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Abstract: Forecasting wind speed plays an increasingly essential role in the wind energy industry. 

However, wind speed is uncertain with high changeability and dependency on weather conditions. 

Variability of wind energy is directly influenced by the fluctuation and unpredictability of wind speed. 

Traditional wind speed prediction methods provide deterministic forecasting that fails to estimate the 

uncertainties associated with wind speed predictions. Modeling those uncertainties is important to 

provide reliable information when the uncertainty level increases. Models for estimating prediction 

intervals of wind speed do not differentiate between daytime and nighttime shifts, which can affect the 

performance of probabilistic wind speed forecasting. In this paper, we introduce a prediction 

framework for deterministic and probabilistic short-term wind speed forecasting. The designed 

framework incorporates independent machine learning (ML) models to estimate point and interval 

prediction of wind speed during the daytime and nighttime shifts, respectively. First, feature selection 

techniques were applied to maintain the most relevant parameters in the datasets of daytime and 

nighttime shifts, respectively. Second, support vector regressors (SVRs) were used to predict the wind 

speed 10 minutes ahead. After that, we incorporated the non-parametric kernel density estimation 

(KDE) method to statistically synthesize the wind speed prediction errors and estimate the prediction 

intervals (PI) with several confidence levels. The simulation results validated the effectiveness of our 

framework and demonstrated that it can generate prediction intervals that are satisfactory in all 

evaluation criteria. This verifies the validity and feasibility of the hypothesis of separating the daytime 

and nighttime data sets for these types of predictions. 
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1. Introduction 

Nowadays, wind energies are sustainable and have particular potential in smart grid stability at 

seasonal periods of the year [1–3]. However, wind power (WP) strength forecasting is a challenge for 

researchers when planning to integrate WP resources into modern energy systems. This is due to non-

linear and non-stationary features of the wind speed (WS) time series data [4–7]. WS forecasting is the 

first step of WP prediction. Therefore, reliable forecasting of WS provides adequate knowledge to draw 

proper decisions about the intensity of WP in a specific region.  

Many WS prediction methods have been introduced to provide point predictions, also named 

deterministic predictions, which fail to accurately show the uncertainty and instability of WS, thus 

compromising the reliability of forecasted results [8–10]. Practically, deterministic forecasting systems 

provide only point forecasting errors without showing the probability of their correct forecasting. 

Therefore, a solution to quantify the uncertainty factor, such as prediction intervals (PIs), was 

considered an adequate need. PIs provide a range within which the observed WS is likely to fall based 

on a particular confidence level that reflects the model’s reliability [11]. 

Interval prediction estimates the range of possible change in the future of a value at some point 

when the original data shows irregular variations. Practically, interval prediction provides upper and 

lower bounds of predictions at specified confidence levels. That offers decision-makers adequate 

uncertainty information for more accurate decision-making [12–14]. In WP applications, PI estimation 

is particularly beneficial for wind farm operation and maintenance engineers to plan their activities 

and formulate reasonable scheduling policies [15]. With the development of artificial intelligence, 

machine learning (ML) models became distinguished methods for both point and interval WS 

predictions [9,10,16]. In recent years, several ML models and architectures have been employed in WS 

PI estimation systems. Most of the recently proposed models are either ensemble models [17–23], 

hybrid models [24–27], or deep learning (DL) models [28,29]. Ensemble models combine parallel 

predictors of type statistical regressors and/or ML models. Hybrid models consist of combining ML 

models with optimization methods. 

The authors in [12] proposed a hybrid model that combines least support vector machines 

(LSSVM) with multi-objective ant lion optimization (MOALO) algorithm to construct hourly 

prediction intervals of wind speed in Shandong province, China. The authors in [16] proposed a WP 

deterministic and interval prediction framework comprising five single ML predictors of type long-

short term memory (LSTM), support vector machine (SVM), deep belief network (DBN), extreme 

learning machine (ELM), and convolutional neural network (CNN). A critical weight method is applied 

to combine the point forecasting results of the individual predictors. Then, the nonparametric kernel 

density estimation (KDE) method is applied to estimate the PIs around each point prediction under 

different confidence levels. A new deterministic and probabilistic WS forecasting framework based on 

explainable neural networks (NNs) is presented by Huang et al. [14]. The uncertainties in WS are 

statistically synthesized via the KDE method to provide the PI around deterministic forecasts [14]. The 

authors in [17] proposed an ensemble module with mixed frequency modeling for WS point and 

interval forecasting. The introduced approach applied a multi-objective optimizer to enhance the 
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performance of several forecasting ELM models. The authors in [18] combined ensembles of NNs and 

SVRs using a multi-objective optimization approach. The proposed model was examined on five WS 

datasets to find interval predictions. The authors in [19] applied a fuzzy information granulation 

technique to reduce the dimension of WS data. The proposed model uses the multi-objective dragonfly 

algorithm to combine four sub-models, including NNs and statistical models. The researchers in [20] 

employed different ML and statistical prediction methods according to modal characteristics. The 

authors introduced several optimization algorithms designed to enhance nonlinear prediction 

capabilities. Additionally, they explored a set of interval prediction schemes based on Monte Carlo 

theory. A quantile regression bi-directional LSTM network within an ensemble probabilistic 

forecasting strategy is proposed in [21] for estimating uncertainty in WS. The research in [24] applied 

two gated recurrent units (GRUs) to build WS PIs using prediction errors. The authors used variational 

mode decomposition to decompose the complex WS time series into simplified modes. The prediction 

error for each mode is given a weight. The prediction errors are accumulated to obtain the width of the 

final PIs. The optimal weights of the prediction errors are found using the particle swarm optimization 

algorithm. The authors in [22] proposed a clustering-based short-term WS interval prediction with 

multi-objective ensemble learning. A variational mode decomposition is employed to acquire the sub-

sequence matrix of WS. A multi-objective optimization method is then used to choose and train an 

optimal model for each sub-sequence using its long-term correlation. The authors applied their 

proposed model for wind speed data from the national renewable energy laboratory (NREL). The 

authors in [23] proposed a method that combines a multi-objective artificial hummingbird algorithm, 

prediction interval forecasting, and statistical and gated recurrent forecasting methods. 

In [25], the authors proposed a hybrid model that uses an auto-encoder-based feature extractor 

and bidirectional LSTM (bi-LSTM) models for short-term WS interval predictions. The reported 

simulations showed that feature extraction through auto-encoder is advantageous to produce narrow 

PIs with high PI coverage. The work in [26] combines the optimized Radial Basis Function model, the 

Fourier distribution, and the fast correlation based filter (FCBF) algorithm to build a WS interval 

prediction model. The authors applied the FCBF algorithm to filter the factors that affect the wind 

change, and then they introduced an improved version of the particle swarm optimization (PSO) for 

optimizing the RBF model. The Fourier function was used to fit the error probability distribution that 

is used to estimate the WS PIs. The authors in [27] proposed a forecasting model that combines a 

modified multi-objective tunicate algorithm MMOTA, a set of statistical and ML models, and a 

quantile regression QR tool for deterministic and probabilistic interval forecasts of WS. The system 

presented in [28] includes an empirical mode decomposition to extract the linear component of the 

initial WS series. Then, an autoregressive integrated moving average model (ARIMA) and back 

propagation neural networks BPNN are applied to produce the deterministic prediction points. Finally, 

an improved first order Markov chain (IFOMC) model is provided to make the uncertainty analysis of 

WS and produce the PIs. The authors in [30] proposed a PI model that consists of temporal 

convolutional networks TCN to forecast WS. The input, hidden, and output layers of the proposed 

model consist of a TCN layer, multiple fully connected layers using 𝑡𝑎𝑛ℎ activation function, and an 

end-to-end sorting layer. Table 1 summarizes the above-mentioned models. 
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Table 1. A summarized overview of the surveyed PI forecasting methods. 

Models Structure Ref. Dataset Advantages Main Results 

LSSVM Hybrid + 

optimization 

methods 

[12] Hourly wind 

speed data from 

Shandong 

province, China. 

Simultaneous 

construction of lower 

and upper bounds. 

Seasonal models with good coverage 

and interval width. 

ARIMA + NNs Hybrid ML 

models 

[13] 10-min average 

WS, China 

Operative method for 

ultra-short term WS PI 

forecasting.  

The higher PINC value leads to the 

good coverage probabilities and wide 

bandwidth. 

Explainable 

NNs 

Parallel 

ensemble 

[14] 1-hour ahead 

weather and WS 

data 

The model expresses 

how the inputs affect 

the outputs by 

mathematical modeling 

The ACE of the introduced model 

provides the smallest deviations to the 

nominal confidence levels, mainly 

within high confidence levels. 

LSTM + ELM 

+ SVM + DBN 

+ CNN 

Ensemble + 

optimized 

combination 

[16] 15-min WS data. The framework is 

robust against variations 

since it is an ensemble 

approach 

The overall ensemble performance is 

better than each single model with 

various enhancements. 

ELM-based 

models 

Ensemble + 

optimized 

combination 

[17] 10-min WS. 

Chengde and 

Penglai-

Shandong, China 

Novel modeling 

technique, advanced 

ensemble model with 

mixed frequency 

modeling. 

PI estimation using different 

optimization objectives. 

SVM + ELM + 

MLP 

Ensemble + 

optimized 

combination 

[18] 10-min WS data 

from four cites in 

Dalian, China. 

Decomposition 

and reconstruction 

technology is applied to 

remove the high-

frequency noise. 

The combined PI estimations 

overperformed all single models for 

one step and multi steps predictions. 

NNs + ELM + 

ARIMA. 

Ensemble + 

optimized 

combination 

[19] 10-min wind 

speed. Penglai-

Shandong, China 

Preprocessing steps 

transform the high-

dimensional WS data 

into low-dimensional 

subsets using fuzzy 

information granulation 

Improvement in MAPE for all multi-

steps forecasting against single models. 

NNS + Markov 

Chain Monte 

Carlo Method 

Parallel 

ensemble 

[20] 5-min Changma 

dataset (China), 

10-min Sotavento 

dataset (Spain). 

Back propagation 

neural network is 

optimized by improved 

cuckoo algorithm, 

strong global 

optimization. 

Successfully identify several modal 

characteristics and enhance prediction 

accuracy. The Monte Carlo method is 

applied to estimate PIs, Strong 

prediction applicability 

Continued on next page 
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Models Structure Ref. Dataset Advantages Main Results 

Bi-directional 

(LSTM) 

Ensemble 

probabilistic 

forecasting 

[21] 10-min wind 

speed. Penglai-

Shandong, China. 

Reliable uncertainty 

forecasts, good global 

optimization ability, and 

good Excellent fitting 

ability. 

The PI coverage probability provided 

by the system is above 97%, and the 

correctness is enhanced by 24.21% 

against single models 

GRU ensemble Ensemble + 

optimized 

combination 

[24] 30-min wind 

speed records 

from Boston and 

Huston wind 

fields 

Strong applicability, 

Strong stability of the 

result 

The constructed PIs are of high 

credibility with PICP indices higher 

than PINC (90%). The performance is 

sensitive to changes in locations and 

seasons. 

GRU + SVR + 

ARIMA 

Clustering-

based 

ensemble 

learning 

[22] Two 10-min WS 

data from NREL 

(California, and 

Washington) 

Effective optimization 

for ensemble learning, 

clear forecasting 

process. 

Robust prediction on onshore and 

offshore scenarios. More than 4.77% 

improvement on PICP. 

LSTM + GRU 

+ ARIMA 

Ensemble + 

optimized 

combination 

[23] 10-min WS. 

Penglai-

Shandong, China 

Capturing linear and 

nonlinear features of 

time series data. 

Heterogeneous interval prediction 

methods are combined by multi-

objective artificial hummingbird 

algorithm. 

Bi-LSTM Hybrid 

BLSTM + 

auto-

encoder 

[25] Two 30-min WS 

data from NREL 

(Lake Huron, and 

Pennsylvania) 

Feature extraction 

through auto-encoder is 

effective, Good 

stability. 

Feature extraction through auto-

encoder, high PI coverage with narrow 

intervals. 

FCBF + RBF Hybrid ML 

models  

[26] 5-min Changma 

dataset of wind 

speed 

Performant FCBF based 

feature selection, the 

solution is effective and 

feasible. 

Hybrid ML with statistical knowledge, 

the average width of the PI is less than 

3 m/s. 

MMOTA + QR 

+ ANN 

Hybrid + 

optimization 

methods 

[27] 5-min Changma 

dataset (china), 

10-min Sotavento 

dataset (Spain). 

The filter of high-

frequency noise 

improve the 

effectiveness,  

The empirical research  

demonstrates the optimal forecasting of 

WS. 

ARIMA + 

BPNN+IFOMC 

Hybrid ML 

models 

[28] 10-min average 

WS from China 

higher accuracy and 

efficiency, Strong 

stability of the result. 

Hybrid solution with efficient 

computation and convergence. 

TCN Deep 

Learning 

[30] Two 15-min WS 

data from NREL 

(Patterson, and 

San Francisco). 

Good stability and 

reliability, optimal 

temporal models. 

PIs with a satisfactory coverage 

probability, satisfactory PIPC for both 

benchmarking datasets. 

LSTM Deep 

Learning 

[29] Four 10-min WS 

data from NREL 

(Maine, Rhode 

Island, North 

Carolina, 

Virginia) 

New loss functions for 

gradient descent back 

propagation, good 

algorithm convergence 

Deep learning PI forecasting with good 

fitting ability, comparable 

advantageous convergence time.  



28 

Mathematical Biosciences and Engineering  Volume 22, Issue 1, 23-51. 

The above mentioned models do not differentiate between daytime and nighttime data records. 

Our hypothesis in this study assumes that the WS and direction are influenced by weather parameters 

such as air pressure, air temperature, air density, and many others. The values of those parameters 

related to daytime shifts are quite different from those related to nighttime ones. In this work, we 

introduce and train independent daytime and nighttime models for deterministic predictions. Then we 

find prediction intervals of WS in short-term horizons. To the best of our knowledge, considering 

daytime and nighttime records separately for designing ML models to estimate PIs of WS has not been 

explored and lacks comprehensive investigation. Thus, we aim to address this problem and introduce 

a new probabilistic interval prediction model for short-term WS forecasting. The proposed model 

investigates a hybrid intelligent approach based on independent short-term predictors of type SVRs, 

feature selection module, and KDE technique to estimate PIs of WS. 

In the first step, we arrange the records of weather parameters into daytime and nighttime records. 

The automatic selection of the most relevant features for each of the day and night-related models is 

implemented in a pre-processing phase. Feature selection techniques such as recursive features 

elimination and univariate selection have been tested and compared. Then, the sliding window method 

is applied to convert the time-series prediction task to a regression task. All the prediction models are 

trained for 10-minutes-ahead forecasting of WS. 

The main contribution of this work is as follows: 

(1) A new prediction approach that consists of independent models for daytime and nighttime 

shifts is proposed to estimate PIs for short-term forecasting of WS.  

(2) The relevant features for each time shift are automatically selected using two different 

techniques, namely the Univariate Selection US and the recursive feature elimination (RFE). The 

deterministic prediction models investigate the stochastic relationship among the input features related 

to each shift and the estimated WS 10-minutes ahead. 

(3) The KDE method is applied for each time shift separately to analyze the prediction errors of 

the related point prediction models without setting a hypothesis about the distribution of the WS 

prediction errors in advance.  

(4) The simulation results indicate that considering independent daytime and nighttime regression 

models and applying suitable feature selection provides better PI forecasting than using global 

prediction models. 

The proposed framework was validated on testing data records with short time horizons. The 

obtained scores of simulation works demonstrated the effectiveness of the introduced framework. 

Three evaluation metrics, specifically the prediction interval coverage probability (PICP), the 

Prediction interval normalized average width (PINAW), and the coverage width-based criterion 

(CWC), have been designated to evaluate the proposed WS prediction interval framework. 

The remaining sections of this work are organized as follows: In Section 2, we introduce the major 

algorithms and methodology that have been applied. In Section 3, we detail the structure of the 

proposed approach. In Section 4, we present and discuss the simulations and results. Finally, in Section 

5, we present the conclusions and perspectives of this work. 
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2. Related methodology 

2.1. Data cleaning: quartile method to remove outliers 

The quartile method (QM) is a statistical technique that identifies and eliminates data points that 

are different from the majority of a numerical dataset. This method involves four major steps: 

Step 1: The QM arranges the data values of a variable 𝑥𝑖 in ascending order 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}. 

Then the Quartile points 𝑄1  , 𝑄2 , and 𝑄3 , which divide the ordered data into four quartiles, are 

calculated as follows: 

𝑄2 (𝑡ℎ𝑒 𝑚𝑒𝑑𝑖𝑎𝑛) =  {

𝑥𝑛+1

2

                 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑥𝑛
2

+ 𝑥𝑛+2
2

2
         𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

     (1) 

The second quartile Q2 divides the ordered dataset into two parts D1 and D2, Where the first Quartile 

𝑄1  and the third Quartile 𝑄3 are the medians of 𝐷1 and 𝐷2 respectively. 

Step2: The Inter Quartile Range (IQR) of the dataset 𝑋, which is the difference between 𝑄1  and 𝑄3 

is computed as follows: 

𝐼𝑄𝑅 =  𝑄3 − 𝑄1            (2) 

Step 3: The lower-bound 𝐵𝑙 and the upper-bound 𝐵𝑢 are found to identify outliers: 

𝐵𝑙 = 𝑄1 − 1.5 𝐼𝑄𝑅          (3) 

𝐵𝑢 = 𝑄3 + 1.5 𝐼𝑄𝑅          (4) 

All data points outside the interval [𝐵𝑙 , 𝐵𝑢] are suggested as outliers in the dataset 𝑋. Figure 1 is a 

boxplot that illustrates the quartile points and the IQR interval computed by the QM. 

 

Figure 1. A typical Boxplot and the calculated IQR using the QM method. 

2.2. Feature selection 

Feature selection involves the automatic choosing of the most relevant features of a set of features. 

Features selection helps in reducing the space dimensionality of datasets and enhances the overall 

performance of the ML algorithms. In addition, it makes it easier to understand the underlying 

relationships between the selected features and the target variable [31,32]. The feature selection 

techniques that are applied to prepare input data for the ML models are: 
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(1) Univariate selection: This is an effective method for feature selection that incorporate 

statistical tests to select the features that have a resilient relationship with the output [31]. It evaluates 

each feature individually to determine its relevance for predicting the target variable. The first step of 

the univariate selection process evaluates the relevance score of each feature using a statistical test to 

measure its correlation with the target variable. Pearson’s correlation and F-Test (ANOVA) are among 

the adopted features scoring methods for regression tasks. Based on the scoring, and then the ranking 

of the features, the top 𝑘 ones are selected. Alternatively, features can be selected based on a specific 

significance level (p-value < 0.05). The univariate selection method is computationally efficient, 

especially for high-dimensional datasets. 

(2) RFE: This method removes the features that do not have a strong relation with the output in 

a recursive way [31,32]. It aims to find a subset of features that results in the best performance for the 

model. This wrapper method uses the accuracy of an ML model to detect the features or the subset of 

features that contribute the most in predicting the output variable. The RFE algorithm works as follows: 

1) Train an ML model on the initial feature set that includes all features. 

2) Evaluate the importance of each feature based on a specific criterion. 

3) Rank the current set of features with respect to their importance scores computed in Step (2) 

4) Remove the least important feature(s) from the current set of features 

5) Repeat Steps 1–4 with current features until a stop criterion is reached (e.g., a predefined 

number of features is reached, or the performance of the wrapper model stops improving).  

The evaluation of feature importance is a crucial step in the RFE method, and it varies based on 

the adopted ML model. For the SVRs, there are a few techniques that are reported in the literature as 

estimators of feature importance. These include the Permutation Importance that can be applied with 

both linear and non-linear SVRs. This technique randomly permutes the values of a feature and 

evaluates the changes in the model’s performance score for instance, the mean squared error. The 

features that, when permuted, cause a larger decrease in performance are considered important ones. 

Another approach to evaluate feature importance is the weight vector approach. This approach is 

applicable to linear SVRs where the feature importance can be estimated from the weight vector 

(coefficients) learned by the model. 

We run all the experimental simulations using the Scikit-learn 0.24.2 framework that requires 

Python 3.6 or successor versions [33]. 

2.3. Support vector regressors 

SVRs models are ML tools to address regression problems. Currently, they are competitor 

methods in approximating continuous functions [34–36]. They are a type of SVM designed to model 

regression tasks.  

The objective of SVRs is to find a flexible tube around the function to be approximated for as many 

data points as possible within a specified margin of tolerance defined by a parameter epsilon (ε) [34]. In 

SVR models, support vectors are the key data points that lie on or outside the boundaries of the epsilon 

tube defined by the parameter epsilon ε around the predicted function, as shown in Figure 2. Those points 

are the only ones that determine and affect the final position and orientation of the regression function. 

This makes the model less sensitive to outliers [35]. 
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Figure 2. Support vector regression (SVR) with epsilon parameter and support vector points. 

SVR models also incorporate kernel functions that allow them to handle non-linear relationships 

among variables. Commonly used kernels include polynomial kernel, radial basis function (RBF) 

kernel, and sigmoid kernel [34]. These kernels map the input features’ space into a higher-dimensional 

space, enabling the SVR to capture complex patterns and associations among data records.  

In addition to their robustness to outliers and ability to model non-linear relationships between 

the input variables and the target output, the SVRs are advantageous thanks to the independence of 

their computational complexity with regards to the dimension of vectors of input data. 

2.4. Kernel density estimation (KDE) 

The KDE is a non-parametric estimation method that is commonly used for data fitting when the 

potential probability density function (PDF) cannot be found [37,38]. Statistically, the PDF of a 

random variable describes the likelihood of that random variable taking a specific value. The KDE 

consists of placing a soft kernel function at each data point. It then sums these kernels to create a 

smooth estimate of the underlying PDF of the data points’ distribution. This statistical technique does 

not assume any particular distribution of the data. Our study uses the KDE method to create a random 

distribution model of the WS forecasting errors. Practically, we estimated the PIs of the WS by 

analyzing the distributions of forecasted WS errors produced by the ML prediction models. 

In general, the PDF is estimated as follows: 

Suppose 𝑆 = {𝑠1, 𝑠2 , 𝑠3, … , 𝑠𝑛} is a set of 𝑛 sample points of WS prediction errors. Then, the PDF of 

the WS errors can be written as follows: 

𝑓(𝑠, ℎ) =  
1

𝑛∗ℎ
∑ 𝑘 (

𝑠− 𝑠𝑖

ℎ
)𝑛

𝑖=1         (5) 

where 𝐾(𝑠, ℎ) represents the kernel function, and ℎ represents the bandwidth parameter that controls 

the smoothness of the estimation.  

Common kernel functions include Gamma kernel, uniform kernel, Gaussian kernel, and others 

are used with the KDE method [37,38]. In our approach, we selected the Gaussian kernel as the kernel 

function 𝑘 when we estimated the PDF of error distribution using the KDE. The 𝑘( ) is expressed by: 

𝑘(𝑤) =  
1

√2𝜋
𝑒(−

𝑤2

2
)
          (6) 
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Thus, the estimated PDF can be expressed by: 

𝑓(𝑠, ℎ) =  
1

√2𝜋 𝑛ℎ
∑ 𝑒−

1

2
(

𝑠− 𝑠𝑖
ℎ

)2𝑛
𝑖=1        (7) 

where ℎ is the bandwidth parameter that determines the width of the distribution interval of the 

prediction error, and 𝑠𝑖  is the 𝑖𝑡ℎ sample of the WS prediction error. 

3. Proposed approach 

In this section, we describe the general structure of the hybrid probabilistic approach for 

estimating the WS PIs. The overall structure of the proposed approach is depicted in Figure 3. The 

input of the proposed model is the climatological parameters and the WS data records at time 𝒕. The 

result outputs are the lower bound 𝑳𝒕+𝟏
𝜶   and Upper bound 𝑼𝒕+𝟏

𝜶   of the PIs at time 𝒕 + 𝟏  with a 

corresponding confidence level 100(1 −  𝛼)%. 

 

Figure 3. The general pictogram of the WS PIs forecasting model. 

As illustrated in Figure 3, the general structure of the WS prediction approach introduced in this 

work consists of four main steps. The first is data processing and preparation, including the separation 

of daytime and nighttime data records. The second is feature selection to find the most relevant feature 

for each time shift of the day. The third is the point prediction module using SVR regressors. Finally, 

the fourth is the PIs forecaster module. The following sections detail each component of the proposed 

architecture. 

3.1. Data processing module 

The data pre-processing and preparation module involves three main steps as follows: 

(1) Separate daytime and nighttime data records:  

The dataset is divided into daytime and nighttime datasets using solar radiation amount in each 

data record. 

(2) Remove outliers: 
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The outliers of each time shift dataset are removed using the QM module described in Section 

2.1. The QM is applied separately to the daytime and nighttime datasets. 

(3) Data scaling and normalization: 

The Data normalization technique aims to rescale features and variables to a common range, 

typically between 0 and 1. Practically, it is computed by subtracting the minimum value from each 

data point and then dividing by the range (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 −  𝑚𝑖𝑛𝑖𝑚𝑢𝑚)  as shown in Eq (8). This 

technique is commonly named MinMax scaling. 

Normalization is useful when dealing with different scales or units of measurement across 

features since it ensures that all features have equal contribution to the analysis or mode. 

𝑝𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑝−min(𝑃)

max(𝑃)− min (𝑃)
         (8) 

where 𝑝 is the computed value of parameter 𝑃, and 𝑚𝑖𝑛(𝑃) and 𝑚𝑎𝑥(𝑃) are the lowest and highest 

values of the parameter 𝑃. 

(4) Sliding window:  

This technique permits to convert a prediction task into a regression one. The sliding window re-

arranges the time series data records by considering the weather parameters and the WS of the 𝑘𝑡ℎ 

record as input vector, and the WS of the (𝑘 + 1)𝑡ℎ record as the related target output. Figure 4 depicts 

the sliding window method.  

 

Figure 4. The sliding window method models a time-series prediction task to a regression one. 

3.2. Feature selection and extraction module 

This task involves identifying and selecting the most influential features (variables) with 

significant contribution to accurate predictions. In general, the selection of appropriate features can have 

a substantial impact on an ML model’s performance and computational efficiency. WS forecasting 

models typically utilize a wide range of input weather parameters. However, not all these parameters 

are equally important or contribute equally to the prediction accuracy. Therefore, an effective feature 

selection enables the elimination of irrelevant or redundant parameters. 

In the proposed framework, we apply two feature selection techniques. The univariate selection 

(US) is a filter method based on statistical measures, whereas the RFE is a wrapper method that 

evaluates subsets of features recursively. We believe that the relevant features in the daytime and 

nighttime datasets may be different. Therefore, the two adopted methods are applied to daytime and 

nighttime sub-datasets separately, as illustrated in Figure 5. 

As shown in Figure 5, the US method is applied to both daytime and nighttime datasets to produce 

two new datasets DT-US and NT-US. On the other hand, the RFE method is also applied to both 
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daytime and nighttime datasets to produce two new datasets DT-RFE and NT-RFE. 

 

Figure 5. The US and the RFE are applied to the daytime and nighttime data sets to produce 

two sub-datasets for each. 

3.3. Point prediction module 

The point prediction module consists of SVR-based models for deterministic wind speed 

prediction. In our research, we trained a set of three independent SVR-based predictors for each time 

shift. A particular SVR predictor related to a time shift is trained on the related dataset either with all 

features or with selected features. Besides, we trained three reference global SVR models on global 

datasets that do not separate daytime and nighttime data records. All the examined SVR models have 

RBF kernels capable of modeling non-linear relationships between target and input variables [37,38]. 

The nine obtained deterministic prediction models are as follows: 

3.4. Interval prediction module 

Table 2. The SVR-based predictors for point predictions of WS. 

model Training dataset Description 

SVR-DT-US DT-US Trained on a daytime dataset with features selected by the US method. 

SVR-DT-RFE DT-RFE Trained on a daytime dataset with features selected by RFE method 

SVR-DT DT Trained on a daytime dataset with all features 

SVR-NT-US NT-US Trained on a nighttime dataset with features selected by US method 

SVR-NT-RFE NT-RFE Trained on a nighttime dataset with features selected by RFE method 

SVR-NT NT Trained on a nighttime dataset with all features 

SVR-Global-US Global-US Trained on a global dataset with features selected by US method 

SVR-Global-RFE Global-RFE Trained on a global dataset with features selected by RFE method 

SVR-Global Global Trained on a global dataset with all features 
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The proposed approach applies the KDE method to estimate the PDF that fits the regression errors 

of WS point predictions generated by the SVR models to estimate the PIs of WS. Recently, the KDE 

method has been considered a statistical tool to analyze the characteristics of data distribution without 

using prior distributions [39]. Therefore, the potential impact of the hypothesis on WS forecasting error 

and prediction accuracy can be suitably reduced.  

After training the SVRs related to the daytime and nighttime time shifts using separate training 

datasets, the errors of the deterministic predictions of the WS are evaluated using validation datasets, 

also related to daytime and nighttime shifts. Consequently, a sequence of distinct prediction errors 𝐸𝑑 

and 𝐸𝑛 related to the two time shifts of the day are collected, respectively: 

𝐸𝑑 = {𝑒𝑑
1, 𝑒𝑑

2, … . , 𝑒𝑑
𝐷 } , 𝐸𝑛 = {𝑒𝑛

1, 𝑒𝑛
2, … . , 𝑒𝑛

𝑁 } 

where 𝐷 represents the number of validation dataset records related to the daytime shift, and 𝑁 is 

the number of records in the validation dataset related to the nighttime shift. 

The KDE method is then applied on 𝐸𝑑  and 𝐸𝑛  to estimate the PDF for each set of point 

predictions’ errors respectively. Therefore, Eq (7) is applied twice as follows: 

𝑓(𝑠 , ℎ𝑑) =  
1

√2𝜋 𝑛ℎ𝑑
∑ 𝑒

−
1

2
(

𝑠− 𝑒𝑑
𝑖

ℎ𝑑
)2

𝐷
𝑖=1        (9) 

𝑓(𝑠 , ℎ𝑛) =  
1

√2𝜋 𝑛ℎ𝑛
∑ 𝑒

−
1

2
(

𝑠− 𝑒𝑛
𝑖

ℎ𝑛
)2

𝑁
𝑖=1        (10) 

Equation (9) estimates the PDF of the prediction errors provided by the daytime SVR model using 

the daytime validation dataset. On the other hand, Eq (10) estimates the PDF of the prediction errors 

provided by the nighttime SVR model using the nighttime validation dataset.  

The ℎ parameter in Eq (7) represents the bandwidth that determines the width of the distribution 

interval of the prediction error. In the proposed approach, we assume that an appropriate bandwidth 

may differ from one set of errors to another. Therefore, we consider the possibility of having two 

different bandwidth values, ℎ𝑑  and ℎ𝑛  for the daytime and nighttime estimated PDF as shown in Eqs 

(9) and (10), respectively. In general, selecting an appropriate value of the bandwidth parameter ℎ 

controls the smoothness of the estimation, and provides the balance between the variance and bias in 

the results. This in turn helps minimize the error of estimation [37]. In this work, we used the trial and 

error method to choose the most appropriate bandwidth value for each error dataset. 

Using the estimated PDFs, we computed the cumulative distribution function (CDF) that represents 

the probability that a random variable will take a value less than or equal to a given point [37,38]. In this 

case, the random variable is the point prediction error. By integrating the PDF of the point prediction 

error distribution, the CDF accumulates the probabilities up to a specific value, allowing the estimation 

of the PIs. 

In the developed model, we compute the CDF to obtain the fluctuation range of the prediction 

error given a PI nominal confidence (PINC) that is equal to 100(1 − 𝛼)%. The fluctuation range can 

be expressed as follows: 

𝐼𝛼 = [𝐹(𝛼), 𝐹(1 − 𝛼/2)] , where  0 < 𝛼 < 1     (11) 

Therefore, the estimated PI related to the point predicted target of WS with 100(1 − 𝛼)% 

confidence level is expressed as follows: 
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[�̂�𝑖
(𝛼)(𝑥𝑖), 𝑈𝑖

(𝛼)(𝑥𝑖)] = [�̂�𝑖
(𝛼)

− 𝐹(𝛼) , �̂�𝑖
(𝛼)

+ 𝐹(1 −  𝛼/2)]  (12) 

where �̂�𝑖
(𝛼)

  is the point (deterministic) prediction of WS related to the input 𝑥𝑖  within the 

100(1 − 𝛼)% confidence level. 

The general chart of the suggested probabilistic prediction approach is divided into three main 

phases, as shown in Figure 6. In the first phase, we use the training dataset of one of the time-shift data 

records to train its related SVR-based deterministic prediction model. The optimal version of the 

trained SVR model for each time shift is saved for the next phase. In the second phase, the parameters 

of the PDF of the error distribution are estimated using the KDE method. The prediction errors’ datasets 

for the daytime and nighttime shifts are obtained by examining the distinct trained models in the 

previous step using the validation data set related to daytime and nighttime, respectively.  

Consequently, the obtained error datasets and the estimated PDF functions related to each time shift 

are adopted to calculate the CDF of the errors related to each time shift. Subsequently, the probabilistic 

WS prediction models for PI estimation are statistically established. In the final phase, the probabilistic 

WS framework is tested using the testing datasets to verify its forecasting performance. The proposed 

framework provides the WS forecasting uncertainties, which are probabilistically represented as a set 

of quintiles, as shown in Eq (12). 

 

Figure 6. General flowchart of the phases of the probabilistic framework based on the SVRs. 

4. Simulation and discussion 

4.1. Evaluation criteria of prediction performance 

4.1.1. Evaluation metrics of deterministic (point) prediction  

Three statistical evaluation metrics are adopted to quantify the forecast performance of the point 

prediction models. These indices are defined as follows: 
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The root mean square error (RMSE) estimates how large the errors are between the predicted and 

real values by estimating the average distance of the estimated values from the real values. This index 

is computed by the formula: 

𝑅𝑀𝑆𝐸 =  √
∑ (Hp,i−𝐻𝑖)2𝑛

𝑖=1

𝑛
                (13) 

where Hp,i designates a forecasted output and 𝐻𝑖  is the measured value related to that output. 

Mean square error (MAE): the MAE estimates the average magnitude of prediction errors without 

considering their direction. MAE is not sensitive to outliers since it does not square the residuals. This 

index is computed by the formula: 

𝑀𝐴𝐸 =  
1

𝑛
∑ |Hp,i − 𝐻𝑖|𝑛

𝑖=1        (14) 

The mean bias error (MBE) computes the average bias in a model‘s predictions and indicates 

whether a prediction model tends to over-predict or under-predict the actual values.  

This index is computed by the formula: 

𝑀𝐵𝐸 =  
1

𝑛
∑ (Hp,i − 𝐻𝑖)𝑛

𝑖=1         (15) 

The mean absolute percentage error (MAPE) computes the mean absolute percentage difference 

between the estimated values and the exact ones. The MAPE is computed as follows: 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

Hp,i−𝐻𝑖

𝐻𝑖
|𝑛

𝑖=1  × 100      (16) 

For all the above-mentioned metrics the lower values designate a better model performance. 

4.1.2. Evaluation metrics of PI-based forecasting performance 

Practically, the PI-based forecasting performance can be evaluated based on the prediction width 

of upper and lower bounds. Three evaluation indices were selected to analyze the forecast performance 

of the PI-based forecasting models. These three indices are defined as follows: 

The Prediction interval coverage probability (PICP) quantifies the percentage of times the actual 

values fall within the prediction intervals. Practically, it assesses the accuracy of the intervals in terms 

of coverage. The PICP is computed as follows:  

𝑃𝐼𝑃𝐶 =  
1

𝑁
∑ 𝑐𝑖

𝑁
𝑖=1    ,  𝑐𝑖 = {

1 , 𝑝𝑖  ∈ [𝐿𝑖 , 𝑈𝑖]
 0 ,  𝑝𝑖  ∉  [𝐿𝑖 , 𝑈𝑖] 

   (17) 

where N is the total number of testing samples, and 𝑐𝑖  is a Boolean variable that is equal to 1 if the 

sampling point 𝑝𝑖  ∈ [𝐿𝑖 , 𝑈𝑖], and 0 otherwise. 

An ideal PICP should align closely with the confidence level of the intervals, such as 85% for 85% 

confidence intervals. This alignment suggests that the PIs accurately capture the anticipated proportion 

of actual data. Conversely, a low PICP suggests that the PIs are too narrow, often failing to encompass 

the data (under-coverage). Furthermore, a high PICP implies that the PIs are too wide (over-coverage), 

incorporating an unnecessary amount of uncertainty. 
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Prediction interval normalized average width (PINAW) computes the average width of the PIs 

relative to the range of the data. The PINAW is computed as follows:  

𝑃𝐼𝑁𝐴𝑊 =  
1

𝑁
∑

𝑈𝑖  − 𝐿𝑖

𝑌𝑚𝑎𝑥− 𝑌𝑚𝑖𝑛

𝑁
𝑖=1        (18) 

where 𝑈𝑖 and 𝐿𝑖  represent the upper and lower bounds of the ith estimated PI, whereas 𝑌𝑚𝑎𝑥  and 

𝑌𝑚𝑖𝑛  are the maximum and minimum values of the target output in the testing dataset.  

A lower PINAW score indicates narrow PIs relative to the data’s range, suggesting more precise 

predictions. However, balancing lower PINAW with PICP is crucial to ensure that narrower intervals 

do not lead to under-coverage. 

Coverage width criterion (CWC) is a comprehensive index that incorporates both the coverage 

probability PICP and the normalized width of the PIs PINAW metrics. It penalizes both the failure to 

cover the actual data points (low coverage) and the wide PIs simultaneously. The CWC is computed 

as follows:  

𝐶𝑊𝐶 = 𝑃𝐼𝑁𝐴𝑊(1 +  𝛾 𝑒−𝜂(𝑃𝐼𝐶𝑃− 𝜇)        (19) 

𝛾 =  {
0, 𝑃𝐼𝐶𝑃 ≥ 𝜇
1, 𝑃𝐼𝐶𝑃 < 𝜇

 

where 𝜇  is the target confidence level, e.g., 90%, and 𝜂  is the penalty factor that weighs the 

importance of achieving the target coverage probability. Often, η is tuned empirically. Lower values 

of CWC are preferable as they indicate that the PIs are both narrow and achieve good coverage 

accuracy. 

4.2. Data collection and pre-processing  

We conducted all our simulation works on time series records collected from the AUMET dataset 

that consists of historical weather and solar radiation time series data records. The AUMET dataset is 

collected through the AUMET weather station at the American University of the Middle East AUM in 

Kuwait. Each data record of the AUMET dataset consists of the measures of sixteen climatological 

parameters with 5-minutes resolution. In our experiments, we considered a subset of nine parameters 

that we designate in Table 3. 

Table 3. The examined Weather and Solar data features from the AUMET dataset. 

Parameter Unit Description 

Air_Density Kg/m3 Density of the air 

Air_Temp Co Temperature of the air at three meters above the surface 

Corr_Wind_Dir deg. corrected wind direction 

Pressure hPa Air pressure 

Relative_Wind_Dir angleo Relative wind direction 

Relative_Wind_Speed m/s Wind speed 

Relative_Humidity pct Relative humidity 

Solar_Radiation w/m2 Amount of solar radiation 

Surface_Temp Co Air temperature at 10 cm above the surface 
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The AUMET dataset used in our simulations comprises a total of 116,188 records. During the 

preprocessing phase, the resolution was reduced from 5 minutes to 10 minutes. The dataset was divided 

into two subsets: a training subset containing 22,415 records and a hold-out subset with 13,237 records 

for testing. Additionally, two separate training subsets for daytime and nighttime were created by 

filtering the solar radiation parameter based on a specific threshold. This process resulted in three 

training subsets: A global subset combining both daytime and nighttime records, a daytime subset, and 

a nighttime subset. Similarly, the testing subset was divided into separate daytime and nighttime 

datasets using the same solar radiation threshold applied to the training data. 

An overview of the resulting subsets is provided in Table 4. 

Table 4. Training, validation, and testing subsets. 

Subset Size Utilized to 

Daytime_train 12,907 Train the daytime model 

Daytime_validation 5532 Validate the daytime model 

Daytime_testing 6731 Test the daytime model 

Nighttime_train 9508 Train the nighttime model 

Nighttime_validation 4076 Validate the nighttime model 

Nighttime_testing 6506 Test the nighttime model 

Global_Train 22,415 Train the global model 

Global_validation 9608 Validate the global model 

Global_Testing 13,237 Test the global model 

We used the MinMax scaling Eq (8) to reduce the difference in the scales of the parameters’ values 

in the training and testing data.  

We run the features selection methods to select the top five most prominent features for each 

dataset. In the simulation works, we explored various values for the number of features to be chosen, 

denoted as 𝑘, 𝑘 ∈ {5, 6, 7} . The specific features selected by both methods for each dataset are 

presented in Table 5. 

Table 5. The feature sets selected by the examined methods for each data set. 

Dataset Features 

Selection 

method 

Selected Features 

Global  RFE Pressure, Relative_Wind_Speed, Relative_Humidity, Surface_Temp, Air_Dentity 

US (KBEST) Pressure, Relative_Wind_Dir, Relative_Wind_Speed, Relative_Humidity, Solar_Radiation 

Daytime RFE Air_Temp, Relative_Wind_Speed, Relative_Humidity, Surface_Temp, Air_Density 

US (KBEST) Pressure, Relative_Wind_Dir, Relative_Wind_Speed, Relative_Humidity, Solar_Radiation 

Nighttime  RFE Air_Temp, Relative_Wind_Speed, Relative_Humidity, Surface_Temp_C, Air_Density. 

US (KBEST) Pressure, Relative_Wind_Dir, Relative_Wind_Speed, Relative_Humidity, Surface_Temp 
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4.3. Point prediction results 

To validate the effectiveness of the framework, we compared the prediction results of the 

independent models related to the daytime and nighttime shifts against the global model separately. 

The Nighttime models were tested on the night time testing records, and the day time models were 

tested for the daytime records. Moreover, the global models were tested for testing records of the 

daytime dataset, nighttime dataset, and global records dataset. The simulation results, including the 

evaluation indices RMSE, MAE, MBE, and MAPE are shown in Table 6. Furthermore, we graphically 

demonstrated the advantage of the proposed prediction approach by showing the prediction curves of 

the examined models in Figures 7–11. 

First, Figure 7 depicts the performance of the global model on both, the whole set of features and 

the selected set of features provided by the two examined methods for features selection. Figures 8 and 

9 depict the performance of each model with the original and selected set of features for the related 

time shift. 

 

Figure 7. Predictions of global model on global dataset with entire and a selected subset of features. 

Table 6. Deterministic 10 minutes ahead statistical prediction scores of WS forecasting models. 

Model Features Scores 

RMSE MAE MBE MAPE 

SVR-Global Original (all) 0.1961 0.1556 0.0162 41.9912 

RFE 0.1920 0.1526 0.0214 42.5170 

US-KBest 0.1864 0.1453 0.0015 41.6977 

SVR-DT Original (all) 0.1903 0.1505 0.0243 42.9123 

RFE 0.1925 0.1553 0.0344 41.3541 

US-KBest 0.1821 0.1431 0.0028 41.1200 

SVR-NT Original (all) 0.1892 0.1454 −0.0222 41.5372 

RFE 0.1892 0.1463 −0.0101 40.4290 

US-KBest 0.1801 0.1405 −0.0011 39.6286 

The underlined scores in Table 6 designate the best score of a predictor for the three testing 

datasets examined by the same model. On the other hand, the highlighted scores designate the two best 

scores of a particular metric across all the models for all the examined testing datasets. The obtained 

scores show that the nighttime and daytime models outperformed the global models for most of the 
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adopted evaluation metrics through the subsets of features selected by the US selection method. The 

RMSE scores designate a good short term performance of the top models. Moreover, the MBE 

designates the average value of the prediction deviation. The global models provided comparable MBE 

scores when they were examined on a subset of selected features chosen by the US method. 

The daytime model SVR-DT with features selected by US method provides a 7.14% decrease of 

the RMSE given by the SVR-Global model. On the other hand, the nighttime model SVR-NT with 

features also selected by the US method provides an 8.2% decrease in the RMSE given by the SVR-

Global model as shown in Eq (19). Furthermore, the SVR-DT and SVR-NT models decreased the 

MAE of the global model by 8.0% and 9.7% when they were applied to the US-Kbest selected dataset. 

𝐷𝑒𝑐 𝑖𝑛 𝑅𝑀𝑆𝐸  % =  8.2% =
0.1961−0.1801

0.1961
∗ 100       (20) 

On the other hand, the time shift-dependent models showed lower calculated MAPE scores, 

especially when using selected features. This indicates that these models provide the highest accuracies 

in terms of the percentage error of their predictions relative to real values. In practical terms, a lower 

MAPE demonstrates that the predictions of a particular model are closer to the exact values on average, 

indicating that such a model is reliable. 

The scores shown in Table 6 demonstrate that the US-Kbest features selection method over-

performed the RFE models when applied with the adopted type of ML models in our framework. 

 

Figure 8. Predictions of day model on daytime dataset with entire and selected features datasets. 

 

Figure 9. Predictions of night model on the Nighttime dataset with entire and selected 

feature datasets. 
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Figures 8 and 9 show that the SVR-DT and SVR-NT models show better overlapping with target 

values.  

 

Figure 10. The predictions of global model vs. daytime model with selected features 

provided by US- Kbest method. 

Figure 10 illustrates the curve of the global model versus the daytime model with features selected 

by the US method for a particular daytime period. Besides, Figure 11 illustrates the curve of the global 

model versus the nighttime model with features selected by the US method for a specific daytime 

period. 

The comparative charts in Figure 11 and Figure 12 demonstrate that the proposed framework 

exhibits good point forecast performances against the reference global model that does not differentiate 

between the daytime and nighttime records.  

 

Figure 11. The predictions of the global model vs. the nighttime model with selected 

features provided by the US- Kbest method. 

4.4. Statistical hypotheses testing of the results 

Statistical hypothesis testing, specifically paired sample t-tests, was conducted to compare the 

target values (real values) with the predicted values obtained through different approaches: Full 
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Features, REF, and US-selected features. The analysis results are briefed in Table 7. 

The hypothesis tests above assess the similarity between the average target value (actual real 

value) and the averages predicted by three different forecasting methods: all features, REF, and US, at 

the 5% significance level. The null hypothesis states that there is no difference between the averages 

of the methods, while the alternative hypothesis asserts that there are significant differences. 

The obtained results indicate that forecasting using the US method is not significantly different 

from the actual real value. Moreover, the difference between the real mean value and the forecasted 

mean value using the US method is the smallest, highlighting that the US method closely predicts the 

actual real value. Similarly, the all-features model also shows no significant difference from the real 

value, though it exhibits a larger deviation compared to the US method. 

In terms of correlations with the actual value, the US method achieves the highest correlation 

(0.874), outperforming both the all features (0.840) and REF (0.831) methods. This further emphasizes 

the accuracy of the US method in forecasting the target value. 

The superior performance of the US method, despite using fewer features compared to the all-

features method, highlights the importance of the sensitivity of the features included in the US method. 

This suggests that the features omitted in the US method are less critical for accurately predicting the 

real value. 

Table 7. Results of statistical hypothesis testing. 
 

Mean Std. 

Dev. 

Std. 

Error 

Mean 

95% Confidence 

Interval of the 

Difference 

z-value df. P-

value 

Lower Upper 

Pair 1 Target_values 

vs. pred. (all 

features) 

–0.00696 0.35756 0.00532 –0.01741 0.00347 –1.308 4503 0.191 

Pair 2 Target_values 

vs. pred. (RFE 

features) 

–0.02963 0.34991 0.00521 –0.03985 –0.01941 –5.684 4503 .000 

Pair 3 Target values vs.   

pred (US features)  

–0.00077 0.34280 0.00510 –0.01078 0.00924 –0.151 4503 0.880 

Pair 4 pred. (all features) 

vs. pred. (RFE 

features) 

–0.02266 0.08593 0.00128 –0.02517 –0.02015 –17.701 4503 0.000 

Pair 5 pred. (all features) 

vs. pred. (US 

features) 

0.00619 0.10514 0.00156 0.00312 0.00927 3.957 4503 0.000 

Pair 6 pred. (RFE features) 

vs. pred. (US 

features) 

0.02886 0.11356 0.00169 0.02554 0.03218 17.058 4503 0.000 
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(a) Global model with all features (85% confidence level) 

 

(b) Global model with selected features (85% confidence level) 

 

(c) SVR-DT model with selected features (85% confidence level) 

 

(d) SVR-NT model with selected features (85% confidence level) 

Figure 12. Prediction intervals of wind speed forecasting provided by global, daytime, and 

nighttime models with 85% confidence level. 
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4.5. Interval prediction results 

In this section, we assess the efficiency and performance of the proposed probabilistic method in 

forecasting the PIs of WS. The simulations estimated the probability density distribution and the 

related CDFs of prediction errors for each predictor described in Section 3.3 with different confidence 

levels. Table 8 depicts the evaluation indices of the PI forecasting provided by the examined models 

with confidence levels of 85%, 90%, and 95%, respectively. For clarity, we consider only the models 

that are trained on all features and those trained on features selected by the US method. The best PICP 

scores (close to the confidence level) for each confidence level are bolded, and the best related CWC 

score is underlined.  

Table 8. The scores obtained for the evaluation indices of the PIs forecasting with several PINC. 

Model Features PINC = 85% (𝜶 = 𝟎. 𝟏𝟓)  PINC = 90% (𝜶 = 𝟎. 𝟏𝟎)  PINC = 95% (𝜶 = 𝟎. 𝟎𝟓) 

PICP PINAW CWC  PICP PINAW CWC  PICP PINAW CWC 

SVR-Global ALL 0.4304 0.1506 9.1548  0.9489 0.4015 0.4015  0.9959 0.5492 0.5492 

US-Kbest 0.8908 0.2964 0.2964  0.9509 0.4002 0.4002  0.9859 0.5546 0.5546 

SVR-DT ALL 0.7387 0.2773 1.1210  0.8978 0.3681 0.7441  0.9859 0.5546 0.5546 

US-Kbest 0.8568 0.2707 0.2707  0.9339 0.3634 0.3634  0.9749 0.4996 0.4996 

SVR-NT ALL 0.8518 0.3203 0.3203  0.9199 0.3927 0.3927  0.9829 0.6003 0.6003 

US-Kbest 0.8428 0.2843 0.4298  0.9119 0.3959 0.3959  0.9801 0.5317 0.5317 

Table 8 shows that the independent time shift models outperform the reference global model in 

almost all the evaluation indices within most of the confidence levels. The best obtained scores are 

provided by the time shift-dependent models, particularly those utilizing selected features for each 

particular time shift. For PINC = 85%, the SVR-DT model (with selected features) and the SVR-NT 

model showed the best-scored PICP with a competitive CWC score provided by the SVR-DT model. 

Also, for PICP = 90%, the two independent models show the best scores against the global model. As 

per PICP = 95%, the two independent models coupled with the features selection method showed the 

closest scores to the target confidence level with the lowest CWC scores. Due to the inherent trade-off 

between the PICP and PINAW evaluation metrics, there are some cases where only one evaluation 

index of a predictor is better than that of another, e.g., the case of the best models for 𝑃𝐼𝐶𝑃 = 95%. 

In other cases, we can see that the PICP scores of the independent models are slightly better than those 

of the global reference model, but the scores of the comprehensive evaluation index CWC of the latter 

ones are, in general, smaller than those the former ones. For instance, at the confidence level of 85%, 

the CWC index of the SVR-DT model (0.2707) is smaller than the CWC score of the SVR-Global with 

all features (9.1584) and even smaller than the SVR-Global (0.2964) that uses the same feature 

selection method. Also, at the confidence level of 95%, the CWC index of the SVR-DT model (0.4996) 

is smaller than the CWC score of the SVR-Global with all features (0.5492) and even smaller than the 

SVR-Global (0.5546) that uses the same feature selection method. On the other hand, at the confidence 

level of 90%, the CWC index of the SVR-NT model (0.3959) is better than both SVR-Global models. 

Considering that the CWC accounts for both PICP and PINAW, this study showed that our 

proposal of handling the daytime and nighttime weather data records for PI estimation of WS 

demonstrates outstanding forecasting performance. 
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(a) Global model with selected features (90% confidence level) 

 
(b) SVR-DT model with selected features (90% confidence level) 

 
(c) SVR-NT model with selected features (90% confidence level) 

Figure 13. Prediction intervals of wind speed forecasting provided by global, daytime, and 

nighttime models with 90% confidence level. 

Figures 12–14 show the PI estimation results of the best models with a randomly selected period 

within different confidence levels, i.e., 85%, 90%, and 95%, respectively. 

The PIs constructed by the independent time shift models show a good coverage rate with 

competitive interval widths. The overall performance indicates that the introduced prediction 

framework can construct high-quality PIs for testing wind speed datasets at various confidence levels. 
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(a) Global model with selected features (95% confidence level) 

 

(b) SVR-DT model with selected features (90% confidence level) 

 

(c) SVR-DT model with selected features (95% confidence level) 

Figure 14. Prediction intervals of wind speed forecasting provided by global, daytime, and 

nighttime models with a 95% confidence level. 

5. Conclusions 

Wind energy is increasingly gaining attention from scholars and industries. However, accurate 

short-term WS prediction is a challenging task when controlling the consumption/production of wind 

energy within a given smart grid. Related works emphasize the necessity of carrying out uncertainty 

wind speed modeling, which provides not only the prediction error but also the probability of correct 
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predictions. Practically, reliable PI estimators of WS are crucial to the evaluation and risk analysis of 

wind power for decision-makers.  

We present a comprehensive prediction framework for short-term WS PI forecasting using ML. 

The framework consists of four modules for data processing, feature selection, point prediction, and 

interval forecasting of WS. The data processing module splits data records into daytime and nighttime 

subsets and then employs the QM method to identify and eliminate outliers. Independent daytime and 

nighttime SVR-based predictors with RBF kernels were trained and validated for WS point predictions.  

The PI forecasting module employed the nonparametric KDE method to analyze and estimate the 

PDFs of the point prediction errors of each time-shift-related predictor. The estimated PDFs and the 

CDFs were used to compute the fluctuation range of the prediction error given a PI confidence level, 

obtaining different interval prediction results. The proposed WS prediction framework is validated for 

short-term WS forecasting using a weather dataset that consists of nine weather and wind speed 

parameters. Simulation results indicate that considering daytime and nighttime data records and 

applying suitable feature selection along with independent ML models provides better forecast 

accuracy than using global prediction models. For PI estimation, the evaluation indices of the proposed 

interval forecasting models are consistently smaller than those of the global ones. The main 

contribution of this work is to suggest and validate a framework for wind speed PI forecasting that 

may include other ML regression models, not necessarily the SVR ones. 

Some limitations of the designed PI framework need to be addressed in our future research works. 

For instance, in the current framework, we assume that all deterministic prediction models are of the 

same type and have the same structure, namely SVR. In addition, the bandwidth parameter ℎ, which 

determines the width of the distribution interval of the prediction error and thereby controls the 

smoothness of the estimation, is selected using the trial and error method. Other future perspectives 

include validating the proposed approach on different time horizons and resolutions, and enhancing 

prediction performance while improving operating time. 
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