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Abstract: A satellite launcher requires accurate and reliable navigation to reach orbit safely. This
challenging application includes vertical launch, flying through diverse layers of the atmosphere,
discontinuous acceleration and stages separation, high terminal velocities and hostile temperature and
vibration ranges. The Inertial Navigation System (INS) is typically coupled with a Global Navigation
Satellite System (GNSS) receiver to achieve the desired solution quality along the complete ascent
trajectory. Here, several INS/GNSS integrated navigation strategies are described and evaluated through
numerical simulations. In particular, we evaluate different INS/GNSS integration using: loose coupling,
tight coupling and an intermediate Kalman filter on the receiver to enhance the loosely coupled
navigation solution. The main contributions are: a compensation model of tropospheric delays on the
GNSS observables, a compensation of processing/communication delays on GNSS receiver outputs,
covariance adaptations to consider vehicle’s high dynamics, and an specific way to integrate the filtered
solution and its covariance provided by the GNSS receiver. The tightly coupled integrated navigation
proved to be the best choice to handle possible GNSS receiver positioning solution outages, to exploit
more degrees of freedom for the compensation of GNSS observables and the possibility to make a cross
validation of individual GNSS observables with INS-based information. This is specially important
during the periods with a low number of satellites in view when the GNSS positioning solution can not
be validated or even computed by the GNSS receiver alone. Finally, a test with hardware in the loop is
provided to validate the numerical result for the selected tightly coupled INS/GNSS.
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Nomenclature

B, E, I Body, Earth-Centered Earth-Fixed and Inertial frames.
p⃗, v⃗, ω⃗, θ⃗ Vehicle’s current state (position, velocity, angular velocity and attitude).
p⃗d, v⃗d, ω⃗d, θ⃗d Vehicle’s desired state (position, velocity, angular velocity and attitude).
s GNSS satellite index.
k Discrete time index.
c Speed of light.
tpps,k Times of validity of GNSS measurements (one per second).
∆tk, ∆̃tk Receiver’s solution processing/communication delay, and its measurement.
Ωe

ei Coordinates of Earth angular velocity from I to E, expressed in E.
S (·), δ(·) Cross product operator and Dirac delta function.

GNSS measurements, models and fix computation:
ρ̃s,k, ρ̃c

s,k Measured pseudorange for satellite s at time tk, and its compensated value.
tT
s,k Transmission time from satellite s, of the signal received at time tk.

tR
k Reception time corresponding to the solution available at time tk.
τs,k Propagation time from satellite s available at tk.
ηT

s,k Transmission time measurement noise obtained for satellite s available at tk.
τGs,k Vacuum propagation time from the satellite s available at tk.
τI

s,k, τ
T
s,k, τ

R
s,k Ionospheric, tropospheric and relativistic delays from satellite s available at tk.

bt,k, dt,k Receiver clock bias and drift at time tk.
∆ρs,k Compensation term for pseudorange measurement from satellite s at time tk.
∆̃ fs,k Doppler carrier frequency deviation, obtained from s at time tk.
f s
0 , f s

R,k Nominal and measured carrier frequency, obtained from s at time tk.
η

f
s,k Carrier frequency measurement noise.
λs GNSS signal wavelenght transmitted by satellite s.
Ṙs,k True derivative of the range from satellite s a time tk.
ve

rs,k Relative velocity between satellite s and the receiver, at time tk.
ee

s,k Vector between satellite s and the receiver at time tk.
pe

s,k
, ve

s,k Position and velocity of s satellite expressed in E and valid for time tk.
pe

k
, ve

k User position and velocity expressed in E at time tk.
S c1, S c2 Clock bias and clock drift process noises power spectral density.
εs,k, hv,k Elevation and altitude parameters for the tropospheric delay model.
Re Earth radius parameter for the tropospheric delay model.
∆̂ρT , ∆̂ρI , ∆̂ρR Tropospheric, ionospheric and relativistic delay compensation models.
ρ̃

k
, ˜̇ρ

k
Pseudoranges and delta-pseudoranges measurement at time tk.

Ẽk Ephemeris vectors computed for time tk in frame E.
Nk Number of visible satellites used for PVT fix computation at time tk.
ρ̂

k
Vector of the pseudorange estimations for visible satellites, at time tk.

pP
k
, bP

c,k Position and clock bias determined by Bancroft algorithm at time tk.
vP

k , dP
c,k Velocity and clock drift determined using Bancroft solution at time tk.

qP
k Quality number of the PVT fix solution.
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Extended Kalman Filter for INS/GNSS loosely coupled integration:
θbbe, ve, pe Vehicle’s attitude, linear velocity and position state vectors.
x, xINS Vehicle state and associated INS output, with attitude, linear velocity and position.
ωb

bi Coordinate vector of the angular velocity ω⃗ from I to B, expressed in B.
µ Inertial measurements, including gyroscope output µ

ω
and accelerometer output µ

f
.

ξ
ω
, ξ

f
Additive process noises of gyroscopes and accelerometers.

γe, ξ
g

Gravity acceleration and process noise (model uncertainty) on E frame.

ab Vehicle’s acceleration in B frame.
Ce

b Vehicle’s attitude matrix of the body B respect to E.
ξ

p
Additive process noise for the position derivative.

ξ
µ
, ξ

b
Process noises for the IMU and model uncertainties.

b, bω, bf b is the IMU biases composed by gyro biases bω and accelerometer biases bf .
ξ

bω
, ξ

bf
Process noises for IMU biases.

fµ Nonlinear function for vehicle’s kinematic model of the EKF-LC.
Bµ Input matrix for the vehicle’s kinematic model on the EKF-LC.
ξ Process noises for the EKF-LC vehicle’s kinematic model.
Qξ Covariance of the process noises for the EKF-LC vehicle’s kinematic model.
χ Augmented state for the EKF-LC.
f Right-hand side of χ̇ in the EKF-LC process model.
B Input matrix for the EKF-LC augmented state.
δχ Augmented state error respect to an estimation.

f̂
b
, ω̂b

bi Estimate of the specific force and the angular velocity in body frame.
b̂ω, b̂f Gyroscope and accelerometer bias estimations.
ξχ

k
Discrete-time process noises for the EKF-LC.

ỹ
k

Position and velocity solutions as measurements for the EKF-LC, at time tk.
η

k
Measurement noises vector for the external measurement on EKF-LC, at time tk.

H Measurement matrix on the EKF-LC model.
Rk Covariance of the measurement noises for the EKF-LC, at time tk.
δχk

k
A posteriori estimation error of the augmented state for the EKF-LC, at time tk.

χ̂k−1
k

, χ̂k
k A priori and a posteriori augmented state estimations in the EKF-LC, at time tk.

b̂
k
k A posteriori estimation of IMU biases.
Φk Transition matrix at time tk in the EKF-LC.
Qχk Covariance of the discrete-time process noise in the EKF-LC.
Pk−1

k , Pk
k Covariance of the a priori and a posteriori augmented state estimation error.

Kk Kalman gain matrix in the EKF-LC.
ŷk

k
INS estimation of vehicle’s position and velocity at time tk.

1. Introduction

Affordable modern navigation solutions integrates an Inertial Navigation System (INS, see [1, 2])
with a receiver of a Global Navigation System by Satellites (GNSS). This integration (or coupling)
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improves the quality of the navigation even if the INS has a low quality Inertial Measurement Unit (IMU,
with three or more gyroscopes and accelerometers), due to the fusion between the inertial navigation
estimates and the independent GNSS receiver measurements. The vehicle’s guidance and control
([3, 4, 5]) and the flight safety [6] are users of these integrated navigation outputs, being required to
have navigation solutions independent from the one being used for the guidance and control. In this
context, the cost of the whole system is significatively reduced by allowing lower cost IMUs, which
motivated the assessment of reliable INS/GNSS integration algorithms presented in this work.

The Extended Kalman Filter (EKF) has been used since its formulation for spacecraft navigation,
and is typically used to combine the INS and GNSS receiver outputs. Other integration schemes have
been also considered in the literature, including the Robust Unscented Kalman Filter (RUKF), the
derivative UKF and the direct filtering approaches [7, 8, 9, 10]. Figure 1 shows the Navigation functional
block in the context of a Navigation, Guidance and Control (NGC) system of an aerospace propelled
vehicle. The Guidance block compares the Trajectory block output (i.e. the desired trajectory p⃗d(t), v⃗d(t)
with initial conditoin p⃗(t0), v⃗(t0)) with the Navigation block output (i.e., the current kinematic state
p⃗(t), v⃗(t)) and generates an output in terms of attitude reference (θ⃗d(t), ω⃗d(t)) to the (attitude) Control
block and other output to the Propulsion/Staging block (i.e. the main engine start or cut-off events, and
stages/fairing separation events). The Control block compares the guidance attitude reference with the
current navigated attitude (θ⃗(t), ω⃗(t)) and computes the commands to be implemented by the actuators.
The rotation and translation dynamics are determined by the Guidance, Control and derived actuation
allocation functions as well as the flight environment, and generate the (unknown) physical state for the
inertial sensors and GNSS receivers whose measurements are the input to the Navigation block.

Trajectory Generator

Guidance Control

Navigation

Propulsion
& Staging

Vehicle's
Attitude

Vehicle's
Translation

Figure 1. NGC system dataflow diagram.

A satellite launch vehicle has unique features due to its wide operational range in terms of
acceleration, velocity, position, temperature, vibrations, antenna visibility, etc. For this reason, selecting
constant covariance matrices for the process noises (covariance Q) and the external measurement noises
(covariance R) for the EKF implementation in the Navigation block may not be realistic beyond some
suborbital flights [11]. Due to these particular flight dynamics, the system noise statistics may be
unknown and time varying, which requires specific filtering frameworks [12, 13, 14, 15]. The
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measurement uncertainties are also affected by the delay of the GNSS receiver solution availability,
which is more significant for higher accelerations and velocities. On [16] we showed convenient to use
an adaptive version of the EKF to compensate these effects, which will be also used here on the GNSS
receiver filtered solution. Moreover we propose a compensation for the tropospheric delay effect on the
GNSS pseudoranges during the ascent through different layers of the atmosphere, including negative
elevations for the line of sight which are progressively incorporate during ascent. Finally, to assess the
robustness of the navigation we simulate a model of variation of IMU biases during ascent (with
increasing temperature) and the possible failure on the GNSS receiver and/or antennas.

In this work we are interested in the design and evaluation of possible coupling strategies. A
comparison is made between the following integrated navigation alternatives:

• Loosely coupled INS/GNSS, using as external measurements the PVT fix solution (Position, Velocity,
Time) provided by the GNSS receiver (at least four satellites are necessary, see [17]).
• Loosely coupled INS/GNSS, using as external measurements a PVT filtered solution provided by the

GNSS receiver, which assumes a model of the movement to smooth and robustify the solution. This
filter on the receiver will be called EKF-GNSS. It is not necessary to have at least four satellites for a
valid solution, as the EKF-GNSS propagates it, but this solution will have an error as the internal
model does not know the true accelerations and angular velocities. On the other hand, there is a
loosely coupled EKF filter to combine this solution and its covariance with the INS output.
• Tightly coupled INS/GNSS, using as external measurements the observables (pseudorange and

delta-pseudorange) and satellite ephemeris from the GNSS receiver. It is not necessary to have four
satellites and with at least one satellite the innovations will be integrated with the inertial navigation,
hence this option is a priori more efficient in terms of the use of the available information.

The solutions given by all these strategies are compared using the numerical simulator framework
described in [3], on which it is possible to simplify the evaluation of all the estimation errors and
produce the failure scenarios as desired (as presented in [18]). This comparison is shown in Figure
2, where EKF-LC is the loosely coupled extended Kalman filter and EKF-TC is the tightly coupled
extended Kalman filter. The bottom layer on this figure defines the type of GNSS receiver output, which
can be a simple PVT model (white noise plus the simulated variables) or the lower level information
generated by the receiver (ephemeris, pseudorange, delta-pseudoranges, etc). The middle layer is only
active when the receiver delivers high level outputs as the PVT fix solution (computed with the Bancroft
algorithm) or the PVT filtered solution obtained with the EKF-GNSS. Finally, the third (and higher)
level contains the integrated navigation blocks (EKF-LC and EKF-TC). This comprehensive evaluation
is the main achievement of the current work, including the simulation of launch vehicle’s dynamics,
GNSS receiver solutions, observables generation, associated ephemeris and main IMU features, which
will be augmented with hardware in the loop evaluations on a future work. Other information fusion
techniques have been also considered in the literature, including nonlinear filtering [19, 20, 21], which
is beyond the scope of this work and will be compared in future research.

Section 2 provides the measurement model for the GNSS observables in the receiver (pseudorange,
delta-pseudorange and user clock) and Section 3 provides a deterministic compensation model for the
atmospheric and relativistic effects. A summary of the EKF-LC applied to a launch vehicle is given in
the Appendix. It includes a description of the kinematic model of the vehicle with measurements of
acceleration (from accelerometers), angular velocity (from gyroscopes), position and velocity (from the
GNSS receiver solution).
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Figure 2. Framework for integrated navigation strategies evaluation.

On Section 4, an algorithm is proposed to compute the PVT solution using the EKF-GNSS filter, and
compared with respect to the typical fix solution obtained with the well-known Bancroft algorithm (see
[17]), which requires at least four visible satellites to obtain a result. The EKF-GNSS uses adaptive
covariance matrices as a function of the last velocities to obtain a coarse estimate of the acceleration,
and provides state variable covariances to describe the PVT filtered solution to be integrated as external
measurements by the EKF-LC (i.e. a time varying R matrix).

Section 5 develops the EKF-TC for the proposed tightly coupled INS/GNSS. The main advantage
of this coupling is that the information is exploited more efficiently, as the observables are used even
when the number of satellite is not enough to compute the PVT fix solution. The communication delay
compensation for EKF-TC is provided in subsection 5.4.

These methods are evaluated by simulations in Section 6, showing the advantage of the PVT filtered
solution over the PVT fix solution, for the loosely coupled INS/GNSS. Moreover, the tightly coupled
INS/GNSS is shown better than the other options, and is finally validated with a test using hardware in
the loop. The conclusions are provided in Section 7.

2. GNSS receiver measurement model

The GNSS-based navigation requires to develop a measurement model for the pseudoranges, delta-
pseudoranges and the user clock dynamics, which are used both for the analytic description and the
onboard prediction of the measurements. For the onboard evaluation of these models, we consider that
the receiver obtains the ephemeris of the GNSS satellites from the signal code. For each satellite we
can compute the position pe

s,k
and velocity ve

s,k, both written in E frame at the reception time tR
k . As
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the information in the signal code is given on E frame at the transmission time of each satellite, it is
necessary to correct this frame using the Earth angular velocity and the propagation time. In order to
build the receiver observables, we need first to define the user (i.e. receiver) clock dynamics in terms of
a bias and drift.

2.1. User clock dynamics

The clock bias bt and drift dt can be described with xc := c[bt dt]T with the continuous model [22]:

ẋc(t) = Fc xc(t) + ϵc(t), Fc :=
[

0 1
0 0

]
(2.1)

where ϵc is a zero-mean gaussian white noise with autocovariance E
[
ϵc(t)ϵ

T
c (τ)

]
= δ(τ − t)Qc, being:

Qc := c
[

S c1 0
0 S c2

]
, S c1 =

h0

2
, S c2 = 2π2h−2 (2.2)

The coefficients h0 and h−2 can be obtained as a function of the Allan variances [39] and can be found
for typical GNSS clocks as the high quality Temperature Compensated Crystal Oscillator in [41]:

h0 := 2 × 10−21, h−2 := 3 × 10−24 (2.3)

In the following we will construct the model for the pseudorange and delta-pseudorange using the
evaluation of the user clock at the reception times tR

k , hence we define bt,k = bt(tR
k ) and dt,k = dt(tR

k ).

2.2. Pseudorange measurement

Let ρ̃s,k be the pseudorange (i.e. computed distance using GNSS measurements) between the vehicle
and the GNSS satellite s, which is computed with the transmission time tT

s,k, and the time of reception tR
k

at the k-th measurement instant. Each tT
s,k is measured using a GNSS time system:

tT
s,k = tR

k − τs,k − η
T
s,k (2.4)

where τs,k is the propagation time and ηT
s,k is a measurement zero-mean gaussian noise. The time τs,k

is determined by the vacuum propagation time τGs,k := Rs,k/c, where Rs,k is the distance between the
user location at reception time tR

k and the satellite s location at transmission time tT
s,k, plus the signal

delay times τI
s,k, τT

s,k and τR
s,k, corresponding respectively to the ionospheric, tropospheric and relativistic

delays (see [3]):

τs,k := τGs,k + τ
I
s,k + τ

T
s,k + τ

R
s,k (2.5)

The time tR
k is measured with a local clock modelled with an unknown bias bt,k relative to the GNSS

system time, which is time-varying with the unknown clock dynamic. The receiver clock bias is
common for all the pseudoranges, provided that all the measurements are made at the same time, and
the measured reception time is tR

k + bt,k. Hence the pseudorange measurement ρ̃s,k is defined as:

ρ̃s,k := c(tR
k + bt,k) − ctT

s,k (2.6)
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= c(tR
k − tT

s,k) + cbt,k (2.7)
= cτs,k + cbt,k + cηT

s,k (2.8)

with c the speed of light in vacuum. Let ∆ρs,k be the sum of atmospheric and relativistic delays, hence:

ρ̃s,k = cτGs,k + cτI
s,k + cτT

s,k + cτR
s,k + cbt,k + cηT

s,k (2.9)
= Rs,k + ∆ρs,k + cbt,k + cηT

s,k (2.10)

where Rs,k = ∥pe
s,k
− pe

k
∥. Finally, for certain model ∆̂ρs,k of ∆ρs,k it will be useful to define the

compensated pseudorange measurement:

ρ̃c
s,k := ρ̃s,k − ∆̂ρs,k (2.11)
≈ Rs,k + cbt,k + cηT

s,k (2.12)

2.3. Delta-pseudorange measurement

The Doppler effect makes possible to construct the delta-pseudorange ˜̇ρs,k, as a function of the
difference ∆̃ fs,k between the measured carrier frequency from the s-th GNSS satellite f s

R,k and its
nominal value f s

0 :

∆̃ fs,k := −
(

f s
0 − f s

R,k

)
− f s

0 dt,k − f s
0η

f
s,k (2.13)

where η f
s,k is a zero-mean white gaussian measurement noise and dt,k is the clock drift term.

Let λs = c/ f s
0 be the carrier wave lenght, hence:

˜̇ρs,k := −λs∆̃ fs,k (2.14)
= λs

(
f s
0 − f s

R,k

)
+λs f s

0 dt,k + λs f s
0η

f
s,k (2.15)

= Ṙs,k+cdt,k + cη f
s,k (2.16)

where we have used Ṙs,k = λs( f s
0 − f s

R,k), which is known as the Doppler effect (see [40]). Moreover, Ṙs,k

is also given by the dot product between the relative velocity vector ve
rs,k and the unit vector ĕe

s,k which
points along the line of sight between the user and the s-th satellite, i.e.:

Ṙs,k := ĕe T
s,k · v

e
rs,k (2.17)

with:

ee
s,k := pe

s,k
− pe

k
, ĕe

s,k :=
ee

s,k

∥ee
s,k∥

(2.18)

and [18]:

ve
rs,k := Ωe

ei × pe
s,k
+ ve

s,k −Ω
e
ei × pe

k
− ve

k (2.19)
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3. Delay compensation of measured observables

The compensation (2.11) requires to estimate ∆ρs,k onboard with models for the troposphere,
ionosphere and relativistic effects. A simple tropospheric model will be extended for smaller and
negative elevations, while for the ionosphere we will use the Klobuchar model [33, 22]. A simple
relativistic model is also provided for compensation.

3.1. Tropospheric delay compensation

A mapping function of the tropospheric delay is given in [22] as a function of the user altitude
hv,k and the line of sight elevation εs,k relative to the s-th satellite at time tk. For the elevation range
5◦ ≤ εs,k ≤ 90◦ the following function provides the delay in meters:

∆ρTm (
εs,k, hv,k

)
:=

kα e−hv,k/hτ

sin(εs,k) + ϕα
(3.1)

where hτ := 7518.8 m, ϕα := 0.0121 and kα := 2.47 m. As for εs,k < εα = 5◦ the model is not defined,
lets consider the following function for all the positive elevations:

∆ρTa (
εs,k, hv,k

)
:= ∆ρTm (

εs,k, hv,k
)
, if εs,k ≥ εα (3.2)

∆ρTa (
εs,k, hv,k

)
:= kαe−hv,k/hτ

[
2

sin(εα) + ϕα
−

1
sin(2εα − εs,k) + ϕα

]
, if 0 ≤ εs,k < εα (3.3)

which now is valid for ∆ρTm in the range 0 ≤ εs,k ≤ 90◦.
For negative angles εmin(hv,k) ≤ εs,k ≤ 0, where εmin := −acos

(
Re/(Re + hv,k)

)
≤ 0 is the minimum

feasible angle not blocked by the Earth with local radius Re. Here we follow the same idea taken in the
simulator implementation [3], which composes the delay for negative angles as shown in the Figure 3.
The total delay is given by the sum of delay segments ‘1-2’+‘2-3’+‘3-s’, hence:

∆ρTd := ∆ρ3−s + ∆ρ2−3 + ∆ρ1−2, if εmin(hv,k) ≤ εs,k ≤ 0 (3.4)

The point 2 was defined such that the elevation is zero which corresponds to the altitude h̄s,k := h̄(εs,k, hv,k)
such that:

h̄(εs,k, hv,k) :=
(
Re + hv,k

)
cos(εs,k) − Re (3.5)

where Re is the local Earth radius. The tropospheric delay is computed using (3.3):

∆ρ2−s(εs,k, hv,k) := ∆ρTa
(
0, h̄(εs,k, hv,k)

)
(3.6)

On the segment between the point 3 and the satellite, the delay is computed as:

∆ρ3−s(εs,k, hv,k) := ∆ρTa (
−εs,k, hv,k

)
(3.7)

With previous definitions:

∆ρ2−3 = ∆ρ2−s − ∆ρ3−s (3.8)
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s

1

2

3

Figure 3. Line-of-sight divided in three segments to compute separately each Tropospheric
Delay Compensation term.

∆ρ1−2 = ∆ρ2−3 (3.9)

and (3.4) is computed for negative values of εs,k as:

∆ρTd (
εs,k, hv,k

)
:= ∆ρTa (

−εs,k, hv,k
)
+ 2

[
∆ρTa

(
0, h̄

(
εs,k, hv,k

))
− ∆ρTa (

−εs,k, hv,k
)]

(3.10)

:= 2∆ρTa
(
0, h̄

(
εs,k, hv,k

))
− ∆ρTa (

−εs,k, hv,k
)

(3.11)

Considering (3.2), (3.3) and (3.11), for all εmin(hv,k) ≤ εs,k ≤ 90◦ the proposed model for the
Tropospheric Delay Compensation (TDC) becomes:

∆ρT (
εs,k, hv,k

)
:= ∆ρTa (

εs,k, hv,k
)
, if εs,k ≥ 0 (3.12)

∆ρT (
εs,k, hv,k

)
:= 2∆ρTa

(
0, h̄

(
εs,k, hv,k

))
− ∆ρTa (

−εs,k, hv,k
)
, if εs,k < 0 (3.13)

Figure 4 shows ∆̂ρT
s,k := ∆ρT (

εs,k, hv,k
)

as a function of εs,k and parameterized for different positive
altitudes hv.
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Tropospheric Delay Compensation (TCD) vs. elevation        , evaluated for several altitudes

Figure 4. Evaluation of the proposed TCD model including negative elevations, for several
altitudes obtained during the ascent trajectory.
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Finally, a better result was obtained, by comparison with the high fidelity model given in [3], by
replacing the gain parameter kα in (3.1) and (3.3) by a gain function k(εs,k, hv,k) as follows:

k(εs,k, hv,k) := kα ·max
[
0,

(
1 −

hv,k

16hτ

)]
, if εs,k ≥ εα (3.14)

k(εs,k, hv,k) := kα ·max
[
0,

(
9

10
+
εs,k

10εα
−

hv,k

16hτ

)]
, if 0 ≤ εs,k < εα (3.15)

3.2. Ionospheric delay compensation

The compensation uses the model proposed by Klobuchar [33] for the Ionospheric Delay
Compensation (IDC), ∆̂ρI

s,k, as a function of coefficients broadcasted by the GPS constellation. This
model does not consider the variation in altitude but only the elevation of the line of sight.

3.3. Relativistic delay compensation

The relativistic delay affects the measurement of the pseudoranges, and is included on the estimate
∆̂ρs,k. It is well known that part of this delay is generated by orbit eccentricity [3]. This part of the effect
can be modelled as a function of the ephemeris of each observed satellite s at time tk:

∆̂ρR
s,k := −

2
c2 pe T

s,k
ve

s,k (3.16)

4. GNSS receiver PVT outputs for loosely coupled integrated navigation

It is well known that to obtain the PVT fix solution it is necessary to have at least four GNSS
satellites ([17, 22]), being possible to validate it with more than four GNSS satellites in view. A more
accurate solution can be obtained by filtering the GNSS observables to obtain the PVT filtered solution,
using certain hypothesis on the user motion dynamics as considered in [23, 24]. To model these PVT
solutions, we assume that there are Nk satellites acquired by the receiver on times tk = tR

k , with the
associated ephemeris, pseudorange and delta-pseudorange. At each time, the vector ρ̃

k
∈ RNk contains

the measured pseudoranges and the vector ˜̇ρ
k
∈ RNk contains the measured delta-pseudoranges. Also,

the vector Ẽk contains the ephemeris position and velocity coordinates of the Nk satellites.

4.1. Point solution (fix) algorithm

The equations relating the nonlinear GNSS measurements with the unknown position and clock bias
can be solved iteratively in steps i := 1, ...,Mk using Newton method [17], and provided Nk ≥ 4. In
order to avoid this complexity, an approximate algebraic method has been typically adopted [22]. The
solution proposed by Bancroft in [17] re-states the problem in terms of a second order polynomial, by
using the same linear functional as defined by Lorentz on relativistic mechanics [25]. The PVT point
solution pP

k
on frame E and the clock bias bP

c,k, for time tk, are given by the Bancroft algorithm as:

pP
k

:= [y1 y2 y3]T , bP
c,k := y4 (4.1)

where y := [y1 y2 y3 y4]T is given by one of the following options:

y ∈ λ1,2u + v (4.2)
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being λ1,2 the solutions at time tk of a second order polinomial. The vectors u, v ∈ R4 are determined by
the pseudoranges and ephemeris of the GNSS satellites observed at that moment. A test of residuals
selects which of the two solutions in (4.2) is the correct one and describes it with a quality number
qP

k ∈ N which measures the degree of accuracy of the point solution. The point velocity solution vP
k for

time tk in frame E and the associated clock drift dP
c,k can be obtained in a similar way [26].

4.2. Filtered solution algorithm

Nomenclature:
pF

k
, vF

k Position and velocity computed using EKF-GNSS algorithm.
∆T GNSS receiver solution period, typically one second.
aF

k Acceleration estimate computed by the EKF-GNSS filter at time tk.
ȧF

k Discrete zero-mean white noise with covariance matrix Qȧ
k for time tk.

xF
k State of the EKF-GNSS filter, including position, velocity and acceleration.
ΦF

pva Transition matrix of the EKF-GNSS filter for state xF
k .

BF
pva Input matrix of the EKF-GNSS filter process model for state xF

k .
bF

c,k, dF
c,k Receiver clock bias and drift for the EKF-GNSS filter.

ḋF
c,k Zero-mean random process with variance σ2

ḋ,k
.

bF
c,k State vector for the receiver clock parameters bF

c,k and dF
c,k.

ΦF
c Transition matrix for the state vector bF

c,k
BF

c Input matrix for the EKF-GNSS process model of state bF
c,k.

χF
k

Augmented state for the EKF-GNSS filter.
ξF

k
Process noise vector for the EKF-GNSS filter, with covariance QχF

k .
ΦF Transition matrix of the EKF-GNSS filter, for the augmented state χF

k
.

BF Process input matrix for the augmented state χF
k

of the EKF-GNSS.
ỹF

k
Measurement model output of pseudoranges and delta-pseudoranges.

hF
k Measurement function for the EKF-GNSS filter.
ηF

k
Zero-mean measurement noise for the EKF-GNSS filter, with covariance RF

k .
vF

rs,k Relative velocity between satellite s and the vehicle at time tk.
NF

k Number of satellites available at time tk.
eF

s,k Line of sight computed with the EKF-GNSS solution for satellite S at time tk.
pF

k
Position solution of the EKF-GNSS at time k.

χ̂F,(k−1)
k

Augmented state a priori estimation of the EKF-GNSS filter.
χ̂F,k

k
Augmented state a posteriori estimation of the EKF-GNSS filter.

PF,(k−1)
k Augmented state error covariance a priori estimation of the EKF-GNSS filter.

PF,k
k Augmented state covariance error a posteriori estimation of the EKF-GNSS filter.

Q̂ξFk , R̂F
k Process and measurement noise covariances for the EKF-GNSS filter at time k.

δyN
k

Whole innovation vector at tk for the Nk observed satellites.
δyF

k
Innovation vector with valid observables for the EKF-GNSS filter.

NF
k Number of valid satellites used on the EKF-GNSS.

p̂F,k
k EKF-GNSS estimated position at tk.
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HF
k EKF-GNSS measurement matrix at tk.

KF
k EKF-GNSS Kalman gain matrix at tk.

p̃e
k GNSS receiver output position in E frame at time k.

ṽe
k GNSS receiver output velocity in E frame at time k.

R̂pv
k Covariance of the combined vector with p̃e

k and ṽe
k.

qF
k Quality index of the EKF-GNSS solution.

Here we describe a PVT filtered solution which is typically used on GNSS receivers to improve the
accuracy, based on certain model of the vehicle. The particular dynamics of a satellite launcher makes
convenient to use as internal states of the filter the user position, velocity and acceleration, and the user
clock bias and drift [24]. This includes the adaptation of covariances as proposed in [22].

4.2.1. Extended kalman filter for GNSS positioning

We take the following discrete model for the position, velocity and acceleration dynamics of the
satellite launch vehicle:

pF
k+1
= pF

k
+ vF

k ∆T + aF
k

∆2
T

2
+ ȧF

k

∆3
T

6
(4.3)

vF
k+1 = vF

k + aF
k ∆T + ȧF

k

∆2
T

2
(4.4)

aF
k+1 = aF

k + ȧF
k ∆T (4.5)

where ∆T = 1 sec, the super-index F stands for the receiver filter solution, pF
k

, vF
k and aF

k are the position,
velocity and acceleration to be estimated, while ȧF

k is a random discrete zero-mean white noise gaussian
model with covariance matrix Qȧ

k := E[ȧF
k ȧF T

k ]. Let xF
k := [pF T

k
vF T

k aF T
k ]T and:

xF
k+1 = Φ

F
pva · x

F
k + BF

pvaȧF
k (4.6)

being:

ΦF
pva := I9×9 + ∆T U3

9×9 + ∆
2
T U6

9×9 (4.7)

BF
pva :=

[
∆3

T

6
I
∆2

T

2
I ∆T I

]T

(4.8)

with Um
9×9 ∈ R9×9 a matrix with δi+m, j on its i-th row and j-th column, being δi+m, j the Kronecker delta,

such that δi+m, j := 1 when i + m = j, or δi+m, j := 0 otherwise.
A simplified model of the receiver clock is defined here with a bias bF

c,k and drift dF
c,k such that:

bF
c,k+1 = bF

c,k + ∆T dF
c,k +
∆2

T

2
ḋF

c,k (4.9)

dF
c,k+1 = dF

c,k + ∆T ḋF
c,k (4.10)

where ḋF
c,k is a zero-mean random process with variance σ2

ḋ,k
. Let bF

c,k := [bF
c,k dF

c,k]
T be the clock model

state vector to be estimated, which obeys the model:

bF
c,k+1 = Φ

F
c · b

F
c,k + BF

c · ḋ
F
c,k (4.11)
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where:

ΦF
c :=

[
1 ∆T

0 1

]
, BF

c :=
 ∆2

T
2
∆T

 (4.12)

The full state vector of the filter is χF
k

:= [xF T
k bF T

c,k ]T and satisfy:

χF
k+1
= ΦFχF

k
+ BFξF

k
(4.13)

with ξF
k

:= [ȧF T
k ḋF

c,k]
T , where ȧF

k and ḋF
c,k are not correlated, and:

ΦF :=
[
ΦF

pva 09×2

02×9 ΦF
c

]
, BF :=

[
BF

pva 09×1

02×3 BF
c

]
(4.14)

The covariance matrix of ξF
k

is:

QξFk := E
[
ξF

k
ξF T

k

]
(4.15)

and is related with the covariance of the last term in (4.13) through:

QχF
k := BF QξFk BF T (4.16)

The measurement model for the pseudoranges and delta-pseudoranges of the NK satellites seen at tk is:

ỹF
k

:= hF
k (χF

k
) + ηF

k
(4.17)

being ηF
k

a zero-mean measurement noises vector and RF
k := E[ηF

k
ηF T

k
], while [22]:

hF
k (χF

k
) :=



∥eF
1,k∥ + bF

c,k
...

∥eF
NF

k ,k
∥ + bF

c,k

ĕF T
1,k · v

F
r1,k + dF

c,k
...

ĕF T
NF

k ,k
· vF

rNF
k ,k
+ dF

c,k


(4.18)

where eF
s,k, ĕF

s,k and vF
rs,k are defined as in (2.18) and (2.19), as a function of χF

k
and satellite s.

The EKF-GNSS filter is depicted in Figure 5, where the a priori estimate χ̂F,(k−1)
k

and the a posteriori

estimate χ̂F,k
k

have respectively the error covariance matrices PF,(k−1)
k and PF,k

k , while the process noises

covariance Q̂ξFk and the measurement noises covariance R̂F
k will be computed for each time tk on frame

E. Let δyN
k
∈ R2Nk be the innovations vector at tk for the Nk observed satellites. A validation logic is

used for each innovation, rejecting wrong measurements as a function of the absolute value of each
innovation component. Let δyF

k
∈ R2NF

k be the vector of innovations for NF
k ≤ Nk satellites validated at

tk. The filtered solution to be used as external measurement by the EKF-LC is composed by the position

Metascience in Aerospace Volume 1, Issue 1, 66–109.



80

Initialization

Point PVT solution (fix)

EKF-GNSS (Prediction)

Acceleration
computation

Observation matrix

Estimated observables

EKF-GNSS (Filtering)

Acquisition of
Nk satellites EKF-GNSS PVT solution

s-innov
  valid.-

to EKF-LC

ep
he

m
er

is

ephem.

id sat. and 

START

Figure 5. EKF-GNSS flowchart for the receiver’s PVT filtered solution.

p̃e
k

:= p̂F,k
k

and the velocity ṽe
k := v̂F,k

k . The receiver output also includes a quality index qF
k , the number

of observed satellites, and the estimation error covariance R̂pv
k obtained from the matrix PF,k

k .
The output Jacobian matrix for hF

k (χF
k

) becomes:

HF
k :=

[
Hρk
Hρ̇k

]
, Hρk :=


...

∇χρs,k
...

 , Hρ̇k :=


...

∇χρ̇s,k
...

 (4.19)

being:

∇χρs,k :=
[
1 0 − ĕF T

s,k 0T
6

]
(4.20)

∇χρ̇s,k :=
[
0 1 ∇pρs,k − ĕF T

s,k 0T
3

]
(4.21)

with:

∇pρs,k := ĕF T
s,k S (Ωe

ei) −
vF T

rs,k ·
(
I − ĕF

s,kĕ
F T
s,k

)
∥eF

s,k∥
(4.22)

Notice that the matrix BF has more rows than columns, hence it is not possible to guarantee the stochastic
exponential convergence using the condition in [29] given as QχF

k = BF QξFk BFT > qI for q > 0. However,
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following the Remarks after Theorem 3.1 in [29], it is not actually necessary, to obtain error bounds,
that QχF

k were given by the covariance of the noise term, although any other positive definite matrix
could be chosen as well. In [30] the target tracking problem is considered with an input matrix having
more rows than columns in the same way.

4.2.2. Adaptive Q̂ξFk and R̂F
k

During the ascent of the launch vehicle, the acceleration grows as the mass of propellant is burned,
while the thrust also grows due to the less dense atmosphere. Therefore it is good to estimate the
acceleration in order to bound the process noises for the EKF-GNSS. The acceleration in E frame will
be estimated using the last two point solutions at tk−1 and tk:

âP
k := [âP

xk âP
yk âP

zk]
T =

vP
k − vP

k−1

∆T
(4.23)

The process noise covariance becomes:

Q̂ξFk :=


σ̂2

ȧx,k 0 0 0
0 σ̂2

ȧy,k 0 0
0 0 σ̂2

ȧz,k 0
0 0 0 σ̂2

b̈c

 (4.24)

where σ̂2
b̈c
> 0 is a constant parameter associated to the deviation of the clock drift derivative and:

σ̂2
ȧx,k := [αQ · (âP

xk)
2, σ̂2

ȧ]m (4.25)
σ̂2

ȧy,k := [αQ · (âP
yk)

2, σ̂2
ȧ]m (4.26)

σ̂2
ȧz,k := [αQ · (âP

xz)
2, σ̂2

ȧ]m (4.27)

where αQ ∈ R>0 adjusts the adaptation as a function of the acceleration and [a, b]m := a if a > b,
otherwise [a, b]m := b. Moreover, σ̂2

ȧ > 0 provides an estimation of the diagonal of Q̂ξFk .
For significant velocity variations, the pseudoranges and delta-pseudoranges innovations are more

noisy. We define the covariance matrix of measurement noises, adapted as a function of the acceleration
computed in (4.23):

R̂F
k :=

[
R̂F
ρ,k 0N×N

0N×N R̂F
ρ̇,k

]
, R̂F

ρ,k :=
[
αρ ·

∥∥∥âP
k

∥∥∥ , σ̂2
ρ

]
m

IN×N , R̂F
ρ̇,k :=

[
αρ̇ ·

∥∥∥âP
k

∥∥∥ , σ̂2
ρ̇

]
m

IN×N (4.28)

being αρ, αρ̇ ∈ R>0 adaptation sensitivity parameters, while σ̂2
ρ > 0 and σ̂2

ρ̇ > 0 provides an initial
estimation of the diagonal components of R̂F

k .

5. Tightly-coupled integrated navigation

Nomenclature:
χρ Augmented state for the EKF-TC.
xc State vector of the GNSS receiver clock errors.
bc, dc Local clock bias and drift errors in the pseudorange measurements.
ϵc Random process for the local clock model.
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Qc Autocovariance’s parameters for ϵc.
f ρ Nonlinear function to model χ̇ρ in the EKF-TC.
Bρ Input matrix for the process noise inputs to model χ̇ρ in EKF-TC.
ξρ Process noise in the EKF-TC.
Qρ Autocovariance’s parameters for process noises in the EKF-TC.
χ̂ρ Estimation of the state vector χρ.
Fρ Jacobian matrix of f ρ.
Nρk Number of GNSS satellites with valid observables.
Ẽρk Measurements of the satellite positions and velocities (ephemeris).
ỹρ

k
Measurements of pseudoranges and delta-pseudoranges at step k.

ρ̃c
k

Pseudorange measurements with estimated delay compensations.
yρ

k
Model of pseudoranges and delta-pseudoranges measured at step k.

˜̇ρ
k

Delta-pseudorange measurements used in the EKF-TC.
ηρ

k
Measurement noises of pseudorange and delta-pseudoranges.

Rρk Covariance matrix of the measurement noises.
hρk(·) Model of the output yρ

k
as a function of the state.

Hρk Jacobian matrix of hρk .
χ̂ρk

k
Augmented state a posteriori estimation of the EKF-TC.

χ̂ρ(k−1)
k

Augmented state a priori estimation of the EKF-TC.
∆K Update period of EKF-TC and EKF-LC filters.
δχρk

k
Augmented state error for the a posteriori estimation.

δχρ(k−1)
k

Augmented state error for the a priori estimation.
Pρkk , Pρ(k−1)

k Estimated state error covariances for the a priori and a posteriori estimation.
Qρk Covariance of the discrete-time process noise for the EKF-TC.
Φ
ρ
k Transition matrix for the EKF-TC.

Kρk EKF-TC Kalman gain matrix.
ŷρ

k
Estimation of pseudoranges and delta-pseudoranges at step k.

In this section we describe the EKF-TC using pseudorange and delta-pseudorange as observables,
and propose a method to compensate communication delays on the receiver output information.

5.1. EKF-TC augmented state with receiver clock dynamics

The measurements (2.10) and (2.16) will be fused with the INS to obtain the desired kinematic state
(attitude, position and velocity) and the user clock bias bt and drift dt; all these variables are included on
the augmented state:

χρ :=
[
χ

xc

]
(5.1)

The derivative of χρ is computed using (7.3) and (2.1):

χ̇ρ = f ρ(χρ, µ) + Bρ(χρ)ξρ (5.2)
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with:

f ρ(χρ, µ) :=
[

f (χ, µ)
Fc xc

]
, Bρ(χρ) :=

[
B(χ) 015×2

02×18 I2×2

]
(5.3)

and the continuous-time vector of process noises ξρ := [ξT ϵTc ]T , zero-mean gaussian white noise with

autocovariance E
[
ξρ(t)ξρT (τ)

]
= δ(τ − t)Qρ(t) where:

Qρ(t) :=
[

Qξ(t) 018×2

02×18 Qc(t)

]
∈ R20×20 (5.4)

Let χ̂ρ be an estimate of χρ, hence we will consider the linearization:

δχ̇ρ ≈ Fρ(χ̂ρ, µ)δχρ + Bρ(χ̂ρ)ξρ, Fρ(χ̂ρ, µ) :=
[

F(χ̂, µ) 015×2

02×15 Fc

]
(5.5)

5.2. Observable measurement model and innovations

Lets group (2.12) and (2.16) on a single vector function hρk for the observables from Nρk satellites:

ỹρ
k

:=
 ρ̃c

k
˜̇ρ

k

 = hρk
(
χρ

k
, Ẽρk

)
+ ηρ

k
(5.6)

where ηρ
k

is a zero-mean measurement noise with covariance Rρk := E[ηρ
k
ηρT

k
]. Also, the Jacobian matrix

Hρk := ∂h
ρ
k

∂χρ
is defined with the submatrices

∂ρc
k

∂χ
ρ
k

and
∂ρ̇

k
∂χρ

, with Nρk rows each:

Hρk :=


∂ρc

k
∂χρ

∂ρ̇
k

∂χρ

 (5.7)

Notice that with Nρk variables at a given sample instant tk, Hρk may have a different number of rows.

Each row in
∂ρc f

k
∂χρ

uses a gradient ∇χρ
c
s defined for a given measured satellite s:

∇χρ
c
s

(
χρ

k
, Ẽρk

)
:=

[
∇θρ

c
s ∇vρ

c
s ∇pρ

c
s ∇bωρ

c
s ∇bfρ

c
s ∇clkρ

c
s

]∣∣∣∣(
χ
ρ
k ,Ẽ
ρ
k

) (5.8)

and each row in
∂ρ̇ f

k
∂χρ

uses the gradient ∇χρ̇s of the delta-pseudorange associated to the same satellite s:

∇χρ̇s

(
χρ

k
, Ẽρk

)
:=

[
∇θρ̇s ∇vρ̇s ∇pρ̇s ∇bωρ̇s ∇bfρ̇s ∇clkρ̇s

]∣∣∣∣(
χ
ρ
k ,Ẽ
ρ
k

) (5.9)

Hence: 

∇θρ
c
s,k := 0T

3
∇vρ

c
s,k := 0T

3
∇pρ

c
s,k := −ĕT

s,k

∇bωρ
c
s,k := 0T

3
∇bfρ

c
s,k := 0T

3
∇clkρ

c
s,k := [1 0]

,



∇θρ̇s,k := 0T
3

∇vρ̇s,k := ĕT
s,k

∇pρ̇s,k := ĕT
s,kS (Ωe

ei) −
vT

rs,k

∥es,k∥

(
I − ĕs,kĕ

T
s,k

)
∇bωρ̇s,k := 0T

3
∇bfρ̇s,k := 0T

3
∇clkρ̇s,k := [0 1]

(5.10)

where 03 := [0 0 0]T , and we have used the notation ∇pρ
c
s,k := ∇pρ

c
s

(
χρ

k
, Ẽρk

)
for all the gradients.
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5.3. EKF-TC for INS/GNSS navigation

We consider the following definitions to implement the EKF steps as in the Appendix: χ̂ρk
k+1

and
χ̂ρ(k+1)

k+1
are the a priori and a posteriori estimates of χρ

k+1
, and for the k + 1 step the prediction is

χ̂ρk
k+1

:=
[
χ̂k T

k+1
x̂k T

c,k+1

]T
where χ̂k

k+1
is estimated with (7.11) and x̂k

c,k+1 is estimated as follows:

x̂k
c,k+1 := Φc,k x̂k

c,k, Φc,k := exp (Fc ∆K) =
[

1 ∆K

0 1

]
(5.11)

The covariance matrix of the a priori estimation error Pρkk+1 is computed as in (7.12) while the a posteriori
estimation error covariance matrix Pρ(k+1)

k+1 is computed as in (7.15). The filter state estimation error is
δχρ

k
, the process noise covariance is Qρk , and the augmented state transition matrix is here:

Φ
ρ
k+1 :=

[
Φk 015×2

02×15 Φc,k

]
(5.12)

On the filtering stage at step k + 1 we solve for Kρk+1 as in (7.14) and the a posteriori estimation χ̂ρ(k+1)
k+1

as in (7.13). In order to compute the innovation, we also define the estimate ŷρ
k+1

:= hρk+1

(
χ̂ρk

k+1
, Ẽρk+1

)
.

5.4. GNSS Receiver processing/communication delay compensation

Nomenclature:
Hρpps,k Jacobian matrix of hρ using INS information interpolated at tpps,k.
ỹρ

pps,k
Pseudorange and delta-pseudorange measurements at tpps,k.

ŷρ
pps,k

Estimation of pseudoranges and delta-pseudoranges at tpps,k.

Ẽ f
pps,k GNSS satellite positions and velocities measured at tpps,k.

ỹRx f
pps,k

GNSS receiver’s outputs.

θ̂
b
pps,k Vehicle’s attitude interpolated at tpps,k with INS data.

p̂e
pps,k

Vehicle’s position interpolated at tpps,k with INS data.

v̂e
pps,k Vehicle’s velocity interpolated at tpps,k with INS data.
δyρ

pps,k
Pseudorange and delta-pseudorange’s innovations at tpps,k.

K pps
k Kalman gain when the Kalman Filter use the latency compensation.

A compensation of the delay in the communication of the GNSS receiver output is proposed here for
the tightly coupled integration with the pseudoranges and delta-pseudoranges, assuming a known (or
estimated) delay. The filter applies the update on time tk with measurements corresponding to a previous
time tpps,k; the difference is a delay mainly due to processing and communication tasks defined as ∆tk.
Estimation ∆̃tk of this delay is provided by the receiver output, which also contains the pseudorange and
delta-pseudorange measurements and the ephemeris of the valid satellites.

Following [18] we consider a small enough* ∆tk = tk − tpps,k, hence the output Jacobian matrix
evaluated at tk can be approximated by the output Jacobian matrix evaluated at tpps,k:

Hρk ≈ Hρpps,k (5.13)

*Validated for delays around 300 ms or smaller.
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and the following approximations are also valid:

δχρ
k
= Kρk (Hρk ) ·

(
ỹρ

k
− ŷρ

k

)
(5.14)

≈ Kρk (Hρpps,k) ·
(
ỹρ

k
− ŷρ

k

)
(5.15)

≈ Φ(∆tk) · K
ρ
k (Hρpps,k) ·

(
ỹρ

pps,k
− ŷρ

pps,k

)
(5.16)

≈ Kρk (Hρpps,k) ·
(
ỹρ

pps,k
− ŷρ

pps,k

)
(5.17)

where (5.15) is based on the approximation (5.13) and the smoothness of (7.14). On (5.16) an
approximation of the correction at tk is obtained using the past innovation multiplied by the transition
matrix Φ(∆tk). As ∆tk is small, (5.16) can be further simplified with Φ(∆tk) ≈ I, leading to (5.17).

Using (5.13) and the smoothness of (7.14), the following approximation will be useful for the
computation of the covariance Pk

k in (7.15):

Kρk (Hρk ) · Hρk ≈ Kρk (Hρpps,k) · H
ρ
pps,k (5.18)

Finally, the remaining EKF steps are executed for prediction and filtering as defined in the Appendix by
updating the state with the correction (5.17), and (5.18) for the computation of Pk

k. Figure 6 shows a
possible algorithmic implementation:

Algorithm 5.1. Compensation of GNSS receiver output delays, for EKF-TC:

- step 01: On tk > tpps,k read the GNSS receiver output corresponding to the acquisitions made on time
tpps,k. We generate the following vector having only the valid observables and ephemeris:

ỹRx
pps,k

:=
[
∆̃tk ỹρT

pps,k
ẼT

pps,k

]T
(5.19)

where ∆̃tk is the estimated delay, ỹρ
pps,k

:= [ρ̃c f (tpps,k)T ˜̇ρ(tpps,k)T ]T contains the valid observable

measurements taken at tpps,k, and Ẽpps,k contains the associated satellite’s ephemeris.
- step 02: Compute p̂e

pps,k
by interpolation of the INS past information parameterized by the estimated

delay; i.e.: p̂e
pps,k

:= p̂e
k
(∆̃tk, INS|1, ..., n).

- step 03: Compute in the same way: v̂e
pps,k := v̂e

k(∆̃tk, INS|1, ..., n).

- step 04: Compute in the same way: θ̂
b
pps,k := θ̂

b
k(∆̃tk, INS|1, ..., n).

- step 05: Compute the estimate ŷρ
pps,k

of yρ
pps,k

based on (2.12) and (2.16), using Ẽpps,k, p̂e
pps,k

, v̂e
pps,k

and θ̂
b
pps,k.

- step 06: Compute Hρpps,k.
- step 07: Assign Hρk ← Hρpps,k (approximation (5.13)).
- step 08: Execute the EKF-TC to compute the gain K pps

k = Kρk (Hρpps,k) and approximate (5.17) and
(5.18).

- step 09: Assign (χρ)k
k ← (χρ)k−1

k + K pps
k · (ỹρ

pps,k
− ŷρ

pps,k
) (approximation (5.17)).

- step 10: Assign Pk
k ←

(
I − K pps

k · Hρpps,k

)
Pk−1

k (approximation (5.18)).
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Figure 6. Block diagram for the compensation of a delay ∆tk on GNSS observables for Tightly
Coupled INS/GNSS, where K pps

k := Kρk (Hρpps,k).

6. Simulation results

The proposed strategies are verified by numerical simulations of a small lift two-stage satellite launch
vehicle direct ascent to a Low Earth Orbit. The trajectory is shown in Figure 8, which has typical values
with an acceleration profile up to 6 g, and an injection altitude of 350 km. For all these simulations, the
vehicle is on the launch PAD during the first minute, while the injection velocity is achieved after 10
minutes of simulation.

The acceleration profile shows the take-off after the first minute. Before four minutes of simulation,
the acceleration shows the first stage Main Engine Cut-Off event (which could have a cluster of thrusters
[34, 35, 36, 37]), followed by the ignition of the second stage engine. The second stage Main Engine
Cut-Off event happens after 10 minutes of simulation time. The trajectory is shown in Figure 7, for a
hypothetic launch scenario towards a middle inclination Low Earth Orbit, showing in white the burn of
first stage engine, in cyan the burn of second stage engine and in green the injected orbit.

Table 1 shows the main performance parameters considered for the inertial measurement unit (IMU).
The initial value of each bias (at t = t0 = −60 seconds) is considered as a small fraction (≈ 5%) of
the true initial value: this considers an alignment process previous to the launch. Once the vehicle is
launched at t = 0, and during the two-minute burn period of the engine, the measurements are modified
to consider the variation in temperature in the following way:

µT
ω

(t) = µ
ω

(t) + δT bω(t) (6.1)

µT
f
(t) = µ

f
(t) + δT b f (t) (6.2)

where δT bω(t) and δT b f (t) are ramp functions active between t = 0 (lift-off) and t = 120 seconds (main
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Figure 7. A simulated launch vehicle trajectory, shown using Google Earth.

engine cut-off). Therefore these ramps are characterized by their values at t = 0 and t = 120. For this
particular simulation we took:

δT bω(t ≤ 0) =


0
0
0

 , δT bω(t ≥ 120) =


−4.5131
−7.5016
9.9218

 ◦/hr (6.3)

δT b f (t ≤ 0) =


0
0
0

 , δT b f (t ≥ 120) =


0.28958
0.93698
0.85423

 mg (6.4)

and these values are linearly interpolated for 0 ≤ t ≤ 120. Notice that we have assumed zero
orthogonality and scale factor errors, which are not significant relative to the errors we have modelled,
as typically considered for satellite launchers (see [38]).

Table 1. IMU performance parameters.

Axis bω(t0) [◦/hr] σξω [◦/hr] σξbω [◦/sec2] b f (t0) [mg] σξ f [mg] σξb f [mg/sec]
X 0.0109 0.7 0.0292 -0.0244 0.024 0.0155
Y 0.0041 0.7 0.0292 -0.2743 0.024 0.0155
Z -0.1070 0.7 0.0292 0.0027 0.024 0.0155

6.1. GNSS observables simulation during ascent

On [3] we developed a numerical simulation tool for GNSS constellations and a receiver, including a
model of each observable’s acquisition as a function of the link budget and the internal behaviour of the
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Figure 8. Acceleration, altitude (h), angular and linear velocities from a simulated two-stage
satellite launch vehicle.

receiver. The purpose was to have the possibility to test navigation strategies on a controlled framework,
which was used to evaluate loosely coupled and tightly coupled strategies as shown in the thesis work
[18]. The behaviour of the receiver processing was modelled with a state-machine, while the acquired
satellites were modelled using the link bugdet using the antenna radiation pattern and compared with
the signal to noise threshold C/N0. During the ascent, new satellites appear in visibility and other
satellite are lost moving towards smaller elevations. Finally, the receiver processing delay depends on
the number of visible satellites, which can also be modelled. These models were later validated using a
Spirent GSS8000 simulator and a multi-antenna GNSS receiver. There are four antennas assumed to be
located all at the same point of the IMU location (to simplify the exposition) and pointing orthogonal to
the launch vehicle longitudinal direction, equi-spaced by 90◦, as shown in Figure 9. The vectors ni are
the normal of each antenna (left side in Figure 9), while a simple radiation pattern profile GR(θas) (red
curve shown on the right side) has been simulated as proposed in [18]. This simplified pattern is also
applied relative to the axial direction, which means that when the vehicle is vertically launched, the
signal from a satellite located exactly on the zenith will be attenuated. Finally, we have considered all
the antennas located on the Launch Vehicle (LV) longitudinal axis, although they are actually located on
the external surface of the fuselage: as the attitude of this vehicle is three-axes stabilized, the effect of
each antenna’s arm is considered negligible (see [18] for a more complete model).
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Figure 9. Simplified Launch Vehicle (LV) view from the nose tip, showing the orientation of
four GNSS patch antennas (left) and its associated radiation pattern (right) where we have
considered a simplified gain model (in red).

6.2. Loosely coupled INS/GNSS results

Here we evaluate the EKF-LC integrated navigation, using the fix obtained with the three possible
inputs: i) simulated kinematics with additive noise, ii) PVT solution using the Bancroft algorithm, and
iii) a filtered solution computed using a Kalman filter in the GNSS receiver. All these solutions are
evaluated with a numerical simulator considering several effects as communication delay, GNSS data
outages and antenna failures, which will be later compared with the corresponding tightly coupled solution.

6.2.1. GNSS measurement delay compensation.

1
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Figure 10. Logarithm of the attitude, position and velocity error norms, with ∆tk = 300 ms
for all k.
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The Figure 10 shows the result with constant delay ∆tk = ∆̃tk = 300 ms comparing the cases without
compensation (red), with the delay compensation given in the Appendix (blue) and without delay (black,
as reference). The GNSS receiver used for hardware in the loop testing [32] has a smaller delay than
this bound, taken as a worst case.

6.2.2. Point vs. filtered PVT solutions for the simulated GNSS receiver

For a given simulated measurements serie with pseudoranges and delta-pseudoranges, we compare
the filtered solution with the point PVT solution given by the Bancroft algorithm. The deterministic
atmospheric delays are not simulated or compensated, while the clock bias and drift are simulated and
compensated by the filter. Moreover, we consider a zero-mean white noise with covariance 4 m2) for the
pseudorange and a covariance 0.01 m/s2 for the delta-pseudorange. In Figure 11 the clock bias and drift
are shown in red and black respectively, while the respective values computed by Bancroft algorithm are
shown in light blue and light green, and the values computed by EKF-GNSS on the receiver are shown
in blue and green. The filtered solution converges during the first seconds and is kept with a mean error
close to zero. The point solution using Bancroft algorithm has more estimation error deviation. Figure
12 illustrates the autocorrelations of observables innovation sequences of some satellites during all the
simulation, which shows the expected uncorrelation.

Point and filtered solution of the GNSS Receiver's clock bias

b c,
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m
]

Time [minutes]

d c,
k, [

m
/s

]

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Point and filtered solution of the GNSS Receiver's clock drift

Time [minutes]

20
15
10
5
0

-5
-10

0.4

0.2

0

-0.2

Bancroft
EKF-GNSS
simulated

Bancroft
EKF-GNSS
simulated

Figure 11. Clock bias and drift associated to the point solution (light colors) and filtered
solution (normal colors). The true values are shown in red and black, respectively.

Lets compare the position and velocity of point and filtered solutions: the Figure 13 shows the
position and velocity error of the point solution (light blue and light green) and the filtered solution (blue
and green) respect to the simulated values; we have shown only one coordinate to simplify the graph and
the upper trace shows the number of satellites involved in the solution: Nk and NF

k respectively for the
point and filtered ones. The dotted lines shows the estimation deviation of the EKF-GNSS filter, where
it can be observed the effect of the adaptation on matrices Q̂ξFk and R̂F

k computed with the acceleration
âP

k , as for higher acceleration there will be more velocity and position deviations.
The filtered solution also provides the covariances of the position and velocity from the EKF-GNSS

covariance matrix PF,k
k . This makes possible to use it for the external measurement noise description
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Figure 12. Unbiased estimation of the autocorrelation of the observables innovation sequence
δyF

k
for the EKF-GNSS of the simulated receiver, selecting three satellites.

used by the loosely coupled integrated navigation system.

6.2.3. Simulation of satellite tracking failures

The number of tracked satellites on a GNSS receiver is a very important indicator of the quality of
the solution, and also may be the cause of the unfeasibility to compute a navigation solution at all. Here
we simulate restrictions which might not be realistic as real causes of failures, but determine a behaviour
with low number of satellites which may be observed during flight [3].

In particular, on a multi-antenna receiver with four patch antennas we consider the failure of three
of them during a 30 seconds segment shown in grey in Figure 14. After antennas recovery, the visible
satellite are incorporated one by one after a processing in sequence, which is modelled by a state-
machine. On this simulation the point solution is not available even one minute after the failure,
However, as the filter propagates there is a continuity on the availability of the filtered solution, with
increasing uncertainty shown in the filter estimation covariance PF

k , in dotted lines.

6.2.4. Loosely coupled integrated INS/GNSS navigation with different GNSS positioning solutions

Following the statement of the problem made in Figure 2 lets compare each of the possible loosely
coupled INS/GNSS implementations, where we will not consider solution availability delays to simplify
the exposition. The results are summarized on Tables 2 and 3 with RMS (root-mean-square) values of
the estimation errors for the position and velocity using the INS/GNSS with the different PVT sources:
PV Bancroft: Point solution using Bancrof algorithm. The matrix R̂k taken by the INS/GNSS is
constant and was estimated using the standad deviation of a set of outputs as shown in Figure 13.
EKF-GNSS #1: The Extended Kalman Filter for the receiver estimates the receiver position, velocity,
clock bias and clock drift, implemented using adaptive covariances for the process noise and
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Figure 13. Comparison between the point and filtered PVT solutions, using Bancroft and EKF-
GNSS algorithms respectively. The number of satellites are shown in red for each solution,
the filtered solution estimation error in blue and green, and the point solution estimation errors
are shown in light blue and light green. The EKF-GNSS filter solution covariances are shown
in dotted lines.

measurement noise. In order to initialize these matices, we use: σ̂ḋc
= 0.005 m/s2, σ̂ȧ = 0.5 m/s3,

σ̂ρ = 2 m and σ̂ρ̇ = 0.1 m/s, αQ = 0.01, αρ = 1 ms2 and αρ̇ = 0.01 m. The INS/GNSS filter uses a
covariance matrix R̂k obtained from the elements of the filter state covariance PF

k of the receiver and
scaled by 10.
EKF-GNSS #2: Idem #1 but without adaptation on covariance matrices Q̂ξFk and R̂F

k of the EKF-GNSS
receiver filter. Lets define σ̂ḋc

= 0.005 m/s2, σ̂ȧ = 1 m/s3, σ̂ρ = 4 m and σ̂ρ̇ = 0.2 m/s. The INS/GNSS
uses the same R̂k matrix values defined previously for PV Bancroft.
EKF-GNSS #3: Idem #1, but the filter state vector of the receiver only contains the position and
velocity; i.e., without including the acceleration†.
PV simulation + noise: Position and velocity receiver solutions defined as the true values plus a
zero-mean white noise with small standard deviations given by 10 cm in position and 0.01 m/s in
velocity. These values were also used to define R̂k on the INS/GNSS algorithm.

With the exception of case EKF-GNSS #3, the innovations are decorrelated. Figure 15 compares the
estimation errors of the Extended Kalman Filter on the INS/GNSS using the receiver measurements
obtained on cases PV Bancroft (blue), EKF-GNSS #1 (red) and PV Simulation + noise (grey). The

†This implies to discard the first three rows of BF
pva en (4.8) and using higher variances on QξFk diagonal elements (e.g.: 20 times)

respect to those in #1.
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Figure 14. Comparison between the point and filterd PVT solutions, using Bancroft and
EKF-GNSS algorithms respectively, with 30 seconds antennas failure segment indicated in
grey. When Nk < 4, there is no point solution, while the EKF-GNSS can propagate a solution
with increasing covariance.

point and filtered solutions have similar results with different covariances Pk.

Figure 16 shows the same cases under a failure on three antenna patches, leaving only one antenna
operative during 30 seconds. There is an advantage on using filtered solutions which are also available
during the failure, as the filter propagates previous states, although with increasing uncertainties.

Table 2. INS/GNSS RMS position estimation error (εP
x , ε

P
y , ε

P
z ) and position innovations with

different PVT sources.

PV Solution εP
x [m] εP

y [m] εP
z [m] Decorrelated pos. innov.?

PV Bancroft 0.49 0.64 1.60 Yes
EKF-GNSS #1 0.41 0.37 0.59 Yes
EKF-GNSS #2 0.42 0.41 0.85 Yes
EKF-GNSS #3 0.40 0.37 0.65 No
PV Simul. + noise 0.03 0.03 0.03 Yes
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Table 3. INS/GNSS RMS velocity estimation error (εV
x , ε

V
y , ε

V
z ) and velocity innovations with

different PVT sources.

PV Solution εV
x [m/s] εV

y [m/s] εV
z [m/s] Decorrelated vel. innov.?

PV Bancroft 0.047 0.077 0.133 Yes
EKF-GNSS #1 0.046 0.047 0.052 Yes
EKF-GNSS #2 0.043 0.050 0.063 Yes
EKF-GNSS #3 0.044 0.048 0.053 No
PV Simul. + noise 0.010 0.010 0.010 Yes
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Figure 15. Logarithm of the estimation error norm, using the loosely coupled INS/GNSS, of
the velocity (upper trace) and position (bottom trace). The PVT sources are Bancroft (blue),
EKF-GNSS (red) and simulation plus noise (grey). The dotted lines show the filter output
covariances.

6.3. Tighty coupled INS/GNSS results

6.3.1. Tropospheric delay compensation results

The Tropospheric Delay Compensation (TDC) proposed in subsection 3.1 is evaluated here through
numerical simulation of a satellite launcher ascent. This model extends the typical range of elevations
to consider even negative values, which are not available at sea level due to the need to consider a
minimum positive elevation in order to avoid obscuration and multi-path effects. The minimum elevation
configured at sea level was 10◦ and for higher altitudes the minimum elevation is modified with the
following function:

ϵmin :=

 10◦ 10hτ−hv,k

10hτ
f or hv,k ≤ 10hτ

−acos
(

Re+10hτ
Re+hv,k

)
f or hv,k > 10hτ
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Figure 16. Scenario with antenna patches failure during 30 seconds. Logarithm of the
estimation error norm, using the loosely coupled INS/GNSS, of the velocity (upper trace)
and position (bottom trace). The PVT sources are Bancroft (blue), EKF-GNSS (red) and
simulation plus noise (grey). The dotted lines show the filter output covariances.

where hτ := 7518.8 m as before, hv,k is the vehicle’s altitude at time tk and Re is the local Earth radius.
Notice that this function is smooth and provides a value of 10◦ at sea level and a minimum angle which
can be negative at typical LEO altitudes.

The TDC model was applied to compensate the simulated delays obtained with a more accurate
model developed in [3]; the results are shown in Figure 17 for a typical satellite launch ascent trajectory
where the orbit injection is achieved 9 minutes after a vertical launch from sea level. The upper graph
shows the evaluation of the simulated delays, and the graph below shows the error relative from the
TDC model to the more accurate model in [3].

The error is bounded by ±1 m, which is considered a good match considering the simplification
of the TDC model proposed here in comparison with the more complex model developed in [3] for
simulation purposes.

6.3.2. Comparison between tightly and loosely coupled integrated navigation solutions

Here we evaluate the proposed tightly coupled (TC) integrated navigation against the loosely coupled
(LC) integrated navigation proposed in subsection 7 and subsection 4.1), under antenna failures as
simulated previously in subsection 6.2.3.

The TC vs. LC results are shown in Figure 18 (nominal scenario) and Figure 19 (GNSS antenna
failure with recovery scenario). In the nominal scenario, both estimation error profiles are good during
the ascent. However, under antenna failure the small number of tracked satellites makes unfeasible to
compute the Bancroft solution (i.e. the fix) and therefore the LC algorithm estimation error is increased
significantly. On the other hand, the TC algorithm output continues the fusion between the INS with the
GNSS observables, which is clearly seen in Figure 19.

In section 6.2.4 we have shown the results with loosely coupled navigation and different positioning
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during a direct ascent trajectory of a satellite launcher.
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Figure 18. LC (loosely coupled) vs. TC (tightly coupled) comparison under nominal scenario:
Estimation errors in logarithmic scale.

sources, including the same Bancroft algorithm taken as a reference here. It can be seen that the results
with tightly coupled navigation are at least similar or better compared to any of these solutions, including
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and recovery scenario: Estimation errors in logarithmic scale.
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Figure 20. Number of satellites used for the GNSS fix, for the nominal scenario (left) and
with antenna failure and recovery.

the receiver filtered output which includes a propagation of the solution when there is no fix. Moreover,
the complexity here is focused on the integrated navigation algorithm, which has more information due
to the fact that includes the INS data which is not shared with the GNSS receiver.

The Figure 21 shows the Sky Plot identifying the declination and azimuth of the satellites in view by
the GNSS receiver, at the moment of lift-off, just after the failure of three antennas (only one antenna
remains operative, hence the satellites in view are limited to an angular sector), and at orbit injection
when all the antennas are recovered and also due to higher altitudes there are more potential satellites
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Figure 21. The Sky Plot shows the satellites in view by the GNSS receiver: (a) at lift-off, (b)
when three antennas fail, and (c) at orbital injection.

to track. Notice that a satellite’s declination greater than 90◦ appears only when the vehicle ascents,
otherwise at lift-off the maximum declination is 90◦ (i.e. on the horizon).

6.3.3. GNSS observables delay compensation for tightly coupled integrated navigation

The tightly coupled (EKF-TC) integration with delay compensation (Algorithm 5.1) is evaluated
with the same direct ascent trajectory considered in the Appendix. The results for a known delay
∆tk = 300 ms are shown in Figure 22. The performance is compared with respect to the loosely coupled
(EKF-LC) integrated navigation when there are at least four satellites in view, leading to similar results.

This method based on the approximation of (5.13) which was validated by simulations in [18].

6.3.4. Robustness against IMU bias temperature sensitivity during ascent

During the ascent trajectory, the temperature has a significant variation on each sector, including
the payload and the secondary structures where the navigation units are mounted. In particular, the
gyroscopes and accelerometers have certain sensitivity with respect to the temperature time derivative
[42]. Considering an estimate of the temperature variation, we have considered a bias ramp during two
minutes after lift-off, with is added to a constant bias component considered separately since the first
minute of simulation when the vehicle is on the launch platform.

With this common statement of the problem, we test two EKF-TC implementations: one with IMU
bias estimation and the other without it, as considered for χρ

k
respectively in (7.5) and (5.1). The Table 4

shows the position, velocity, attitude and angular velocity errors as estimated in mean square just after
the upper stage main engine cut-off. The errors obtained when the IMU bias compensation is activated
are also good enough to compute the first estimation of the mean orbital elements [43]. However, when
this compensation is not active, the velocity error becomes two order of magnitude higher.

Figure 23 shows the evolution of these estimation errors during all the ascent (in black, without
bias estimation, in red, green and blue the result using bias estimation). The discontinuities after the
first stage burn-out, staging and second stage engine start are shown useful to improve the IMU bias
estimation, increasing navigation sensibility [44]. On the other hand, when the IMU biases are not
estimated, the innovations becomes correlated, as shown in Figure 24.
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Table 4. EKF-TC Integrated Navigation Estimation Errors at Orbital Injection.

Nav. Variable RMS error with IMU Bias Estimation RMS error without IMU Bias Estimation
Pitch/Yaw 0.01 ◦ 0.08 ◦

Roll 0.5 ◦ 0.8 ◦

Ang. Velocity 0.002 ◦/s 0.004 ◦/s
Position 2 m 64 m
Velocity 0.1 m/s 3.7 m/s

6.3.5. Preliminary validation with hardware-in-the-loop

A first validation of the proposal using hardware was performed using a four-antenna GPS/GLONASS
L1 receiver being developed [32], with a Spirent GSSS 8000 simulator. This allowed to assess the
position, velocity and attitude integrated navigation error and the evolution of number of satellites in
comparison with the numerical simulations taken as a common simulation framework for all previous
simulation results shown in this work. The number of satellites used for this simulation varies between
6 and 8 during the ascent, which is a lower number limited by the current version of the receiver which
considers an elevation mask of 10◦. Figure 25 can be directly compared with the numerical results in
Figure 22, showing a similar behaviour in position and velocity errors, with a higher stationary error
which may be in part due to a worse visible satellite number and distribution. Notice that with the GNSS
receiver hardware there is an error in position around 10 m in Figure 25 which does not vanish with
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Figure 23. Estimation error on the angular velocities and acceleration, without bias estimation
(in black) and with bias estimation (in red, green and blue).

increasing altitudes, showing that the approximation (2.12) is more uncertain respect to the models
implemented on the GNSS simulator, mainly for the uncertain ephemeris of GNSS satellite orbits, the
ionospheric model (which was compensated with zero alfa and beta coefficients) and relativistic model
used for compensation. Regarding the attitude navigation errors, a closer analysis shows that this error
is mainly explained by the attitude error in the roll axis, which is a known effect for the typical trajectory
of a launch vehicle (see [38]). Table 5 summarizes the worst case results for each simulation type (SIL:
software in the loop, i.e. numerical simulation; HIL: hardware in the loop, i.e. with GNSS RF simulator
and a GNSS receiver) over all the simulation time.

Table 5. Worst case EKF-TC Estimation Errors with ∆tk = 300 ms: SIL vs. HIL.

Type min(Nk) No delay compensation With delay compensation
Att. [◦] Vel. [m/s] Pos. [m] Att. [◦] Vel. [m/s] Pos. [m]

SIL 8 1.72◦ 15.0 2317 0.59◦ 0.15 3.72
HIL 6 1.00◦ 13.2 2312 0.85◦ 0.54 19.00

7. Conclusions

In this work we consider design trade-offs for the navigation function on a satellite launcher. A
comparison has been made between different INS/GNSS couplings. The evaluation is made with
numerical simulations for a small lift launch vehicle with vertical launch and a final injection into LEO
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orbit. The robustness of the proposal has been tested under the following scenarios:

• Low number of satellites, which may be caused by antenna failure.
• Delay in the availability of the GNSS receiver output, which may be caused by communication and/or

processing delays.
• Inertial sensor bias variations, to model temperature sensitivity.

The main contributions presented in this work are:

• Compensation of the delay on the GNSS receiver output, for both EKF-LC and EKF-TC.
• Compensation of tropospheric delay in the GNSS signals, extending a simple deterministic model to

allow negative elevations of the line of sight.
• Adaptation of the covariance matrices to improve the EKF-LC and EKF-GNSS results, under the

wide acceleration ranges of the ascent phase.

The best solution was given by the EKF-TC, which allows to process the GNSS observables given by
the receiver even when there is no PVT solution output on the receiver. It was also verified that inertial
sensor bias variation can be successfully estimated. A first hardware in the loop test was made using
a Spirent GSSS 8000 simulator with a multi-antenna GNSS receiver under development, and will be
continued as future work.
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Figure 25. Hardware in the loop validation. Estimation error of the EKF-TC with delay
compensation evaluations.
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A. Appendix

This Appendix is based on [16] and is provided as a self-contained summary of the loosely coupled
integrated navigation. The state vector x(t) contains as sub-vectors a parametrization of the attitude,
velocity and position of a body frame B of the vehicle relative to the Earth Centered Earth Fixed (ECEF)
frame E:

x :=


θbbe
ve

pe

 ∈ R9 (7.1)

where θbbe ∈ R3 represents the vector angle (i.e. the rotation axis versor times the angle of the rotation) of
the attitude of the body B respect to E, expressed in B, ve ∈ R3 is the translational velocity and pe ∈ R3

the position on E frame.
The vector of inertial measurements is µ := [µT

ω
µT

f
]T , where µ

ω
and µ

f
are respectively the outputs

of a set of three gyroscopes and three accelerometers mounted following the axes of a right-hand frame.
Additive noises ξ

ω
and ξ

f
are defined for gyros and accelerometers respectively.

The acceleration in body frame ab can be estimated with a gravity model and the specific force
measurements: γb + ξ

g
is the true gravity seen in body frame, where ξ

g
is a model uncertainty and

γb is obtained from a gravity model γe in E frame, the vehicle’s position pe and the attitude matrix

Ce
b = Ce

b

(
θbbe

)
as γb = Ce T

b γ
e(pe).

Let ξ
µ

:= [ξT
ω
ξT

f
ξT

g
ξT

p
]T where ξ

p
is a random term considered for the position derivative ṗe := ve+ξ

p

which purpose will be later explained. On the other hand, let b := [bT
ω bT

f ]T∈ R6 be the bias of
angular velocity measurements bω and specific forces bias bf which are modelled as Markov processes,
integrating random variables defined by ξ

b
:= [ξT

bω
ξT

bf
]T , where ξ

bω
and ξ

bf
are uncorrelated gaussian

processes with zero mean.
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The following relations apply:
ḃω = ξbω
µ
ω
= bω + ω

b
bi + ξω

ḃf = ξbf
µ

f
= bf + ab − γb − ξ

g
+ ξ

f

(7.2)

The vehicle’s kinematics can be obtained as a function of the inertial measurements (see [11]):[
ẋ
ḃ

]
=

[
fµ(x, b, µ)

06

]
+

[
Bµ(x) 09×6

06×12 I6×6

]  ξµξ
b

 (7.3)

where we defined the zero matrix 0n×m ∈ Rn×m, the identity matrix In×n ∈ Rn×n, the zero vector 0n ∈ Rn,
fµ gives the kinematic coordinates derivatives as a function of the measurements and model parameters,
while Bµ is a linear transformation between the measurement noises and the effects on kinematic
coordinates derivatives.

The vector of the process noises is ξ := [ξT
µ
ξT

b
]T , it has zero mean and autocovariance:

E
[
ξ(t)ξT (τ)

]
:= δ(τ − t)Qξ(t) (7.4)

where δ(·) is the Dirac function [27] and 0 < Qξ(t) ∈ R18×18 for all t. Let χ := [xT bT ]T∈ R15, be the
augmented state vector, hence the differential equation in χ can be written as in [11] as:

χ̇ = f (χ, µ) + B(χ)ξ (7.5)

where:

f (χ, µ) :=
[

fµ(x, b, µ)
06

]
B(χ) :=

[
Bµ(x) 09×6

06×12 I6×6

]
Bµ(x) :=


−I 0 0 0

0 −Ce
b I 0

0 0 0 I

 (7.6)

with 03 := 03×3 and I3 := I3×3. Notice that the random term ξ
p

enforced a full rank B(χ) ∈ R15×18.

A.1. Extended Kalman Filter

Let χ̂(t) be the estimation of the augmented state. We can linearize the associated dynamic model
and describe the evolution of the error around the estimation, given by δχ := χ− χ̂. The resulting system
is linear time varying:

δχ̇ ≈ F(χ̂, µ)δχ + B(χ̂)ξ (7.7)

with [27]:

F(χ̂, µ) :=
∂ f
∂χ

∣∣∣∣∣∣∣
χ̂,µ

=


−S(ω̂b

bi) 0 0 I 0
−Ĉe

bS(f̂
b
) −2S(Ωe

ei) Γ
e( p̂e) 0 Ĉe

b

0 I 0 0 0
0 0 0 0 0
0 0 0 0 0


, Γe( p̂e) :=

∂γe

∂pe

∣∣∣∣
p̂e
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where S(u) is the matrix associated to the vector product u×, the vector f̂
b

:= µ
f
− b̂f is an estimate

of the specific force as a function of the acceleration measured in body frame and the estimate b̂f of
the measurement bias, the vector ω̂b

bi = µω
− b̂ω is an estimate of the angular velocity in body frame

as measured by the gyroscopes and compensated by the gyro bias estimation b̂ω, the matrix Ĉe
b is an

estimate of the attitude matrix and the vector Ωe
ei is the Earth rotation velocity.

Let tk, with k ∈ N0, be the nominal discrete times on which the Kalman filter processes external
measurements from the receiver, and tk := t0 + k∆K . The augmented state error δχ

k
:= δχ(tk) verifies:

δχ
k+1
= Φ(tk+1, tk)δχk

+ ξχ
k

(7.8)

where ξχ
k
∈ R15 is a discrete-time process zero-mean gaussian white-noise [28]. Finally, the transition

matrix Φ(tk+1, tk) for the state δχ
k

can be estimated as in [16], using a 5th-order polynomial.
The discrete-time vector function ỹ

k
represents the external measurements from the GNSS receiver,

with the position and velocity vectors in ECEF frame, evaluated at time tk. This can be written in terms
of the augmented vector as:

ỹ
k

:= Hχ
k
+ η

k
(7.9)

where χ
k

:= χ(tk), ηk
is a vector with measurement noises, defined as a discrete-time gaussian and

uncorrelated stochastic process, with zero mean and covariance matrix Rk := E[η
k
ηT

k
], and H is given as

follows:

H :=
[

0 0 I 0 0
0 I 0 0 0

]
(7.10)

When a new measurement ỹ
k+1

arrives on time tk+1, the prediction and filtering tasks are executed,
which are detailed in the following subsections.

A.1.1. Prediction

The prediction step on k + 1 is defined as [28]:

χ̂k
k+1
=

[
xT

INS(tk+1) b̂
k T
k

]T
(7.11)

Pk
k+1 = Φk · Pk

k · Φ
T
k + Qχk with Qχk ≈ BkQξkBT

k ∆K (7.12)

where Bk := B(tk), Φk := Φ(tk+1, tk), Qχk is the covariance of the discretized noise ξχ
k

‡,

xINS := [θ̂
bT
be v̂eT p̂eT ]T is the output of the INS algorithm (see [11, 27]), and Pk

k+1 = E[δχk
k+1
δχk T

k+1
]. The

initialization k = 0 is made with a priori information written in terms of χ̂0
0

:= E[χ
0
] and P0

0.

A.1.2. Filtering

The a posteriori estimation χ̂k+1
k+1

is:

χ̂k+1
k+1
= χ̂k

k+1
+ Kk+1 ·

(
ỹ

k+1
− ŷk

k+1

)
(7.13)

‡We assume that it is pre-filtered to avoid alias and preserve de-correlation (see [27]).
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where ŷk
k+1

:= Hχ̂k
k+1

is the prediction of the external measurement while:

Kk+1 = Pk
k+1HT ·

(
H · Pk

k+1 · H
T + Rk+1

)−1
(7.14)

Pk+1
k+1 = Pk

k+1 − Kk+1 · H · Pk
k+1 (7.15)

A.2. EKF error bound condition

In [29] it is shown that the discrete-time Extended Kalman Filter estimation error can be analysed in
a stochastic framework with a nonlinear observability condition, which determines an exponentially
bounded behaviour:

Definition 7.1. The random process χ
k
− χ̂

k
is said to obey an exponential bound in mean square if

there exist positive real numbers a, b > 0 and 0 < c < 1 such that for all k ≥ 0:

E
[∥∥∥∥χk
− χ̂

k

∥∥∥∥2]
< a

∥∥∥∥χ0
− χ̂0

0

∥∥∥∥2
ck + b (7.16)

Among other sufficient conditions for this behaviour (see [29]), the following bounds are required:

0 < qI ≤ Qχk ≤ qI (7.17)
0 < rI ≤ Rk ≤ rI (7.18)

Notice that q > 0 requires Bk = B(χ(tk)) full rank, which was enforced by adding the random term ξ
p
.

Other ways to guarantee exponentially boundedness in mean square can be found in [29, 30].

A.3. Delayed GNSS measurements compensation

At time tpps,k the internal acquisition of the GNSS signals is made, but the integrated navigation
block will have this information available later, after all the processing and communication latencies,
which implies a random delay ∆tk := tk − tpps,k. Following the compensation method developed in [16],
we assume that the GNSS receiver output contains a measure p̃e T

pps,k
of the position, a measure ṽe T

pps,k of

the velocity and an estimate ∆̃tk of the delay. This information corresponds to the time tpps,k < tk, while
the EKF will apply the associated correction at time tk. We integrate one step by the Euler method to
estimate the external measurement for tk:

ỹ
k

:=

 p̃e
pps,k
+ v̂e

pps,k∆̃tk

ṽe
pps,k + âe

pps,k∆̃tk

 (7.19)

To this end, we consider an interpolator which estimates the velocity v̂e
pps,k and acceleration âe

pps,k using
past INS data for tk − ∆̃tk ≈ tpps,k. The external measurements covariance Rk now includes receiver
measurement noises taken at tpps,k and the effect of the propagation error up to time tk (estimated with a
vector function ε∗k(âe

pps,k, â
e
pps,k−1, ∆̃tk) and a delay estimation deviation σ̂η∆t), estimated in [16] as:

R̂k = R̂pv
k + ∆̃tk

2
· R̂v̂â

k + σ̂
2
η∆t

ˆ̇y
pps,k

ˆ̇yT

pps,k
+ ε∗kε

∗T
k (7.20)

Metascience in Aerospace Volume 1, Issue 1, 66–109.



109

where ˆ̇y
pps,k

:= [v̂e T
pps,k âe T

pps,k]
T is the interpolator output; see [16] for a complete description, on which

a covariance R̂pv
k is assumed as provided by the receiver, while R̂v̂â

k is determined by the interpolator.
From a practical point of view, this method does not require to read the PPS signal.
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