ C
2, f ′′k < 0, fk(0) = fk(ρ

jam
k ) = 0. (2.21)

(A2) For each group of drivers i = 1, . . . ,N, the cost functions ϕi, ψi satisfy

ϕ′i < 0, ψi, ψ
′
i > 0, lim

|t|→∞

(
ϕi(t) + ψi(t)

)
= +∞. (2.22)

When all intersections are modeled in terms of a buffer as in (2.17)–(2.19), under the assumptions
(A1), (A2) the existence of a globally optimal solution was proved in [11]. Moreover, if an upper
bound on the travel time τp(t) − t can be given, then a Nash equilibrium solution also exists.

3. Optimal solutions: A single road, several groups of drivers

Consider a single road, where the traffic density is governed by the conservation law

ρt + f (ρ)x = 0 for x ∈ [0, L]. (3.1)
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We assume that N groups of drivers are present, of sizes G1, . . . ,GN , with departure and arrival costs
ϕi, ψi, i = 1, . . . ,N. The flux function will be denoted by

u(t, x) = f (ρ(t, x)) =

N∑
i=1

ui(t, x).

Here
ui(t, x) = θi(t, x) u(t, x) (3.2)

is the flux of drivers of the i-th group. As in (2.6), we always assume that

θi(t, x) ≥ 0,
∑

i

θi(t, x) = 1. (3.3)

For each i ∈ {1, . . . ,N}, the conservation of the number of drivers of the i-th family yields the additional
conservation law

(ρθi)t +
(
ρv(ρ) θi

)
x

= 0 . (3.4)

By (3.1), one obtains the linear equations

θi,t + v(ρ) θi,x = 0, i = 1, . . . ,N. (3.5)

The incoming flux at the beginning of the road is

u(t, 0) = ū(t) =

N∑
i=1

θ̄i(t) ū(t). (3.6)

The global optimization problem can be formulated as follows.

(OP) Given the constants Gi > 0, i = 1, . . . ,N, find departure rates ūi(t) = θ̄i(t)ū(t) which provide an
optimal solution to the problem

minimize: J(ū1, . . . , ūN) �
N∑

i=1

∫ +∞

−∞

[
ui(t, 0)ϕi(t) + ui(t, L)ψi(t)

]
dt, (3.7)

and satisfy the constraints

ū(t) ∈ [0,M], θ̄i(t) ≥ 0,
N∑

i=1

θ̄i(t) = 1, for all t ∈ IR, (3.8)

ūi(t) ≥ 0,
∫ +∞

−∞

ūi(t) dt = Gi , i = 1, . . . ,N. (3.9)

We recall that ui(t, L) = θi(t, L)u(t, L) is the rate at which the drivers of the i-th group arrive at the
end of the road.

Since no intersections are present, the existence of a globally optimal solution follows as a special
case of the result in [11]. Here we briefly recall the main argument in the proof.
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1. Let (ū(n)
1 , . . . , ū(n)

N )n≥1 be a minimizing sequence of admissible departure rates. Namely

ū(n)
i (t) ≥ 0,

N∑
i=1

ū(n)
i (t) ≤ M,

∫ +∞

−∞

ū(n)
i (t) dt = Gi

for every n ≥ 1, and moreover

lim
n→∞

J(ū(n)
1 , . . . , ū(n)

N ) = inf J(ū1, . . . , ūN).

2. By the assumption (A2), as t → ±∞ the cost functions ϕi, ψi become very large. By possibly
modifying the functions ūi, we can thus obtain a minimizing sequence where all departure rates vanish
outside a fixed time interval [a, b].

3. By taking a subsequence, we obtain a weak limit (ū(n)
1 , . . . , ū(n)

N ) ⇀ (ū1, . . . , ūN).
The boundedness of the supports guarantees that these limit departure rates are still admissible (i.e.,

no mass leaks at infinity).
4. Call u(n)

i (t, x), ui(t, x) the corresponding solutions. By the genuine nonlinearity of the conservation
law (3.1), after taking a subsequence, one obtains the strong convergence u(n)(·, L) → u(·, L) in L1(IR),
and the weak convergence of the departure and arrival rates

u(n)
i (·, 0) ⇀ ui(·, 0), u(n)

i (·, L) ⇀ ui(·, L).

Since the cost functional in (3.7) is linear w.r.t. these departure and arrival rates, it is continuous
w.r.t. weak convergence. This yields the optimality of the departure rates (ū1, . . . , ūN).

3.1. Optimality conditions

In the remainder of this section, we seek necessary conditions for a solution to be optimal. As a first
step, we derive an explicit representation of the solution.

Following [5, 6], it is convenient to switch the roles of the variables t, x, and write the density ρ as
a function of the flux u. The boundary value problem (3.1)–(3.6) thus becomes a Cauchy problem for
the conservation law describing the flux u = ρv(ρ), namely

ux + g(u)t = 0 , (3.10)

u(t, 0) = ū(t) . (3.11)

As shown in Figure 12, the function u 7→ g(u) = ρ is defined as a partial inverse of the function
ρ 7→ ρ v(ρ) = u, assuming that

0 ≤ u ≤ M � max
ρ≥0

ρv(ρ) , 0 ≤ ρ ≤ ρmax.

To justify this assumption, consider any solution ρ = ρ(t, x) of (2.1), where the initial data satisfy

ρ(0, x) ≤ ρmax for all x ∈ [0, L].

Then, since all cars that reach the end of the road at x = L can exit immediately, we have

ρ(t, x) ≤ ρmax for all x ∈ [0, L] and t ≥ 0.
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For convenience, we extend g to the entire real line by setting

g(u) �

 g′(0+)u if u < 0,

+∞ if u > M .
(3.12)

The solution to (3.10) and (3.11) can now be expressed by means of the Lax formula [19, 25].
Namely, call

g∗(p) � max
u
{pu − g(u)} (3.13)

the Legendre transform of g. Notice that

g∗(p) = +∞ for p < g′(0).

On the other hand, for p ≥ g′(0) the strict convexity of g implies that there exists a unique value
u = γ(p) ≥ 0 where the maximum in (3.13) is attained, so that

g∗(p) = p · γ(p) − g(γ(p)).

This function γ : [g′(0),+∞[ 7→ [0,M[ is implicitly defined by the relation

g′(γ(p)) = p. (3.14)

Consider the integrated function

U(t, x) �

∫ t

−∞

u(τ, x) dτ,

which measures the number of drivers that have crossed the point x along the road before time t. The
conservation law (3.10) can be equivalently written as a Hamilton-Jacobi equation

Ux + g(Ut) = 0 (3.15)

with data at x = 0

U(t) � U(t, 0) =

∫ t

−∞

ū(s) ds. (3.16)

The solution to (3.10) and (3.11) is now provided by the Lax formula

U(t, x) = min
τ

{
xg∗

( t − τ
x

)
+ U(τ)

}
, (3.17)

τ(t, x) � argmin
τ

{
xg∗

( t − τ
x

)
+ U(τ)

}
, (3.18)

u(t, x) = γ

(
t − τ(t, x)

x

)
. (3.19)

We observe that the function U = U(t, x) is globally Lipschitz continuous. Its values satisfy

U(t, x) ∈ [0,G], G = G1 + . . . + GN . (3.20)
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Car trajectories t 7→ y(t) are defined to be the solutions to the ODE

ẏ(t) = v(ρ(t, y(t))). (3.21)

In the region where ρ > 0, and hence u = ρv(ρ) > 0 as well, these trajectories coincide with the level
curves of the integral function U. Indeed, observing that v = u/ρ, when ρ = g(u) > 0 we can write

ẏ(t) = v(ρ(t, y(t))) =
u(t, y(t))

g(u(t, y(t))
=

Ut(t, y(t))
g(Ut(t, y(t)))

.

By (3.15) one has
d
dt

U(t, y(t)) = Ut + Uxẏ(t) = Ut + Ux
Ut

g(Ut)
= 0. (3.22)

More generally, consider a car departing at time t0. The solution to the Cauchy problem

ẏ(t) = v(ρ(t, y(t))), y(t0) = 0 (3.23)

can be determined by the formula

y(t; t0) = inf
{
x ; U(t, x) > U(t0) or x = (t − t0) · v(0)

}
. (3.24)

The arrival time of a driver departing at time t0 is

τa(t0) = sup
{

t′ ; U(t′, L) < U(t0) or t′ = t0 +
L

v(0)

}
. (3.25)

By (3.5), the functions θi are constant along car trajectories. With the notation introduced in (3.24), in
connection with the boundary data (3.6) we thus have the identities

θi(t, y(t; t0)) = θ̄i(t0). (3.26)

In order to compute the arrival rates ui = θiu at the terminal point of the road x = L, we first observe
that the map

t 7→ U(t)

in (3.16) is nondecreasing. Hence we can define an inverse by setting

τ(s) � inf {t ∈ IR ; U(t) ≥ s} ∈
[
0 ,

∑
i

Gi

]
. (3.27)

We then introduce the functions
Θi(s) � θ̄i(τ̄(s)) (3.28)

By (3.5), the functions θi = θi(t, x) are constant along car trajectories. The general solution to (3.5) and
(3.6) can thus be written as

θi(t, x) = Θi(U(t, x)). (3.29)

We shall be mostly interested in the terminal values u(t, L), describing the rate at which cars arrive
at the end of the road. Denoting the arrival distribution as Ua(t) � U(t, L), the total cost can now be
written as

J =

∫
ϕ(t) dU(t) +

∑
i

∫
ψi(t) Θi(Ua(t)) dUa(t). (3.30)
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Figure 12. Left: the function ρ 7→ ρ v(ρ) describing the flux of cars. Middle: the function
g, implicitly defined by g(ρv(ρ)) = ρ and extended according to (3.12). Right: the Legendre
transform g∗.

Theorem 3.1. Let the flux function f satisfy the standard assumptions (2.2). Assume that all drivers
have the same departure cost ϕi = ϕ and possibly different arrival costs ψ1, . . . , ψN , satisfying (2.22).
Let (ū1, . . . , ūN) an optimal departure rate, minimizing the total cost to all drivers.

Then the corresponding solution does not contain shocks. Moreover, there exists constants
C1, . . . ,CN such that, setting

ψ(t) � min
k

(ψk(t) −Ck) , (3.31)

the following holds:

(i) For any t ∈ IR, let T (t) be the unique time such that

ϕ(t) + ψ(T (t)) = 0 . (3.32)

Then, for every point (t′, x′) along the segment with endpoints (t, 0) and (T (t), L), one has

u(t′, x′) =

 γ

(
T (t) − t

L

)
if

T (t) − t
L

≥ g′(0),

0 otherwise.
(3.33)

(ii) Calling ui(·, L) the arrival rate of drivers of the i-th group, one has

Supp(ui(·, L)) ⊆ {s ; ψ(s) = ψi(s) −Ci}. (3.34)

A proof of Theorem 3.1 will be given in the next section.

Remark 3.2. The above theorem can be regarded as a first step in the analysis of optimality conditions
for traffic flow on a general network. A natural further step would be to look at optimality conditions
for (i) two groups of drivers, starting their journey on the same road and then bifurcating on two distinct
roads, or (ii) two groups of drivers starting on two distinct roads that merge into a single one.

We remark that the optimal solution constructed in Theorem 3.1 does not change if the cost
functions ϕi, ψi, i = 1, . . . ,N, are replaced by ϕi + ci, ψi + ci respectively, for any constants c1, . . . , cN .
Therefore, the result remains valid if one only assumes that any two departure costs ϕi, ϕ j differ by a
constant.
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4. Proof of the necessary conditions

As a preliminary, we review the basic theory of scalar conservation laws with convex flux [3,19,29].
Notice that in (3.10) the usual role of the variables t, x is reversed, because of the particular meaning
of the equations.

Let u = u(t, x) be a weak solution to (3.10), taking values within the interval [0,M]. This solution
is entropy admissible if it contains only downward jumps, namely

u(t+, x) � lim
s→t+

u(s, x) ≤ lim
s→t−

u(s, x) � u(t−, x).

By a generalized characteristic we mean a function x 7→ t(x) which provides a solution to the
differential inclusion

d
dx

t(x) ∈
[
g′(u(t+, x)), g′(u(t−, x))

]
. (4.1)

For any given point (T, L), there exists a minimal and a maximal backward characteristic. As shown
in Figure 13, we denote by (η−(T ), 0) and (η+(T ), 0) the initial points of these characteristics. Calling
U the integral function in (3.16), the points η−(T ) and η+(T ) are respectively the minimum and the
maximum elements within the set

I(T ) �
{
t ∈ IR; t = argmin

τ

{
Lg∗

(T − τ
L

)
+ U(τ)

}}
(4.2)

where the function Λ(t) � Lg∗
(

T−t
L

)
+ U(t) attains its global minimum.

Two cases can occur:

(i) The global minimum in (4.2) is attained at a single point t∗ = η−(T ) = η+(T ).
The function u(·, L) is then continuous at the point T , and

u(T, L) = γ

(
T − t∗

L

)
.

(ii) The global minimum in (4.2) is attained at multiple points, hence η−(T ) < η+(T ).
In this case the solution contains a shock through the point (T, L). Recalling (3.14), the left and
right values across the shock are determined by

u(T−, L) = γ

(
T − η−(T )

L

)
, u(T+, L) = γ

(
T − η+(T )

L

)
.

We observe that characteristics do not cross each other. Indeed, one has the implication

T1 < T2 =⇒ η+(T1) ≤ η−(T2). (4.3)

From (4.3) it immediately follows that

(i) The profile u(·, L) can contain at most countably many shocks. Namely, there can be at most
countably many points Ti such that η−(Ti) < η+(Ti).
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(ii) There can be at most countably many points ti such that

ti = η+(T1) = η−(T2) , (4.4)

for two distinct points T1 < T2.

We recall that, given any function φ ∈ L1
loc(IR), almost every point t ∈ IR is a Lebesgue point of φ.

By definition, this means

lim
h→0+

1
h

∫ t+h

t−h
|φ(s) − φ(t)| ds = 0. (4.5)

As proved in [5], if t is a Lebesgue point of the initial datum ū(·), then there exists a unique forward
characteristic starting at t. In particular, t cannot be the center of a rarefaction wave, and there exists a
unique point T such that

t ∈ [η−(T ), η+(T )]. (4.6)

The next lemma is concerned with the stability of the map T 7→ η±(T ), w.r.t. small perturbations in
the initial datum ū.

Lemma 4.1. Let u = u(t, x) be the unique entropy weak solution of (3.10) and (3.11). Assume that t is
a Lebesgue point for the initial datum ū, and let T be the unique point such that (4.6) holds. Then, for
any ε > 0, one can find δ, δ′ > 0 such that the following holds.

Let ū† be a second initial datum, with

‖ū† − ū‖L1 ≤ δ . (4.7)

If we call u† the corresponding solution, and define the maps (η†)± accordingly, then

[t − δ′, t + δ′] ⊆ [(η†)+(T − ε), (η†)−(T + ε)]. (4.8)

Proof. 1. Let ε > 0 be given. By the uniqueness assumption, for the solution u the backward
characteristics through the points T − ε and T + ε satisfy

η+(T − ε) < t < η−(T + ε).

Hence we can find δ′ > 0 such that

η+(T − ε) < t − 2δ′ < t + 2δ′ < η−(T + ε). (4.9)

2. If the conclusion of the lemma does not hold, we could find a sequence of initial data ūn with
‖ūn − ū‖L1 → 0, such that the corresponding maps η±n satisfy

η+
n (T − ε) ≥ t − δ′ or η−n (T − ε) ≤ t + δ′. (4.10)

To fix the ideas, assume that the first case holds. Namely, for every n ≥ 1, there exists tn ≥ t − δ′ such
that

Lg∗
(T − ε − tn

L

)
+ Un(tn) = min

τ

{
Lg∗

(T − ε − τ
L

)
+ Un(τ)

}
. (4.11)

By possibly taking a subsequence we can assume tn → t∗ ≥ t − δ′. The uniform convergence Un → U
now yields

Lg∗
(
T − ε − t∗

L

)
+ U(t∗) = min

τ

{
Lg∗

(T − ε − τ
L

)
+ U(τ)

}
. (4.12)

This implies η+(T − ε) ≥ t − δ′, reaching a contradiction.
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Figure 13. Characteristic lines for a solution of (3.10). Here the point (T, L) lies along a
shock, and all (generalized) characteristics starting at a point (t, 0) with t ∈ [η−(T ), η+(T )]
eventually reach (T, L). Notice that there are several characteristics starting from the point
(t̄, 0), which is the center of a rarefaction wave.

Remark 4.2. As shown in Figure 13, consider a solution u = u(t, x) containing a shock through the
point (T, L). Then we can modify the initial data at x = 0 inside the interval [η−(T ), η+(T )] so that the
solution perturbed solution u† contains a centered compression wave which breaks exactly at (T, L). In
view of (3.14), This is achieved by taking

ū†(t) =

 γ
(

T−t
L

)
if t ∈ [η−(T ), η+(T )],

ū(t) if t < [η−(T ), η+(T )].

This ensures that all characteristics starting at a point (t, 0) with t ∈ [η−(T ), η+(T )] join together at the
point (T, L).

Consider the constant

λ � Lg∗
(
T − η−(T )

L

)
+ U(η−(T )) = Lg∗

(
T − η+(T )

L

)
+ U(η+(T )).

Then the corresponding integrated function U
†

satisfies

Lg∗
(T − t

L

)
+ U

†
(t) = λ for all t ∈ [η−(T ), η+(T )].

By (4.2), this implies
U
†
(t) ≤ U(t) for all t ∈ IR, (4.13)

while the corresponding solutions coincide at x = L, namely

U†(t, L) = U(t, L), u†(t, L) = u(t, L), for all t ∈ IR. (4.14)
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Figure 14. Characteristic lines and car trajectories. Here τa(ti) is the arrival time of a driver
departing at time ti, while T (ti) is the terminal point of the characteristic through (ti, 0).

The next lemma, analyzing various perturbations to an optimal solution u, provides the key step
toward the proof of Theorem 3.1.

Lemma 4.3. Let (ū1, . . . , ūN) = (θ̄1ū, . . . , θ̄N ū) be optimal departure rates. Assume that t1, t2 are
Lebesgue points for all functions ū, θ̄1, . . . , θ̄N , and

ū(t1) < M, ūi(t2) > 0. (4.15)

Call τa(t1), τa(t2) the arrival times of a driver departing at times t1, t2, respectively. Moreover, let
T (t1),T (t2) be the times where the (unique) generalized forward characteristic starting from t1, t2

reaches the point L. Then

ϕ(t1) + ψi(τa(t1)) +

N∑
j=1

∫ T (t1)

τa(t1)
ψ′j(s)θ j(s, L) ds

≥ ϕ(t2) + ψi(τa(t2)) +

N∑
j=1

∫ T (t2)

τa(t2)
ψ′j(s)θ j(s, L) ds .

(4.16)

Remark 4.4. The left hand side of (4.16) can be interpreted as the cost for inserting an additional
i-driver, departing at time t1. In this case, an additional driver arrives at time T (t1), but this is not the
same one! Indeed, the new driver arrives at time τa(t1). However, the presence of this additional car
slows down all the other cars whose arrival time is T ∈ [τa(t1), T (t1)]. The delay in the arrival time of
all these cars causes a further increase in the total cost, accounted by the integral term on the left hand
side of (4.16). Similarly, the right hand side is the amount which can be saved by removing an i-driver
departing at time t2.

Proof of Lemma 4.3. 1. Since t1, t2 are Lebesgue points of ū, they cannot be the center of a
rarefaction wave. Hence there exist unique points T1 = T (t1) and T2 = T (t2) such that

ti = argmin
τ

{
Lg∗

(Ti − τ

L

)
+ U(τ)

}
, i = 1, 2. (4.17)
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Assuming that (4.16) fails, we shall derive a contradiction. Indeed, we will construct a new initial data
ū†i which is slightly smaller than ūi in a neighborhood of t1 and slightly larger than ūi in a neighborhood
of t2, yielding a lower total cost. Various cases can arise, depending on the relative position of τa(ti)
and T (ti). To fix the ideas, in the following we assume that

τa(t1) < T (t1) < τa(t2) < T (t2), (4.18)

as shown in Figure 14. The other cases are handled in a similar way.
We observe that the above strict inequalities imply that u(·, L) is strictly positive on the intervals

[τa(t1),T (t1)] and [τa(t2),T (t2)]. Indeed, the car speed is always ≤ v(0) = 1
g′(0) . As shown in Figure 15,

if
τa(t1) − t1

L
=

1
v(0)

= g′(0),

then the car speed would be identically equal to the maximum speed v(0). In this case the car trajectory
coincides with a characteristic line, and hence T (t1) = τa(t1), against the assumption (4.18). Therefore,
we must have

τa(t1) − t1

L
> g′(0) , τa(t1) −

L
v(0)

< t1 .

Since characteristics do not cross each other, for every T ∈ ]τa(t1),T (t1)[ the initial point of a
characteristic through (T, L) must satisfy

η(T ) = T − L · g′(u(T, L)) ≤ t1 .

Hence

g′(u(T, L)) ≥
T − t1

L
≥

τa(t1) − t1

L
> g′(0). (4.19)

Since g′ is an increasing function, this yields a lower bound on u(T, L).

η0

L

x x

L

tt
1

τ (t  )1
a

=T(t  )1

0t
1

T(t  )11
(t  )τ

a
T

(T)

Figure 15. Left: if τa(t1) < T (t1), the function u(·, L) must be strictly positive on the entire
interval [τa(t1),T (t1)]. Right: if τa(t1) = T (t1), then the characteristic and the car trajectory
starting at (t1, 0) coincide, and u = 0 along this line. A small perturbation in the initial
data, supported on [t1, t1 + δ], will modify the solution only in a small neighborhood of this
characteristic.
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2. Consider a perturbed set of initial data of the form (ū1, . . . , ū
†

i , . . . , ūN), where only the component
ūi is modified. The new departure rate for drivers of the i-th group is chosen so that

ū†i (t) = ūi(t) if t < [t1 , t1 + δ′] ∪ [t2 , t2 + δ′] ,

ū†i (t) ≥ ūi(t) if t ∈ [t1 , t1 + δ′] ,

0 ≤ ū†i (t) ≤ ūi(t) if t ∈ [t2 , t2 + δ′] ,

(4.20)

∫ t1+δ′

t1

[
ū†i (s) − ūi(s)

]
ds =

∫ t2+δ′

t2

[
ūi(s) − ū†i (s)

]
ds = δ > 0 . (4.21)

Given ε > 0, according to Lemma 4.1, we can choose δ, δ′ > 0 small enough so that the perturbation
in the initial datum

u(t, 0) = ū(t) =

N∑
i=1

ūi(t)

affects the values of u(·, L) only in a small neighborhood of the points T (t1),T (t2), namely

u†(t, L) = u(t, L) for all t < [T (t1) − ε , T (t1) + ε] ∪ [T (t2) − ε , T (t2) + ε]. (4.22)

3. We now consider a sequence of perturbations of the form (4.20) and (4.21), with εn, δn, δ
′
n → 0.

Calling τa
n(t) the corresponding arrival times, we claim that the following holds.

(C) Let t be a Lebesgue point for ū, with ū(t) > 0, and let τa(t) be a Lebesgue point for u(·, L). Then
u(τa(t), L) > 0 and the following implications hold.

τa(t1) < τa(t) < T1 =⇒ lim
n→∞

τa
n(t) − τa(t)

δn
=

1
u(τa(t), L)

, (4.23)

τa(t2) < τa(t) < T2 =⇒ lim
n→∞

τa
n(t) − τa(t)

δn
= −

1
u(τa(t), L)

, (4.24)

τa(t) < [τa(t1),T1] ∪ [τa(t2),T2] =⇒ lim
n→∞

τa
n(t) − τa(t)

δn
= 0. (4.25)

In first approximation, the above limits show that:

• For those drivers who were reaching destination at a time T ∈ ]τa(t1),T1[ , the arrival time is
delayed by δn/u(τa(t), L).
• For those drivers who were reaching destination at a time T ∈ ]τa(t2),T2[ , the arrival time is

anticipated by δn/u(τa(t), L).
• For all other drivers, the arrival time does not change.

To prove the above claim we first observe that, if u(τa(t), L) = 0, then u(t′, x′) = 0 along the backward
characteristic

{(t′, x′) ; x′ = L − (τa(t) − t′)v(0)}.

but in this case, this characteristic coincides with a car trajectory. Hence ū(t) = u(0, t) = 0 as well,
contradicting our first assumption.
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To prove (4.23), assume τa(t1) < τa(t) < T1. Then, for all n large enough, the arrival time τa
n(t) is

uniquely determined by the identity

U(τa
n(t), L) = U(τa(t), L) + δn . (4.26)

Observing that the partial derivative is

∂

∂τ
U(τ, L)

∣∣∣∣∣
τ=τa(t)

= u(τa(t), L),

from (4.26) one obtains (4.23). Notice that here the denominator is uniformly positive, as a
consequence of (4.19).

The proof of (4.24) is entirely similar, replacing (4.26) with the identity

U(τa
n(t), L) = U(τa(t), L) − δn . (4.27)

Finally, if the condition on the left hand side of (4.25) holds, then for all n ≥ 1 sufficiently large one
has τa

n(t) = τa(t), and the implication is trivial.

4. By the properties (4.23) it follows

lim
n→∞

1
δn

N∑
j=1

∫
τa(t)∈ ]τa(t1),T1[

[ψ j(τa
n(t)) − ψ j(τa(t))] ū j(t) dt

=

N∑
j=1

∫
τa(t)∈ ]τa(t1),T1[

ψ′j(τ
a(t)) · lim

n→∞

τa
n(t) − τa(t)

δn
ū j(t) dt

=

N∑
j=1

∫ T1

τa(t1)
ψ′j(τ) ·

1
u(τ, L)

u j(τ, L) dτ

=

N∑
j=1

∫ T1

τa(t1)
ψ′j(τ) θ j(τ, L) dτ .

An entirely similar computation can be performed on the interval ]τa(t2),T2[ . Combining these
estimates, we thus conclude

lim
n→∞

J(ū1, . . . , ū
†

i , . . . , ūN) − J(ū1, . . . , ūi, . . . , ūN)
δn

= ϕ(t1) + ψi(τa(t1)) +

N∑
j=1

∫ T (t1)

τa(t1)
ψ′j(s)θ j(s, L) ds

−

ϕ(t2) + ψi(τa(t2)) +

N∑
j=1

∫ T (t2)

τa(t2)
ψ′j(s)θ j(s, L) ds

 .
(4.28)

If the inequality (4.16) does not hold, then the right hand side of (4.28) is negative. This yields a
contradiction with the optimality of the departure rates (ū1, . . . , ūi, . . . , ūN).

5. The above analysis proves the lemma in the case where (4.18) holds. On the other hand, if
T (t1) = τa(t1), then a small perturbation of the departure rate on the interval [t1, t1 + δn] will modify
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the arrival rate only in a small neighborhood of τa(t1) (see Figure 15 (right)). In this case, one directly
proves that the limit (4.28) remains valid, since the integral over the interval [τa(t1), T (t1)] trivially
vanishes.

4.1. Proof of Theorem 3.1

Let ui(t, 0) = θ̄i(t)ū(t) be optimal departure rates, and let u, θi be the corresponding solutions to

ux + g(u)t = 0, θi,t + v(g(u))θi,x = 0, i = 1, . . . ,N. (4.29)

The proof will be worked out in several steps.

1. We begin by showing that an optimal solution cannot contain any shock in the interior of the
domain, i.e., for 0 ≤ x < L.

Indeed, assume on the contrary that a shock is present, and let (T, L) be the terminal position of this
shock. According to Remark 4.2, we can change the initial datum so that the new solution u† contains
a centered compression wave focusing at (T, L). More precisely, define U

†
, ū† as in Remark 4.2.

Assuming that the functions Θi(s) are defined by

U i(t) � Θi(U(t)) · U(t), (4.30)

define the components (U
†

1, . . . ,U
†

N) by setting

U
†

i (t) � Θi(U
†
(t)) · U

†
(t). (4.31)

Notice that these definition imply

U†i (t, L) = Ui(t, L) for all t ∈ IR,

hence the arrival costs remain the same. On the other hand, we have

U
†

i (t) ≤ U i(t), (4.32)

for all i, t. Observing that there exists some i and some t ∈ [η−(T ), η+(T )] where (4.32) is satisfied as a
strict inequality, we claim that the total departure cost for the perturbed solution is strictly smaller.

To see this, introduce a variable ξ ∈ [0,Gi] labeling drivers of the i-th group. Define the departure
times

ti(ξ) � inf{t ; U i(t) > ξ}, t†i (ξ) � inf{t ; U
†

i (t) > ξ}. (4.33)

By the previous definitions it follows
ti(ξ) ≤ t†i (ξ),

with strict inequality holding at least for some index i and some values of ξ ∈ [0,Gi]. We now compute∑
i

∫
ϕ(t)dU

†

i (t) =
∑

i

∫ Gi

0
ϕ(t†i (ξ)) dξ <

∑
i

∫ Gi

0
ϕ(ti(ξ)) dξ =

∑
i

∫
ϕ(t)dU i(t),

proving our claim.
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2. Next, we claim that an optimal departure rate satisfies

ū(t) < M for all t ∈ IR. (4.34)

Indeed, since the characteristic speed satisfies g′(u) → +∞ as u → M, if ū(τ) = M at some point τ
then the solution u(·, x) would immediately contain a shock, for every x > 0. By the previous step, this
contradicts the optimality assumption.

3. According to Lemma 4.3, by (4.34), the quantity

∆J(i, t) = ϕ(t) + ψi(τa(t)) +

N∑
j=1

∫ T (t)

τa(t)
ψ′j(s) θ j(s, L) ds (4.35)

is equal to some constant Ci for all t ∈ Supp(ūi), and is greater or equal to Ci for all t ∈ IR. In other
words, for each i = 1, . . . ,N we have

ϕ(t) + ψi(τa(t)) −Ci +

N∑
j=1

∫ T (t)

τa(t)
ψ′j(s) θ j(s, L) ds = 0 for all t ∈ Supp(ūi) , (4.36)

ϕ(t) + ψi(τa(t)) −Ci +

N∑
j=1

∫ T (t)

τa(t)
ψ′j(s) θ j(s, L) ds ≥ 0 for all t ∈ IR. (4.37)

This implies

ϕ(t) + ψi(τa(t)) −Ci = ϕ(t) + min
j

(
ψ j(τa(t)) −C j

)
= −

N∑
j=1

∫ T (t)

τa(t)
ψ′j(s) θ j(s, L) ds (4.38)

for all t ∈ Supp(ūi). We now observe that, for a.e. s ∈ [τa(t),T (t)] and j ∈ {1, . . . ,N}, one has the
implication

θ j(s, L) > 0 =⇒ ψ j(s) −C j = min
k

(ψk(s) −Ck). (4.39)

Moreover, for every j, k and a.e. s in the set{
s ∈ IR ; ψ j(s) −C j = ψk(s) −Ck

}
,

one has ψ′j(s) = ψ′k(s). Therefore, defining ψ as in (3.31) and recalling that
∑

j θ j = 1, we obtain

N∑
j=1

∫ T (t)

τa(t)
ψ′j(s) θ j(s, L) ds =

∫ T (t)

τa(t)
ψ′(s) ds. (4.40)

In turn, this implies

ϕ(t) + ψi(τa(t)) −Ci +

N∑
j=1

∫ T (t)

τa(t)
ψ′j(s) θ j(s, L) ds

= ϕ(t) + ψi(τa(t)) −Ci +

∫ T (t)

τa(t)
ψ′(s) ds

= ϕ(t) + ψi(τa(t)) −Ci + ψ(T (t)) − ψ(τa(t))

= ϕ(t) + ψ(T (t)) = 0.

(4.41)
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According to (4.41), each characteristic where the solution u is positive must connect two points (t, 0)
with (T (t), L) with ϕ(t) + ψ(T (t)) = 0. This proves part (i) of Theorem 3.1. Finally, part (ii) follows
from (4.39).

5. An algorithm to construct optimal solutions

Here we illustrate how these necessary conditions can be used to construct optimal solutions. For
simplicity, we shall assume that the cost functions ψi are C2 and satisfy the assumption

(A3) For any i , j one has the implication

ψ′i(t) = ψ′j(t) =⇒ ψ′′(t) , ψ′′j (t). (5.1)

Notice that, by (5.1), for any given constants C1, . . . ,CN , the set of times

{t ∈ IR ; ψi(t) −Ci = ψ j(t) −C j for some i , j}

consists only of isolated points, hence it has measure zero.
We remark that the assumption (A3) is generically valid in the space of twice continuously

differentiable functions. Indeed, given ε > 0 and any N-tuple of twice continuously differentiable
functions (ψ̂1, . . . , ψ̂N), by a small perturbation one can construct functions ψ1, . . . , ψN which satisfy
(A3) together with

‖ψ̂i − ψi‖C2 < ε, i = 1, . . . ,N.

Let now G1, . . . ,GN be the sizes of the N groups of drivers. In order to construct a globally optimal
family of departure rates u1(·), . . . , uN(·), we introduce the following algorithm.

(i) Start by guessing N constants C1, . . . ,CN , and define the cost function ψ as in (3.31).
(ii) Let u = u(t, x) be the solution of (3.10) constructed according to (3.32) and (3.33).

(iii) Define the sets

Ai =
{
t ∈ IR ; u(t, L) > 0, ψi(t) −Ci = min

k
(ψk(t) −Ck)

}
. (5.2)

Notice that, by (A3), for a.e. t ∈ IR the minimum in (5.2) is attained by a unique index k ∈
{1, . . . ,N}.

(iv) Consider the map Λ : IRN 7→ IRN , Λ(C1, . . . ,CN) = (κ1, . . . , κN), where κi is the total number of
drivers of the i-th group, defined by

κi �

∫
Ai

u(t, L) dt . (5.3)

Determine values Ĉ1, . . . , ĈN such that

Λ(Ĉ1, . . . , ĈN) = (G1, . . . ,GN). (5.4)

(v) Set
ψ(t) = min

i
(ψi(t) − Ĉi) .

And let u = u(t, x) be the solution of (3.10) whose characteristics satisfy (3.32).
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(vii) Finally, for T ∈ Ai, call η(T ) the departure time of the driver that arrives at time T . This is
obtained by solving the ODE

ẋ(t) = v(t, x(t)) =
u(t, x)

g(u(t, x))
, (5.5)

with terminal condition

x(T ) = L . (5.6)

The solution t 7→ x(t,T ) of (5.5) and (5.6) yields the trajectory of a car arriving at the end of the
road time T . Its departure time η(T ) is defined by the equality x(η(T )) = 0.
We now consider the sets of departure times

A∗i � {η(t) ; t ∈ Ai}.

The departure distribution

ūi(t) =̇

 ū(t) if t ∈ A∗i ,

0 if t < A∗i ,

then satisfies all the necessary conditions for optimality.

We remark that these conditions are only necessary, not sufficient for optimality. Since an optimal
solution exists, and can obtained by the above method, the previous analysis implies that, if the N-
tuple (Ĉ1, . . . , ĈN) which satisfies (5.4) is unique, then this must yield the optimal solution.

Example 4. We seek a globally optimal departure rate for two groups of drivers, with sizes G1 =

G2 = 2.51 on a road with length L = 10. The conservation law governing traffic density is

ρt + [ρv(ρ)]x = 0, v(ρ) = 2 − ρ (5.7)

The departure and arrival costs for drivers of the two groups are

ϕ(t) = − t ψ1(t) = et−4 ψ2(t) = et−7.6. (5.8)

The optimal solution, found by the algorithm described above, is shown in Figure 16. The marginal
costs for adding one more driver of the first group or of the second group are found to be Ĉ1 = 5.18
and Ĉ2 = 2.10, respectively.
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Figure 16. The globally optimal solution for the problem described in Example 4. Top: the
cost incurred by a driver of the first and of the second group, departing at time t. Bottom: the
rate of departure of drivers of the first and of the second group, as a function of time.
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