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Abstract: Superspreading transmission is usually modeled using the negative binomial distribution,
simply because its variance is larger than the mean and it can be long-tailed. However, populations
are often partitioned into groups by social, behavioral, or environmental risk factors, particularly in
closed settings such as workplaces or care homes. While heterogeneities in infectious histories and
contact structure have been considered separately, models for superspreading events that include the
joint effects of social and biological risk factors are lacking. To address this need, we developed a
mechanistic finite mixture model for the number of secondary infections that unites population parti-
tioning with individual-level heterogeneity in infectious period duration. We showed that the variance
in the number of secondary infections is composed of both sources of heterogeneity: risk group struc-
turing and infectiousness. We used the model to construct the outbreak size distribution and to derive
critical thresholds for elimination resulting from control activities that differentially target the high-
contact subpopulation vs. the population at large. We compared our model with the standard negative
binomial distribution and showed that the tail behavior of the outbreak size distribution under a finite
mixture model differs substantially. Our results indicate that even if the infectious period follows a
bell-shaped distribution, heterogeneity in outbreak sizes may arise due to the influence of population
risk structure.

Keywords: branching process; heterogeneous transmission; outbreak size distribution; population
heterogeneity; transmission chain; transmission tree

1. Introduction

Individuals vary in their ability to transmit infectious agents as a result of biological, behavioral,
or environmental factors [1-4]. A superspreading event, where one infected individual gives rise to a
large number of secondary infections in a single generation, may be the source of most secondary cases
in a population [3]. For example, the first wave of the SARS-CoV-2 pandemic was characterized by
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multiple superspreading events [5—8]. Understanding the role of superspreading individuals in disease
transmission is important to effective intervention. Here, we develop a model for superspreading events
in structured, heterogeneous populations, motivated by the COVID-19 pandemic.

A simple and commonly used model for superspreading transmission is the negative binomial dis-
tribution for the number of secondary infections per infectious individual [1]. The negative binomial
distribution can be parameterized using a mean (R,) and dispersion parameter (k). If k is small, the
distribution is long-tailed, and its variance is greater than the mean, a property that cannot be captured
using the Poisson distribution. Long-tailed secondary infection distributions induce greater variability
in outbreak sizes, larger probabilities of observing no secondary infections, smaller probabilities of
major epidemics, greater probabilities of disease extinction, and greater probabilities of observing a
transmission chain smaller than a given size compared with Poisson epidemics [1,3]. Using a negative
binomial branching process allows the total number of cases arising from a single infected individ-
ual (i.e., a transmission chain) to be readily simulated, and analytical results from branching process
theory yield the probability of a large outbreak [9] and the distribution of transmission chains (mi-
nor outbreaks) that go extinct [10]. The negative binomial distribution is widely used for modeling
superspreading events because it naturally allows for a long tail in the distribution of secondary in-
fections. When £ is small, there is greater overdispersion: some transmission chains die out quickly
(stochastic extinction), while others can explode into large outbreaks. This ability to capture both ex-
treme extinction and extreme proliferation makes the negative binomial an especially flexible model
for superspreading dynamics.

However, heterogeneous transmission is often characterized by the host population being parti-
tioned into two or more groups, e.g., by social, behavioral, or environmental risk factors [11, 12].
Examples of settings with population partitions include workplaces with distinct job roles (e.g., meat
processing facilities with floor workers and office workers sharing a public space where mixing of both
groups occurs), schools with classroom bubbles (teachers move among class groups but students re-
main in smaller cohorts in socially distanced classrooms), or binary partitioning of a closed population
according to a categorical variable that affects susceptibility or infectiousness (for example, charac-
terizing residents in a care home by vaccination status). Groups can differ in average contact rates
(e.g., high-contact essential workers or individuals who continue working while symptomatic), risky
behaviors (e.g., non-compliance with mask mandates), and environmental exposure (e.g., frequent-
ing crowded or poorly ventilated settings). These contact heterogeneities can amplify superspreading
potential [3, 13] and influence the distribution of secondary infections, but they are not captured by
the standard negative binomial model, which typically assumes only variation in infectiousness. To ad-
dress this gap, we distinguish between “high-contact” and “regular-contact” subpopulations and couple
this partitioning with realistic distributions for the infectious period, thereby capturing a wider range
of heterogeneous transmission dynamics than the standard negative binomial approach alone. To our
knowledge, there are no mechanistic models for the distribution of secondary infections that combine
population partitioning with realistic distributions of infection duration. Exploring the joint effects of
social and biological heterogeneities on superspreading events remains understudied.

Here, we present a new family of mathematical models for superspreading based on finite mixture
theory. We study the effect of simply structured populations by dividing the population into two groups
that are characterized by different contact rates, i.e., two Poisson processes with different intensities.
A proportion p of the population is characterized by a high transmission rate, the remainder 1 — p
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have a lower (“regular”) transmission rate, and both subpopulations can mix with each other. Dividing
the population into subpopulations with different transmission rates gives rise to a contact process
described by a finite mixture of two Poisson distributions. We show that a finite mixture of negative
binomial distributions with the dispersion parameter k arises from mixing the Poisson finite mixture
with a gamma distribution for the infectious period with coefficient of variation 1/ Vk. To study the
effect of population structure on the stochastic characteristics of transmission at the beginning of an
outbreak, we calculate the mean and variance of the secondary infection distributions, use generating
functions to calculate the probability of a major epidemic when Ry, > 1, and derive the transmission
chain size distributions conditioned on extinction. To understand how these key statistics differ from
those generated by models without population structure, we compare the statistics obtained from the
mixture distributions with those generated by a negative binomial distribution with the same mean and
dispersion parameter. Our work shows that the mechanistic addition of population structure induces
qualitatively different outbreak patterns compared with the standard negative binomial model. We
show that the finite mixture model with the same R, and k as the standard model has a greater risk
for superspreading events, as measured by the variance and the probability of stochastic extinction,
suggesting that neglecting to include differences in contact patterns when they are known to exist
could underestimate superspreading potential.

To examine the implications of population structure for containment, we study the effect of decreas-
ing R, in three ways. First, we alter the heterogeneous structure of the population by examining the
effect of varying the proportion of individuals in the high-contact group p. We represent a reduction in
the proportion of individuals with high transmission rate by decreasing the proportion p of the popula-
tion that do not comply with protective policies such as stay-at-home orders or face covering mandates
or do not self-isolate when sick. Next, to model the effect of individual behaviors such as self-isolating
when symptomatic, we decrease the average number of additional successful contacts per generation
in the high-contact group while keeping it fixed in the remainder, which may be viewed as decreasing
their intensity of interactions. Third, to model a control action that is applied to the entire population,
we decrease baseline transmission rate in both groups simultaneously, e.g., both groups wear face cov-
erings. We show that the critical threshold for containment depends on whether only the high-contact
group is targeted vs. whether both groups are targeted. Which of these strategies is the most effective
is context-dependent.

2. Methods

2.1. The standard model for superspreading events

We begin by reviewing the derivation of the standard model for superspreading events in [1] and
its underlying micro-level processes. Let v be a random variable representing each individual’s mean
number of secondary infections. Even if an individual has a higher or lower mean infectiousness v,
the actual number of secondary infections they cause, N, is subject to demographic stochasticity in
transmission. Thus, the number of cases N|v = u is Poisson distributed with parameter u. Because v
itself is random, the unconditional probability of N = j is obtained by integrating over all possible v
values,

P(N = ) = fo P(N = jlv = u)f,(u)du,
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where f, () is the probability density function of v. To capture heterogeneity in individual infectious-
ness, v is assumed to follow a gamma-distribution with mean R, and dispersion (shape) parameter k.
A convenient way to derive the distribution of N is using the probability generating function,

(o9

Z s'P(N = Jj) = foo eu(s_”—(k/RO)k u e ukIRo gy
- 0 T

Evaluating the integral, then the number of cases follows a negative binomial distribution with mean
R, and dispersion parameter k,

F(s) = (1 ; %(1 - s))_k.

We note that different micro-scale continuous processes can induce the same discrete time process at
the macro-level that describes the distribution of outbreaks [9, 14, 15]. For example, if we assume
that each infected individual follows a Poisson contact process with mean Sx, and that each individual
has a gamma-distributed infectious period x with mean 1/y and coefficient of variation 1/ Vk, then
the mixture of these distributions is negative binomial with mean Ry, = /v and dispersion parameter
k[9,15,16].

Both of these formulations of the standard model for superspreading events are Poisson mix-
tures [17], and heterogeneity in secondary infections is caused by overdispersion in infectiousness.
In both models, if k is close to zero, then the duration of infectiousness is right-skewed, with most
individuals generating O or 1 secondary infections. This can be interpreted as a majority of the pop-
ulation exhibiting a short infectious period. However, because the infectious period distribution has a
long right-hand-tail for k << 1, some individuals remain infected for longer times, and therefore infect
many individuals over the course of their infectious period, giving rise to superspreading events. In Ta-
ble 1, we list the probability mass function, probability generating function, and the statistics obtained
from the negative binomial model that we use in this paper.

This negative binomial model does not capture heterogeneity in population structure that could also
induce superspreading events, such as differences in contact rates. In what follows, we examine the
micro-level processes that could induce superspreading transmission events and use them to derive a
mechanistic model.

Table 1. Probability mass function, probability generating function, and statistics for the
negative binomial model for the number of secondary infections per infectious individual
with mean R, and dispersion parameter k. Here, N denotes the number of secondary infec-
tions, s € [0, 1] denotes the probability, and Y denotes the transmission chain size, which is
the total number of cases that arise from a single infectious individual during an outbreak.

Name Expression

; 13 7
Probability mass function P(N =j) = Sﬁglf)) ( T +kRo) (kf??o )j

Probability generating function F(s)=(1+ %(1 —s5))7*

Variance of offspring distribution V(N) = Ry(1 + %)

Probability of extinction s* Solve s = F(s) for s*

o : - Fkjrj-1) ()i
Probability of a chain of size y P(Y=y)= RN G (1 50 e
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2.2. A mechanistic model of superspreading events

Here, we develop a branching process model that combines both discrete and continuous sources of
population heterogeneity: the partitioning of the population into risk groups with different contact rates
(e.g., by occupation) and continuous processes (e.g., the infectious period or symptoms that correlate
with the duration of infectiousness). Specifically, we study a Crump-Mode-Jagers (CMJ) continuous-
time branching process that accounts for micro-level transmission. Following [15], at the micro-scale,
the CMJ process assumes that infectious individuals have an independently and identically distributed
infectious period (generation time), in which individuals produce secondary infections according to a
contact process {Z(x)}. The generation time and contact processes are independent, and at the end of
the generation time, the infectious individual produces a random number N of secondary infections.
Scaling up from continuous time at the micro-level to the macro-level of discrete generation times
allows us to describe the production of secondary infections as a macro-level discrete-time Galton-
Watson (GW) branching process [9, 15]. This has the advantage of being able to use GW branching
process theory to obtain key statistics such as the basic reproduction number, i.e., the mean value of
the GW process Ry = E[N] and the probability of stochastic extinction [9, 15].

To account for population risk structure, we begin by dividing the population into two subpopu-
lations: a fraction p that has high-contact rates and the remainder 1 — p that has lower (“regular”)
contact rates. We assume that individuals in the two subpopulations contact others according to Pois-
son processes with different intensities, with the high-contact subpopulation having a higher average
infectious contact rate over a time interval of length x where they spread the infection to susceptible
individuals than the regular group. We denote this product by ¢gx = Sx in the regular group, where
¢ denotes the average number of contacts and g denotes the probability of transmission. Similarly,
in the high-contact subpopulation, we assume the number of regular contacts leading to infection per
individual is Poisson distributed with rate Sx, and the number of additional contacts per individual is
Poisson distributed with rate dx. Then, the number of contacts made per individual is the sum of these
two independent random variables, and it is Poisson distributed with rate

Bx=px+dx, 6>0. 2.1)

Letting Z be a random variable denoting the cumulative number of infectious contacts (contact with
susceptible individuals that lead to infection) by time x, a finite mixture of Poisson distributions with
probability mass function

S 1\2 4
P(Z=z) = p(ﬁzf) X4 (1= p) (ﬂj) B (2.2)
and probability generating function
G(s,x) = pexp (,BSx(s - 1)) +(1-pexp@Bx(s—1)), sel0,1] (2.3)

describes the stochastic contact process {Z(x) : x € [0, o)} in the population. The contact process is
a counting process that stops when the infectious period of an infectious individual terminates. The
stopping time is defined by the length of the infectious period 7}, itself a random variable.

To account for heterogeneity in the duration of infectiousness, following [18] and [19], we assume
that the infectious period of both groups is gamma-distributed with mean 1/y and coefficient of varia-
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tion 1/ Vk with probability density function

@xk—le—kyx

0 = Fo

(2.4)
and cumulative distribution function P(7; < x). Here, k is a positive real number, and I'(k) denotes the
gamma function. The gamma distribution is flexible and allows for long-tailed right-skewed distribu-
tions (i.e., k < 1) and bell-shaped distributions (k > 1) that become more symmetric as k increases.
If £ = 1, the distribution reduces to the exponential distribution. Infectious period distributions that
have symmetry about the mean are often more realistic for modeling infectious periods [11, 20, 21]
than right-skewed distributions, which assume that most individuals have recovery times that are much
shorter than the mean. However, strongly right-skewed distributions (i.e., k << 1) capture the property
of there being a small proportion of individuals in the population with extremely long infectious period,
who could therefore make many contacts leading to transmission over the course of being infected.

To find the probability distribution for the cumulative number of transmission contacts generated by
an infectious individual throughout its entire infectious period (i.e., the number of secondary infections
per infectious individual while infected N = 0, 1,2, ...) following [9] and [15], the expression for the
probability generating function is

Gy(s)= ) /PN = j)

j=0

= f‘” G(s, x) fi(x)dx
0

_ T (6 e OO
—fo (pe” D+ (1 = p)e )F(k)Xk e dx. (2.5)

Letting B/y = RX and 8% /y = R, evaluating the integral above yields

p(yk) L - 216795

Gn(s) = (vk + B5(1 — ) (vk +B(1 — s))k
) p (1-p)
= B X + B k
1+ 51 =) 1+ 50 -5)
D .\ (1-p) (2.6)

A+ 8Ba-gr a+ 8- gy

Equation (2.6) describes the macro-level Galton-Watson discrete-time branching process, in which the
micro-scale continuous-time Crump-Mode-Jagers branching process is embedded [9, 14, 15].
Denoting the average number of secondary infections over the course of the infectious period in the
high-contact and regular groups by R; and R} respectively, the basic reproduction number Ry of the
mixture branching process (2.6), i.e., the mean number of secondary infections per infectious individual
per generation, is
i B

Ry =Gy(1) = P (1- p); = pR; + (1 — p)RE. (2.7)
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Evaluating %%GN(SNS:Q Jj = 0,1,2... yields the probability mass function for the number of

secondary infections per infectious individual with parameters p, k, Rg, and Rg ,

) [ a-p( )i |
P\cxrS) \k+ RS P\c+RR) \k+RE

Equation (2.8) is a finite mixture of negative binomial distributions that combines regular transmission
and high transmission rates. A finite mixture of geometric distributions (i.e., with k = 1) and a finite
mixture of Poisson distributions (with k — o) arise as special cases. Our mechanistic model is flexible
because it accommodates a wide range of infectious histories. For example, an individual might have
a high risk of superspreading (high contact rate and long infectious period), a somewhat elevated risk
(high contact rate but rapid recovery), a moderate risk (low contact rate yet extended infectious period),
or exhibit more typical transmission (low contact rate and quick recovery). Therefore, as a model of the
offspring distribution, model (2.8) more accurately captures a spectrum of individual infection histories
than the standard negative binomial model with mean R, and dispersion parameter k.

. I(j + k)
PN = j)=p; = jfr(k)

. (2.8)

2.3. Mean of the finite negative binomial mixture model

To study the statistical characteristics of the finite mixture model (2.8) and to enable its comparison
with the standard model (Table 1), we calculate its mean and variance. Noting that R§ = 8/y, we can
rewrite Ry in terms of RE,

RS:M:’§+§:R§+& (2.9)

Y Y v
where § = §/y is the average number of additional contacts over the course of the average infectious
period for individuals in the high-contact group compared with the regular group. Rewriting the basic
reproduction number (2.7) of the mixture model in terms of J, the expression for the average number

of secondary infections simplifies to Ry = R§ + p6, which lies between Rf and R} if 0 < p < 1.

2.4. Variance of the finite Poisson mixture model

Next, we calculate the variance of the offspring distribution (2.8). To better understand the underly-
ing factors that influence it, first we calculate the variance of a finite Poisson mixture model (i.e., letting
k — oo in Eq (2.8)) for the number of secondary infections N per infectious individual generated in
a population partitioned into two risk groups that have different contact rates but the same average
infectious period. For the infectious contact process, if the infectious period is constant and equal to
1/y, then the number of infectious contacts is Poisson distributed with a rate that follows a discrete
distribution that models the two risk groups; specifically, the average contact rate S is either equal to
B° |y = RS with probability p or equal to 8/y = RE with probability 1 — p. This discrete distribution
for the risk groups is the mixing distribution [17] and its mean is Ry = pRg +(1 - p)R§ . The variance
of the mixing distribution is

V) = ) (B-Ro)*P(B) = (R} = Ro’p+ (1 - p)(RE - Ro)? = p(1 = p)(RS — RE)* = p(1 - p)o*. (2.10)

Then, it can be shown that the variance of the finite Poisson mixture risk group process is given by Eq
(5) in [17]:
V(N) = EB) + V(B) = Ry + p(1 — p)&°. (2.11)
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Figure 1. Variance of the finite mixture offspring distribution (2.8) as a function of p for
different values of 6. Panel a shows the mean and variance (Eq (2.11)) of the finite Pois-
son mixture (k — oo) for small and large numbers of additional contacts over the average
infectious period 6. Panel b shows the mean and variance (Eq (2.12)) of the finite negative
binomial mixture for k = 4, compared with the variance of the standard negative binomial
model with the same mean R, and dispersion parameter k. Adding heterogeneity by increas-
ing population asymmetry ¢ (panel a) and including variation in infectiousness k (panel b)
increases the variance of the finite mixture model.

Equation (2.11) shows that if a closed population consists of a high-contact subpopulation and a sub-
population with regular contact rate, then the number of secondary cases per infectious individual is
overdispersed, even if everybody in the population has the same infectious period. Specifically, Eq
(2.11) shows that the variance of the finite Poisson mixture is equal to the sum of the variance of the
Poisson process and the variance of the mixing distribution V(8), which in this case is a finite discrete
distribution where the average contact rate can take two values according to the proportions of the
risk groups in the population. Clearly, the variance increases with the average number of contacts &
made by the high-contact subpopulation over the course of their average infectious period, and it is a
quadratic function of the proportion of high-contact population p (Figure 1a). The variance attains its
maximum at 1/2 + 1/29, or when the population is comprised of over 50% of high-risk individuals.
The variance is an increasing function of p provided the high-risk group is a minority of the population
(le.,0< p<1/2).

To explore the effect of population asymmetry in contact rates, we compare the variance as a func-
tion of p for small and large average numbers of additional contacts ¢ over an average infectious period
(Figure 1a). When the difference between the two subpopulations is small, a high proportion of high-
risk individuals is needed to maximize the variance, but for large ¢, a lower proportion of high-risk
individuals is needed to maximize variance (about a 50:50 split leads to maximal variance). At p = 0
and p = 1, the variance matches the mean, and so the overdispersion disappears at the edge cases (they
are Poisson distributions with mean Rf and mean Ry)).
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2.5. Variance of the finite negative binomial mixture model

The variance V(N) of the number of secondary infections in the finite negative binomial mixture
model (2.8) may be obtained, with some algebra, from the probability generating function (2.6) and
Eq (2.7) yielding

V(N) = Gi(1) + Gi(1) = (Gy(1))®

k+1
= = (PR + (1= p)RE?) + Ro(1 = Ro)
1
= Ry + p(1-p)& + o [pR +(1- pREY). (2.12)
—_—— —_— k

Poisson process  Risk group process Infectious period process

Therefore, Eq (2.12) shows that the variance is equal to Eq (2.11) for the finite Poisson mixture and
an additional factor that results from the infectious period also being a random variable. The finite
negative binomial mixture model is overdispersed, with the overdispersion driven by the influence of
the two subpopulations and the variability of the infectious period per individual. Equation (2.12)
suggests that even if the infectious period distribution has low coefficient of variation (i.e., k > 1),
heterogeneity in secondary infections will still be apparent due to the overdispersion arising from the
population being divided into risk groups.

Equation (2.12) can also be written as

(Ry)
k

(2.13)

R\2
V(N) = p(1 - p)RS =R + p (RS + () )

) +(1-p) (Rg +

k
which is the sum of the variance of the discrete risk group mixing distribution (2.10) and the weighted
sum of the variance of negative binomial processes with means Rg and Rg , respectively, and the same
dispersion parameter k. If p = 0, the variance of the finite mixture model is simply the variance of
the standard negative binomial model with mean R, i.e., V(N) = R + (RF)?/k; similarly, if p = 1,
Eq (2.13) becomes the variance of the standard negative binomial model with mean R;. Therefore,
Eq (2.13) lies between these two extremes if 0 < p < 1. Like Eq (2.11), the variance of the finite
negative binomial mixture is an increasing function of the average number of additional contacts over
the average infectious period d, provided 0 < p < 1, and it is also increasing if individuals with
high contact rates are a minority of the population (the variance attains its maximum at 1/2 + 1/26 +
1/k(1/2 + RE/6)).

Comparing Eq (2.12) to the variance of the standard model, Ry + R}/k, we see that the variance
of the finite negative binomial mixture model (2.8) is greater than the variance of the standard model
(Figure 1b). The more contacts made per individual in the high-risk group, the higher the variance,
and the greater the difference between the mixture and the standard model. We also note that for both
models, the variance increases as the dispersion parameter k approaches zero.

In sum, the overdispersion of the finite negative binomial mixture model (2.8) is driven by either the
number of additional contacts made by the high-contact group over their average infectious period, the
fraction of high-contact individuals in the population, and the coefficient of variation of the infectious
period. Consequently, variation in outbreak size is expected to be highest for large values of risk group
asymmetry ¢, when the population has an intermediate proportion of high-contact individuals p, and for
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high variation in infectiousness (small k). Figure 1 shows the progression in the variance of the number
of secondary infections as asymmetry in contact rates is increased and variability in infectiousness is
added to the model.

2.6. Probability of extinction if Ry > 1

To calculate the probability of the negative binomial mixture branching process becoming extinct,
we numerically solve the following equation for the smallest root s*,

p N (1-p)

s =Gp(s) = = - .
I+ 21 =5 A+ 20 =s9))F

(2.14)

When Ry < 1, then s* = 1, and a major outbreak cannot occur. If Ry > 1, either there is a small
outbreak that dies out with probability s* or the number of cases increases exponentially, becoming a
major outbreak with probability 1 — s*. If there is a small outbreak, the observed branching process
will be the same as that arising from a different reproduction number [15], denoted by R, where

Ry =Gly(s) < 1. (2.15)

2.7. Probability of observing a singular chain

A transmission chain is the total number of cases that arise from an index case in an outbreak
that goes extinct. A singular chain is when a single index case does not infect anybody else in the
population. Higher probabilities of singular transmission chains suggest a greater chance of stochastic
extinction, a feature of superspreading dynamics [3].

We obtain the probability of a single individual becoming infected and giving rise to no further
infections by calculating py from Eq (2.6). For the finite mixture models, p, is a decreasing linear
function of p, meaning that as the proportion of high-contact individuals increases in the population,
the tendency for stochastic extinction decreases, and the greater the chance of a major epidemic. Fig-
ure 2 shows that the probability of a singular chain is always higher in the mixture models than the
standard models, except at the boundaries p = 0 and p = 1, where they agree with the standard model
equivalents.

2.8. Chain size distribution

The transmission chain size, the total number of cases that arise from an index case in an outbreak
that eventually stops, is a random number Y. Chain size (outbreak size) distributions that describe the
total number of cases arising from separate introductions are often available during disease outbreaks.
To obtain the chain size distribution, we follow the method in [10], which relies upon the derivatives
of powers of the generating function (2.6). We summarize their derivation of the formula for the chain
size distribution below.

For a transmission chain of size y, there are y infected individuals collectively causing y — 1 sec-
ondary infections. Let A; be the non-negative integer random variable denoting the number of sec-
ondary infections caused by individual i, and in each transmission chain, let parentheses denote ordered
sequences and curly braces denote unordered sets.
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Figure 2. Comparing the probability of a singular chain p as a function of p for the finite
mixture models vs. the standard Poisson and negative binomial models for the distribution of
secondary infections. Panel a shows py = pe‘R(S) +(1- p)e‘Rg calculated from the finite Poisson
mixture (k — o) and the Poisson model with the same Ry = pRS + (1 — p)RY = R{ + pé for
§ =9 (py = e ®*7)_ Panel b shows py calculated from the finite negative binomial mixture
for k = 4, compared with p, from the standard negative binomial model with mean R,. As p

increases, po declines, suggesting that the probability of stochastic extinction becomes less
likely.
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e Chain of size 1: The index case infects no one, so

e Chain of size 2: The index case infects one secondary individual, who in turn infects no one:
(A17A2) = (1’ 0)

e Chain of size 3: Can occur in two possible ways:

— The index case infects two individuals who each infect no one:
(A1,{A2,A3}) = (2,{0,0}).
— Or the index case infects one individual, who then infects one more:
(A1,Ar,A3) =(1,1,0).

Figure 3 shows all possible chains for outbreaks with up to 5 total cases.

Now, the probability generating function Q(s) for the sum of y independent and identically dis-
tributed non-negative integer random variables A; with the same probability generating function
G(s) = X% p;s’, where p; = P(A; = ), is

0(s) = (G(s)). (2.16)

The probability that y random variables A; sum up to y — 1 is the coefficient of s*~! of Q(s). To obtain
the probability of the transmission chain of size y, we need the (y — 1)" coefficient of Q(s), but the
coeflicient is not the same as the probability of a chain having size y, because as shown in Figure 3, the
order of the infections matter. For example, for a chain size of 2, we require the coefficient of s in the
probability generating function (G(s))* = (352, p;s’)?, which is 2p; po. These probabilities correspond
to two possible sequences that sum up to 1: (A}, A>) = (1,0) and (A}, A}) = (0, 1). For an outbreak of
size 2, only the former is an admissible sequence of secondary infections, and we note that the latter
inadmissible sequence is a cyclic permutation of the first. Therefore, to obtain the probability of a
chain size of 2, we need to divide 2p, py by 2. Similarly, for a chain size of 3, we need the s* coefficient
of (G(s))*, which is 3p,po + 3pipo, which we divide by 3 to find the probability of a chain size of
3. This holds generally: from Theorem 1 in the supplement of [10], out of the cyclic permutations of
a non-negative sequence (A, A,,...,A,) with ZLI A; = y—1, only one will be a valid transmission
sequence. Therefore, we need to divide (G(s))” by y. In sum, to find the probability of a chain size of
y, we find the (y — 1) coefficient of (G(s))’~!/y. The (y — 1)" coefficient is found by calculating the
(y — 1)" derivative of (G(s))’~!/y and evaluating it at s = 0.

The derivatives of Q(s) = (G(s))’ can be found using the chain rule for differentiation. The n'
derivative of the inner function g(s) = G(s) evaluated at s = 0 is

g™ = G"(s) > (2.17)
and the n™ derivative of the outer function f(g(s)) evaluated at s = 0 is
y! .
[ = ——[G(s)™" (2.18)
o -m! $=
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Figure 3. The possible ways of how outbreaks with a total of 1, 2, 3, 4, and 5 cases can
arise and their respective probabilities. The cardinality is the number of generations before
a transmission chain goes extinct. The degree of each graph is the outdegree of the root
(the index case). The breadth is the number of “leaves”, which is the number of cases not
generating secondary infections.
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According to Faa di Bruno’s formula [22], the (y — 1)" derivative of Q(s) evaluated at s = 0 is

dy—l _ 1 ' AA! 77\ M2 y-1) my—1
ds>~1 ls=0 mylmy! . my_y P\ 1! 2! y-1!
where the sum is over different solutions in non-negative integers mp, my, ..., my_; of

(Dmi+Qmy +---+ (- Dmy_ =y—1,

m1+m2+---+my_1:n.

Equation (2.19) can be more succinctly written in terms of exponential Bell polynomials [22, 23],
which group together the terms satisfying m; + mp +--- +m,_; = n,

' Q(s) O o n
Jo] ‘ f( '(g()By-14(g'(5),8"(5), ..., 8" 7(5)) (2.20)
where B,_;,(g’,8",...,g"™) are Bell polynomials of the derivatives of the inner function. Numerous

programs can compute the Bell polynomials of the derivatives, e.g., the Bel1B package in R [24] and
the BellY function in Mathematica, provided a formula for the inner function derivative is supplied.

Finally, we note that by definition of the probability generating function for the A;s, then G(0) =
P(A; = 0) = py, and we can write down the following:

w_ Y
f oomiP (2.21)
and
P(A; = n) = G(”)(s)'
=>nlp, = (2.22)

Equations (2.17), (2.18), and (2.20), together with (2.21) and (2.22), can be used to compute the chain
size distribution numerically, which is particularly advantageous when an analytical formula for the
chain size distribution cannot be readily obtained. The advantage of using the above equations is
that they can be used with any probability generating function G(s), provided G(s) is a composition
of differentiable functions f and g with a sufficient number of derivatives. Further, it can compute
the chain size distribution arising from an offspring distribution that is a weighted sum of probability
generating functions such as Eq (2.6).

2.9. Chain size distribution for the finite negative binomial mixture

To derive the chain size distribution for the finite negative binomial mixture model (2.8), we use the
result from [10], and therefore require the derivatives of powers of the generating function Gy(s) (Eq
(2.6)). Let T\(s) = (Gn(s))’, y=1,2,.... Then the probability of a chain having size y [10,25] is

1 1
P(Y = y) = ;(ﬁT)(’y 1)(5)’ ) YT)E/V 1)(s) (223)
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To evaluate the derivatives of

,
P P el ) ] (2.24)

Ty(s) = 5 <
' (a+%a—nv (1+ 51 - gy

we need to apply the chain rule for derivatives y — 1 times. The n derivative of the inner function g
of Eq (2.24),n=1,2,...,y— 1, evaluated at s = 0, is

(RS)n n—1 RS —k—n (RR)n n—1 RR —k—n
(n) _ 0 . _O _ 0 . _()
§"0) = p D(k+ z)(l + ) +( = P75 ];l(k+ l)(l e ) . (2.25)
The n derivative of the outer function f of Eq (2.24) evaluated at s = 0 is
! 1 o
f(”)(O):( Y )'{ P+ ( _R’Z)] L on=1,2,...,y-1. (2.26)
- n)!
Y L+ 2F 1+ L)

We substitute formulas (2.25) and (2.26) into the Faa di Bruno formula (2.20) and compute the chain
size distribution (2.23) arising from the finite negative binomial mixture offspring distribution (2.8)
numerically using the Bel1B package in R [24].

2.10. Chain size distribution statistics

To study the characteristics of the chain size distribution for Ry > 1, using Eq (2.15), we numerically
calculate the mean chain size conditioned on extinction [15],

1
E(Y|minor outbreak) = m, = ——, (2.27)
1 - R

and the variance of chain sizes conditioned on extinction,

$*GY(s%) + Ry(1 = R})

V(Y |minor outbreak) = v, = - R8)3

(2.28)

Using Eq (2.23), we also compute the proportion of chains greater than size y (i.e., the area under the
tail of the chain size distribution) by numerically calculating the complementary cumulative distribu-
tion function P(Y >y)=1—-P(Y <y).

2.11. Numerical study of summary statistics

Distinctive features of superspreading include high probability of observing no secondary infections
per infected individual, high variability in the number of secondary infections per infected individual,
small probability of major epidemics, high variability in transmission chain sizes, and high proba-
bility of observing small transmission chains [3]. We would like to understand how the addition of
population risk structure affects the stochastic characteristics of transmission chains. To compare the
characteristics of the standard negative binomial model and the finite negative binomial mixture model,
we calculated six summary statistics. To assess differences in variability in cases in both models, we
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used the variance and the coeflicient of variation of the number of secondary infections. To compare
the chain size distributions arising from both models, we numerically calculated the probability of a
singular chain, the probability of a major outbreak, and the mean and coefficient of variation of minor
outbreaks.

To calculate the summary statistics, we ensured that the basic reproduction number R, and the
dispersion parameter k were the same for each comparison of the standard and mixture models. We
assumed that 10% of the population has a high contact rate, with an R} of 10.1. Therefore, we set
Ry =2,p=0.1,R} = 1.1, and § = 9 for all models studied. To explore the impact of variability
in infectious period distributions in the output from the standard and mixture models, we varied the
dispersion parameter k between 1/2 and 4. All statistics were calculated using R 4.1.1, and the code is
supplied on GitHub.

3. Comparison of the mixture model with the standard model

3.1. Comparison of probability mass functions

To examine the influence of subpopulations having different average contact rates, we compare the
probability mass functions of the finite negative binomial mixture model (2.8) with the standard model,
having identical R, and various values of dispersion parameter k in Figure 4. Under the standard model,
the distribution of secondary infections as k increases will become less skewed because the variance
Ry + RS /k declines in magnitude. In contrast, under the mixture model, as k increases, the distribution
of secondary infections retains long-tailed behavior due to the influence of the variability induced by
population structure (2.12). Further, the probability that an infectious individual produces no secondary
infections (P(N = 0)) is higher in the mixture model than the standard model for all values of k. In
sum, there are visible differences in the probability mass functions of both models because the variance
in the number of secondary infections is greater under the mixture model than the standard model, and
the influence of risk-structured subpopulations will dominate the variability in the number of secondary
infections as k — oo.

3.2. Comparison of chain size distributions

In Figure 5, we compare the chain size distributions of the mixture model with the standard model
for various values of k. These chain size distributions result from the offspring distributions shown
in Figure 4. The larger probability of singular chains in the mixture model is balanced by higher
frequencies of small outbreaks consisting of 2, 3, 4, ... cases, which is particularly pronounced for
larger dispersion values k. The mixture model’s chain size distributions are characterized by greater
probabilities of observing small outbreaks that go extinct (i.e., transmission chains consisting of less
than 10 secondary infections) than in the standard model. For example, if Ry > 1, the probability of
observing a chain size of two, p;py, is greater for the mixture model than the standard model. This
result suggests that, assuming there is population structure and Ry > 1, we would expect to see higher
frequencies of small chains compared to a population where there is no structuring in contact.

The difference between the chain size distributions generated by the standard and mixture models
when Ry > 1 is more clearly captured by studying the tails of the chain size distributions in Figure 6.
The proportion of outbreaks greater than size y converge to the probability of a major outbreak 1 — s*
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Figure 4. Probability mass functions of the mixture model (Rf)e = 1.1, p = 0.1, additional
contacts 6 = 9) compared with those of standard model with the same R, and dispersion
parameter k. The mean number of secondary infections for both models is Ry = 2. For
the mixture model, the probability of no secondary infections is always greater than for the
standard negative binomial model with the same R, and k. As k increases, the number of
secondary infections generated by the standard model becomes less skewed, whereas the
finite mixture model retains long-tailed behavior.
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Figure 5. Chain size distributions of the mixture model (Rg = 1.1, p = 0.1, additional
contacts 6 = 9) compared with those of the standard model with the same R, and dispersion
parameter k = 0.5,1,2,4. The mean number of secondary infections for both models is
Ry = 2. For the mixture model, the probability of a chain size of one is always greater than
for the standard negative binomial model with the same R, and k. The chain size distribution
is longer tailed for the mixture models compared to the corresponding standard models.

for large chain sizes y (horizontal lines in each figure). There is a substantial difference in the predicted
frequency of large clusters for the standard and mixture models. For example, if Ry = 2 and k = 2, 36%
of transmission chains will be large (red horizontal line in Figure 6¢). On the other hand, according to
the standard model, 62% of infection clusters will be large (blue horizontal line in Figure 6¢), and the
remainder will be small outbreaks (e.g., Figure 5c). Figure 6 also shows there is a steep decline in the
proportion of chains greater than a specified outbreak size between 1 and 20, and the drop-off is more
pronounced for the mixture models than the standard models. This is because the probability of no
secondary infections is larger for the mixture model than the standard model [14]. In sum, these results
suggest that the chain size distribution is substantially different when there is underlying population
structure in contact rates compared to when there is not.

3.3. Comparison of summary statistics

Calculation of summary statistics shows that the dispersion parameter k does not have to be less
than one for heterogeneity in outbreak sizes to arise from the finite negative binomial mixture model.
For example, Table 2 shows that the coefficient of variation of secondary infections VV(N)/R, arising
from a mixture model with 10% of individuals belonging to the high-contact group and a dispersion
parameter of 2 is 93% higher (CV= 1.932) than that arising from a standard model with the same
mean and dispersion parameter k (CV= 1). The higher variance in the number of secondary infections
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Figure 6. The proportion of outbreaks bigger than size y is the area under the tail of the chain
size distribution P(Y > y) arising from the standard negative binomial model (light blue) and
the mixture model (black). For large chain sizes, the curves converge to the probability of a
major outbreak, 1 — s*. Horizontal lines indicate the probability of a major epidemic arising

from each branching process.
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induces a higher probability that a chain contains a single case, and greater variability in minor outbreak
sizes (the coeflicient of variation of the chain sizes +/v./m, from the mixture model with k = 2 is 46%
higher (CV=1.536) than those obtained from the standard model (CV=1.051). Major outbreaks in the
mixture model with k = 2 are 42% less likely than in the standard model (i.e., 1 — s* = 0.361 for the
mixture model vs. 0.618 for the standard model), and the mean size of small outbreaks is 39% greater
(i.e., m, = 2.631 for the mixture model vs. 1.894 for the standard model). Table 2 shows that finite
negative binomial mixture models with the same R, and k have greater variability in chain sizes than
those obtained from the standard model, and the outbreak distributions are characterized by higher
probabilities of observing minor outbreaks.

Table 2. Comparing summary statistics for the finite mixture and the standard models for
Ry =2,p=0.1,6 =9, R} = 1.1 for various values of dispersion parameter k. Summary
statistics are the probability of an outbreak size of one (P(Y = 1) = py), the variance of
secondary infections (V(XV)), the coeflicient of variation of secondary infections ( V'V (N)/Ry),
the probability of a major outbreak (1 — s*), the mean chain size conditioned on extinction
(m.), and the coeflicient of variation of the chain size (+/v./m.). Note that when k = 1,
the standard negative binomial model is the geometric distribution, and the finite negative
binomial mixture model is a finite mixture of geometric distributions.

model kK PY=1 V(N VV(N)/Ry 1-s* m, e/ m

standard 1/2 0.447214  10.000 1.581139  0.359599  2.106415 1.506235

mixture 1/2  0.524834  31.86999 2.822676  0.215512  2.737329 2.069982
0.333333  6.000 1.224745  0.500024  1.999903 1.224666
0.43758 20.58 2.268259  0.295993  2.679926 1.731233
0.2500000 4.000 1.000000  0.6180314 1.894435 1.051468

1
1
2
mixture 2 0.3773418 14.935 1.932291 0.3608386 2.631973 1.535524
4
4

standard
mixture

standard

0.197531  3.000 0.866025  0.698069  1.810365 0.949236
0.341214  12.1125 1.740151  0.402652  2.603272 1.427554

standard

mixture

4. Control activities

How do interventions affect the risk of superspreading events? Control efforts can either focus on
high-risk individuals alone, or they can be targeted population-wide. Here, we will study the effect of
three ways of reducing the basic reproduction number Ry = R + pé below one:

e Strategy (a): Decreasing the proportion p of individuals in the population with high contact
rate, which may be considered to be the same as increasing the proportion of the population that
is vaccinated or increasing the proportion of the population who respond to information about
disease risk through education.

e Strategy (b): Decreasing the number of additional contacts per individual 6 of high-contact indi-
viduals, e.g., through self-isolation.

e Strategy (c): Decreasing baseline transmission rate in both groups by reducing R, e.g., both
groups wear face coverings, practice social distancing, or mix in a well-ventilated environment.
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Strategies (a) and (b) are aimed toward reducing the effect of the high-contact group and are sim-
ilar to the targeted individual control policies suggested in [1]. Strategy (c) focuses on decreasing
transmission in both groups and is therefore a population-wide control policy [1], called generalized
interventions by [26]. For each strategy, we calculate the critical control effort threshold for elimina-
tion, i.e., the value of ¢ where effective R is one, which is the level of effort required for the probability
of a major epidemic to be zero. We ask which of these strategies leads to the fastest reduction in the
probability of a major epidemic for the least level of effort, assuming that the critical threshold for
elimination is the same for all activities.

4.1. Critical thresholds for elimination

We first study the effect of targeted control activities on the high-contact group (Strategy a) by
denoting control effort by ¢, 0 < ¢ < 1, where ¢ = 0 implies the application of no control strategies and
¢ = 1 indicates full control of transmission. We then alter population structure by reducing p (thereby
increasing 1 — p) by a factor 1 — ¢ while keeping all other parameters fixed. For comparison, we then
reduce the individual reproduction number by decreasing the number of additional contacts over the
course of an average infectious period 6 by a factor 1 — ¢ while keeping all other parameters fixed
(Strategy b). Strategies (a) and (b) have the same effective Ry, (the value of R, in a partially susceptible
population after control activities are applied),

Ry, = R{ + (1 - ¢)pd = Ry — péc. (4.1)

For elimination of the disease in the population, we require Rge < 1, and we can use that to solve the
critical value of control effort.

When ¢ = 1, effective Ry is the same as RE, the basic reproduction number of the pathogen in the
regular transmission group. If Ry > 1, the threshold control effort for elimination when control is
limited to the high-contact group is

(1-Rf) Ry—1 Ry—1

S =1 = ,
po po Ry — R}

0<c’ <. 4.2)

Therefore, unsurprisingly, the pathogen can only be eliminated in the entire population if Rf < 1, i.e.,
the regular group cannot sustain the infection alone.

We also study the effect of mitigation measures on both groups (strategy (c)) by reducing Rf by a
factor 1 — c. Strategy (c) has a different expression to strategies (a) and (b) for effective R,

R®=(1-0c)RE + ps =Ry - REe. 4.3)

We require Rgf < 1 for disease elimination, which yields a different expression for threshold control
effort, .
1-pd) Ry-—
SR— 1 _ ( Ppo) _ o

, 0<SR<. 4.4
RE RF c 4.4)

In this case, if ¢ = 1, then R)¥ = p6, and elimination of the disease in the entire population can only be
achieved if pé = Ry — Rf < 1, i.e., high-contact individuals cannot have too many additional contacts,
or their proportion in the population cannot be too large.
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The critical control thresholds (4.2) and (4.4) are equal if and only if Ry = 2RR, or equivalently
R = pé. If Ry < 2RE (ie., p6 < RY), then ¢*® < ¢*, and targeting control activities toward both
groups leads to a lower threshold for elimination. On the other hand, if Ry > 2R§ (i.e., po > Rg), then
5 < SR, and targeting control activities towards the high-contact group alone induces more efficient
elimination.

Comparing the effective reproduction numbers (4.1) and (4.3), if p§ < R (i.e., high-contact individ-
uals contribute little to Ry), use of control activities that target both groups is a more effective strategy
than targeting the high-contact group alone since R < R} . On the other hand, if p6 > Rf, RS, < R3F
and so targeting high-contact individuals leads to a greater reduction in R, than targeting both groups
with the same intervention.

4.2. Variance-to-mean ratio

To study how control activities impact heterogeneity in outbreak patterns, we examine the variance-
to-mean ratio of the number of secondary infections. Intuitively, one expects that if control efforts focus
on actions that reduce p or ¢, heterogeneity in outbreaks should decline with the level of control effort
because the high-contact subpopulation is being directly targeted. On the other hand, if both groups
are subject to control activity with regular transmission R§ being targeted (and therefore RS = Rf + 6
also being targeted), the influence of the high-contact group may dominate outbreak patterns. For
example, at ¢ = 1, if only the high-contact group is targeted, the variance-to-mean ratio is 1 + R /k (the
same as when the population consists of just regular transmitters). Alternatively, if interventions target
both groups, the variance-to-mean ratio is 1 + 6/k + 6(1 — p), and the effect of population structure
remains. In the full control scenario, if population asymmetry is substantial (i.e., if 6 > Rg), then the
variance-to-mean ratio for control applied to both groups is larger than that for control applied to only
the high-contact subpopulation.

4.3. Numerical case study

These analytical results show that disease elimination under each control activity is only possible in
certain circumstances. To assess how case variability and the probability of a major outbreak change
with each control strategy, we choose parameters such that the threshold for elimination is the same
value for all activities, and consequently, effective Ry declines at the same rate. We start with Rf =
0.9 < 1, which guarantees extinction for targeted control because the threshold will be less than one.
We choose Ry = 2R§ = 1.8, which means that p6 = 0.9 < 1, so extinction will be guaranteed if control
to both groups 1s applied. We choose p = 0.1, 6 = 9 and k = 1/2. In this scenario, effective Ry
(Egs (4.1) and (4.3)) is the same for all three strategies. Then we decrease each of Rg, p,and 0 by a
factor 1 — ¢ in increments of 0.01 and examine their effect on the variance-to-mean ratio of secondary
infections, the probability of extinction, and the percentage reduction in the probability of a major
outbreak from the baseline at ¢ = 0.

Figures 7a and 7b show that control strategies have different impacts on variance-to-mean ratio and
probability of extinction as a function of control effort even when the threshold for extinction is the
same for all three strategies (¢° = ¢5® = 8/9). Control actions that act on both groups lead to greater
heterogeneity in outbreaks (i.e., higher variance-to-mean ratio in secondary infections) than control
measures that act on high-contact individuals only (e.g., reducing the number of additional contacts
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¢ and reducing the high-contact proportion p). This is because when both groups are controlled, the
risk group component of the variance in Eq (2.12) remains unchanged as R declines, and therefore, its
relative contribution to the variance increases as the relative contributions of the other components de-
cline. In contrast, when control actions act on high-contact individuals alone, the variance is dominated
by the influence of decreasing Ry.

For low levels of control effort, Figure 7c shows that targeting both groups reduces the probability
of a major epidemic more efficiently than targeting high-contact individuals. For example, the chance
of a major outbreak is reduced by 25% if control aimed at both groups at 12.5% effort is applied. The
high-contact proportion would have to be reduced by ~ 37.5%, or the number of additional contacts
made would have to be decreased by ~ 50%, to reduce the chance of a major outbreak by 25%.
However, targeting both groups comes at a cost that the other control activities do not have: increased
variability in the number of cases generated per person, although this variability should increase the
chance of stochastic extinction (Figure 7a). On the other hand, we note that while reduction of contacts
is the control activity that most reduces heterogeneity in outbreaks, it is also the least effective in terms
of reducing the chances of a major outbreak. Targeting the proportion of high-risk individuals with
increasing control effort offers the middle ground of together reducing the variance-to-mean ratio and
the probability of a major outbreak.

5. Discussion

Theory developed here shows that risk structure coupled with infectious period heterogeneity leads
to an overdispersed mixture offspring distribution. We show that the variance of the mixture model
can be decomposed into variation driven by the different contact rates per group and overdispersion
driven by the infectious period. Our mechanistic model can retain the features of superspreading even
with less skewed infectious period distributions, provided the influence of the high-contact group in
the overall population is strong, i.e., there is a large average number of additional contacts made per
individual in this group. We describe a flexible method for calculating the chain size distribution,
which could be applied to other branching process models of infectious disease transmission. Our
findings also show how individual-level behavior modifications and population-level control measures
differently affect critical thresholds for control.

Statistics generated using the finite mixture models differ substantially from those generated using
the standard model if the population consists of a low-to-moderate proportion of high-contact individ-
uals. If the high-contact group has a large average number of contacts relative to the regular group,
the variance of the offspring mixture distribution (Figure 1) and the probability of observing a singu-
lar chain (Figure 2) together drive the difference between the finite negative binomial mixture and the
standard negative binomial offspring distributions. Different offspring distributions induce different
predictions for the frequency of large infection clusters when Ry > 1. In their study of Poisson mix-
tures, Kremer et al. [27] similarly found that offspring distribution tail behavior depended on the model
studied. We agree with their recommendation to compare different offspring distributions when fitting
such models to data.

Our results suggest that controlling outbreaks may be challenging when there are subgroups with
markedly different contact rates. We showed that targeted and blanket control strategies lead to different
effective Rys (compare Eqs (4.1) and (4.3)) and, therefore, different critical thresholds for elimination.
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Figure 7. Panel a shows that control applied to both groups (black line) increases the
variance-to-mean ratio in the number of secondary infections, but control specifically tar-
geted toward the proportion of high-contact individuals (blue dotted line) reduces the
variance-to-mean ratio in the number of cases, with control focused on reducing the number
of additional contacts (light red dashed line) leading to the fastest reduction in case variabil-
ity. Panel b shows the extinction probability as a function of control level and panel ¢ shows
the corresponding percentage decrease in the probability of a major outbreak as the control
level ¢ increases. Control applied to both groups activates the fastest increase in extinction
probability and respective reduction in the probability of a major outbreak.
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Specifically, for effective R, to be below one, targeted interventions aimed only at the high-contact
group require the regular subgroup’s R, to be below 1 for outbreak control; alternatively, if interven-
tions are applied population-wide, then the influence of the high-contact subpopulation cannot exceed
po < 1 for complete pathogen elimination. Importantly, if high-contact individuals contribute little to
Ry, control activities that target both groups are a more effective strategy than targeting high-contact
individuals alone since the effective R, under the blanket control strategy is less than the effective R,
under the targeted strategy. But, if high-contact individuals contribute extensively to Ry, then the op-
posite is true. Moreover, control activities that target both groups inflate the variance to mean ratio,
and the effect is exacerbated the more different the two subpopulations are from each other, although
more variation also increases the chance of stochastic extinction. Therefore, our work suggests that
directing control actions on all groups, e.g., via lockdowns, may be more suitable if the population is
more homogeneous. We also show that disease elimination is only possible under the targeting of the
high-contact group strategies (a) and (b) provided R, of the pathogen in the regular group is below
one. This finding suggests that additional targeting of the group via population-wide measures such as
stay-at-home orders may also be needed for elimination to be achieved.

Our work shows that combining biological and social heterogeneities can alter the variance of the
distribution of secondary infections V(N), the probability of observing a singular chain P(Y = 1), and
the extinction probability s* in important ways. Future work could examine if this occurs in network
models of disease transmission. For example, Allard et al. [28] modeled asymmetrical transmission
of Zika virus between males and females using Poisson distributed contact networks, but their model
did not include heterogeneities in the infectious period. Our approach does not assume assortative
mixing, i.e., high-risk individuals preferentially contacting other high-risk individuals, and only applies
to undirected networks. Examining the effect of these factors in directed transmission graphs (e.g.,
[29,30]) and whether these results also apply there may be an important area of future research.

Our modeling approach has some limitations. We assume the same dispersion parameter k for both
groups in the population. For example, the high-contact group may have greater variability in the
duration of their infections than the regular group. To allow for this, the model could be adapted so
that the distribution of infectious periods in the high-contact group would be described by a lower
dispersion parameter than that of the regular group. Our approach yields a method for calculating
the chain size distribution that may yield an analytical formula for some mixtures; however, for more
complicated models such as the mixture model in this paper, it does not yield an analytical expression,
which could make fitting mixture models to data more complicated than fitting the negative binomial
model. But if the proportion of individuals belonging to each risk group is known, for example, in
closed settings such as care homes or in professional sports teams, then this would make fitting the
model easier by increasing the identifiability of the parameters and by reducing the model’s number of
degrees of freedom. Our model could also be readily adapted to scenarios where there are differences in
transmissibility between groups, for example, if there are asymmetries in viral load [31] or differences
in transmission mode (e.g., aerosol vs. droplet transmission [32,33]). One can assume the probability
of infection given contact differs, i.e., g > ¢, since contact rates for each group will be Poisson
distributed with intensities ¢g;z and ¢,z, and the modeling approach will also apply in this case.

In conclusion, our model explicitly combines differences in contact rates and infectiousness, provid-
ing a straightforward framework integrating both social and biological factors. Our model suggests that
the addition of risk structure, together with infectious period heterogeneity, leads to variable outbreak
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dynamics, even if the infectious period distribution is symmetric about its mean. We recommend that
applications of this theory examine mechanistic alternatives to the standard negative binomial model
when studying outbreak distributions.
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