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Abstract: In this article, I discuss the problem of automatic detection of coarse measurements 

(outliers) in the time series of measurement data generated by technical devices. Solving this 

problem is of great importance to improve the accuracy of estimates of various physical quantities 

obtained in solving many applications in which the input data is observations. Since outliers 

adversely affect the accuracy of final results, they must be detected and removed from further 

calculations at the stage of data preprocessing and analysis. This can be done in various ways, since 

the concept of outliers does not have a strict definition in statistics. The author of the article 

previously formulated the problem of finding the optimal solution that satisfies the condition of 

maximizing the amount of measuring data that remained after removal of outliers and proposed a 

robust algorithm for finding such a solution. The complexity of this algorithm is estimated of the 

order of magnitude (𝑁 + 𝑁𝑜𝑢𝑡
2 ), where N is the number of source data and Nout is the number of 

outliers detected. For highly noisy data, the number of outliers can be extremely large, for example, 

comparable to N. In this case, it will take about N2 arithmetic operations to find the optimal solution 

using the algorithm developed earlier. I propose a new algorithm for finding the optimal solution, 

requiring the order of NlogN arithmetic operations, regardless of the number of outliers detected. 

The efficiency of the algorithm is manifested when cleaning from outliers large amounts of highly 

noisy measuring data containing a great many of outliers. The algorithm can be used for automated 

cleaning from outliers of observation data in information and measuring systems, in systems with 
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artificial intelligence, as well as when solving various scientific, applied managerial and other 

problems using modern computer systems in order to obtain promptly the most accurate final result. 

 

Keywords: information and measuring systems; time series; data pre-processing; outliers; data 

cleaning from outliers; optimal solution 

 

1. Introduction  

The operation of many modern information and measuring systems is associated with the 

collection and automatic processing of a large amount of measuring data using software and 

hardware systems equipped with computing machinery. Examples of such systems are a system for 

transmitting time over long distances using satellites [1], a system for comparing remote time scales 

[2], global navigation satellite systems (GNSS) [3], software and hardware complexes for 

determining Earth rotation parameters [4], a system of satellite laser rangefinder measurements, radio 

interferometry with very long baseline radio interferometry, artificial intelligence systems, etc. For 

example, the data of the system for comparing time scales together with the data collected from 

GNSS receivers of the International GNSS Service of international network [5], is used to solve 

geodetic and navigation problems [6], problems for geometric leveling in gravimetry [7] as well as 

for synchronizing time scales of national laboratories with the Coordinated Universal Time UTC [8, 

9] using GNSS satellites. To increase the accuracy of the final result, it is necessary to detect and 

remove outliers from measuring data arrays, the source of which is often measuring equipment [10], 

as well as external factors, such as temperature jumps, radio signal re-reflection, atmospheric 

refraction, etc., when measuring the distance between satellites using laser rangefinders [11]. 

In measurement data processing theory, an outlier is defined sometimes as an observation that is 

at an abnormal distance from other values in a random sample from a population. In a sense, this 

definition leaves it up to the analyst (or consensus process) to decide what would be considered 

abnormal. The uncertainty of this definition is exactly how to isolate anomalous observations from a 

common data array. An overview of the various approaches together with the classification of 

outliers is contained in [12]. 

In works [13,14] for the first time, the concept of an optimal solution was introduced as a set of 

measuring data that meets a number of requirements, one of which is to maximize the amount of the 

set. Data not included in the optimal solution is considered outliers and is removed from 

post-processing. Articles [13,14] shows robust algorithms for finding the optimal solution, in which 

its approximate value is used for the unknown average appearing in the setting of the problem, which 

does not always lead to the search for the optimal solution, and, therefore, does not always ensure 

minimization of the amount of rejected data. Article [15] proposes a new formulation of the outlier 

detection problem, in which an unknown average is considered as an additional parameter to be 

determined from the condition of minimizing rejected data. The robust algorithm proposed in [15] is 

guaranteed to lead to a solution, if only it exists. An estimate of the complexity of this algorithm, 

which is proportional to the square of the number of outliers detected, is also provided there. In the 

case of highly noisy data, when the number of outliers can be comparable to the amount of measured 

data, the complexity of the algorithm is estimated by a value of the order of N2. 
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The purpose of this article is to develop a fast algorithm for finding the optimal solution with 

complexity of order NlogN. 

2. Problem setting to find an optimal solution 

The results 𝑦𝑗 = 𝑦(𝑡𝑗) of observations (measurements) of a certain random variable Y(t), formed 

by measuring devices at moments {𝑡𝑗}𝑗=1
𝑁  in time, in many cases can be represented as a 

one-dimensional time series: 

,ξ ,  1, ,
j j

jy Nz = = +                    (1) 

where z is an unknown mean, 𝜉𝑗 = 𝜉(𝑡𝑗) is a centered random variable with an unknown distribution. 

If the measurement data contains a trend that is known a priori or can be approximated by one of the 

methods (e.g., [14], [16]), we can come to the series (1) after subtracting the trend from the data.  

Most outlier detection methods are based on estimating the standard deviation (SD) of the 

values of series (1) and comparing it to a predetermined threshold value. An SD estimate is generally 

performed based on an unbiased variance estimate. However, with a large amount of data, all data 

can be considered as a general totality, while for z we do not use the estimate as an arithmetic mean; 

therefore, a biased estimate 𝑠𝑁 = (𝑁
−1∑ (𝑦𝑗 − 𝑧)

2𝑁
𝑗=1 )

1/2
 can be used when assessing the SD. Both 

estimations are statistically consistent and can be applied when looking for outliers.  

In [15], the problem of cleaning the measurement data (1) from outliers with a minimum 

amount of rejected data was formulated, while an unbiased variance estimate was used for SD. The 

algorithm proposed there is guaranteed to lead to a solution for the order of 2

out
( )N+ N  arithmetic 

operations. Below, we give a modernized version of this algorithm, which allows us to find a 

solution in the ~𝑁𝑙𝑜𝑔2𝑁 of arithmetic operations.   

As in [15], to search for outliers, we will formulate the problem of finding such a set 𝑌𝐿 =

{𝑦𝑗1 , ..., y𝑗𝐿} of length L, consisting of L numbers of series (1), for which the conditions are met 

( )
 1

1/2
2

1

max
,...,L

L
Y j

j j j
s L y z −



 
−   

 
= ,             (2) 

z |
j

| y −   ,  1
,...,

L
j j j ,           (3) 

min
L L ,                     (4) 

where 𝑠𝑌𝐿, 𝜎𝑚𝑎𝑥 are the SD and its associated threshold, respectively; Δ is a parameter defining a 

threshold for detecting outliers (for example, 𝛥 = 3𝜎𝑚𝑎𝑥); Lmin - a specified parameter that limits the 

length of the desired set from below (for example, Lmin = 10); below we consider 1 < Lmin < N. 

Values 𝑦𝑗  that are not included in 𝑌𝐿 are treated as outliers and removed from further processing. 

Often, in the algorithms for finding a solution to the problem (2) – (4), instead of z, an estimate 

is used in the form of the arithmetic mean of the desired set of numbers 𝑦𝑗1 , . . . , 𝑦𝑗𝐿 : 

 1

1

, ..., L

j

j j j

z L y−



  . Under the assumption of the stationary and ergodicity of the random process 

(1), the approximate equality here asymptotically (with L→  ) goes to the exact one. However, in 

practice, we always have to deal with a specific series of finite number of measurements. In this case, 
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the true value of z remains unknown and may not coincide with the above estimate, and using it 

instead of z in the search process may not lead to an optimal solution, but to its approximation, which 

does not guarantee minimizing the number of detected outliers. 

As in [15], we will not make any a priori assumptions in this article about either the random 

process (1) or the nature of the distribution of the random variable 𝜉𝑗, as well as apply any estimate 

for z. We add (see [15]) to the conditions (2) – (4) the selection conditions such as below, in which 

we will consider z as an unknown parameter to be determined along with 
L

Y .  

Let’s introduce a number of designations. With a fixed set 𝑌𝐿, conditions (2) – (3) are a system 

of inequalities with respect to z, the solution of which (if it exists) is a bounded subset of the 

numerical axis that we denote 𝑍𝑌𝐿. Let us call a set 
L

Y , for which 𝐿 ≥ 𝐿min and 𝑍𝑌𝐿 ≠ ∅, a candidate 

set for solving problems (2) – (6). The SD expressed by equality (2) is a function of z: 𝑠𝑌𝐿 = 𝑠𝑌𝐿(𝑧). 

The minimum of this function on the set 
LY

z Z  is denoted by 
,minLY

s : 

,min
min { ( )}

L L
YL

Y Y
z Z

s s z


= , 

and the value of z, at which this minimum is reached, denote 
LY

z :        

   arg min{ ( )}
L L

YL

Y Y
z Z

z s z



= . 

Note the following selection conditions (see [15]): 

1. From all possible candidate sets 
L

Y , we will choose the set of the maximum length L (the 

number of outliers is minimal): 

 𝐿
 {𝑌𝐿: 𝑍𝑌𝐿≠∅} 
→           𝑚𝑎𝑥.                    (5) 

2. Let a maximum of (5) be reached at ΛL = . This means that there is one or more sets 

,1 ,
, ..., 

n
Y Y
 

 of length 
min

Λ L  and their corresponding non-empty sets 
, 1 , 

Z , ..., Z
nY Y 
 ℝ 

such that for each set of 
Λ, 

1,..., ,, 
i

Y i n=  inequalities (2) – (3) are performed for all 
, iY

z Z


 . From 

the sets 
Λ, i

Y , we will choose the set with the smallest value 
Λ, ,miniY

s  (without loss of generality, 

we assume that such a set is the only one): 

Λ, Λ,1 Λ,,min ,min ,min
min{ ,..., }

m nY Y Y
s s s= .       (6) 

A set selected from all candidate sets according to conditions (5) – (6) will just be a solution to 

the problem (2) to (6). By analogy with [13–15], let’s call it optimal solution. 

Definition. For a given sequence of values 1, , ,,  
j

j Ny =   a set 
1 ΛΛ, opt

{ , ..., }
j j

Y y y=  

satisfying the conditions (2) – (6) is called the optimal solution to the problem (2) – (6). Mean and 

SD values corresponding to the optimal solution are indicated 
opt

z  and 
opt

s : 

Λ, opt

Λ, opt

opt
arg min { ( )};

Y

Y
z Z

z s z


=              (7) 

Λ, optopt opt
( )

Y
s s z= .              (8) 
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The values 
j

y  of series (1) that are not included in 
Λ, opt

Y  are considered outliers.  

Thus, the task of cleaning the series (1) from outliers comes down to finding the optimal solution 

to the problem (2)–(6) and removing numbers from the series (1) that are not part of this solution. 

3. The Structure of the optimal solution 

To avoid global enumerating all kinds of sets 
L

Y  when searching for the optimal solution, it is 

necessary to identify such its properties that would make its search quite realistic. Further reasoning 

relies substantially on the following Statement.  

Assertion 1. Let the set 
1Λ, opt

{ , ..., }
j j

Y y y


=  be optimal solution for a given sequence of 

values { }
j

y  and let 
min

y  and 
mах

y  denote the minimum and maximum numbers of the set 

1
{ , ..., }

j j
y y


:

1 Λmin
min{ , ..., };

j j
y y y=

1 Λmах
mах{ , ..., }.

j j
y y y=  

Then the interval 
min max

( , )y y  does not contain values 
j

y  that are not included in 
Λ, opt

Y . 

Proof literally (up to the notation) repeats the proof of the similar Assertion given in [15]. 

Note that the solution to the problem (2) – (6) is not affected by the order of numbers in the 

series (1). We arrange them in ascending order, so that after renumbering (keeping the previous 

designations for the numbers of the series (1) and considering them different) inequalities will 

be fulfilled: 

1 2
...

N
y y y   .                   (9) 

We will arrange all numbers in the optimal solution also in ascending order: 

1Λ, opt
{ , ..., }

j j
Y y y


= . By virtue of (9) for indices 

1
j ,…, j


 holds: 

1
... .j j


 

 
The following 

statement takes place. 

Assertion 2. The ascending set 
1
, ..., j j


 of indices in the optimal solution 

1Λ, opt
{ , ..., }

j j
Y y y


=  contains all consecutive integers from 

1
j  to j


.  

Proof directly follows from Assertion 1 (cf. [15]). 

Thus, the optimal solution is some segment of unknown length Λ of ordered ascending series 

(1). This allows us, instead of a global enumeration of all possible sets (with a total of 2N ), to look 

for a solution to the problem (2) – (6) among the sets 
+ 1

{ , ..., }
k k L

y y
−

 consisting of segments of the 

ordered series (1), varying only two parameters k and L, subject to the conditions 
min

L L N  and 

1≤k≤N–L+1. The total number of such sets is equal to 0,5(N–Lmin+1) (N–Lmin+2). 

4. Auxiliary formulas for implementing the search algorithm 

The sets, among which an optimal solution is sought, are uniquely determined by two 

parameters k and L, where k is the index of the smallest of the numbers in the set and L is the length 

of the set. Consider one such set corresponding to the pair (k; L), and let us introduce the following 

notation for it: 
+ 1

( ; ) { , ..., }
k k L

Y k L y y
−

= .  

Denote by ( ); z k L  the arithmetic mean of the numbers of the set ( ; )Y k L , and by ( ); s k L  

the corresponding SD, so that:  
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( )
+ 1

1

=

; =

k L

j

j k

z k L L y

−

−  ;             (10) 

( ) ( )

1/2
+ 1

2
1

=

; = ; .

k L

j

j k

s k L L y z k L

−

−
 
  −

   
 

             (11) 

It is easy to see that the SD value defined in (2) at ( ; )z z k L=  coincides with ( ; )s k L . Let’s 

transform the expression (2) for SD. Taking into account (10) and (11), we get for SD squared: 

 
22 2

( ; )
( ) ( ; ) ( ; )

Y k L
s z s k L z k L z+ −= .      (12) 

In this section, we will give without inference the conditions under which the set 𝑌(𝑘; 𝐿) is a 

candidate for the solutions of the system (2) – (6), i.e. for this set there is a solution in z of the system 

of inequalities (2) – (3). The derivation of these conditions differs in insignificant details from the 

similar derivation given in [15]. Let’s enter the designations: 

+ 1
;

L k L
z = y

−
−

R k
z y= + .             (13) 

A necessary condition for the existence of a solution to the system (2) - (3) for a fixed set ( ; )Y k L  is 

fulfillment of inequalities: 

2 2

max
( ; ) σs k L                (14) 

and 

L R
z z .             (15) 

Let inequalities (14) and (15) be fulfilled. 

One of the four mutually exclusive Cases is possible, which we will give here without 

explanation (see details in [15]). 

Case 1. ( ); 
L

z k L z ; ( ) ( )
2 2 2

max
; σ ; 

L
z z k L s k L −  −  . 

The set ( ; )Y k L  is a candidate for solving to the problem (2) – (6), at this 

( ; ),min ( ; )
( )

Y k L Y k L
s s z= ,

L
z z = , where 

( ; )
( )

Y k L
zs  is calculated by formula (12). 

Case 2. ( ); 
L R

z z k L z  . 

The set ( ; )Y k L  is a candidate for solving to the problem (2) - (6), at this ( )( ; ),min
; L

Y k L
s s k= ,

( ); z z k L = . 

Case 3. ( ); 
R

z z k L  and ( ) ( )
2 2 2

max
; σ ; 

R
z z k L s k L −  −  . 

The set ( ; )Y k L  is a candidate for solving to the problem (2) – (6), at this 

( ; ),min ( ; )
( )

Y k L Y k L
s s z= , 

R
z z = . 

Case 4. None of Cases 1–3 is implemented.  

The set ( ; )Y k L  is not a candidate for solving to the problem (2) – (6). 
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Thus, if inequalities (14) and (15) are fulfilled and one of the Cases 1–3 is implemented, then 

the set 
+ 1

( ; ) ={ , ..., }
k k L

Y k L y y
−

 is a candidate for solving to the problem (2) – (6), and for it, 

according to the formulas given for these Cases, both the value 
( ; ),minY k L

s  of minimum of SD as 

well as the point z* at which this minimum is reached are determined. In other cases (one of the 

inequalities (14), (15) is not performed or Case 4 is implemented) the set ( ; )Y k L  is not a candidate 

for solving to the problem (2) – (6). 

To examine the conditions (14), (15), as well as the inequalities specified for Cases 1–3, in 

order to minimize the number of arithmetic operations, we use recurrent relations similar to the relations 

in [15], which allow us to find z(k; L) and s2(k; L) via z(k; L+1) and s2(k; L + 1) for seven arithmetic 

operations: 

( ) ( ) ( ) +L
; = ; 1 + ; 1 ;

L k
k L k L a k L yz z z + + −            (16) 

( ) ( ) ( )
22 2

+
; = ; 1 ; 1 ;

L L k L
s k L b s k L c k L yz + − + −          (17) 

( )

( )

1

1

2

= ;

= 1 ;

= 1 .

L

L

L

a L

b L L

c L L

−

−

−





+ 


+ 

                      (18) 

The values 
L

a , 
L

b , 
L

c  in (16), (17) may be calculated in advance as elements of one-dimensional 

arrays. Similarly, it is possible to calculate the values z (k + 1; L) and s2(k+1; L) if z (k; L) and s2(k; 

L) are known: 

  ( ) ( ) ( )+
+1; = ; + ;

L k L k
z k L z k L a y y−           (19) 

 ( ) ( ) ( ) ( ) ( ) 2 2

+ +L +
+1; = ; + ;

L k L k k k L k L k
s k L s k L a y y y + y z k L a y y− −  − − .   (20) 

In this case, nine arithmetic operations are required, since the value of the expression 

𝑎𝐿(𝑦𝑘+𝐿 − 𝑦𝑘) is enough to calculate once.  

To find a solution to the problem (2) – (6), an algorithm can be used that is practically no 

different from the algorithm described in [15], and is a sequence of steps, on each of which candidate 

sets are sought among all possible sets of a certain length, starting with the maximum possible length 

N, and ending with a length at which a candidate will be found.  

As mentioned above, the number of arithmetic operations required to find the optimal solution 

using this algorithm is estimated by the magnitude of the order 2

out
( )N+ N . The next two Sections 

describe a fast algorithm for finding a solution to the problem (2) – (6) with complexity of the order 

2
logN N . The use of this algorithm becomes preferable compared to the algorithm given in [15], in 

the case where the number of outliers in the data is comparable or exceeds the magnitude of the order 
0.5

2
( log )N N . 
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5. Mathematical prerequisites for development of fast algorithm  

In this section, we make the necessary preparations to build a fast algorithm for finding outliers. 

Recall that in this and the following Sections we are dealing with a sequence {𝑦𝑗}𝑗=1
𝑁  in ascending 

order. The following statement is the key when building a fast algorithm. 

Assertion 3. For an arbitrary set 
+1 +

( ; +1 ={ , ,..., }
k k k L

Y k L ) y y y  and any value of z, the 

inequality is true: 

2 2 2

( ; +1) ( ; ) ( +1; )
( ) min{ ( ), ( )}

Y k L Y k L Y k L
s z s z s z       (21) 

Proof. One of two cases is possible:      

a. 
+

2 +
k L k

z y y ,   
+k k L

z y y z −  − , 

b. 
+

2 +
k L k

z y y ,   
+k k L

z y y z −  − .  

Suppose, for example, that case a) occurs. Let’s show that in this case the inequality will be fulfilled 

2 2

( ; +1) ( ; )
( ) ( )

Y k L Y k L
s z s z .           (22) 

Indeed, let us show first that: 

+
| |

j k L
y z y z−  − ;  j=k, …, k+L.       (23) 

Inequalities  

+k j k L
y y y  ;    j=k,…,k+L, 

and the inequalities corresponding to the case (a) imply: 

j k k+L
z y z y y z−  −  − ,        (24) 

+j k L
y z y z−  − .           (25) 

From these inequalities follows (23). Now we will prove (22). This inequality in expanded form is 

written as follows: 

( ) ( )
+ +

2 2

= j=k

1 1

+1

k L k L 1

j j

j k

y z y z
L L

−

−  −  , i.e. 

( ) ( ) ( )
k+L k+L-1 k+L

2 2 2
2

j=k j=k j=k

( +1) = ( +1) ( )
j j j k+L

L y z L y z L y z y z

 
 −  − − − −
 
  

   .  (26) 

From here, we get inequality 

( )
+

2
2

=

( +1)( )

k L

j k+L

j k

y z L y z−  − , 
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which is valid because of (23). Hence, the inequality (22) from which the last inequality was derived 

by equivalent transformations is also true.  

Similarly, in the case (b), the inequality 2 2

( ; + 1) ( 1; )
( ) ( )

Y k L Y k + L
s z s z  is proved, which together 

with (27) proves Assertion 3. 

For a given L, consider N–L+1 ordered sets of length L: (1; ), (2; ), , ( 1; )Y L Y L Y N L L− + . For 

each value z, we have N–L+1 corresponding values 
2

(1; )
( )

Y L
s z , 

2

(2; )
( )

Y L
s z ,…,

+1

2

( )
( )

L ;LN ?Y
s z . We 

will designate a minimum of them: 

 2 +

2 2 2 2

,min (1; ) ( ; ) ( )1
( ) = min ( ), ( ), , ( )

L Y L Y LY ;LN ?L
s z s z s z s z .     (27) 

The following statement takes place. 

Assertion 4. For any z, the sequence 2

,min
( )

L
s z  decreases monotonically as L decreases from N 

to 
min

L : 

min

2 2 2

N,min N 1,min L ,min
s (z) s (z) ... s (z)

−
   .      (28) 

Proof. Let’s show that for all L = 
min

L ,… , N–1, the inequality 2 2

+1,min ,min
( ) ( )

L L
s z s z  holds. 

Let k be one of the numbers 1,...,N–L and 𝑧 ∈ ℝ. Consider a set 
+1 +

( ; +1) ={ , ,..., }
k k k L

Y k L y y y  of 

length L+1. We have: 

2 2 2 2

( ; +1) ( ; ) ( +1; ) ,min
( ) min{ ( ), ( )} ( )

Y k L Y k L Y k L L
s z s z s z s z  . 

The first inequality here is true by virtue of Assertion 3, the last one – follows from the 

definition of 2

,min
( )

L
s z  given in (27). Thus, for any k=1,…, N–L: 

2 2

( ; +1) ,min
( ) ( )

Y k L L
s z s z . 

Therefore, the inequality will also be fulfilled  

𝑠𝐿+1,𝑚𝑖𝑛
2 (𝑧) = 𝑚𝑖𝑛{𝑠𝑌(1;𝐿+1)

2 (𝑧), 𝑠𝑌(2;𝐿+1)
2 (𝑧), … , 𝑠𝑌(𝑁–𝐿;𝐿+1)

2 (𝑧)} ≥ 𝑠𝐿,𝑚𝑖𝑛
2 (𝑧), 

which proves Assertion 4. 

Assertion 4 implies 

Corollary 1. If for some 
0

L  and any z the inequality  

0

2 2

,min max
( ) > σ

L
s z              (29) 

is fulfilled, then no set 
+1 + 1

( ; ) ={ , ,..., }
k k k L

Y k L y y y
−

 of length L ≥ 
0

L  can be a solution to 

problem (2) – (6). 

Proof. Let 
+1 + 1

( ; ) ={ , ,..., }
k k k L

Y k L y y y
−

 be an arbitrary set of length L ≥ L0. From Assertion 4, 

in view of monotonicity of 
2

, min
( )

L
s z  in L (see (28)), inequalities 

0

2 2 2

, min , min max
( ) ( ) σ

L L
s z s z >  

follow for all L≥L0 and any z. Since inequality 
2 2

( ; ) , min
( ) ( )

Y k L L
s z s z  holds for a set ( ; )Y k L  with 
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any z, it follows from previous inequalities that 2 2

( ; ) max
( ) > σ

Y k L
s z . Thus, the condition (2) for the set 

( ; )Y k L  is not met with any z. Therefore, this set cannot be a solution to the problem (2) – (6). 

In particular, we come to the next important result. If, for example, an inequality 

min

2 2

,min max
( ) > σ

L
s z  takes place for any 𝑧 ∈ ℝ , then the problem (2) – (6) has no solution. 

In the algorithm described in [15], ~
2N  arithmetic operations are required to make sure that 

there is no solution, since the complexity of this algorithm is estimated by the value of order 
2

Out
N + N , and if solution does not exist, it should be put here 

Out min
N N L= − . Taking into account 

Assertion 4 and Corollary 1, the solution search procedure can be started by checking the fulfillment 

of the conditions:  

2 2 2

,min (1; ) max
( ) = ( ) σ

N Y N
s z s z   and 

min

2 2

,min max
( ) σ

L
s z  . 

This, as shown below (see Proof of Assertion 7), will require the order of N arithmetic 

operations. If none of the above inequalities are fulfilled with any z, then the search for a solution 

must stop, since solution not exists. As a result, only ~ N arithmetic operations are required to ensure 

that there is no solution to the problem (2) – (6). 

6. Fast outliers search algorithm 

This Section describes the main result formulated below (see Assertion 7). Consider a number 

of supporting statements. 

Assertion 5. If at some 
0

z z=  a set ( ; 1) { ,..., }
k k L

Y k L y y
+

+ =  of length L+1 satisfies 

conditions (2) and (3). Then at least one of the two sets 
1

{ ,..., }
k k L

y y
+ −

 or 
1

{ ,..., }
k k L

y y
+ +

 of 

length L also satisfies (2) and (3) with 
0

z z= . 

Proof. Indeed, let a set ( ; 1) { ,..., }
k k L

Y k L y y
+

+ =  satisfies the conditions of Assertion 5 for 

0
z z= . This means that the following inequalities hold 

2 2

( ; 1) 0 max
s ( ) σ
Y k L

z
+

             (30) 

and  

0
|

j
| y z−   , ,...,j k k L= + .             (31) 

Assertion 3 and inequality (30) imply 

2 2 2 2

( ; ) 0 ( +1; ) 0 ( ; +1) 0 max
min{ ( ), ( )} ( ) σ .

Y k L Y k L Y k L
s z s z s z   

From this it follows that 

2 2

( ; ) 0 max
( ) σ

Y k L
s z   and/or 

2 2

( + 1; ) 0 max
( ) σ .

Y k L
s z          (32) 
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This means that at least one of the sets 
1

{ ,..., }
k k L

y y
+ −

 or 
1

{ ,..., }
k k L

y y
+ +

 of length L satisfies 

condition (2) with 
0

z z= . Condition (3) is also satisfied for each of these two sets, since each of the 

numbers included in them satisfies the inequality 
0

z |
j

| y −   , as follows from (31).  

From Assertion 5 we have 

Corollary 2. Let the conditions (2) – (3) be met for a set 
00 1

( ; ) { ,..., }
k k L

Y k L y y
+ −

=  of length 

0 min
L L , at some value 

0
z z= . Then: 

(i) for any 
min 0

,..., 1L L L= −  there exists also a set of length L for which the conditions (2) – 

(3) are satisfied at 
0

z z= ; 

(ii) the optimal solution 
,

Y
opt

 exists and its length 
0

L  .  

Proof. Applying Assertion 5 to the set 
0

( ; )Y k L , we get that for at least one of the sets 

0
( ; 1)Y k L −  or 

0
( 1; 1)Y k L+ −  of length 

0
1L − , the conditions (2) – (3) with 

0
z z=  are also met. 

Reapplying Assertion 5 to one of these sets, we get that there is a set of length 
0

2L −  for which the 

conditions (2) – (3) with 
0

z z=  are met, etc. Repiting of these reasoning the required number of 

times proves the validity of statement (i). 

Let us prove (ii). Conditions expressed by Eqs. (5) – (6) are conditions according to which an 

optimal solution is chosen from all candidate sets, i.e. sets for which inequalities (2) – (3) have 

solutions for z. From the assumption of Corollary 2, it follows that there is at least one candidate set 

for solving the problem (2) – (6): this set is 
0

( ; )Y k L . Therefore, the optimal solution 
,

Y
opt

 exists 

and its length satisfies inequality 
0

L   according to (5). 

Corollary 3. If no set of length 
0

L  meets the conditions (2) – (3) for any value of z, then: 

(i) no set 𝑌(𝑘; 𝐿1) = {𝑦𝑘, . . . , 𝑦𝑘+𝐿1−1} of lengths 𝐿1 > 𝐿0 satisfies conditions (2) to (3) for any 

value of z; 

(ii) for an optimal solution 
,

Y
opt

, if it exists, must be fulfilled 
0

L  . 

Proof. Let us prove (i). Suppose the opposite. Let the Corollary 3 assumptions be fulfilled, but 

there exists a set 
1

( ; )Y k L  of lengths 
1 0

L L  such that conditions (2) – (3) are met for some value 

of z. Then, according to Corollary 2, for each 
min 0 1

,..., ,...,L L L L= , including 
0

L L= , there is a set 

of length L, for which conditions (2) – (3) will also be met for 𝑧 = 𝑧0, which contradicts the 

assumption made. 

The statement (ii) is obvious since the optimal solution is a Λ-length set for which the 

conditions (2) – (3) are met at some value of z, hence according to (i), 
0

L  . 

From Corollaries 2 and 3 follows  

Assertion 6. The values of L, denoting the lengths of sets for which the solution to the system of 

inequalities (2) – (3) in z exists, are arranged sequentially on the numerical axis without gaps from 

min
L  to some maximum value Λ≤N. Moreover, for any L   the system (2) – (3) has no solutions 

for any z. 

Figure 1 shows a numerical axis in which L values from the interval 
min

,...,L N are marked 

with a circle of either green or white. A green circle with the sign “+” on top means that for a given 

value of L there is a set of length L for which the system of inequalities (2) – (3) with respect to z has 
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a solution. White circle with the sign “–” means that for any of the sets of the corresponding length, 

the system of inequalities (2) – (3) has no solutions in z. 

 

Figure 1. The values of L lengths of the sets for which the solution of the system of 

inequalities (2) – (3) exists are arranged sequentially on the numerical axis without gaps: 

green circles with “+” signs. In the case where the solution (2) – (3) does not exist for the 

specified set length at any value z, the corresponding L value is marked with white 

circles with the sign “–”.  

Our purpose is to prove the following Statement. 

Assertion 7. For any (unordered) time series (1), a solution to problem (2) – (6) can be found 

in no more than ~ Nlog2N arithmetic operations. 

Proof. As is known, ordering the numbers of series (1) requires the ~Nlog2N arithmetic 

operations (see, for example, [17]). Therefore, to prove the formulated Statement, we consider, as 

above, that the numbers of series (1) are in ascending order. Let us show that the entire further search 

will also require ~Nlog2N arithmetic operations.  

We will look for the maximum value of the L=Λ length of sets for which the solution to 

problem (2) – (6) exists by dividing the ranges of possible L values in half, starting from the range 

min
[ , ]L N . To do this, we will consider a sequence of steps, starting from Step 1, in each of which the 

range of possible values of L decreases by about 2 times. The meaning of the proposed algorithm is 

to check the existence of solutions not for all values L from the ranges under consideration, but only 

for their end values. 

 

Figure 2. Step 0. Three possible cases: a) A positive test result for the existence of 

solution to the system (2) – (3) for the set of maximum length N. The optimal solution 

includes all numbers of the series (1); the algorithm completed. b) Negative test result for 

existence of solution to the system (2) – (3) for sets of minimum length 
min

L . The 

optimal solution does not exist; the algorithm is completed; c) a positive test result for 

the existence of a solution to the system (2) – (3) for sets of length 𝐿min. The optimal 

solution exists. Transition to Step 1. 
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Step 0. Denote (0) (0)[ , ]
Left Right

N N – the segment of the numerical axis, where (0)

Left
N  =

min
L , 

(0)

Right
N = N. At this step, we check: 1) Whether there is a solution of the maximum possible length N, 

and if not, we check: 2) Whether there is a solution to the problem (2) – (6) at all. Possible cases are 

presented schematically in Figure 2. 

1) The set of maximum length N is all the numbers of the series (1): 
1

{ ,..., }
N

y y . We check 

whether there is a solution to the system (2) – (3) for this set (i.e., whether the conditions (14), (15) 

are met and one of Cases 1–3 is implemented). If yes, this set is the solution to the problem (2) – (6), 

since all other requirements (4) – (6) have been met, and the further search is stopped. (This case is 

shown in Figure 2 a): The value L = N corresponds to the green circle, all other values L < N also 

correspond to the green circles (see Corollary 2). The values 
opt

z  and 
opt

σ  are calculated by 

formulas corresponding to one of Cases 1–3.) Otherwise  

2) We check whether there is a solution to the problem (2) – (6) at all. To do this, consider 

min
1N L− +  sets of minimum length 

min
L  in the following order: 

min min min1 2 1 1
{ , ..., } { , ..., }  ...  { , ..., }.

L L N L N
y y y y y y

+ − +
→ → →    (33) 

If, in sequence (33), there is a set for which the system (2) – (3) has a solution (see Figure 2 c)), 

then this means (see Corollary 2) that the optimal solution to the problem (2) – (6) exists and its 

length Λ ≥
min

L . To find the Λ we go to Step 1 (see below). If no solution to the system (2) – (3) 

exists for any of the sets of length 
min

L , then the algorithm terminated. Based on Corollary 3, we 

conclude that the solution to the problem (2) – (6) does not exist at any L ≥ 𝐿min (see Figure 2 b): the 

value of L =
min

L  is marked with a white circle, all other values of L >
min

L  also correspond to 

white circles). 

To calculate the values of z(k; L) and s2 (k; L) involved in the checks of the fulfillment of 

conditions (14), (15), as well as for the verification of the fulfillment of Cases 1–3, recurrent 

formulas (16) – (20) are used in accordance with the diagram shown in Figure 3, which shows only 

z(k; L). 

min min min min min

Set Length

N : (1, N)

N 1: (1, N 1)

L : (1,L ) (2,L ) (N L 1,L )

z

z

z z z

− −

− +






→ → →

 

Figure 3. Step 0. Calculation scheme when checking the existence of an optimal solution for 𝐿 = 𝐿𝑚𝑖𝑛. 

Let’s estimate the number of arithmetic operations in this step. To calculate the values of z(1; N), 

s2(1; N) by formulas (10), (11) 4N arithmetic operations are required. Transitions in the ↓ direction to 
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calculate the z(1; N–1) and s2(1; N–1),…, z(1; Lmin) and s2(1; Lmin) are performed according to 

formulas (16) - (18), and in the → direction to calculate values of z(2; Lmin) and s2(2; Lmin),…, 

z(N–Lmin+1; Lmin) and s2(N–Lmin+1; Lmin) – according to the formulas (19) – (20). Seven 

arithmetic operations are required for each transition in the ↓ direction and nine in the → direction. 

In addition, no more than ten operations are required for each transition in the → direction to 

check whether conditions of Cases 1, 3 are met. The total number of arithmetic actions in this Step 

does not exceed the value
min

4 10 26 ( ) 30N N L N+ + −  . 

Step 1: Step 1 is the same as Step k described below with k = 1. 

… 

Step k: At the k-th step, where (k ≥ 1), we consider the segment ( 1) ( 1)[ , ]k k

Left Right
N N− − , at this for 

( 1)k

Left
L N −= the solution of the system (2) – (3) exists, but for ( 1)k

Right
L N −= - not exists (see Fig. 4). 

 

Figure 4. Step k. For the left end of the range ( 1) ( 1)[ , ]k k

Left Right
N N− −  solution to the system (2) 

– (3) exists, but for the right it does not. 

If ( 1) ( 1) 1k k

Right Left
N N− −−  , we divide the segment ( 1) ( 1)[ , ]k k

Left Right
N N− −  in half, as a result of which we 

get two segments: left ( 1) ( 1)[ , ]k k

Left Mid
N N− −  and right ( 1) ( 1)[ , ]k k

Mid Right
N N− − , where ( 1)k

Mid
N − = ( 1)k

Left
N − +

( )( 1) ( 1) / 2k k

Right Left
N N− − −

  
, [·] – denotes the integer part of the number. Next, we check for the existence 

of solutions to the system (2) – (3) the sets of length L = ( 1)k

Mid
N − : 

( 1) ( 1) ( 1)1 2 1 1
{ , ..., } { , ..., }  ...  { , ..., }.

k k k
Mid Mid Mid

NN N N N
y y y y y y

− − −
+ − +

→ → →    (34) 

The following two cases are possible, shown schematically in Figure 5. 

 

Figure 5. Transition to Step k + 1. In case (a), to continue searching for a solution, we go 

to the right segment (range of set lengths), in case (b) - to the left. 
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Case (a). Solution to the system (2) – (3) exists for at least one of the sets (34) (see Figure 5 a): 

the circle corresponding to the set length ( 1)k

Mid
N −  is marked in green). According to Corollary 2 (ii), 

further search is carried out for values ( 1)k

Mid
L N − . We set ( )k

Left
N = ( 1)k

Mid
N − , ( )k

Right
N = ( 1)k

Right
N −  and 

proceed to Step (k + 1). 

Case (b). Solution to the system (2) – (3) does not exist for any of the sets of length L = ( 1)k

Mid
N −  

(see Figure 5 b): the circle corresponding to the set length of ( 1)k

Mid
N −  is marked in white). According 

to Corollary 3 (ii), further search is carried out for values 𝐿 < 𝑁𝑀𝑖𝑑
(𝑘−1)

. We set 𝑁𝐿𝑒𝑓𝑡
(𝑘)

= ( 1)k

Left
N − , 

( )k

Right
N = ( 1)k

Mid
N − and proceed to Step (k + 1). 

The estimate of the number of operations required to check the sets (34) is similar to the 

estimate performed in Step 0. In this case, the transitions in the ↓ direction are not taken into account, 

since the values 𝑧(1, 𝑁𝑀𝑖𝑑
(𝑘−1)

) and 𝑠2(1, 𝑁𝑀𝑖𝑑
(𝑘−1)

) are already calculated in Step 0. Given only the 

transitions in the direction → we get an upper estimate for the number of arithmetic operations in 

this Step: 24 (𝑁 − 𝑁𝑀𝑖𝑑
(𝑘−1)) + 8 ≤ 24𝑁.  

If 𝑁𝑅𝑖𝑔ℎ𝑡
(𝑘−1)

− 𝑁𝐿𝑒𝑓𝑡
(𝑘−1)

= 1, the maximum length Λ of the set for which solution to the system (2) 

– (3) exists is equal to 𝛬 = 𝑁𝐿𝑒𝑓𝑡
(𝑘−1)

. In this case, we come to the final stage of the algorithm: finding 

all candidate sets of length Λ and choosing the optimal solution from them. To do this, we check 

each of the sets of length Λ in the sequence: 

{𝑦1, ..., y𝛬} → {𝑦2, ..., y𝛬+1} →  ... → {𝑦𝑁−𝛬+1, ..., y𝑁}.          (35) 

If there are more than one candidate set, we renumber them in any order: 
1

( ; ), ..., ( ; )
n

Y k Y k  . 

Further, for each set, depending on which of Cases 1–3 is implemented, we will determine the points 

1
, ..., 

n
z z   and associated values 𝑠

𝑌(𝑘1; 𝛬),𝑚𝑖𝑛

2  𝑌(𝑘𝑛; 𝛬),𝑚𝑖𝑛
2

 of the minima of the squares of the SD using the 

formulas corresponding to this Case. To provide the condition (6) of the problem, we will choose a 

set ( ; )
m

Y k   for which the values 
1

2 2

( ; ),min ( ; ),min
,  ...,  

nY k Y k
s s

 
 is minimal as the optimal solution; 

the search stops there, at this 𝑧opt = 𝑧𝑚
∗ ; 𝜎opt = 𝑠𝑌(𝑘𝑚;𝛬),𝑚𝑖𝑛 

The number of arithmetic operations required to check the sets (35) does not exceed the 24N 

value (see above). In addition, in this Step of the algorithm, it is additionally necessary to calculate 

values 
1

2 2

( ; ),min ( ; ),min
, ..., 

nY k Y k
s s

 
. The largest number of calculations will be if the number n of 

these values coincides with the number (N–Λ+1) of the tested sets of length Λ and for each set either 

Case 1 or Case 3 is implemented. Then, according to formula (12), three arithmetic operations are 

required to calculate each of said values. Therefore, in total, no more than 3 (N–Λ+1) arithmetic 

operations are required. Thus, the final estimate for the number of arithmetic operations for the final 

Step of the algorithm does not exceed 27N. The search process continues until the length of the 

segment 
( ) ( )[ , ]k k

Left Right
N N  is 1 in one of the algorithm Steps. The number of steps will not exceed 

log2N. Indeed, we have: 

𝑁𝑅𝑖𝑔ℎ𝑡
(𝑘)

− 𝑁𝐿𝑒𝑓𝑡
(𝑘)

≤
𝑁𝑅𝑖𝑔ℎ𝑡
(𝑘−1)

−𝑁𝐿𝑒𝑓𝑡
(𝑘−1)

+1

2
. 
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Applying this inequality recursively k times, we get: 

( 1) ( 1) ( 2) ( 2)

( ) ( )

2 2 1

(0) (0)

min min
1 1

1 1 1
...

2 2 2 2

1 1 1 1
... ... 1 1

2 2 2 2 2 2 2 2

k k k k

Right Left Right Leftk k

Right Left

Right Left

k k k k k k

N N N N
N N

N N N L N L N

− − − −− + −
−   + +  

− − −
+ + + = + + +  +  +

. (36) 

From the inequality (36) it can be seen that if 
2

logk N=  the length of the segment

( ) ( )[ , ]k k

Left Right
N N

 
is less than 2, therefore, the algorithm will end in no more than 

2
logk N=  steps. 

Since the number of arithmetic operations required at each Step of the algorithm is of order N, 

the entire search process will require of order Nlog2N arithmetic operations. 

Assertion 7 is proved. 

7. Testing of the proposed algorithm on the Geodetic Satellite “AJISAI” (EGS) Laser ranging data 

To check the effectiveness of the proposed Fast algorithm, it was tested on real data obtained by 

Dr. Igor Yu. Ignatenko when he measured the pseudo-range to the geodetic satellite “AJISAI” (EGS) 

in 2019 using a laser rangefinder. The measurement results are shown in Figure 6. The time 

propagation t of the laser beam to and from the satellite in ms is plotted on the vertical axis; the time 

from the beginning of the day in s is plotted on the horizontal axis. 

 

Figure 6. Pseudo-range measurement data to the AJISAI Satellite (EGS) using a laser 

rangefinder. The time of propagation of the laser beam to and from the satellite in ms are 

plotted on the vertical axis. The time from the beginning of the day in s is plotted on the 

horizontal axis.  

After finding the polynomial trend through the minimizing set method developed by the 

author of this article and described in [14], and subtracting it from the measurement data, a time 

https://ggos.org/item/slr-llr/
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series in the format (1) with N = 48282 was obtained, see Figure 7. For the obtained time series 

of time deviations, an optimal solution was found. 

 

Figure 7. Measurement data after removal of the polynomial trend are shown. The 

time deviations Δt in ns are plotted on the vertical axis. 

The Table presents the comparative results of the search for the optimal solution obtained using 

two algorithms proposed earlier by the author in [14] and [15], as well as the fast algorithm described 

in this article. Seven variants of the optimal solution search procedure corresponding to different 

values 
max

  and Δ were carried out. The values of Nout – the number of outliers detected and 
calc

t  

– the calculation time in ms, were obtained in each variant for each of the algorithms. 

Table 1. Comparative results of testing three algorithms for finding the optimal solution 

for the time series of time deviations in the format (1) with N = 48282 at different values 

𝜎𝑚𝑎𝑥 of threshold parameters and Δ. 

 

No 

 

Threshold 

parameters 

Algorithm from [14] Algorithm from [15] Fast Algorithm  

(this article) 

σmax Δ Nout 

calc
t , ms 

Nout 

calc
t , ms 

Nout 

calc
t , ms 

1 0,6 1,8 835 17 818 15 818 12 

2 0,6 0,8 2383 33 1942 23 1942 12 

3 0,6 0,5 6478 123 6190 97 6190 13 

4 0,6 0,3 14934 545 14924 451 14924 13 

5 0,3 0,2 23041 1235 23032 1005 23032 14 

6 0,3 0,15 28340 1835 28284 1506 28284 14 

7 0,3 0,1 34450 2695 34446 2210 34446 15 
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As one can see from the Table, the optimal solution obtained by the method described in [14], in 

which the unknown average was approximated by the arithmetic mean of the desired numbers, 

always gives a slightly higher value for the number of outliers detected than the other two of the 

methods under consideration. As the magnitude of the thresholds 
max

  and Δ decreases, the 

solutions obtained by the three methods become indistinguishable, with the found Nout values 

becoming almost the same. 

Time cost analysis for each of the algorithms shows an increase in the efficiency of the fast 

search algorithm proposed in this article. For example, in the seventh calculation, the time cost of 

finding a solution using the fast algorithm described in the previous Section is almost 180 times less 

than the time of finding a solution using the algorithm from [14], and almost 150 times less than that 

of using the algorithm described in [15]. 

8. Conclusions 

The developed algorithm is guaranteed to find the optimal solution for time series of noisy data 

obtained from various types of measuring devices. A characteristic feature of the proposed algorithm 

is that its implementation is not based on any a priori assumptions about the distribution of random 

numbers (measurement results) representing the sample, as well as regarding a random process 

realized. The result of the solution search is not affected by the binding of data to the time axis, or by 

the length of time intervals between successive measurements. The robust algorithm proposed to find 

the optimal solution completely eliminates the possibility of unjustified rejection of any part of the 

data, ensuring the outliers-free solution, if only it exists, with the maximum possible amount of data 

used in further processing. Unlike previously proposed algorithms for finding the optimal solution, 

the proposed algorithm requires the order of NlogN arithmetic operations, regardless of the number 

of outliers detected. The use of this algorithm becomes more preferable than previously proposed 

ones in the case where the data is highly noisy and the number of outliers contained in it exceeds the 

order of magnitude 0.5

2
( log )N N . The algorithm can be effectively applied in information and 

measuring systems of various types, in control systems, in systems with artificial intelligence, in 

solving scientific, applied, managerial and other problems in various fields of human activity. 
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