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Abstract: This article discusses the problem of trend detection in time series generated by 

technical devices. The solution to this problem is closely related to the problem of detecting coarse 

measurements (outliers), which negatively impact the accuracy of estimates of various physical 

quantities. These are crucial in many applications in various scientific fields in which the input 

data are observations, such as space geodynamics, geodesy, and others. Previously, the author 

proposed a trend-detecting method based on the condition of maximizing the amount of data 

cleared of outliers and used in further processing. The reference values used for trend construction 

are determined as a result of a completely convergent iterative process, the core of which is the 

minimizing sets (MS) method developed earlier by the author. At each step of the iterative process, 

the trend is approximated by a function from a predefined functional class depending on the 

physical problem under consideration. The method was tested on trend-detection problems in the 

power polynomial class. In this article, the set of functions when searching for a trend by the MS 

method was extended into two additional functional classes: trigonometric functions with a given 

set of frequencies and harmonic functions with unknown frequencies, phases, and amplitudes. In 

the latter case, the trend-forming functions are nonlinearly dependent on the sought parameters; 

their search was carried out by the conjugate gradients method generalized to nonlinear problems. 

The article considered test tasks on trend search in data obtained by computer simulation. 
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1. Introduction  

A significant problem in achieving the required level of accuracy of modern computing 

complexes and systems is the detection of coarse measurements (outliers) in the time series of data at 

the preprocessing stage. The proper detection and removal of outliers from measurement data is a 

necessary step in any scientific application to obtain the most accurate final result. This problem 

inevitably arises when solving problems in which the initial data is measurement data. Examples of 

such problems are transmitting time over long distances [1] and comparing remote time scales [2] 

using satellites, positioning using global navigation satellite systems (GNSS) [3], determining the 

Earth’s rotation parameters [4], very long baseline radio interferometry (VLBI) signal processing [5], 

and others. The sequential least-squares wavelet and cross-wavelet analyses of VLBI time series 

performed in [6] make it possible to obtain accurate instantaneous frequency information along with 

phase differences in the time-frequency domain, as well as to investigate the components of 

temperature time series at antennae locations. 

It should also be noted that the Global Geodetic Observing System (GGOS) provides 

measurements of the time-varying gravity, rotation, and shape of the Earth using geodetic and 

gravimetric instruments located on the ground and in space. These measurements need to be accurate 

to better than a part per billion in order to advance our understanding of the underlying processes that 

are causing the Earth's rotation, gravity, and shape to change. Mass transport in the global water 

cycle, sea level and climate change, and crustal deformation associated with geohazards are 

examples of particularly demanding applications of geodetic and gravimetric measurements with 

sub-mm accuracy [7]. On the one hand, it is impossible to achieve such accuracy without equipping 

the colocation sites with new-generation measuring instruments of VLBI, GNSS, and satellite laser 

ranging systems (SLR). On the other hand, even the availability of state-of-the-art equipment does 

not relieve the necessity of improved models and methods for both post- and pre-processing of the 

measurement data received from GNSS receivers forming a global network [8]. 
As noted in [9], outlier detection and trend detection are two sides of the same coin. The 

relationship between these two problems is obvious: an incorrectly found trend leads to incorrectly 

found outliers, and vice versa. The problem of detecting outliers is closely related to the problem of 

searching for an unknown trend in the data series (see, e.g., [9]). The detection of outliers depends on 

the solution to this problem: if the trend is determined incorrectly, knowingly accurate data can be 

rejected while inaccurate one can be left for further processing. 

In measurement data processing theory, an outlier is defined as an observation that is at an 

abnormal distance from other values in a random sample from the population. The uncertainty of this 

definition lies in how to distinguish anomalous observations from the general data set. The well-

known definition of outliers by V. Barnett and T. Lewis states them as being “an observation (or 

subset of observations) which appears to be inconsistent with the remainder of that set of data” [10]. 

However, the concepts of “inconsistent” and “remainder” are vague. Various algorithms have been 

proposed to detect outliers in accordance with our intuition (see [9]). An overview of the different 

approaches together with the classification of outlier types is given in [11]. 

The trend detection problem has long been known and is often solved by choosing a polynomial 

of a given degree that approximates the measurement data in RMS (root-mean-square) norm. 

Polynomial coefficients are found by the least squares (LS) method as a solution to the system of 

linear equations, and detection of rough measurements is carried out on the basis of the subsequent 

analysis of deviations of measured data from the values of the found polynomial. However, with this 

approach to the problem, the data remaining after the removal of the found outliers, as a rule, do not 



270 

Metascience in Aerospace                                                      Volume 1, Issue 3, 268–291. 

coincide with the original data set by which the trend was built, whereas the iterative process of 

sequential redefinition of the trend at a predetermined deviation level may lead to an infinite 

computational loop. To avoid this looping, it is common practice to reduce the outlier detection level, 

which can result in the loss of knowingly “good” data.  

Some trend-building methods rely on regression techniques and machine learning. An example 

is the least absolute shrinkage and selection operator (LASSO) used for modeling the relationship 

between a dependent variable (which may be a vector) and one or more explanatory variables, by 

fitting the regularized least squares model (see [12]). Trained LASSO model can produce sparse 

coefficients due to the use of the regularization term. LASSO regression is widely used in feature 

selection tasks. For example, in the field of compressed sensing, it is used to effectively identify 

relevant features associated with the dependent variable from a few observations with a large number 

of features. LASSO regression is also used to overcome multicollinearity of feature vectors in the 

training data set. For more details, see [13]. The application of the method in medicine can be seen, 

for example, in [14], as well as in references ibid. 

Among the numerous trend-detecting methods are those applied to irregularly distributed data, 

such as in seismology and marine seismic data. Least-squares spectral analysis (LSSA) was 

introduced by Vaniček in 1969 [15] to analyze unequally spaced time series. It estimates a frequency 

spectrum based on the least-squares fit of sinusoids to the entire time series by accounting for 

measurement errors, trends, and constituents of known forms. Subsequently, scholars have 

developed various versions of this method. One of them, the anti-leakage least-squares spectral 

analysis (ALLSSA), is an iterative method based on LSSA and proposed in [16]. Further 

development of this method to regularize data series was presented in articles [17], [18] which also 

showed its robust performance on synthetic and marine seismic data examples (for details and 

additional references see ibid.). 

A large number of works are devoted to the study of the spatial movement of the Earth’s surface 

in order to identify land subsidence that threatens the human environment. Compared with the 

traditional leveling and global positioning system (GPS) measurement methods, the interferometric 

synthetic aperture radar (InSAR) technique can obtain a wide spatial range of information about the 

deformation of the Earth’s surface with millimeter accuracy [19]. The output of InSAR processing is 

a collection of time series representing the ground displacements of measurement points (MPs) on 

the surface during the observed period. InSAR has been used for monitoring natural hazards such as 

landslides, earthquakes, volcanic activity, and ground subsidence [20], as well as for monitoring 

man-made structures such as dams, buildings [21], and bridges [22], and anthropogenic activities 

such as the pumping or injection of fluids. Various methods are used to process InSAR time series. 

For example, in [23] a processing InSAR time series method was proposed, using a convolutional 

neural network that can distinguish different ground motion features and detect nonlinear 

deformation signals on a large scale without human intervention. In [24], the authors performed a 

spatiotemporal analysis of land subsidence in Beijing using the InSAR method based on 47 

TerraSAR-X SAR images from 2010 to 2015. Distinct variations in land sediment were identified in 

the study areas. Numerous examples of the application of InSAR time series processing can be found 

in the references of the articles above. 

Overviews of trend-building methods applied to different research areas can also be found in 

[25–28]. These describe approaches and methods for modeling trends in geodetic time series, in time 

series of observations of the chemical composition of the atmosphere, in the series of physiological 

data in the medical field, as well as systematized methods for building a trend based on data in the 

social sphere in order to identify extraordinary events and incidents. 
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In [29], a new absolutely convergent algorithm for detection of coarse measurements in data 

with removed trends was proposed. A modification of this algorithm, leading to an optimal solution 

with a minimum number of rejected data, was proposed in [30], and a fast algorithm with O(NlogN) 

arithmetic operations performed by it to find the optimal solution was given in [31]. The author in 

[32] proposed a new trend-detection method in which the trend is searched in the power polynomial 

class, while the polynomials in the L2 norm are not fitted to all observational data but to their subset, 

called reference values, which are selected from these data through a convergent iterative process. 

One of the advantages of the proposed method is that the trend search procedure does not require a 

priori threshold values, which are usually used to eliminate outliers; all measurement data remain in 

processing until the trend is determined. The method was approved on the data obtained from GNSS 

receivers, as well as on the SLR measurement data obtained from the AJISAI geodetic satellite (EGS) 

[31]. The purpose of this article is to extend the applicability of the previously proposed trend 

detection method into two additional functional classes, which will make it possible to extend further 

investigations into many physical processes based on observed data. 

The article includes examples of building a trend for noisy data with outliers generated using 

computer simulation. In the examples below, the trend search is carried out for three functional 

classes: power polynomials (see Section 6), trigonometric functions with a given set of frequencies 

(Section 9), and harmonic functions with unknown frequencies, amplitudes, and phases (Section 10). 

The peculiarity of the trend search in the last class of harmonic signals is that the desired harmonics 

depend nonlinearly on unknown frequencies and, for their search, the traditional least squares 

method does not lead to a system of linear equations. In this case, the values of unknown frequencies 

are sought by the conjugate gradients method combined with the MS method (see below). The results 

of numerical calculations are given. 

2. Problem setting 

The results ( )
j j

y y t=  of observations (measurements) of a certain random value ( ),Y t  formed 

by measuring devices at time points 1
{ }N

j j
t

= , in many cases can be represented in the form of a one-

dimensional time series: 

ξ ,  1, , ,
j j j

y f j Nz= = + +                           (1) 

where ( )
j j

f f t=  is a trend function dictated by the physical process under consideration and usually 

unknown; z – is an unknown average; ξ ξ( )
j j

t=  is a centered random variable with an unknown 

distribution, which may contain outliers, resulting from adverse effects of external factors on the 

measurements [33]. The challenge is to find 
j

f .  

It is clear that this problem does not have a unique solution due to the lack of clear criteria when 

searching for a trend and the impact of outliers on the result of its search, as well as due to the 

absence of a strict definition of the concept “rough measurement” or “outlier”. The trend detection 

strategy presented in this paper is based on the MS method, developed by the author, as well as on 

the search for optimal solution algorithms. 
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3. Optimal solution for data with removed trend 

As mentioned above, trend and outlier detection problems are tightly coupled. To find a trend, 

we first need to find outliers and eliminate them from the values of series (1); after that, we need to 

find the desirable trend by adjusting some functions to the remaining values treated as reference ones. 

On the other hand, to detect outliers, it is necessary to know the trend. Initially, neither trend nor 

outliers are known. Both trend and outlier problems are found through iterations as described below. 

This Section describes the statement of the outlier detection problem for detrended data series, which 

is solved during search trend iterations (see Section 6). 

If the trend 
j

f  is known, we can remove it from the time series (1): 

    ,ˆ ξ ;   1, ,
j j

Ny jz = = +                                   (2) 

with ˆ
j j j

y y f= − . The task of detecting outliers in series (2) is usually to find a set 

1
ˆ ˆ= { ,..., }

LL j j
Y y y  of L numbers (length L) for which the following conditions are met:  

( )
1

1/2
2

1

max
{ ,.., }

ˆσ ( 1) σ
L

L
Y j

j j j
L y z−



 
− −   

 
= ,                   (3) 

j
ŷ z ;−    

1
{ ,.., }

L
j j j ,                                         (4) 

min
L L ,                                                       (5) 

where σ
LY

 and 
max

σ  are SD (standard deviation) and its preset threshold value, respectively; Δ is a 

parameter defining an outlier detection threshold (e.g., 
max

3σ = ); 
min

L is a specified parameter that 

limits the length of the search set from below (for example, 
min

10L = ); below we consider 

min
1 .L N   Values ˆ

j
y  not included in 

L
Y  are considered outliers in series (2), and corresponding 

values 
j

y  – as outliers in series (1). The latter are removed from further processing. Often, 

conditions (3)–(5) are the only ones when searching coarse measurements in a series (2), while no 

additional conditions are imposed on the parameter L. Problem (2)–(5) is usually solved by iterations, 

which, as mentioned above, can lead to endless looping or loss of knowingly “good” data (for 

examples, see [29]). 

In [30]–[32], the set 
L

Y  search problems were formulated, where the conditions (3)–(5) are 

supplemented by two selection conditions: Of all possible sets satisfying (3)–(5), the set of maximum 

length Λ (the number of outliers is minimal) is selected as the desired set, and if there are several 

such sets, the set with the lowest SD value is selected. This solution was called optimal and 

designated 
,opt

Y


. The algorithms described in the above-listed works are guaranteed to lead to an 

optimal solution, if only it exists. However, their application to data containing a not-excluded trend 

can lead to an unreasonably large number of detected outliers or to the absence of a solution at all, 

when all measurement data will be detected as outliers. Therefore, our task is to build a suitable 

approximation 
j

f  of an unknown trend and subtract it from the series (1). For this, we associate the 

concept of “suitable” with the requirement to maximize the number of data of series (1) remaining 

after the removal of outliers. Commonly, the trend is searched among the functions from some 

manifold chosen by the researcher depending on the physical problem being solved. In some cases, it 

can be power polynomials, in others it can be a class of trigonometric, rational functions, etc. 



273 

Metascience in Aerospace                                                      Volume 1, Issue 3, 268–291. 

Outliers in the measurement data can essentially distort the trend found. Below, we set out an 

approach to the trend-detection problem in noisy data, based on the minimizing sets method, which 

allows us to minimize the impact of outliers. We give a sequential exposition of the method for the 

class of power polynomials. Also, we will demonstrate the capabilities of the method when searching 

for a trend in other functional classes. 

In the case of power polynomials, the trend is approximated by functions of the form 
1

, 1 0
  1, , ,( ) = ( ) ( ) ... ;n n

n j n j n j
P a a x a x j Na−

−
=+ + +                     (6) 

where n  and 1

0 1
{ } n

n n
a = a ,...,a ,a +

−
  are the degree and coefficients of the polynomial, 

respectively; 
1 1

( )/( ).
j j N

x t t t t= − −  The trend detection, in this case, is based on the fitting to reference 

values of series (1) of a polynomial (6), the degree and coefficients of which are sought through 

iterations (see Section 6).  

Trend fitting is performed to L reference values, which are also searched through iterations. The 

L value is set in advance to satisfy the inequality out–L N N , which is a necessary condition for 

outliers not to be included in the final set of reference values at the end of the iterative procedure.1 

Because the number outN  of outliers is unknown, the parameter L in the below discussed algorithm 

(see Section 6) is set to be guaranteed to be smaller than the possible value of the quantity out–N N  so 

that the above inequality is fulfilled. 

4. Definition of a minimizing set of given length L  

Let us define a minimizing set consisting of L numbers of series (2), which plays an important 

role in the trend detection process. 

Let 
1

ˆ ˆ{ }
LL j j

Y = y ,..., y  be a set of L values of the series (2). Denote 
LY

z  and σ
LY

the average and 

SD values for it, respectively. We have: 

1

1

{ }

ˆ
L

L

Y j

j j ,... , j

z = L y−



 ,                                  (7) 

( )
1

2
2 1

{ }

ˆσ ( 1)
L L

L

Y j Y

j j ,..., j

= L y z− −



−  .                                    (8) 

Definition 1. For a given value L and a given sequence 
1

ˆ{ }N

j j =
y , the set of values 

1
min

ˆ ˆ{ },
L

L, j j
Y = y ,..., y

 
 

at which the value 2σ
LY

 determined by (8) reaches a minimum, we call the minimizing set of length L. 

The corresponding values of the average and SD for this set are denoted by 
minL,Y

z  and 
min

σ
L,Y , 

respectively.  

According to this definition, we have 

min

1

1

{ }

ˆ
L,

L

Y j

j j ,... , j

z = L y

 

−



 ,                                        (9) 

 
1 In Section 7, we will waive this restriction. 
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min min

1

2
2 1 2

{ }

ˆσ ( 1) min{σ }
L, L, L

L

L

Y j Y Y
Y

j j ,... , j

= L y z =

 

−



 
− − 

  .                      (10) 

The minimum in (10) is searched throughout all possible sets of length L composed of the 

numerical series 
1

ˆ{ }N

j j =
y . Note that the number of possible sets of length L that can be selected 

from the series (2) is equal to the number L

N
C  of combinations of N elements taken L at a time. It 

follows that the algorithm for finding the minimizing set 
minL,

Y , based on the enumeration of all 

kinds of sets, as a rule, is not feasible in a reasonable time on any modern computer, even with 

relatively small values of N. For example, with N = 100, the number of sets of length L = 80 is of 

the order of 1021. To avoid global brute force when searching the minimizing set 
min

,
L,

Y  we note 

that its composition is determined up to a permutation of the numbers 
1

ˆ ˆ{ }
Lj j

y ,..., y
 

and does not 

depend on the arrangement of the numbers in the series (2). This means that when searching the 

minimizing set, we can arrange the numbers of the series (2) in any order. Let us arrange them in 

ascending order so that after renumbering (keeping the same notation for the numbers of series (2) 

and considering them different), the inequalities will be fulfilled:  

1 2
ˆ ˆ ˆ...

N
y y y   .                                                (11) 

Let us formulate an assertion that radically reduces the number of sets to be examined.  

Assertion 1. Let 
1

min
ˆ ˆ{ }

L
L, j j

Y = y ,..., y
   be a minimizing set of length L for a given sequence 

1
ˆ{ }N

j j =
y  and 

1
min

ˆ ˆmin { }
Lj j

y = y ,..., y
 

, 
1

max
ˆ ˆmax { }

Lj j
y = y ,..., y

 
. 

Then, the interval 
min max

( , )y y  does not contain values ˆ
j

y  that do not belong to the set 
minL,

Y . 

See [32] for proof. 

Without limiting generality, we consider the numbers 
1

ˆ ˆ
Lj j

y ,..., y
 

 to be in ascending order, that is 

1

ˆ ˆ...
Lj j

y y
 

  . By virtue of (11), the indices 
1

, ,
L

j j   also follow in ascending order: 
1

...
L

j j   . 

The following assertion is true. 

Assertion 2. The ascending set of indices 
1

,...,
L

j j   in the minimizing set 
1

min
ˆ ˆ{ }

L
L, j j

Y = y ,...,y
   

contains all consecutive integers from 
1

j   to 
L

j . 

Proof. Suppose the opposite: Let there be some index 
0

j  such that 
1 0

,
L

j j j    but 

0 1
{ , ..., }

L
j j j  . Then, the inequalities

01

ˆ ˆ ˆ
L

jj j
y y y

 
   are satisfied for the number 

0
ˆ

j
y  but 

0 min
ˆ .

j L,
y Y  

This contradicts Assertion 1. It follows that the set of indices 
1 2

, ,...,
L

j j j    in 
minL,

Y  coincides with the 

set of indices 
1 1 1

, 1,..., 1j j j L  + + − : 

1 1 1
min 1 1

ˆ ˆ ˆ= { , ,..., }
L, j j j L

Y y y y
  + + −

. 

Therefore, instead of a global enumeration of all possible sets (with a total number of order L

N
C ), 

it is enough to search 
minL,

Y  among the sets 
+ 1

ˆ ˆ{ ,..., }
k k L

y y
−

 consisting of segments of length L of an 
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ordered series (2), varying only one parameter k, subject to the condition 1 1k N L  − + . The total 

number of such sets is ( 1)N L− + . 

5. The minimizing set search algorithm 

Thus, to find the minimizing set of length L, it is enough to consider – 1N L +  sets  

1
ˆ ˆ{ ,..., }

L
y y , 

2 +1
ˆ ˆ{ ,..., }

L
y y ,…,

+1
ˆ ˆ{ ,..., }

N L N
y y

−
 

and select from them the one for which the SD value is minimal. The formulas below minimize the 

number of arithmetic operations in the search of 
minL,

Y . 

Denote 
+ 1

ˆ ˆ( , ) { ,..., }
k k L

Y k L y y
−

=  a set of numbers corresponding to a pair ( , )k L , and ( , )z k L  

and σ( , )k L  as the arithmetic mean and SD value of the set ( , )Y k L , respectively: 

( )
+ 1

1

=

ˆ, =

k L

j

j k

z k L L y

− 

−  ;                                 (12) 

( ) ( )
+ 1

2
2 1

=

ˆσ , = ( 1) , .

k L

j

j k

k L L y z k L

− 

−  − −
                               (13) 

The values ( , )z k L  and 2σ ( , )k L  during the search 
,minL

Y  can be calculated according to the 

diagram shown in Figure 1 (in which ( , )z k L  are shown only): 

 

Figure 1. Search for the minimizing set of length L. Calculation scheme. 

First, using formulas (12) and (13), the values (1, )z L  and 2σ (1, )L  are calculated; then, by formulas 

( ) ( ) ( )1

+
ˆ ˆ+1, = , + ;

k L k
z k L z k L L y y− −                (14) 

( ) ( )2 2σ +1, = σ , +k L k L  

( ) ( ) ( )( )1

+ +

1
ˆ ˆ ˆ ˆ+ ,

1k L k k L k

L
L y y y z k,L y z k L

L

− + 
− − + − 

− 
       (15) 

the values { (2, )z L  and 2σ (2, )}L  →,…, → 2{ ( +1, )  and  σ ( +1, ) }z N L L N L L− −  are successively calculated 

with the simultaneous selection of the smallest from the numbers: 
2 2

1 +1
σ ( , ) = min {σ ( , )}

k N L
m L k L

  −
. 

The set 
,min + 1 + 1

ˆ ˆ ˆ= { , ,..., }
L m m m L

Y y y y
−

, for which the SD is minimal, will be the desired 

minimizing set of length L for the ascending series ˆ{ }
j

y . As mentioned above, the same set will also 

be the minimizing set for the disordered series (2). Let us estimate the number of elementary 

operations needed to find it. Since the calculation of the values (1, )z L  and 2σ (1, )L  requires 4L + 2 

operations, and for each ( )N L−  the transitions in → direction (see Figure 1)–10, the total number of 
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arithmetic operations when searching for the set 
,minL

Y  in the ordered series (2) is estimated by the 

value 4 2 1 (0  10)–  L N L N+ +  . 

In order to estimate the number of operations required to find the minimizing set in the 

unordered series (2), it is necessary to take into account the ordering costs, which are estimated by 

the value O(Nlog N) (see [34]). 

Thus, we have proved the validity of the following assertion. 

Assertion 3. For any (unordered) time series (2), a minimizing set 
minL,

Y  of length L can be found 

in most O(Nlog N) arithmetic operations. 

6. Trend detection algorithm in power polynomial class 

This section describes the trend-search algorithm using the MS method. Our immediate goal is 

to find a set of reference values, as a subset of the numbers of the series (1), used to fit the desired 

trend to them. Suppose that the subset we are looking for and denoted as 
,refL

Y  consists of L 

reference values: 
,refL

Y =
1

{ ,..., }
Lj j

y y , where L is not yet defined. As mentioned above, in order to 

obtain a proper approximation of the trend, the set of reference values should not contain outliers. 

This requires that the inequality out–L N N  be fulfilled, in which the parameter outN , the number of 

outliers in series (1), is unknown. 

Suppose that the number of outliers in series (1) does not exceed some value 
maxout

N  known a 

priori2. (For example, if it is known in advance that the number of outliers cannot exceed 10% of the 

total number of measurements, then we can set 
maxout

0,1N N= .) Then, the number of “correct” values 

in a series 
j

y  that can be considered as reference ones is not lower than the value 
maxout

N N− , and 

the problem is to find them. 

Below, we consider L to be fixed and associated with the number of reference values of series 

(1) used to build the trend. 

Consider the following algorithm ([32]), containing two iterative cycles: external, by n, and 

internal, by s. Iterations over s will be marked with the superscript “s” in parentheses. Reference 

values chosen from the series (1) are marked with the flag
j function, which takes values 1, if 

jy  is 

considered as a reference value, or 0 otherwise. 

Step 0. n = 0. Assume 
maxout

L = N N− . 

Step 1. n++3; Assume s = 0; 
(0)flag = 1
j

,  1?, , .j N=   (Reference values are all numbers of the series 

(1): (0)

,refN
Y =

1
{ ,..., }

N
y y .) 

Step 2. Using the least squares method, we find the coefficients ( ) ( ) ( )

0
={ ,..., }s s s

n
a a a  of the 

polynomial of degree n: 

 

0 1

( ) ( )

,..., ,

= argmin Φ ( )

n n

s s

a a a

a a

−

,                          (16) 

 ( ) 2 ( )

,

=1

Φ ( ) ( ( )) flag

N

s s

j n j j

j

a y P a−  ,                        (17) 

 
2 In the next Section 7, we will abandon this assumption. 

3 n incremented by 1. 
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where 
,

( )
n j

P a  is the polynomial defined by equation (6). The functional ( )Φ ( )s a  defined by equation 

(17) is calculated on L reference values ( )

,ref

s

L
Y  of series (1) found in the previous iteration4. 

Step 3. We form the differences 
( )ˆ s

j
y :  

 
( ) ( )

,
ˆ = ( )s s

j j n j
y y P a− ,                                    (18) 

where 
( )

,
( )s

n j
P a  is a polynomial with coefficients found in Step 2. 

Step 4. For the series 
( )

=1
ˆ{ }s N

j j
y  defined in (18), we find a minimizing set 

( ) ( )
1

( ) ( ) ( )

,min
ˆ ˆ= { ,..., }

s s
L

s s s

L j j
Y y y

 
 

of length L using the algorithm described in Section 5; using formulas (9) and (10), we can calculate 

the corresponding values of mean 
( )
,min
s

L
Y

z  and SD 
( )
,min

σ
s

L
Y

. 

Step 5. We redefine the reference points to find the polynomial at the next iteration (Step 2), 

marking them with the function 
( 1)flag s

j

+
: 

( ) ( )
( ) 11 1, { ,..., }

flag =
0,

s s

L
j

s if j j j

otherwise

 
+

 



.              (19) 

At that ( 1)

,ref

s

L
Y + =

( ) ( )
L1

{ ,..., }
s s

j j
y y

 
. 

Step 6. s++. Increment the iteration counter s by 1 and go to Step 2. 

We perform the sequence of Steps 2 to 6 until the convergence of the sequence 
( )
,min

σ
s

L
Y

, s = 

0,1,2,..., which always takes place (see Assertion 4). 

After achieving convergence of the s-iterations (Steps 2–6), we proceed to Step 7 to find the 

optimal solution. 

Step 7. Let the convergence of s-iterations be achieved at 
max

=s s . In this case, the indices in both 

sets max( )

,min

s

L
Y  and max( )

,ref

s

L
Y  coincide up to permutation. The desired trend approximation 

n, j
f corresponding 

to the degree n of the polynomial is equal to max( )

,
= ( )

s

n, j n j
f P a . 

Next, we find the optimal solution 
1,opt

ˆ ˆ{ ,..., }
k k

Y y y


=  for the series max max( ) ( )

,
ˆ = ( ),

s s

j j n j
y y P a−  

 1, , ,j N=   using any of the algorithms described in [30]–[32]. As a result, the outliers will be the 

numbers 
j

y  of the series (1), for which
1

{ ,..., }.j k k


 The resulting number of outliers detected is equal 

to 
out

–N N=  .  

If it turns out that 
out maxout

 N N , then the solution is considered to be found, and the search 

process ends; at that, the desired trend is max( )

,
= ( )

s

j n j
f P a . Otherwise, if 

out maxout
 N N , then we 

transit to Step 1, at which we increase the polynomial degree by 1. The process (Steps 1–7) continues 

until a solution is found or n exceeds a preset value (e.g., 10). In the latter case, it will probably be 

necessary to select another functional class to search for a trend. 

Example 1. We will generate synthetic noisy data using a computer simulation by the formula: 

 
4 If s = 0, then reference values are all numbers of the series (1). 
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0 (mod13)

40 (0.6 random ), 0 (mod 43)
5 ln (5 ) 2 random

0 (mod113)

0,

j
j j

j or

if j or
y j

j

otherwise

 


 −  
=  + +  +  




 .         (20) 

Here, 1...j N= , random
j
 are pseudo-random numbers evenly distributed on the segment [0,1]. The 

first term on the right side (20) models the trend, the second models the white noise, and the third 

models outliers at points j, multiples of 13, 43, or 113 (Figure 2). Suppose 1250=N , then the number 

of modeled outliers is 134. Next, we set maxσ 0.6,= 1.8, = min 10L =  and will search for the trend and 

outliers in accordance with the algorithm described above, putting
maxout

140N = ; at 

maxout 1110.L N N= − =  

The calculation results for this example are presented in Table 1, in which n is the degree of the 

polynomial; 
max

s is the number of s-iterations performed until convergence; Λ is the length of the 

optimal solution found; and 
out

N is the number of outliers detected. 

Table 1. Results of trend and outliers search in power polynomial class for data (20). 

n — polynomial order 
max

s
 

Λ 
out

N
 

1 2 688 562 

2 9 931 319 

3 6 1049 201 

4 6 1087 163 

5 5 1105 145 

6 7 1109 141 

7 4 1116 134 

8 4 1116 134 

As can be seen from Table 1, the minimum polynomial order at which the maximum length Λ 

of the optimal solution is reached equals 7. Therefore, a 7th-degree polynomial can be chosen as a 

suitable trend approximation. 

The values 
(0)

7,
( )

j
P a  of the 7th-degree polynomial, constructed over all reference values without 

performing the above iterations (s = 0), are shown in Figure 2 (solid blue line). The corresponding 

polynomial differences 
(0)

7,
ˆ ( )

j j j
y y P a= −  are shown in Figure 3. It can be seen that the values ˆ

j
y  are 

distributed unevenly relative to 0, which indicates the inaccuracy of the constructed polynomial trend, 

since the reference values contain outliers. 

The optimal solution found for the obtained series ˆ
j

y  has the length Λ = 1067 (number of 

outliers = 183). Trend refinement occurs as a result of multiple repeats of Steps 2–6 of the above 

iterative procedure. 
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Figure 2. Data generated by formula (20) (orange diamonds). The trend is approximated by 

a 7th-degree polynomial (0)

7,
( )

j
P a  constructed on all N values including outliers (blue line). 

 

Figure 3. Differences ˆ
j j j

y y f= −  (red circles), where 
j

f  is the approximation of the 

trend by a 7th-degree polynomial (0)

7,
( )

j
P a  constructed on all N values including outliers. 

The trend is not precisely defined: The differences are unevenly distributed relative to 0. 

The optimal solution found for the series ˆ
j

y  has length Λ = 1067 (number of outliers = 

183). The positions of the found outliers are marked with white circles. 

Figure 4 shows the values 
(4)

7,
( )

j
P a  of the found polynomial of the 7th-degree (blue line), 

approximating the data set over L = 1110 reference values found after achieving convergence at the 

4th iteration (
max

s = 4) of the above iteration process (Step 2–6). The corresponding differences 

ˆ
j j j

y y f= − , where (4)

7,
( )

j j
f = P a , are shown in Figure 5. It can be seen that the values ˆ

j
y  are evenly 

distributed relative to 0. The optimal solution found for the obtained series ˆ
j

y  has a length Λ = 1116, 

while the number of detected outliers = 134, their positions being marked with white circles. 
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Note that in the example considered, the trend was modeled by a function that does not belong 

to the class of power polynomials. 

 

Figure 4. Data 
j

y  generated by formula (20) (orange diamonds). The trend is 

approximated by a 7th-degree polynomial (4)

7,
( )

j
P a  constructed on L = 1110 reference 

values after the 4th iteration (blue line). 

 

Figure 5. Differences ˆ
j j j

y y f= −  (red circles), where 
j

f  is the approximation of the 

trend by a 7th-degree polynomial (4)

7,
( )

j
P a  built on L = 1110 reference values after the 

4th iteration (red circles). The differences are evenly distributed relative to 0. The 

optimal solution found for the series ˆ
j

y  has the length Λ = 1116 (number of outliers = 

134). The positions of the found outliers are marked with white circles. 

7. Refine trend search strategy 

As mentioned above, in order for the trend detection strategy described in the previous section 

to give an adequate result, it is necessary that the inequality outL N N −  is fulfilled. The task of this 
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section is to choose an L at which this inequality holds true. We cannot choose an L either too small 

or too large; otherwise, this will result in a distorted trend approximation 
j

f . Since outN  is unknown 

a priori, we cannot specify L to run a trend-search algorithm. To overcome this obstacle, we will use 

the L selection strategy proposed in [35]. Note that each value L corresponds to the optimal solution 

of length Λ depending on L (Λ =Λ(L)) obtained after removing from the series (1) trend, built on the 

L reference values. The L selection strategy proposed in [35] is based on searching the maximum of 

the length function Λ(L). By applying the algorithm discussed in Section 6, we can find a length 

sequence ( ),N  ( 1),...,N −  min( )L  for optimal solutions corresponding to the sequence of different 

L, starting with L=N and further decreasing L by 1. Then, we can find the maximum of this sequence 

denoted as  :  

min

* max ( )
L L N

L
 

 =  .                                                 (21) 

Next, from all possible values of L for which the equality ( )L  =   is fulfilled, we choose the 

maximum that we designate as L*: 

max { : ( ) }.L L L =  =                                              (22) 

It corresponds to the optimal solution 
1,opt

ˆ ˆ{ ,..., }
j j

Y y y





=  of length  , at which the number of 

outliers detected is equal to N –  .  

Let us test this strategy presented by equations (21) and (22) on the data from Example 1, 

expressed by equation (20). We will approximate the trend with a 7th-degree polynomial (n = 7). As a 

result, we find the sequence ( )N , ( 1)N − , … plotted in Figure 6. The maximum value 1118 = ; the 

values of L at which this maximum is achieved are all numbers in the range [1109,1129]L , the 

maximum of them is equal to 1129.L =  The reference values of the original series found at 1129L =  

can be used as reference ones for building a polynomial trend. 

1129

1118

Λ(L)

L  

Figure 6. Lengths ( )L of optimal solutions corresponding to different numbers (L) of 

reference values used for trend approximation; maximum value Λ* = 1118 is reached at 

L[1109,1129]; maximum of these numbers: L * = 1129. 



282 

Metascience in Aerospace                                                      Volume 1, Issue 3, 268–291. 

8. Convergence of s-iterations in the trend search algorithm 

The question of convergence of iterations described in the trend search algorithm (see Section 6) is 

formulated in the following statement. 

Assertion 4. The sequence 
( )
,min

σ
s

L
Y

 of SD values calculated in the trend-search algorithm 

decreases monotonically at s = 0.1,...: 

( ) ( +1)
,min ,min

σ σ ...
s s

L L
Y Y

                                              (23) 

and therefore converges. 

For proof, see [32]. 

Remark. The monotonic decreasing of the sequence 
( )
,min

σ
s

L
Y

 of SD values calculated in the 

trend-search algorithm may be violated during real calculations due to insufficient calculation 

accuracy. It may happen that calculations with 64 bits do not provide the necessary calculation 

accuracy. The situation is usually corrected by switching to a 128-bit grid. 

9. Trend detection in the trigonometric polynomial class 

The idea of the method described for finding a trend in a power polynomial class can also be 

implemented for other functional classes. Consider a periodic with period N function defined on a 

homogeneous grid { , 0, 1, 2,.., }
j

x hj j Nh l = = =   =  that describes the sequence of measurements of 

a signal coming from a technical device: 

( ) ( ), 0, 1,..,f j f j N j= + =  . 

As known, the function ( )f j  can be expanded into a discrete Fourier series into a sum of 

trigonometric functions: 
2 π 2 π

cos , sin
k j k j

N N
, 0, , 1.j N=  −  

The trend search for such a signal can be carried out in the form of an n-th-order polynomial 

,

0

2 π 2 π
( ) cos sin ,

n

j n j k k

k

k j k j
f Т a,b a b

N N
=

= = +                               (24) 

in which the coefficients ,
k

a  
k

b  are searched by the least squares method from the condition of the 

minimum functional, similar to (17), where 
,

( )
n j

P a  should be replaced by 
,

( )
n j

Т a,b . The trend-search 

algorithm, in this case, is no different from the polynomial trend-search algorithm described above. 

The convergence of s-iterations (see Assertion 4) for a given class of functions also takes place, 

as proved by literally word-for-word repetition of the proof of Assertion 4. 

Example 2. Consider a computer simulation of the wave packet in the form of the product of 

the Gaussian function by a sinusoid: 

( ) ( )21,5 cos 10 2π( / 0.5) exp 25.0 ( / 0.5) 0.15 random
j j

y j N j N=   −  −  − +  + 

0 (mod13)

3 (random 0.5), 0 (mod17)

0 (mod 43)

0,

j

j or

if j or

j

otherwise

 


 −  
+   




,          (25) 
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where j = 1...N. The first two terms on the right side simulate a trend in the form of a wave packet 

and additive white noise, respectively. The third term simulates outliers at points j that are multiples 

of 13, 17, and 43. 

Figure 7 shows the values of this function at N = 500 (orange diamonds) and the values 
(0) (0)

12,
( , )

j
T a b  of trigonometric polynomial (24) of the 12th order, plotted over all reference points, 

i.e., without performing the s-iterations (s = 0) (blue circles). Figure 8 shows the differences 
(0) (0)

12,
ˆ = ( , )

j j j
y y T a b− . It can be seen that the residuals contain a non-deleted trend component, which 

leads to an unreasonably large number of rejected measurement results when finding the optimal solution. 

 

Figure 7. Data 
j

y  generated by formula (25) (orange diamonds). The trend is 

approximated by a 12-order trigonometric polynomial (0) (0)

12,
( , )

j
T a b  constructed over N 

values including outliers (blue circles). 

 

Figure 8. Differences ˆ
j j j

y y f= − , where 
j

f  is the approximation of the trend by a 

trigonometric polynomial of the 12th-order (0) (0)

12,
( , )

j
T a b , built on all reference values. 

The trend is not completely removed: there is a non-deleted trend component in the 

differences ˆ
j

y . 
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Figure 9 shows the values (2) (2)

12,
( , )

j
T a b  of the trigonometric polynomial of the 12th order (blue 

circles), constructed over L = 450 reference values found after achieving convergence at the second 

iteration (
max

2s = ) of the above iteration process (see Section 6). 

The differences (2) (2)

12,
ˆ ( , )

j j j
y y T a b= −  shown in Figure 10 are evenly distributed relative to 0, 

which indicates a satisfactory approximation of the trend. 

 

Figure 9. Data 
j

y  generated by formula (25) (orange diamonds). The trend is 

approximated by the trigonometric polynomial (2) (2)

12,
( , )

j
T a b  of the 12th order, built 

over L = 450 reference values found after achieving convergence at the second iteration 

(blue circles). 

 

Figure 10. Differences ˆ
j j j

y y f= − , where 
j

f  is the approximation of the trend by a 12th 

degree polynomial (2) (2)

12,
( , )

j
T a b  constructed over L = 450 reference values after the 

second iteration. The trend is completely removed: the differences are evenly distributed 

relative to 0. 
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10. Trend detection in harmonic function class 

Consider the problem of finding a trend in data representing a superposition of unknown 

harmonic signals, on which noise and outliers are superimposed: 

ξ 1, , ,,
j j j

y f jz N=+ = +  

, 0

1

( , , ) cos (ν ) sin (ν ).

n

j n j k k k k

k

f H a b ν a a j b j

=

= = + +          (26) 

Here, ,
k

a ,
k

b ν
k

 are the unknown parameters to be defined. An unknown parameter is also the 

number n of harmonics representing the signal under study.  

The fundamental difference between this representation and decomposition (24) is its nonlinear 

dependence on unknown parameters ν
k

, the search for which cannot be reduced to solving a system 

of linear equations. The search for reference values is carried out in accordance with the algorithm 

described above when searching for a polynomial trend, while it is necessary to replace 
,

( )
n j

P a  by 

,
( , , )

n j
H a b ν  in the expression (17) for the functional. The search for the minimum of the functional 

(see Step 2, Section 6), obtained as a result of such a replacement, is carried out by the conjugate 

gradients method. 

Example 3. Figure 11 shows the result of a computer simulation of the harmonic signal 

generated by the formula 

4.4sin (0,009123 2.42) 3.0 (random 0.5)
j j

y j= + +  − +  

0 (mod 13)

25 (0.5 random ), 0 (mod 23)
,

0 (mod 113)

0,

j

j or

if j or

j

otherwise

 


 −  
+   




            (27) 

where 1,..., 5700j N= = . On the signal represented by the first term on the right side of equation (27), 

additive white noise (the second term) and outliers (the third term added to the previous two at points 

j, multiples of 13, 23, or 113) are superimposed.  

A fragment of this signal in enlarged form is shown in Figure 12. 

As a result of the search, the frequency of the signal was determined (see Table 2). 

Table 2. Exact and found values of frequency of noisy harmonic signal (27). 

k  ν
k

 (exact) ν
k

 (found) | ν | / ν
k k

  

1 0.0091230 0.0091240 <1.1×10−4 

The detected trend is shown in Figure 13. The maximum value of the relative error of the found 

trend compared to the exact one is 0.008. 
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Figure 11. A noisy harmonic signal with frequency ν 0.009123=  generated by formula 

(27). The figure shows normalized values /max| |
j j j

j
y y y= . 

 

Figure 12. Fragment of noisy harmonic signal with frequency ν 0.009123=  generated 

by formula (27). 

Example 4. Figure 14 shows the result of a computer simulation of a superposition of five harmonics:  

10.8 sin (0.002500 ) + 7.0 sin (0.004555 +7.32) +

        + 8.1 sin (0.007123 +4.51) + 4.4 sin (0.009123 +2.42) +

        + 5.6 sin (0.012345 +0.59)

j
y j j

j j

j

=    

   

  +
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0 (mod 13)

25 (random 0.5), 0 (mod 23)
3.0 random ,

0 (mod 113)

0,

j
j

j or

if j or

j

otherwise

 


 −  
+  +   




             (28) 

where 1,..., 5700j N= = . On the signal represented by the first five terms on the right side of equation 

(28), additive white noise (the penultimate term) and outliers (the last term added to the previous 

ones at j, multiples of 13, 23, and 113) are superimposed. 

 

Figure 13. The harmonic signal at frequency ν 0.009123=  (orange diamonds) and the 

found trend is harmonic with frequency ν 0.009124=   (blue line). The figure shows 

normalized values /max| |
j j j

j
y y y= . Relative error of found frequency is < 1.1 × 10 – 4. 

 

Figure 14. A noisy signal in the form of a superposition of five harmonic signals 

generated by formula (28). The figure shows normalized values /max| |
j j j

j
y y y= . 
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Table 3 shows the frequencies found by the conjugate gradients method implemented in the 

trend-search algorithm described above. Figure 15 shows the found trend (blue line). The maximum 

value of the relative error of the found trend compared to the exact one is 0.006. The lower value of 

the relative bias found in the case of five harmonics compared to the case of one harmonic is 

explained by different levels of modeled additive white noise. In the case of one harmonic, it is 34% 

of the carrier level; in the case of five harmonics, it is 6% [see formulae (27), (28)]. 

 

Figure 15. A noisy signal in the form of a superposition of five harmonic signals 

generated by formula (28) (orange diamonds), with a built trend (blue line). 

Table 3. Exact and found values of frequencies of harmonics of noisy signal (28). 

k  ν
k

 (exact) ν
k

 (found) | ν | / ν
k k

  

1 0.002500 0.0025010 4.0 × 10−4 

2 0.004555 0.0045550 <2.0 × 10−5 

3 0.007123 0.0071210 2.8 × 10−4 

4 0.0091230 0.0091260 3.3 × 10−4 

5 0.012345 0.0123500 4.0 × 10−4 

11. Conclusions 

The developed method of minimizing sets allows us to find the appropriate approximations of 

the trend in the numerical series of noisy data containing outliers. The trend search can be carried out 

in various functional classes, such as power polynomials, trigonometric functions with a given set of 

frequencies, and harmonic functions with unknown frequencies, amplitudes, and phases, which is 

confirmed by the considered numerical examples. High efficiency of the trend detection method in 

noisy series of measurement data has been demonstrated. In the case of harmonic noisy signals, 

harmonic frequencies were found using the conjugate gradients method combined with the 

minimizing sets method. The relative error of the frequencies found in the considered examples did 

not exceed the magnitude 44 10− . After constructing a trend and subtracting it from the values of the 

original data series, the robust algorithms are used to search for outliers, which are guaranteed to lead 

to an optimal solution with a minimum number of rejected measurements. 
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The method can be effectively applied in solving numerous applied and fundamental problems 

in various scientific and technical fields such as space geodesy, gravimetry, and astrometry, as well 

as in the tasks of exploring near and deep space, Earth’s remote sensing, and others. The choice of 

the functional class for the trend search is chosen by the researcher, taking into account the specifics 

of the problem being solved. 

Finding a trend in other functional classes, such as the class of fractional rational functions used 

in Padé approximations, requires more research. Some problems concerning the prediction of 

stationary processes can be solved using the harmonic functions discussed above. At the same time, 

additional studies are also required to predict quasi-stationary time series, such as satellite GNSS 

orbits and Earth rotation parameters. In the future, the priority area of research is the use of the 

proposed method to solve problems with real measurement data. 
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