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Abstract: It is known that long waves in spatially periodic polymer Fermi-Pasta-Ulam-Tsingou
lattices are well-approximated for long, but not infinite, times by suitably scaled solutions of Korteweg-
de Vries equations. It is also known that dimer FPUT lattices possess nanopteron solutions, i.e.,
traveling wave solutions which are the superposition of a KdV-like solitary wave and a very small
amplitude ripple. Such solutions have infinite mechanical energy. In this article we investigate
numerically what happens over very long time scales (longer than the time of validity for the KdV
approximation) to solutions of diatomic FPUT which are initially suitably scaled (finite energy) KdV
solitary waves. That is we omit the ripple. What we find is that the solitary wave continuously leaves
behind a very small amplitude “oscillatory wake.” This periodic tail saps energy from the solitary wave
at a very slow (numerically sub-exponential) rate. We take this as evidence that the diatomic FPUT
“solitary wave” is in fact quasi-stationary or metastable.
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1. Introduction

We consider a diatomic Fermi-Pasta-Ulam-Tsingou (FPUT) lattice as depicted in Figure 1 below.
Newton’s second law gives the equations of motion:

mn ẍn = F(xn+1 − xn) − F(xn − xn−1).

To be clear, here xn(t) is the position of the nth (with n ∈ Z) particle at time t. We assume that the
masses satisfy

mn+2 = mn for all n ∈ Z

http://www.aimspress.com/journal/mine
http://dx.doi.org/10.3934/mine.2019.3.419
http://www.aimspress.com/newsinfo/1165.html


420

m1µ m2 m2m1 m1

xj�1
<latexit sha1_base64="7124MvyU/lWwjJv3sF3mm42TbhM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyUpgh4LXjxWsB/QhrLZbtq1m03YnYgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89iPXRsTqHicJ9yM6VCIUjKKV2k/97OHCm/bLFbfqzkFWiZeTCuRo9MtfvUHM0ogrZJIa0/XcBP2MahRM8mmplxqeUDamQ961VNGIGz+bnzslZ1YZkDDWthSSufp7IqORMZMosJ0RxZFZ9mbif143xfDaz4RKUuSKLRaFqSQYk9nvZCA0ZygnllCmhb2VsBHVlKFNqGRD8JZfXiWtWtVzq97dZaVey+Mowgmcwjl4cAV1uIUGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx/+d49H</latexit><latexit sha1_base64="7124MvyU/lWwjJv3sF3mm42TbhM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyUpgh4LXjxWsB/QhrLZbtq1m03YnYgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89iPXRsTqHicJ9yM6VCIUjKKV2k/97OHCm/bLFbfqzkFWiZeTCuRo9MtfvUHM0ogrZJIa0/XcBP2MahRM8mmplxqeUDamQ961VNGIGz+bnzslZ1YZkDDWthSSufp7IqORMZMosJ0RxZFZ9mbif143xfDaz4RKUuSKLRaFqSQYk9nvZCA0ZygnllCmhb2VsBHVlKFNqGRD8JZfXiWtWtVzq97dZaVey+Mowgmcwjl4cAV1uIUGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx/+d49H</latexit><latexit sha1_base64="7124MvyU/lWwjJv3sF3mm42TbhM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyUpgh4LXjxWsB/QhrLZbtq1m03YnYgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89iPXRsTqHicJ9yM6VCIUjKKV2k/97OHCm/bLFbfqzkFWiZeTCuRo9MtfvUHM0ogrZJIa0/XcBP2MahRM8mmplxqeUDamQ961VNGIGz+bnzslZ1YZkDDWthSSufp7IqORMZMosJ0RxZFZ9mbif143xfDaz4RKUuSKLRaFqSQYk9nvZCA0ZygnllCmhb2VsBHVlKFNqGRD8JZfXiWtWtVzq97dZaVey+Mowgmcwjl4cAV1uIUGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx/+d49H</latexit><latexit sha1_base64="7124MvyU/lWwjJv3sF3mm42TbhM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyUpgh4LXjxWsB/QhrLZbtq1m03YnYgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89iPXRsTqHicJ9yM6VCIUjKKV2k/97OHCm/bLFbfqzkFWiZeTCuRo9MtfvUHM0ogrZJIa0/XcBP2MahRM8mmplxqeUDamQ961VNGIGz+bnzslZ1YZkDDWthSSufp7IqORMZMosJ0RxZFZ9mbif143xfDaz4RKUuSKLRaFqSQYk9nvZCA0ZygnllCmhb2VsBHVlKFNqGRD8JZfXiWtWtVzq97dZaVey+Mowgmcwjl4cAV1uIUGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx/+d49H</latexit>

xj
<latexit sha1_base64="qvJ5quACxqeflvGVprP90gTmLGk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCF48VTFtoQ9lsN+3azSbsTsQS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ9dzvPHBtRKLucJryIKYjJSLBKFrJfxzk97NBtebW3QXIX+IVpAYFWoPqZ3+YsCzmCpmkxvQ8N8UgpxoFk3xW6WeGp5RN6Ij3LFU05ibIF8fOyJlVhiRKtC2FZKH+nMhpbMw0Dm1nTHFsVr25+J/XyzC6CnKh0gy5YstFUSYJJmT+ORkKzRnKqSWUaWFvJWxMNWVo86nYELzVl/+SdqPuuXXv9qLWbBRxlOEETuEcPLiEJtxAC3xgIOAJXuDVUc6z8+a8L1tLTjFzDL/gfHwDIiKO1Q==</latexit><latexit sha1_base64="qvJ5quACxqeflvGVprP90gTmLGk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCF48VTFtoQ9lsN+3azSbsTsQS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ9dzvPHBtRKLucJryIKYjJSLBKFrJfxzk97NBtebW3QXIX+IVpAYFWoPqZ3+YsCzmCpmkxvQ8N8UgpxoFk3xW6WeGp5RN6Ij3LFU05ibIF8fOyJlVhiRKtC2FZKH+nMhpbMw0Dm1nTHFsVr25+J/XyzC6CnKh0gy5YstFUSYJJmT+ORkKzRnKqSWUaWFvJWxMNWVo86nYELzVl/+SdqPuuXXv9qLWbBRxlOEETuEcPLiEJtxAC3xgIOAJXuDVUc6z8+a8L1tLTjFzDL/gfHwDIiKO1Q==</latexit><latexit sha1_base64="qvJ5quACxqeflvGVprP90gTmLGk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCF48VTFtoQ9lsN+3azSbsTsQS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ9dzvPHBtRKLucJryIKYjJSLBKFrJfxzk97NBtebW3QXIX+IVpAYFWoPqZ3+YsCzmCpmkxvQ8N8UgpxoFk3xW6WeGp5RN6Ij3LFU05ibIF8fOyJlVhiRKtC2FZKH+nMhpbMw0Dm1nTHFsVr25+J/XyzC6CnKh0gy5YstFUSYJJmT+ORkKzRnKqSWUaWFvJWxMNWVo86nYELzVl/+SdqPuuXXv9qLWbBRxlOEETuEcPLiEJtxAC3xgIOAJXuDVUc6z8+a8L1tLTjFzDL/gfHwDIiKO1Q==</latexit><latexit sha1_base64="qvJ5quACxqeflvGVprP90gTmLGk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCF48VTFtoQ9lsN+3azSbsTsQS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ9dzvPHBtRKLucJryIKYjJSLBKFrJfxzk97NBtebW3QXIX+IVpAYFWoPqZ3+YsCzmCpmkxvQ8N8UgpxoFk3xW6WeGp5RN6Ij3LFU05ibIF8fOyJlVhiRKtC2FZKH+nMhpbMw0Dm1nTHFsVr25+J/XyzC6CnKh0gy5YstFUSYJJmT+ORkKzRnKqSWUaWFvJWxMNWVo86nYELzVl/+SdqPuuXXv9qLWbBRxlOEETuEcPLiEJtxAC3xgIOAJXuDVUc6z8+a8L1tLTjFzDL/gfHwDIiKO1Q==</latexit>

xj+1
<latexit sha1_base64="nnGiGpg09Xhozg38M/9i21jRWJ0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBD0WvHisYD+gDWWz3bRrN5uwOxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpn57UeujYjVPU4S7kd0qEQoGEUrtZ/62cOFN+2XK27VnYOsEi8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5NNSLzU8oWxMh7xrqaIRN342P3dKzqwyIGGsbSkkc/X3REYjYyZRYDsjiiOz7M3E/7xuiuG1nwmVpMgVWywKU0kwJrPfyUBozlBOLKFMC3srYSOqKUObUMmG4C2/vEpatarnVr27y0q9lsdRhBM4hXPw4ArqcAsNaAKDMTzDK7w5ifPivDsfi9aCk88cwx84nz/7a49F</latexit><latexit sha1_base64="nnGiGpg09Xhozg38M/9i21jRWJ0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBD0WvHisYD+gDWWz3bRrN5uwOxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpn57UeujYjVPU4S7kd0qEQoGEUrtZ/62cOFN+2XK27VnYOsEi8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5NNSLzU8oWxMh7xrqaIRN342P3dKzqwyIGGsbSkkc/X3REYjYyZRYDsjiiOz7M3E/7xuiuG1nwmVpMgVWywKU0kwJrPfyUBozlBOLKFMC3srYSOqKUObUMmG4C2/vEpatarnVr27y0q9lsdRhBM4hXPw4ArqcAsNaAKDMTzDK7w5ifPivDsfi9aCk88cwx84nz/7a49F</latexit><latexit sha1_base64="nnGiGpg09Xhozg38M/9i21jRWJ0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBD0WvHisYD+gDWWz3bRrN5uwOxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpn57UeujYjVPU4S7kd0qEQoGEUrtZ/62cOFN+2XK27VnYOsEi8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5NNSLzU8oWxMh7xrqaIRN342P3dKzqwyIGGsbSkkc/X3REYjYyZRYDsjiiOz7M3E/7xuiuG1nwmVpMgVWywKU0kwJrPfyUBozlBOLKFMC3srYSOqKUObUMmG4C2/vEpatarnVr27y0q9lsdRhBM4hXPw4ArqcAsNaAKDMTzDK7w5ifPivDsfi9aCk88cwx84nz/7a49F</latexit><latexit sha1_base64="nnGiGpg09Xhozg38M/9i21jRWJ0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBD0WvHisYD+gDWWz3bRrN5uwOxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpn57UeujYjVPU4S7kd0qEQoGEUrtZ/62cOFN+2XK27VnYOsEi8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5NNSLzU8oWxMh7xrqaIRN342P3dKzqwyIGGsbSkkc/X3REYjYyZRYDsjiiOz7M3E/7xuiuG1nwmVpMgVWywKU0kwJrPfyUBozlBOLKFMC3srYSOqKUObUMmG4C2/vEpatarnVr27y0q9lsdRhBM4hXPw4ArqcAsNaAKDMTzDK7w5ifPivDsfi9aCk88cwx84nz/7a49F</latexit>

xj+2
<latexit sha1_base64="XLnOD8aMp9JtECNoua6ToltILjk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBD0WvHisYD+gDWWznbRrN5uwuxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GNzO//YhK81jem0mCfkSHkoecUWOl9lM/e7ioTfvlilt15yCrxMtJBXI0+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7Wfzc6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDaz7hMUoOSLRaFqSAmJrPfyYArZEZMLKFMcXsrYSOqKDM2oZINwVt+eZW0alXPrXp3l5V6LY+jCCdwCufgwRXU4RYa0AQGY3iGV3hzEufFeXc+Fq0FJ585hj9wPn8A/PCPRg==</latexit><latexit sha1_base64="XLnOD8aMp9JtECNoua6ToltILjk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBD0WvHisYD+gDWWznbRrN5uwuxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GNzO//YhK81jem0mCfkSHkoecUWOl9lM/e7ioTfvlilt15yCrxMtJBXI0+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7Wfzc6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDaz7hMUoOSLRaFqSAmJrPfyYArZEZMLKFMcXsrYSOqKDM2oZINwVt+eZW0alXPrXp3l5V6LY+jCCdwCufgwRXU4RYa0AQGY3iGV3hzEufFeXc+Fq0FJ585hj9wPn8A/PCPRg==</latexit><latexit sha1_base64="XLnOD8aMp9JtECNoua6ToltILjk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBD0WvHisYD+gDWWznbRrN5uwuxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GNzO//YhK81jem0mCfkSHkoecUWOl9lM/e7ioTfvlilt15yCrxMtJBXI0+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7Wfzc6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDaz7hMUoOSLRaFqSAmJrPfyYArZEZMLKFMcXsrYSOqKDM2oZINwVt+eZW0alXPrXp3l5V6LY+jCCdwCufgwRXU4RYa0AQGY3iGV3hzEufFeXc+Fq0FJ585hj9wPn8A/PCPRg==</latexit><latexit sha1_base64="XLnOD8aMp9JtECNoua6ToltILjk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBD0WvHisYD+gDWWznbRrN5uwuxFL6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GNzO//YhK81jem0mCfkSHkoecUWOl9lM/e7ioTfvlilt15yCrxMtJBXI0+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7Wfzc6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDaz7hMUoOSLRaFqSAmJrPfyYArZEZMLKFMcXsrYSOqKDM2oZINwVt+eZW0alXPrXp3l5V6LY+jCCdwCufgwRXU4RYa0AQGY3iGV3hzEufFeXc+Fq0FJ585hj9wPn8A/PCPRg==</latexit>

rj+1
<latexit sha1_base64="4ptH2Hy66hO76CxySwsRW82xuxk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSCnosePFYwX5AG8pmO2nXbjZhdyOU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYng2rjut1PY2Nza3inulvb2Dw6PyscnbR2nimGLxSJW3YBqFFxiy3AjsJsopFEgsBNMbud+5wmV5rF8MNME/YiOJA85o8ZKHTXIHq+82aBccavuAmSdeDmpQI7moPzVH8YsjVAaJqjWPc9NjJ9RZTgTOCv1U40JZRM6wp6lkkao/Wxx7oxcWGVIwljZkoYs1N8TGY20nkaB7YyoGetVby7+5/VSE974GZdJalCy5aIwFcTEZP47GXKFzIipJZQpbm8lbEwVZcYmVLIheKsvr5N2req5Ve++XmnU8jiKcAbncAkeXEMD7qAJLWAwgWd4hTcncV6cd+dj2Vpw8plT+APn8wfyL48/</latexit><latexit sha1_base64="4ptH2Hy66hO76CxySwsRW82xuxk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSCnosePFYwX5AG8pmO2nXbjZhdyOU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYng2rjut1PY2Nza3inulvb2Dw6PyscnbR2nimGLxSJW3YBqFFxiy3AjsJsopFEgsBNMbud+5wmV5rF8MNME/YiOJA85o8ZKHTXIHq+82aBccavuAmSdeDmpQI7moPzVH8YsjVAaJqjWPc9NjJ9RZTgTOCv1U40JZRM6wp6lkkao/Wxx7oxcWGVIwljZkoYs1N8TGY20nkaB7YyoGetVby7+5/VSE974GZdJalCy5aIwFcTEZP47GXKFzIipJZQpbm8lbEwVZcYmVLIheKsvr5N2req5Ve++XmnU8jiKcAbncAkeXEMD7qAJLWAwgWd4hTcncV6cd+dj2Vpw8plT+APn8wfyL48/</latexit><latexit sha1_base64="4ptH2Hy66hO76CxySwsRW82xuxk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSCnosePFYwX5AG8pmO2nXbjZhdyOU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYng2rjut1PY2Nza3inulvb2Dw6PyscnbR2nimGLxSJW3YBqFFxiy3AjsJsopFEgsBNMbud+5wmV5rF8MNME/YiOJA85o8ZKHTXIHq+82aBccavuAmSdeDmpQI7moPzVH8YsjVAaJqjWPc9NjJ9RZTgTOCv1U40JZRM6wp6lkkao/Wxx7oxcWGVIwljZkoYs1N8TGY20nkaB7YyoGetVby7+5/VSE974GZdJalCy5aIwFcTEZP47GXKFzIipJZQpbm8lbEwVZcYmVLIheKsvr5N2req5Ve++XmnU8jiKcAbncAkeXEMD7qAJLWAwgWd4hTcncV6cd+dj2Vpw8plT+APn8wfyL48/</latexit><latexit sha1_base64="4ptH2Hy66hO76CxySwsRW82xuxk=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEpSCnosePFYwX5AG8pmO2nXbjZhdyOU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYng2rjut1PY2Nza3inulvb2Dw6PyscnbR2nimGLxSJW3YBqFFxiy3AjsJsopFEgsBNMbud+5wmV5rF8MNME/YiOJA85o8ZKHTXIHq+82aBccavuAmSdeDmpQI7moPzVH8YsjVAaJqjWPc9NjJ9RZTgTOCv1U40JZRM6wp6lkkao/Wxx7oxcWGVIwljZkoYs1N8TGY20nkaB7YyoGetVby7+5/VSE974GZdJalCy5aIwFcTEZP47GXKFzIipJZQpbm8lbEwVZcYmVLIheKsvr5N2req5Ve++XmnU8jiKcAbncAkeXEMD7qAJLWAwgWd4hTcncV6cd+dj2Vpw8plT+APn8wfyL48/</latexit>

rj
<latexit sha1_base64="8kFCrYkKjVU5ICHBd6R2v+dayYQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCF48VTFtoQ9lsN+3azSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94DTlQUxHSkSCUbSSrwf542xQrbl1dwGyTryC1KBAa1D96g8TlsVcIZPUmJ7nphjkVKNgks8q/czwlLIJHfGepYrG3AT54tgZubDKkESJtqWQLNTfEzmNjZnGoe2MKY7NqjcX//N6GUY3QS5UmiFXbLkoyiTBhMw/J0OhOUM5tYQyLeythI2ppgxtPhUbgrf68jppN+qeW/fur2rNRhFHGc7gHC7Bg2towh20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w8Y8o7P</latexit><latexit sha1_base64="8kFCrYkKjVU5ICHBd6R2v+dayYQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCF48VTFtoQ9lsN+3azSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94DTlQUxHSkSCUbSSrwf542xQrbl1dwGyTryC1KBAa1D96g8TlsVcIZPUmJ7nphjkVKNgks8q/czwlLIJHfGepYrG3AT54tgZubDKkESJtqWQLNTfEzmNjZnGoe2MKY7NqjcX//N6GUY3QS5UmiFXbLkoyiTBhMw/J0OhOUM5tYQyLeythI2ppgxtPhUbgrf68jppN+qeW/fur2rNRhFHGc7gHC7Bg2towh20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w8Y8o7P</latexit><latexit sha1_base64="8kFCrYkKjVU5ICHBd6R2v+dayYQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCF48VTFtoQ9lsN+3azSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94DTlQUxHSkSCUbSSrwf542xQrbl1dwGyTryC1KBAa1D96g8TlsVcIZPUmJ7nphjkVKNgks8q/czwlLIJHfGepYrG3AT54tgZubDKkESJtqWQLNTfEzmNjZnGoe2MKY7NqjcX//N6GUY3QS5UmiFXbLkoyiTBhMw/J0OhOUM5tYQyLeythI2ppgxtPhUbgrf68jppN+qeW/fur2rNRhFHGc7gHC7Bg2towh20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w8Y8o7P</latexit><latexit sha1_base64="8kFCrYkKjVU5ICHBd6R2v+dayYQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeCF48VTFtoQ9lsN+3azSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94DTlQUxHSkSCUbSSrwf542xQrbl1dwGyTryC1KBAa1D96g8TlsVcIZPUmJ7nphjkVKNgks8q/czwlLIJHfGepYrG3AT54tgZubDKkESJtqWQLNTfEzmNjZnGoe2MKY7NqjcX//N6GUY3QS5UmiFXbLkoyiTBhMw/J0OhOUM5tYQyLeythI2ppgxtPhUbgrf68jppN+qeW/fur2rNRhFHGc7gHC7Bg2towh20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w8Y8o7P</latexit>

rj�1
<latexit sha1_base64="hgGPJCvhNwV9SDJzNvPQomQhyE4=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyUpBT0WvHisYD+gDWWznbRrN5uwuxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mGmCfkRHkoecUWOljhpkj1febFCuuFV3AbJOvJxUIEdzUP7qD2OWRigNE1Trnucmxs+oMpwJnJX6qcaEsgkdYc9SSSPUfrY4d0YurDIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCW/8jMskNSjZclGYCmJiMv+dDLlCZsTUEsoUt7cSNqaKMmMTKtkQvNWX10m7VvXcqndfrzRqeRxFOINzuAQPrqEBd9CEFjCYwDO8wpuTOC/Ou/OxbC04+cwp/IHz+QP1O49B</latexit><latexit sha1_base64="hgGPJCvhNwV9SDJzNvPQomQhyE4=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyUpBT0WvHisYD+gDWWznbRrN5uwuxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mGmCfkRHkoecUWOljhpkj1febFCuuFV3AbJOvJxUIEdzUP7qD2OWRigNE1Trnucmxs+oMpwJnJX6qcaEsgkdYc9SSSPUfrY4d0YurDIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCW/8jMskNSjZclGYCmJiMv+dDLlCZsTUEsoUt7cSNqaKMmMTKtkQvNWX10m7VvXcqndfrzRqeRxFOINzuAQPrqEBd9CEFjCYwDO8wpuTOC/Ou/OxbC04+cwp/IHz+QP1O49B</latexit><latexit sha1_base64="hgGPJCvhNwV9SDJzNvPQomQhyE4=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyUpBT0WvHisYD+gDWWznbRrN5uwuxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mGmCfkRHkoecUWOljhpkj1febFCuuFV3AbJOvJxUIEdzUP7qD2OWRigNE1Trnucmxs+oMpwJnJX6qcaEsgkdYc9SSSPUfrY4d0YurDIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCW/8jMskNSjZclGYCmJiMv+dDLlCZsTUEsoUt7cSNqaKMmMTKtkQvNWX10m7VvXcqndfrzRqeRxFOINzuAQPrqEBd9CEFjCYwDO8wpuTOC/Ou/OxbC04+cwp/IHz+QP1O49B</latexit><latexit sha1_base64="hgGPJCvhNwV9SDJzNvPQomQhyE4=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyUpBT0WvHisYD+gDWWznbRrN5uwuxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mGmCfkRHkoecUWOljhpkj1febFCuuFV3AbJOvJxUIEdzUP7qD2OWRigNE1Trnucmxs+oMpwJnJX6qcaEsgkdYc9SSSPUfrY4d0YurDIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCW/8jMskNSjZclGYCmJiMv+dDLlCZsTUEsoUt7cSNqaKMmMTKtkQvNWX10m7VvXcqndfrzRqeRxFOINzuAQPrqEBd9CEFjCYwDO8wpuTOC/Ou/OxbC04+cwp/IHz+QP1O49B</latexit>

Figure 1. A segment of an FPUT lattice. The mass of the nth particle is mn and its position
is xn. The springs exerts a force F(r), which is a function of the relative displacement rn :=
xn+1 − xn. The motion is constrained to be in the line. In this figure, j is even.

and the spring force is
F(r) := r + r2.

That is to say the lattice is a so-called “mass dimer,” as studied in [1–12]. It is convenient and
technically advantageous to rewrite the system in terms of the relative displacements rn := xn+1 − xn

and velocities pn := ẋn:

ṙn = pn+1 − pn and ṗn =
1

mn
(F(rn) − F(rn−1)) . (1.1)

We are principally interested in the long time dynamics of finite energy∗ solutions r(t) := (r(t), p(t))
which are of long wavelength and small amplitude. This situation is sometimes called “the KdV limit”
for, as shown in [4, 7, 13], such solutions of (1.1) are well-approximated for long, but finite, times
by suitably scaled solutions of Korteweg-de Vries equations. KdV equations famously possess solitary
wave solutions and as such the approximation results indicate that (1.1) has a solution which is “solitary
wave-like,” at least for very long times. In particular, for 0 < ε � 1, there is a solution of (1.1) of the
form

rn(t) = Ψm1,m2,ε
n (t) := 3ε2 sech2 (βε (n − cεt)) v + zn(t)

where

β :=

√
3(m2

1 + 2m1m2 + m2
2)

2(m2
1 − m1m2 + m2

2)
, cε := (1 + ε2)

√
2

m1 + m2
and v := (1,−c0) . (1.2)

The quantity cε is the wave-speed and c0 is called “the speed of sound.” The error† function z(t) is less
than O`2×`2(ε5/2) for |t| ≤ T0/ε

3. In this article we take z(0) = 0, though the results in [4, 7] allow a fair
bit of latitude for its initial value. The key question of this article is this: What happens toΨm1,m2,ε(t) for
times much greater than O(1/ε3)? In the monatomic problem, i.e., when m1 = m2 = m > 0, the system
(1.1) possesses a family of supersonic (that is, with speeds c > c0) solitary wave solutions which are
asymptotically stable with respect to perturbations initially small in `2 × `2 ( [14–18]). This solitary
wave is given by

rn(t) = Σm,ε
n (t) := 3ε2 sech2 (βε(n − cεt)) v + ηε(n − cεt).

∗Naturally the system conserves energy. Specifically E(t) :=
∑

n∈Z

(
1
2 mn p2

n(t) + 1
2 r2

n(t) + 1
3 r3

n(t)
)

is constant so long as it is initially

finite. It is straightforward to show that, so long as ‖r‖`2 is not too big,
√

E is equivalent to ‖(r, p)‖`2×`2 .
†If m1 = m2 the error estimate is stronger: z(t) is O`2×`2 (ε7/2).
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The constants β, cε and v are exactly as in (1.2). The function ηε(y) is small and spatially localized in
the sense that there exists β̃ > 0 such that cosh(β̃y)ηε(y/ε) = OHs×Hs(ε4). As such we can divine the
ultimate fate of the solution Ψm,m,ε(t) in the monatomic case:

Ψm,m,ε(t) −→ Σm,ε′
n (t − t′) as t −→ ∞

for some ε′ ∼ ε and t′ ∼ 0. Note that the convergence is not in `2 × `2, but in a somewhat more
complicated space. See [18] for the details.

On the other hand, the recent work in [1, 2, 11, 12] demonstrates that for a mass dimer the natural
analog of the monatomic solitary wave is a “generalized solitary wave”, i.e., a traveling wave which is
the superposition of a core which is qualitatively a solitary wave and a very small amplitude periodic
“ripple.” Such solutions are sometimes called “nanopterons” [19]. Specifically, when m1 , m2 and
ε > 0 is not too large, there is a solution of (1.1) of the form

rn(t) = Γm1,m2,ε
n (t) := 3ε2 sech2 (βε (n − cεt)) v + ηn,ε(n − cεt)︸                                             ︷︷                                             ︸

the solitary core

+ φn,ε(n − cεt)︸        ︷︷        ︸
the ripple

.

In the above, β, cε and v are as in (1.2). The functions ηn,ε(y) and φn,ε(y) satisfy:

ηn+2,ε(y) = ηn,ε(y) and φn+2,ε(y) = φn,ε(y) for all n ∈ Z and y ∈ R.

Which is to say that, with respect to the subscript n, they have the same periodicity as the lattice.
Moreover there exists a constant β̃ > 0 such that cosh(̃βy)ηn,ε(y/ε) = OHs×Hs(ε3), i.e., the ηn,ε are
small and go to zero exponentially fast at spatial infinity. The functions φn,ε(y) are spatially periodic.
Their frequency is ξε = ξ0 + O(ε) where ξ0 = ξ0(m1,m2) is the unique positive solution of the “phase
resonance” condition

c2
0ξ

2
0 =

1
m1

+
1

m2
+

√(
1

m1
−

1
m2

)2

+
4 cos2(ξ0)

m1m2
. (1.3)

The amplitudes of φn,ε(y) are small beyond all orders of ε; for all n ∈ N,

lim
ε→0+

ε−n‖φn,ε‖W s,∞×W s,∞ = 0.

Without being too technical, in the diatomic problem the dispersion relation for (1.1) has two
branches whereas the monatomic problem has a single branch. The first of the diatomic problem’s
branches is called the “acoustic branch” and it is qualitatively similar to the dispersion relation for the
monatomic problem. Roughly speaking, the acoustic part of the diatomic problem can, in isolation,
support a solitary wave at speeds slightly above the speed of sound c0. The second branch is called the
“optical branch.” As it happens, this branch has plane wave solutions which can propagate with any
phase speed. As such, the nonlinearity in the problem causes the acoustic branch solitary wave to
resonate weakly with plane waves with the speed of sound, ultimately generating the ripple. The
spatial frequency at which this resonance occurs is ξ0 in (1.3). See [1, 11, 20] for a more in depth
treatment.
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Despite the fact that it is so small, the presence of the ripple precludes membership of Γm1,m2,ε in
`2 × `2, since this solution does not converge‡ to zero as | j| → ∞. Thus the generalized solitary wave
has infinite energy and as such it is categorically impossible for the finite energy solution Ψm1,m2,ε(t) to
converge to Γm1,m2,ε as t → ∞. And so something else must happen, something which is quite different
than the convergence to the solitary wave which takes place in the monatomic problem.

We study this by carefully simulating the solitary wave-like solutionΨm1,m2,ε(t) over very long times.
The results are unambiguous: as Ψm1,m2,ε(t) propagates, it leaves behind a small amplitude, relatively
high frequency “oscillatory wake.” Initially somewhat disordered in appearance, the wake eventually
settles into a rather regular periodic structure. Figure 2 contains a visualization of the simulations.
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Figure 2: Plots of the r�component of the numerical computation of  m1,m2,✏(t) vs n at
t = 100 and t = 10, 000. In this figure, m1 = 1, m2 = 2 and ✏ = 1/4. The vertical scaling is
the same in the three plots.

the diatomic problem can, in isolation, support a solitary wave at speeds slightly above the
speed of sound c0. The second branch is called the “optical branch.” As it happens, this
branch has plane wave solutions which can propagate with any phase speed. As such, the
nonlinearity in the problem causes the acoustic branch solitary wave to resonate weakly with
plane waves with the speed of sound, ultimately generating the ripple. The spatial frequency
at which this resonance occurs is ⇠0 in (3). See [7, 6, 13] for a more in depth treatment.

Despite the fact that it is so small, the presence of the ripple precludes membership of
�m1,m2,✏ in `2 ⇥ `2, since this solution does not converge3 to zero as |j| ! 1. Thus the
generalized solitary wave has infinite energy and as such it is categorically impossible for the
finite energy solution  m1,m2,✏(t) to converge to �m1,m2,✏ as t ! 1. And so something else
must happen, something which is quite di↵erent than the convergence to the solitary wave
which takes place in the monatomic problem.

In this article we study this by carefully simulating the solitary wave-like solution m1,m2,✏(t)
over very long times. The results are unambiguous: as  m1,m2,✏(t) propagates, it leaves be-
hind a small amplitude, relatively high frequency “oscillatory wake.” Initially somewhat
disordered in appearance, the wake eventually settles into a rather regular periodic struc-
ture. Figure 1 contains a visualization of the simulations. While it is not atypical for small
perturbations of solitary waves in nonlinear dispersive systems such as KdV or monatomic
FPUT to leave a “dispersive tail” behind early on in their evolution, in those cases the tail
“disconnects” from the main solitary wave and eventually falls far behind it. But in these

3It is worth pointing out that the results in [7, 13] do not prove that the amplitude of the ripple is nonzero
and thus one might wonder if the ripple is really there or if its presence is a technical crutch. While there
is some compelling formal evidence that for special values of m1, m2 and ✏ the ripple may in fact vanish
[29, 18], our expectation is that in all but a set of measure zero in parameter space the ripple is nonzero.
After all, this is the case for generalized solitary waves in the gravity-capillary problem [17, 27], a problem
which, at a technical level, is rather similar to the FPUT problem considered here.

4

Figure 2. Plots of the r−component of the numerical computation of Ψm1,m2,ε(t) vs. n at
t = 100 and t = 10, 000. In this figure, m1 = 1, m2 = 2 and ε = 1/4. The vertical scaling is
the same in the three plots.

While it is not atypical for small perturbations of solitary waves in nonlinear dispersive systems
such as KdV or monatomic FPUT to leave a “dispersive tail” behind early on in their evolution, in
those cases the tail “disconnects” from the main solitary wave and eventually falls far behind it. But in
these diatomic FPUT problems, the oscillatory wake is generated during the entirety of the simulation,
always immediately trailing the leading solitary wave and inexorably increasing in width.

The oscillatory wake was not unexpected—simulations for the “small mass ratio problem” (that is,
ε > 0 is fixed and m1/m2 is taken to be very small) in [10] and [9] exhibit similar behavior. Those
results were somewhat hobbled by the lack of computing power available at the time of their execution
and as such the time scales of their runs were rather short. Also worth pointing out are the simulations
of waves through lattices whose material properties randomly vary (as opposed to periodically vary)
with respect to n. In this situation a “superdiffusive” effect is observed wherein the leading part of
the pulse deteriorates very rapidly into “noise” [23], an effect similar too, but rather more pronounced,
than what we see here.

‡It is worth pointing out that the results in [1,11] do not prove that the amplitude of the ripple is nonzero and thus one might wonder
if the ripple is really there or if its presence is a technical crutch. While there is some compelling formal evidence that for special values
of m1, m2 and ε the ripple may in fact vanish [2, 12], our expectation is that in all but a set of measure zero in parameter space the
ripple is nonzero. After all, this is the case for generalized solitary waves in the gravity-capillary problem [21, 22], a problem which, at
a technical level, is rather similar to the FPUT problem considered here.

Mathematics in Engineering Volume 1, Issue 3, 419–433.



423

Our simulations run for times substantially longer than 1/ε3. An interesting finding: The
frequency of the wake is largely independent of the leading wave’s size and is not particularly close to
the frequency ξε of the ripple in the associated nanopteron. Moreover, as the width of the wake grows
it slowly saps energy from the leading wave. In this way, the amplitude of the leading solitary wave
slowly erodes during the evolution. The numerics indicate that the rate of this erosion is at most
algebraic in t, much slower than the exponential rate one would expect were there a genuine linear
instability. For these reasons, the solution Ψm1,m2,ε(t) is viewed as a metastable solitary wave.

2. The numerical method

Our numerical method for computing Ψm1,m2,ε(t), implemented in MATLAB, is rather
straightforward. First we restrict the size of the domain to be N = 210. Specifically we take
n ∈ [−N/2 + 1,N/2] ∩ Z and enforce periodic boundary conditions in (1.1), that is rN/2(t) = r−N/2+1(t)
for all t. In this way we have converted the original infinite-dimensional system into a large
finite-dimensional first-order system of differential equations. After picking m1, m2 and ε, we take the
initial condition to be rn(0) = 3ε2 sech2 (βε j) v with β and v as in (1.2). Then we simulate this system
with a standard RK4 method. The time step is fixed at h = 1/10.

Because our simulations are to run for long periods and the oscillatory wake is relatively
motionless in comparison to the leading solitary wave, we enforce a “windowing” on the numerically
computed solution, lest the solitary wave interact with its wake after wrapping around the periodic
box§. Specifically, at each time step tl we compute the location nmax of the maximum of√

r2
n(tl) + p2

n(tl); this gives us the position of the leading solitary wave. Then we multiply rn(tl) by the
function W( j − nmax + N/8) where W is the N-periodic function which, for k ∈ [−N/2 + 1,N/2], is
given by:

W(k) :=



1 when |k| ≤
5N
16

1 −
8
N

(
|k| −

5N
16

)
when

5N
16

< |k| ≤
7N
16

0 when
7N
16

< |k| ≤
N
2
.

Consequently our numerical method will not come close to conserving energy: Energy leaves the
leading solitary wave, goes into the wake and is eventually “zeroed out” by the window¶. Note,
however, that our simulations indicate that anything that falls behind the solitary pulse has no further
discernible effect on it (this is consistent with aspects of the stability theory for the monatomic
solitary wave, which is known to “outrun” all disturbances [14–17]). Moreover, the size of the
window is sufficiently large that the oscillatory wake is given enough time to settle down into a
regular and consistent configuration. In this way, we are able to run our simulations for very long
times in a way which focuses on the leading solitary wave and a very large part of the oscillatory

§Another way to avoid this problem would be to make the domain extremely large, on the order of N = 107. Such a remedy is
obviously computationally expensive and hence we took another route

¶That the method as described will not conserve energy is one reason why we use an RK4 time stepping method, as opposed to, say,
a more complicated symplectic structure preserving method (as in [24]).
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wake. Since our main interest is on the formation of the wake immediately behind the solitary wave,
the windowing is large enough to adequately resolve this phenomenon‖.

3. Results

With our numerical method, we performed the following runs:

• Fixed m1 = 1, m2 =
√

2 and took ε = 1/2, 1/4, 1/8, 1/16.
• Fixed m1 = 1, m2 = 2 and took ε = 1/2, 1/4, 1/8, 1/16.
• Fixed m1 = 1, m2 = π and took ε = 1/2, 1/4, 1/8, 1/16.

We picked these choices of masses so that we would have a mix of rational/irrational mass ratios as
well as mass ratios which were large, small and close to one. Each run ran from t = 0 to t = 106. For
each run, at each time step tl we compute the amplitude of the main pulse:

ampsol(tl) := max
n

√
r2

n(tl) + p2
n(tl) =

√
r2

nmax
(tl) + p2

nmax
(tl).

Then we compute the amplitude of the solution at a fixed distance behind the location of the main
pulse. This quantity gives us the size of the wake right after its formation. Specifically we use a “peak
to trough” measure of the amplitude:

ampwake(tl) :=
1
2

(
max

n−nmax∈[−3N/4,−7N/8]
rn(tl) − min

n−nmax∈[−3N/4,−7N/8]
rn(tl)

)
.

3.1. Profile snapshots

In Figures 3–5 we present snapshots of the of r−component of the numerical computation of
Ψm1,m2,ε(t) vs. n at t = 0 and t = 106. That is, at the beginning and end of the run. Since the runs are so
long, by the end of the run the amplitude of the oscillatory wake is quite small indeed and as such we
provide “zooms” of these. Here are our observations:

1. The attenuation of the ampsol is quite pronounced when ε is large, but when ε is small is barely
discernible.

2. It is visible in these figures that, for fixed mass ratio, the spatial frequency of the wake is more or
less constant across all simulated values of ε. The only variation from this is in in Figure 3 where
the frequency when ε = 1/16 is notably different than for the other values of ε. We do not present
this, but numerical computation of the frequency of the wake is all but constant (for fixed mass
ratio and ε) in time once the disordered transient period has elapsed and the solution settles into
the regular “wake plus solitary wave” form.

3. Note that in Figures 4 and 5 the wake at ε = 1/16 oscillates about a non-zero value. Note also that
the amplitude of the wake in these cases is extremely small: O(10−9) and O(10−10), respectively.
In these cases we are at the limit of the precise quantitative accuracy of our method. We include
these principally because the qualitative dynamics are in line with the other simulations.

‖An interesting project would be to carry out the rigorous numerical analysis of this method. As pointed out by one of the referees,
the method as described has features in common with the “freezing” method in [25,26] and as such those articles point towards a strategy
for such an analysis.
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Figure 3. Plots of the r−component of the numerical computation ofΨm1,m2,ε(t) vs. n at t = 0
and t = 106. The final panel in each row is a close-up of the oscillatory wake immediately
behind the main pulse at t = 106. In this figure, m1 = 1 and m2 =

√
2.
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Figure 4. Plots of the r−component of the numerical computation ofΨm1,m2,ε(t) vs. n at t = 0
and t = 106. The final panel in each row is a close-up of the oscillatory wake immediately
behind the main pulse at t = 106. In this figure, m1 = 1 and m2 = 2.
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Figure 5. Plots of the r−component of the numerical computation ofΨm1,m2,ε(t) vs. n at t = 0
and t = 106. The final panel in each row is a close-up of the oscillatory wake immediately
behind the main pulse at t = 106. In this figure, m1 = 1 and m2 = π.

3.2. Amplitudes vs. time

In Figures 6–8 we present plots of ampsol and ampwake vs. time for our runs. We present these on
log− log plots. Here are our observations:

1. In each case, it is plain that there is an initial transient phase (corresponding to the initial
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disordered wake) followed by a longer period where the dynamics are more regular.

2. In situations where ε is relatively large, the graphs follow a distinctly linear decay following the
transient phase. Since the plots are log− log this indicates that these quantities are decaying at an
algebraic rate.

3. When ε is smaller, the ampsol and ampwake settle into seemingly constant values.

4. Using a best fit approximation, we compute the rates of decay of ampsol and ampwake for those
where the decay appears to algebraic. See Table 1. In this table, we denote the cases where the
ultimate fate is seemingly constant by writing “∼cst”.

103 104 105 106

time (t)

10-5

100

am
pl

itu
de

m1 =1, m2 = 2, =1/2

ampsol
ampwake

103 104 105 106

time (t)

10-5

100

am
pl

itu
de

m1 =1, m2 = 2, =1/4

ampsol
ampwake

103 104 105 106

time (t)

10-5

10-4

10-3

10-2

10-1

am
pl

itu
de

m1 =1, m2 = 2, =1/8

ampsol
ampwake

103 104 105 106

time (t)

10-8

10-6

10-4

10-2

100

am
pl

itu
de

m1 =1, m2 = 2, =1/16

ampsol
ampwake

Figure 6. log− log plots of amplitudes of the leading solitary wave and oscillatory wakes
vs. time when the mass ratio is

√
2.
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Figure 7. log− log plots of amplitudes of the leading solitary wave and oscillatory wakes
vs. time when the mass ratio is 2.
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Figure 8. log− log plots of amplitudes of the leading solitary wave and oscillatory wakes
vs. time when the mass ratio is π.
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Table 1. Numerically computed rate of decay

mass ratio ε ampsol ampwake
√

2 1/2 t−.1530 t−.6710

√
2 1/4 t−.1524 t−.6682

√
2 1/8 t−.0778 t−.3591

√
2 1/16 ∼cst ∼cst

2 1/2 t−.1457 t−.6689

2 1/4 t−.1425 t−.6600

2 1/8 ∼cst ∼cst

2 1/16 ∼cst ∼cst

π 1/2 t−.1778 t−.5421

π 1/4 ∼cst ∼cst

π 1/8 ∼cst ∼cst

π 1/16 ∼cst ∼cst

4. Conclusions

These simulations indicate that “solitary wave plus oscillatory wake” is the generic structure of
Ψm1,m2,ε(t) when t � 1. This appears to be true over a range of mass ratios and values of ε. The
general trend is that the amplitude of the wake is much smaller than that of the leading solitary wave
but with a frequency seemingly fixed by the mass ratio. The likely cause of the oscillatory wake is a
resonance between the acoustic and optical parts of the solution, though the precise mechanism is as
yet unknown.

Since the problem conserves energy, it is impossible that both ampsol and ampwake are ultimately
constant and nonzero, although some of our simulations seem to indicate that this is what is taking
place. However, we conjecture that the rate of decay in these cases is actually so slow, slower even
than algebraic, that it is undetectable using the methodology presented here. Given that the nanopterons
from [1] and [11] have ripples which are small beyond all orders of ε, it seems within the realm of
possibility that a truly rigorous treatment of the oscillatory wake will likewise involve a beyond all
orders sort of analysis [19]. Such a treatment is beyond the scope of this investigation, but we feel our
results demonstrate that such an analysis would be of great interest.

Acknowledgements

This work was supported by the National Science Foundation through grant DMS-1511488.

Mathematics in Engineering Volume 1, Issue 3, 419–433.



432

Conflict of interest

The authors declare no conflict of interest.

References

1. Faver TE, Wright JD (2018) Exact diatomic Fermi-Pasta-Ulam-Tsingou solitary waves with
optical band ripples at infinity. SIAM J Math Anal 50: 182–250.

2. Lustri CJ, Porter MA (2018) Nanoptera in a period-2 Toda chain. SIAM J Appl Dyn Syst 17:
1182–1212.

3. Porter M, Daraio C, Szelengowicz I, et al. (2009) Highly nonlinear solitary waves in
heterogeneous periodic granular media. Phys D 238: 666–676.

4. Gaison J, Moskow S, Wright JD, et al. (2014) Approximation of polyatomic FPU lattices by
KdV equations. Multiscale Model Simul 12: 953–995.

5. Qin WX (2015) Wave propagation in diatomic lattices. SIAM J Math Anal 47: 477–497.

6. Betti M, Pelinovsky DE (2013) Periodic traveling waves in diatomic granular chains. J Nonlinear
Sci 23: 689–730.

7. Chirilus-Bruckner M, Chong C, Prill O, et al. (2012) Rigorous description of macroscopic wave
packets in infinite periodic chains of coupled oscillators by modulation equations. Discrete
Contin Dyn Syst Ser S 5: 879–901. Available from: https://doi.org/10.3934/dcdss.2012.5.879.

8. Brillouin L (1953) Wave Propagation in Periodic Structures. Electric Filters and Crystal Lattices,
2Eds., New York: Dover Publications, Inc.

9. Tabata Y (1996) Stable solitary wave in diatomic Toda lattice. J Phys Soc Jpn 65: 3689–3691.

10. Okada Y, Watanabe S, Tanaca H (1990) Solitary wave in periodic nonlinear lattice. J Phys Soc
Jpn 59: 2647–2658. Available from: https://doi.org/10.1143/JPSJ.59.2647.

11. Hoffman A, Wright JD (2017) Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou
lattices with small mass-ratio. Phys D 358: 33–59.

12. Vainchtein A, Starosvetsky Y, Wright JD, et al. (2016) Solitary waves in diatomic chains. Phys
Rev E 93: 042210.

13. Schneider G, Wayne CE (1999) Counter-propagating waves on fluid surfaces and the continuum
limit of the Fermi-Pasta-Ulam model, In: International Conference on Differential Equations,
Vol. 1, 2 (Berlin, 1999), 390–404, World Sci. Publ., River Edge, NJ, 2000.

14. Friesecke G, Pego RL (1999) Solitary waves on FPU lattices: I. Qualitative properties,
renormalization and continuum limit. Nonlinearity 12: 1601–1627.

15. Friesecke G, Pego RL (2002) Solitary waves on FPU lattices: II. Linear implies nonlinear
stability. Nonlinearity 15: 1343–1359.

16. Friesecke G, Pego RL (2004) Solitary waves on Fermi-Pasta-Ulam lattices: III. Howland-type
Floquet theory. Nonlinearity 17: 207–227.

17. Friesecke G, Pego RL (2004) Solitary waves on Fermi-Pasta-Ulam lattices: IV. Proof of stability
at low energy. Nonlinearity 17: 229–251.

Mathematics in Engineering Volume 1, Issue 3, 419–433.

https://doi.org/10.3934/dcdss.2012.5.879
https://doi.org/10.1143/JPSJ.59.2647


433

18. Mizumachi T (2009) Asymptotic stability of lattice solitons in the energy space. Commun Math
Phys 288: 125–144.

19. Boyd JP (1998) Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics
Generalized Solitons and Hyperasymptotic Perturbation Theory , In Series: Mathematics
and its Applications. Dordrecht: Kluwer Academic Publishers, vol. 442. Available from:
https://doi.org/10.1007/978-1-4615-5825-5.

20. Faver T (2017) Nanopteron-stegoton traveling waves in spring dimer Fermi-Pasta-Ulam-Tsingou
lattices, in press. Available from: https://arxiv.org/abs/1710.07376.

21. Lombardi E (2000) Oscillatory Integrals and Phenomena Beyond All Algebraic Orders
with Applications to Homoclinic Orbits in Reversible Systems, In series: Lecture Notes in
Mathematics. Berlin: Springer-Verlag, vol. 1741. Available from:
https://doi.org/10.1007/BFb0104102.

22. Sun SM (1999) Non-existence of truly solitary waves in water with small surface tension. Proc
Math Phys Eng Sci 455: 2191–2228.

23. Martı́nez AJ, Kevrekidis PG, Porter MA (2016) Superdiffusive transport and energy
localization in disordered granular crystals. Phys Rev E 93: 022902. Available from:
https://doi.org/10.1103/physreve.93.022902.

24. Hairer E, Lubich C, Wanner G (2006) Geometric Numerical Integration: Structure-Preserving
Algorithms for Ordinary Differential Equations, 2Eds., In series: Springer Series in
Computational Mathematics. Springer, Heidelberg, 2010, vol. 31.
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