
Metascience in Aerospace, 1(1): 38–52. 

DOI: 10.3934/mina.2024002 

Received date: 14 June 2023 

Revised date: 22 July 2023 

Accepted date: 01 August 2023 

Published date: 14 August 2023 

http://www.aimspress.com/journal/mina 

 

Research article 

Isometric mapping algorithm based GNSS-R sea ice detection 

Hu Yuan 1, Jiang Zhihao1, Yuan Xintai1, Hua Xifan1 and Liu Wei 2,* 

1 College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China 

2 Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China 

* Correspondence: Email: liu@metes.org; Tel: +86-2138282963; Fax: +86-2138282963. 

Abstract: Global navigation satellite system reflectometry (GNSS-R) is based on satellite signals’ 

multipath interference effect and has developed as one of the important remote sensing technologies 

in sea ice detection. An isometric mapping (ISOMAP)-based method is proposed in this paper as a 

development in sea ice detection approaches. The integral delay waveforms (IDWs), selected from 

February to April in 2018, derived from TechDemoSat-1 (TDS-1) Delay-Doppler maps (DDMs) are 

applied to open water and sea ice classification. In the first, the model for extracting low-dimensional 

coordinates of IDWs employs the randomly selected 187666 IDW samples, which are 30% of the 

whole IDW dataset. Then, low-dimensional coordinates of IDWs are used to train three different 

classifiers of support vector machine (SVM) and gradient boosting decision tree (GBDT), linear 

discriminant algorithm (LDA) and K-nearest neighbors (KNN) for determining the sea ice and sea 

water. The remaining 437889 samples, about 70% of the whole datasets, are used to validate with the 

ground surface type from the National Snow and Ice Data Center (NSIDC) data provided by the 

National Oceanic and Atmospheric Administration (NOAA). The algorithm performance is evaluated, 

and the overall accuracy of SVM, GBDT, LDA and KNN are 99.44%, 85.58%, 91.88% and 98.82%, 

respectively. The sea ice detection methods are developed, and the accuracy of detection is improved 

in this paper. 
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1. Introduction  

Sea ice is a critical component of the Earth’s climate system and plays a significant role in global 

ocean and atmospheric circulations [1]. Sea ice information provides knowledge and plays a beneficial 
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role in ocean voyages and natural resource exploration. Sea ice and open water (OW) show different 

characteristics in roughness [2], which is one important parameter for sea ice detection. Compared to 

OW, sea ice has higher albedo and roughness, which play an important role in energy exchanging 

between sea and air. The reduced extent of Arctic sea ice and thinner ice cover have been indicated in 

some previous studies [3]. The roughness and dielectric constant of ocean surface change with the 

variation of the ground surface type, such as the appearance of sea ice. The surface of sea ice presents 

more smoother than that of OW. These characteristics of OW and sea ice are the basis to detect sea ice. 

During recent research, global navigation satellite systems reflectometry (GNSS-R) has played a 

powerful role in using L-band signals scattered from the Earth’s surface to sense bio-geophysical 

features [4]. The initial GNSS-R application was ocean altimetry detection [5] after the concept of 

GNSS-R was proposed in 1988 [6]. Subsequently, the applications of GNSS-R have been extended to 

wind speed retrieval [7–9], snow depth estimation [10], soil moisture sensing [11,12], sea target 

detection [13] and sea ice detection [14–17].  

Since the greatest amplitude of specular scattering is presented from the Earth’s surface GNSS 

reflected signals, the specular scattering geometry can be used in the applications of GNSS-R. As one 

of the most important GNSS-R observables, the Delay-Doppler Map (DDM) [18] is a function of time 

delays and Doppler shifts. The function is to describe the power scattering from the reflected surface. 

Through integrating DDM in the Doppler domain, the integration delay waveform (IDW) in Figure 1 

can be obtained as another GNSS-R observable. The reflection over open water (OW), whose surface 

is rough, often has a continuous pixel number jump like the blue line in Figure 1. The sea ice surface 

is often considered as relatively smooth, and the IDW is shown as the red line in Figure 1, which has 

only one pixel number jump. 

 

Figure 1. Classical IDWs of sea ice and OW. 

In a recent GNSS-R sea ice detection development, Yan et al. [16] successfully utilized the 

number of DDM pixels with signal-to-noise ratio (SNR) above a threshold for sea ice remote sensing. 

Zhu et al.[19] recognized the transitions of ice and water with the differential DDM observable. Yan 

et al. [20] classified the sea ice and open water with convolutional neural networks. Similarly, Hu et 

al. [21] used IDW to detect sea ice and OW with the linear discriminant algorithm (LDA) method and 

analyzed the noise impact in sea ice detection. DDM has been widely applied as reference data to 

detect sea ice. sea ice studies using IDW as reference data are scarce, the observable of IDW has more 
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potential to sense sea ice. IDW is utilized as research data to detect sea ice in this study, and the 

isometric mapping (ISOMAP) is proposed to obtain the observable of IDW and use four different 

classifiers to classify the low-dimensional features into sea ice and OW. These classifiers are based on 

support vector machine (SVM), gradient boosting decision tree (GBDT), LDA and K-nearest 

neighbors (KNN). Compared with previous studies, the whole IDW is used as data in this paper, instead 

of leading edge slope (LES) or trailing edge slope (TES), as observations for sea ice detection. 

This paper is structured as follows: Section 2 introduces data sources and methods. Section 3 

presents the results of the ISOMAP-based sea ice detection in this paper. The discussion is presented 

in Section 4, and Section 5 is the conclusions. 

2. Data sources and ISOMAP-based method 

2.1. Data sources 

2.1.1. TechDemoSat-1 IDW data 

TechDemoSat-1 (TDS-1) can provide the spaceborne GNSS-R DDM for spaceborne GNSS-R 

study. In 2014, TDS-1 was launched as a national technology demonstration satellite. In the all regions 

of the world, the related datasets can be found at the website (http:// www.merrbys.co.uk).  

In [18], the power of scattered signals was described as time delay function, the function was 

proposed as theoretical integrated delay waveform (IDW): 

𝑊𝐼(𝜏) = 𝑇𝑖
2 ∫

𝐷2(�⃑�)

4𝜋𝑅𝑟
2(�⃑�)𝑅𝑡

2(�⃑�)
|𝜒(𝜏, 𝑓𝐷(�⃑�))|

2
𝜎0(�⃑�)𝑑2𝜌  (1) 

where 𝜏 and 𝑓𝐷 are the time delay value and the Doppler shift frequency, �⃗� and 𝑇𝑖 are the scattering 

area pixels and the coherent integration time, 𝜆 is the wavelength of the L1 signal, 𝑃𝑡 is the GNSS 

transmitting power, 𝜒  is Woodward’s ambiguity function (WAF) [22], 𝐺𝑡  and 𝐺𝑟  are transmitter 

antenna gain and receiver antenna gain, 𝑅𝑡 is the distance from the transmitter to the surface point (SP), 

𝑅𝑟 is the distance from the receiver to SP, 𝐷2 is the function of power antenna footprint, and 𝜎0(�⃗�) is 

the normalized bistatic radar cross section. The reflection over rough open water (OW) surfaces often 

has a continuous pixel number jump. The IDW of the considered relatively smooth sea ice surface has 

only one pixel number jump. 

Because of the opportunity in GNSS-R sea ice classification, 625555 IDWs were utilized in this 

paper. In detail, a consecutive period from February to April 2018 was chosen to select IDWs for 

detecting sea ice continuously. Due to the presence of massive amounts of sea ice at high latitudes, the 

experiment was chosen for areas above 70°N latitude. These measures can provide the benefits in sea 

ice detection study. The DDM metadata provides each DDM’s specular point position, which is also 

utilized to calculate the correlation with the surface data from the National Snow and Ice Data Center 

(NSIDC). In [23], details about TDS-1 DDM metadata can be found for the detection experiment. 

2.1.2. Surface type data from NSIDC 

The surface type data are provided from the NSIDC. The surface type data are utilized as true 

type of IDWs in the ISOMAP-based sea ice detection experiment. NSIDC focuses on Earth's 

atmospheric and oceanic changes, catastrophic weather warnings, and nautical and aeronautical charts. 
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The NSIDC website (https://nsidc.org) provides the available ground data. Based on latitude and 

longitude, two-dimensional matrix is the present of the surface-type. The NSIDC spatial resolution is 1 km.  

2.2. ISOMAP-based method 

The ISOMAP-based method is based on the isometric mapping and classifier. The low-

dimensional observed features of IDW are extracted by using ISOMAP, and then the classifiers such 

as SVM, GBDT, LDA, KNN are used to classify the low-dimensional features of IDW into sea ice or OW. 

2.2.1. Isometric mapping 

Isometric mapping [24] is an improved function of multidimensional scaling (MDS) [25], 

overcoming the difficulties of MDS through defining a new metric and substituting that for Euclidean 

distance. The IDWs can preserve the relative stability of the feature when mapping to low-dimensional 

features. ISOMAP implements a neighborhood graph that connects the closer feature points. ISOMAP 

takes the following steps: 

In the first step, the neighbors of each sample xi on the low dimensional manifold M based on 

some appropriate distance metrics dx(xi,xj) in input space X is determined. A k nearest neighbor 

algorithm is used by ISOMAP to determine neighbors. These neighborhood relationships are 

represented in a weighted graph G in which dG(xi,xj) = dX(xi,xj), if xi and xj are neighbors, and 

𝑑𝑋(𝑥𝑖 , 𝑥𝑗) = ∞ otherwise. 

Estimate distance dM(xi,xj) between any pair of points on the manifold M is the second step. Due 

to the unknown embedding manifold, dM(xi,xj) approximates the shortest path between xi and xj on G, 

which is calculates by the Floyd-Warshall algorithm [26]: 

𝑑𝐺(𝑥𝑖 , 𝑥𝑗) = 𝑚𝑖𝑛{𝑑𝐺(𝑥𝑖 , 𝑥𝑗), 𝑑𝐺(𝑥𝑖 , 𝑥𝑘) + 𝑑𝐺(𝑥𝑘 , 𝑥𝑗)} (2) 

The shortest paths between any two points are represented in a matrix D where 𝐷𝑖𝑗 = 𝑑𝐺(𝑥𝑖 , 𝑥𝑗). 

The last step is to apply classical MDS to obtain the matrix of distance, and the output is the low-

dimensional features of IDW. 

2.2.2. Support vector machine 

As a classical machine learning algorithm, support vector machine (SVM) [27] is often used to 

determine the type boundaries and the basis of SVM is statistical learning theory. The binary 

classification problems are solved with SVM. The input data can be presented as 

(𝑥1, 𝑦1), (𝑥2, 𝑦2),⋅⋅⋅, (𝑥𝑛, 𝑦𝑛) ∈ 𝑅𝑛 × 𝑌, 𝑌 = (−1,1) (3) 

where xi are the classification features of input data, and yj is the type label of xi. The SVM follows the 

following rule in the linear classification problem: 

𝑦𝑖(𝜔𝑇𝑥𝑖 + 𝑏) ≥ 1,1 ≤ 𝑖 ≤ 𝑛   (4) 

where 𝜔𝑇𝑥 + 𝑏 = 0 is a hyperplane,   is the coefficient parameter, and b is the coefficient and bias 

parameter. The classification algorithm is based on maximum interval, which can be expressed as: 
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{
𝑚𝑖𝑛(

1

2
‖𝜔‖2)

𝑦𝑖(𝜔𝑇𝑥𝑖 + 𝑏) ≥ 1
 (5) 

Then, the parameters 𝜔 and b can be obtained to classify the input data. 

2.2.3. Gradient boosting decision tree 

With improving the boosting tree algorithm, Gradient boosting was proposed successfully[28]. It 

is composed with boosting and gradient descent. In order to get the optimal model, the gradient descent 

is performed in function space.  

The first step is to initialize the weak learner. The weak learner is shown as follows: 

𝑓0(𝑥) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑐

∑ 𝐿(𝑦𝑖 , 𝑐)

𝑁

𝑖=1

 (6) 

where 𝑦𝑖 ∈ {0,1}. The next step is to calculate the negative gradients rmi at each gradient m (𝑚 = 1,⋅

⋅⋅, 𝑚).  

𝑟𝑚𝑖 = − [
𝜕𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))

𝜕𝑓(𝑥𝑖)
]

𝑓(𝑥)=𝑓𝑚−1(𝑥)

 (7) 

rmi obtained in first step is utilized as the new true sample value to compute a new regression tree 

𝑓𝑚(𝑥) and corresponding leaf node area 𝑅𝑗𝑚,. Then, the best-fit values of each corresponding leaf node 

area for the leaf region will be calculated as follows: 

ϒ𝑗𝑚 = 𝑎𝑟𝑔 𝑚𝑖𝑛
ϒ

∑ 𝐿(𝑦𝑖 , 𝑓𝑚−1(𝑥𝑖) + ϒ)

𝑥𝑖∈𝑅𝑗𝑚

 (8) 

where 𝑗 = 1,⋅⋅⋅, 𝐽,and J is the number of leaf nodes of the regression tree. The strong learner will be updated. 

𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥) + ∑ ϒ𝑗𝑚𝐼, 𝑥 ∈ 𝑅𝑗𝑚

𝐽

𝑗=1

 (9) 

After m times of updating the learner, the final learner can be obtained. 

𝑓(𝑥) = 𝑓𝑀(𝑥) = 𝑓0(𝑥) + ∑ ∑ ϒ𝑗𝑚𝐼, 𝑥 ∈ 𝑅𝑗𝑚

𝐽

𝑗=1

𝑀

𝑚=1

 (10) 

2.2.4. Linear discriminant algorithm 

The dimensionality of data can be reduced by the linear discriminant algorithm (LDA) [29], and 

the types of data can be determined with these low-dimensional features. The projected vector is 

calculated as follows: 
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𝑦 = 𝐴 ⋅ 𝑥 (11) 

where 𝑥  is n-dimensional column vectors, A is an 𝑚 ⋅ 𝑛  vector, 𝑦  is the m-dimensional projected 

vector. A can consist of 0 matrix and experiment data, such as 𝐴 = [𝑂, 𝐼𝐷𝑊]𝑇.The best projection 

vector 𝑥 will be obtained with the Fisher projection criterion 𝐽(𝑥). The total scatter of the projected 

samples can be characterized by the trace of the covariance matrix of the projected features vector [30] 

in the theory of the Fisher projection criterion. 𝐽(𝑥) is calculated as follows: 

𝐽(𝑥) =
𝑥𝑇𝑆𝑏𝑥

𝑥𝑇𝑆𝑤𝑥
 (12) 

where 𝑥  is the unitary column vector. 𝑆𝑏  is the maximum inter-class scattering matrix, 𝑆𝑤  is the 

minimum intra-class scattering matrix. Due to the nonsingular property of 𝑆𝑤 , a generalized 

eigenvalue problem [30] is considered to present the optimization problem. 𝑆𝑏  and 𝑆𝑤  can be 

calculated as follows: 

𝑆𝑤 = ∑ (𝑥𝑠 − 𝜇0)(𝑥𝑠 − 𝜇0)𝑇

𝑥∈𝑋0

+ ∑ (𝑥𝑠 − 𝜇1)(𝑥𝑠 − 𝜇1)𝑇

𝑥∈𝑋1

 
(13) 

𝑆𝑏 = (𝜇0 − 𝜇1)(𝜇0 − 𝜇1)𝑇 (14) 

where 𝜇0 and 𝜇1 denote sample means of two different type data sets, 𝑋0and 𝑋1 are IDW sample sets 

of two different types, and 𝑥𝑠 denotes IDW sample in 𝑋0 or 𝑋1. When unitary vector 𝑥 maximizes 𝐽(𝑥), 

the Fisher optimal projection axis can be obtained. Find 𝑥 such that it equals 0 and the relationship 

between 𝐽(𝑥) and 𝑥, 𝑥 can be obtained as follows: 

𝑥 =
𝑥𝑇𝑆𝑤𝑥

𝑥𝑇𝑆𝑏𝑥
𝑆𝑤

−1𝑆𝑏𝑥 (15) 

With maximizing criterion, the optimal projection 𝑥𝑜𝑝𝑡 and the input optimal feature vector can 

be obtained as follows: 

𝑥𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥|𝐽(𝑥)| (16) 

𝑦𝑜𝑝𝑡 = 𝐴 ⋅ 𝑥𝑜𝑝𝑡 (17) 

Euclidean distance is employed to classify the features into sea ice and OW. The Euclidean 

distance [31] is utilized to characterize similarity. 

𝑑(𝑌1, 𝑌2) = ∑‖𝑦1𝑘
− 𝑦2𝑘

‖
2

𝑑

𝑘=1

 (18) 

where 𝑌1 = [𝑦11
, ⋯ , 𝑦1𝑑

] and 𝑌2 = [𝑦21
, ⋯ , 𝑦2𝑑

] are the input feature matrices of different types. Each 

IDW is categorized as either 𝑇1 or 𝑇2.  

When 𝑑(𝑌, 𝑌𝑙) = 𝑚𝑖𝑛( 𝑑(𝑌𝑖 , 𝑌𝑙)), the classification can be calculated as follows: 
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𝑌 ∈ {
𝑇1, 𝑌𝑙 ∈ 𝑇1

𝑇2, 𝑌𝑙 ∈ 𝑇2
 (19) 

2.2.5. K-nearest neighbors  

K-nearest neighbors (KNN) [32] is a basic algorithm of machine learning which is usually used 

in applications of classification and regression. KNN uses the distance between different feature values 

to classify the data. The first step for KNN is determine a distance measurement method, such as 

Euclidean distance. Then, the k nearest samples of 𝑥 in training sets, 𝑇 = {(𝑥1, 𝑦1),⋅⋅⋅, (𝑥𝑁, 𝑦𝑁)}, are 

found to construct a new set Nk(x). The n-dimensional vector of a sample is yi, and 𝑦𝑖 ∈ 𝑌 = {𝑐1,⋅⋅⋅

, 𝑐𝐾}. The type of the sample 𝑥 is determined with the principle of majority voting like follows: 

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∑ 𝐼(𝑦𝑖 , 𝑐𝑗)

𝑥𝑖∈𝑁𝑘(𝑥)

 (20) 

where 1, ,i N=  , 1, ,j K=  , and I is the indication function 

𝐼(𝑥, 𝑦) = {
1, 𝑖𝑓(𝑥) = 𝑦
0, 𝑖𝑓(𝑥) ≠ 𝑦

 (21) 

2.2.6. Sea ice detection based on ISOMAP and classifiers 

In this paper, the type of the ground surface is sea ice and OW. The classifiers of SVM, GBDT, 

LDA and KNN were proposed to classify observations such as DDM features and SNR as sea ice or 

OW. Four classifiers with different mechanisms are used to classify IDW features acquired by 

ISOMAP. SVM is a supervised classification discriminative algorithm, GBDT is a supervised greedy 

discriminative algorithm, LDA is a supervised dimensionality reduction algorithm, and KNN is a 

supervised lazy learning algorithm. The performance evaluations are compared based on the evaluated 

quantities in Table 1. The process flow of the experiment is presented in Figure 2. 

Table 1. The definitions of evaluation metrics. 

Evaluation Metric Function 

Accuracy (%) TP TN

TP TN FP FN

+

+ + +
 

Precision (%) TP

TP FP+
 

Recall (%) TP

TP FN+
 

F1-value 2Re Pr (1 )
, 1

(Re Pr )

call ecision

call ecision






  +
=

 +
 

Kappa coefficient 2 ( )

( ) ( ) ( ) ( )

TP TN FN FP

TP FP FP TN TP FN FN TN

−

+ + + + +
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Figure 2. Process flow of ISOMAP-based method. 

In step 2, low-dimensional features are extracted from IDWs, and 30% of samples are randomly 

selected as the training set. The remaining 70% of samples are used as the test set after low-dimensional 

feature extraction. 

In step 3, the low-dimensional features are applied to training the classifiers of SVM, GBDT, 

LDA and KNN, and the remaining samples’ low-dimensional features are used as test sets to classify 

sea ice and OW. 

In step 4, the detection performance is analyzed and evaluated. The accuracy, precision, recall, F1 

value, kappa coefficient [33] and confusion matrix are analyzed in the results. 

3. Results 

As illustrated in Section 2.2.6, the sea ice detection is conducted with a two-step method. The 

first step aims to extract low-dimensional features from IDWs using ISOMAP. After extracting low-

dimensional features, the low-dimensional features are employed for sea ice and OW detection using 

SVM, GBDT, LDA and KNN classifiers. There, 30% of the low-dimensional features of previously 

selected samples are used as the training set, and the remaining 70% of low-dimensional features are 

used as the test set to classify sea ice and OW.  

The ISOMAP-based confusion matrices of RF, SVM, GBDT and LDA classifiers are presented 

in Figure 3, which presents the classification results of each class. The evaluation metrics are computed 

with the equations listed in Table 1 and shown in Table 2. 

Table 2. Evaluation metrics of ISOMAP-based sea ice detection. 

Evaluation 

metric 

ISOMAP-based detection 

SVM GBDT LDA KNN 

Accuracy (%) 99.44 85.58 91.88 98.82 

Precision (%) 97.42 58.43 71.59 94.66 

Recall (%) 99.88 99.93 99.60 99.81 

F1-value 0.98 0.74 0.78 0.96 

Kappa coefficient 0.98 0.65 0.83 0.97 
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The evaluation metrics are shown in Table 2. The predicted results are validated with the test 

dataset, whose true types are selected from the NSIDC surface data. In Figure 3 (a), (b), (c) and (d), 

437889 samples are selected for testing, in which there are 89038 OW and 348851 sea ice samples. 

With SVM, GBDT, LDA and KNN classifiers, the ISOMAP-based sea ice detection obtains accuracy 

values of 99.44%, 85.58%, 91.88% and 98.82%. The accuracy is comparable to previous studies [34–36]. 

`

 

Figure 3. Confusion matrices of ISOMAP-based method: (a) SVM, (b) GBDT, (c) LDA, (d) KNN. 

The ISOMAP-based OW-sea ice detection has comparable performance through SVM, GBDT, 

LDA and KNN classifiers. The detection results for February 2018 are shown in Figure 4 to present 

the overall space distribution. 

The overall spatial distribution of the February 2018 classification results is shown in Figure 4, 

which demonstrates the distribution of predicted and reference types. 
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Figure 4. Sea ice detection of ISOMAP-based method for February 2018: (a) SVM, (b) 

GBDT, (c) LDA, (d) KNN. 

4. Discussion 

In order to analyze the errors in ISOMAP-based sea ice detection, the low-dimensional features 

classified with classifiers are presented in Figure 5. The errors appear on the distribution boundaries 

of low-dimensional data, which is caused by the noise distribution in the waveform of IDW. The greater 

the degree and number of data fluctuations in IDW, the more difficult the IDW waveform is for 

ISOMAP-based sea ice detection.  

Another experiment is implemented to analyze the relationship between the misclassifications 

and the degree and number of data fluctuations in IDW. First, the number of data fluctuations in IDW 

is calculated and counted. Within three consecutive time delay sequences of IDW, if the difference 

between the maximum pixel power and the minimum pixel power is greater than 1000 pixels, it will 

be counted as one data fluctuation.  
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Figure 5. Low-dimensional features of ISOMAP-based method: (a) SVM, (b) GBDT, (c) 

LDA, (d) KNN. 

As shown in Figure 6, the data fluctuation numbers in predicted IDWs are counted to present 

dramatic fluctuations in the IDW waveform. From Figure 6 (b), (c), the data fluctuation values of 

wrong predicted results are mainly concentrated in the range of 5 to 30 and the range of 0 to 1. However, 

the data fluctuation values of wrong predicted results are mainly concentrated only in the range of 5 to 

30 for Figure 6(a), (d), and the data fluctuation values of correct predicted results are mainly 

concentrated in the range of 0 to 5 for Figure 6. This shows that the data with too many dramatic 

fluctuations can be filtered out to improve the quality of data and the GNSS-R sea ice detection. 

Therefore, future experiments need to not only screen at SNR but also use data fluctuations to ensure 

the quality of the DDMs or IDWs. 
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Figure 6. Data fluctuation counts of ISOMAP-based method: (a) SVM, (b) GBDT, (c) 

LDA, (d) KNN. 

5. Conclusions 

In this paper, the ISOMAP-based method is proposed to use IDWs for GNSS-R sea-ice detection. 

The experiments show that the ISOMAP-based method can be used to conduct sea ice detection and 

obtain great classification accuracy. Above 70°N and during February-April 2018, the feasibility of 

ISOMAP-based GNSS-R sea ice detection with selected IDWs is verified with the accuracy of 99.44%. 

The errors in ISOMAP-based sea ice detection have been analyzed, and the analysis shows that the 

data fluctuation numbers can reflect the quality of the data. The data predicted incorrectly are 

concentrated in the range of 5 to 30, and the data predicted correctly are concentrated in the range of 

0 to 5. Therefore, the data fluctuation number can be used as another important parameter to improve 

the GNSS-R sea ice detection by selecting the higher quality data. 
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