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Abstract: Multiscale modelling is a promising quantitative approach for studying infectious disease
dynamics. This approach garners attention from both individuals who model diseases and those who
plan for public health because it has great potential to contribute in expanding the understanding
necessary for managing, reducing, and potentially exterminating infectious diseases. In this article,
we developed a nested multiscale model of hepatitis B virus (HBV) that integrates the within-cell
scale and the between-cell scale at cell level of organization of this disease system. The between-cell
scale is linked to the within-cell scale by a once off inflow of initial viral infective inoculum dose
from the between-cell scale to the within-cell scale through the process of infection; the within-cell
scale is linked to the between-cell scale through the outflow of the virus from the within-cell scale
to the between-cell scale through the process of viral shedding or excretion. The resulting multiple
scales model is bidirectionally coupled in such a way that the within-cell scale and between-cell scale
sub-models mutually affect each other, creating a reciprocal relationship. The computed reproductive
number from the multiscale model confirms that the within-host scale and the between-host scale
influence each other in a reciprocal manner. Numerical simulations are presented that also confirm the
theoretical results and support the initial assumption that the within-cell scale and the between-cell
scale influence each other in a reciprocal manner. This multiple scales modeling approach serves as a
valuable tool for assessing the impact and success of health strategies aimed at controlling hepatitis B
virus disease system.
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1. Introduction

Hepatitis B is a disease that manifests itself as an inflammation of the liver caused by HBV. This virus
belongs to the hepadnaviridae family [1]. It is a worldwide disease [2] affecting approximately 2 billion
people and is considered to be about 50 to 100 times more contagious than HIV [3]. The disease is a
serious public health problem in Africa [2] in general and, more specifically, in Cameroon, which is
among the 17 most infected African countries with a prevalence that has increased from 10% in 2012
to 11.9% in 2017 [4], with some regions having a prevalence higher than 20%. Although effective
treatments exist [5], HBV causes more than 800,000 deaths annually [5] and is classified into 10
genotypes ranging from A to J [5]. The transmission pathways of HBV include exposition to infectious
blood, vaginal secretions during sexual intercourse, and other body fluids such as semen, as well as
from infected mothers to infants (see [5] and references therein). The transmission process of HBV can
also occur indirectly via contaminated surfaces and objects, since it can remain stable and infectious on
environmental surfaces for at least seven days [6]. To stop the increase in the spread of this disease,
the World Health Organization (WHO) has put in place a strategy targeting HBV [7]. It is expected
that the deployment of this strategy will contribute in a substantial way to the global reduction of HBV
infections, which is an important part of the 2030 sustainable development agenda driven by the United
Nations [7, 8].

The current modeling efforts in infectious disease dynamics is predominantly focused on monoscale
modeling [9] as opposed to multiscale modeling [10, 11]. For details of the advantages of multiscale
models over single-scale models, see the published works [9, 12]. However, a theory that provides
the foundation for development of multiscale models from a pathogen-centered perspective has been
successfully formulated [10, 11]. But, despite this conceptual breakthrough in the development of
multiscale models of infectious disease dynamics, the current modeling approach is still predominantly
single-scale modeling because of limitations in the mathematical technology for development of
multiscale models. As a result, several single-scale models for HBV have been developed at the
between-cell scale by researchers. In this case, we can cite as examples the works in [13–17]. Such
single-scale models of infectious disease dynamics at cell level propose mathematical models which
describe the interaction between susceptible cells, infected cells, and free virus. The weakness of these
monoscale models is that they disregard the within-cell scale viral replication process and the subsequent
shedding of the virus into the between-cell scale.

To date, the techniques of modern molecular biology have also produced much knowledge about the
replication and transmission processes of HBV and some fine details about its life cycle at cell level of
organization [18, 19]. To complement this detailed knowledge, the techniques of multiscale modeling
need to be adopted in order to facilitate a comprehensive analysis and interpretation of dynamical
processes of HBV, which include the viral replication and transmission processes, at cell level of
organization. Such multiscale models integrate the within-cell scale where the viral replication process
occurs, the between-cell scale where the viral transmission process occurs, and the interplay between
these two scales of viral dynamics. These multiscale models of HBV at cell level of organization of
a disease system [20, 21] can help in understanding the effectiveness of therapies, from efficacy data
when the therapies are administered at different stages of the life cycle of HBV in order to predict
when treatment should be initiated, treatment scheme, dosage, duration of treatment, and periodicity of
treatment. In order to develop multiscale models of infectious disease dynamics, it is necessary to consider
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infectious disease systems as a complex system consisting of three subsystem [12,22,23]: the host, the
pathogen, and the environmental subsystems. The replication-transmission relativity theory [10, 11], a
theory formulated to guide the creation of multiple scales models, stipulates that infectious systems should
be segmented into seven principal organizational levels. These include [10,12,22]: the cell, tissue, organ,
microecosystem, whole-organism, macrocommunity, and macroecosystem levels. In line with the
dictates of the replication-transmission relativity theory, each hierarchical level of organization consists
of two scales: a microscale and macroscale, which influence each other in a reciprocal manner through
the interaction of four key disease processes, which are [12, 23]: pathogen infection/super-infection,
pathogen replication, pathogen shedding/shedding, and pathogen transmission. At the cell level of
organization, like all other levels of organization of an infectious disease system, five different categories
of multiscale models of infectious disease dynamics are identified as follows [11, 22]:

[a.] Individual-based multiscale models (IMSMs): These models, while developed at the cell level
of organization, do not explicitly merge the within-cell and the between-cell scales. Only the
within-cell scale is explicitly incorporated into the multiscale model. In this category of multiscale
models, the between-cell scale is only observed as emergent behavior of the within-cell scale
entities. This category uses simultaneous framework [22, 23].

[b.] Nested multiscale models (NMSMs): The multiscale models developed in this category at the cell
level of organization explicitly integrate the within-cell scale and the between-cell scale. In this
case, the between-host scale influences the within-cell scale by a once off inflow of initial infectious
agent inoculum dose from the between-cell scale to the within-cell scale through the process
of infection, while the within-cell scale influences the between-cell scale by the outflow of the
infectious agent from the within-cell scale to between-cell scale through the process of infectious
agent excretion or shedding. This category uses serial integration framework [22]. Further, the
within-cell scale sub-model and the between-cell scale sub-model must be described by the same
mathematical formalism. See also [9, 24–27].

[c.] Embedded multiscale models (EMSMs): The multiscale models developed in this category at the
cell level of organization also explicitly integrate the within-cell scale and the between-cell scale.
In this category, the between-cell scale influences the within-cell scale through the continuous
inflow of infectious agent from the between-cell scale to the within-cell scale through the process
of super-infection, that is, repeated infection of the within-cell scale before it recovers from the
initial infectious episode. However, the within-cell scale influences the between-cell scale through
the outflow of the infectious agent from the within-cell scale to between-cell scale through the
process of infectious agent excretion or shedding. This category uses the embedded integration
framework [22, 23]. The within-cell scale sub-model and the between-cell scale sub-model must
also be described by the same mathematical representation [28, 29].

[d.] Hybrid multiscale models (HMSMs): The multiscale models developed in this category at the cell
level of organization explicitly integrate the within-cell scale and the between-cell scale either
as in NMSMs or as in EMSMs. However, the main distinguishing feature between these two
categories of multiple scale models (i.e., NMSMs and EMSMs) and HMSMs is that in HMSMs
the within-cell scale sub-model and between-cell scale sub-model are described by different
mathematical representations. Examples of such paired descriptions are deterministic/stochastic,
discrete time/continuous time, mechanistic/phenomenological, ODE/PDE, ODE/ABM, ODE/CA,
etc. [30, 31]. In addition, this category uses a multi-domain integration framework [22, 23].
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[e.] Coupled multiscale models (CMSMs): The multiscale models developed in this category at the cell level
of organization integrate the within-cell scale and between-cell scale in the context of multiple infectious
agent species and/or multiple cell species. Consequently, this category of multiscale models employs
models from the four other categories of multiscale modeling, that is, IMSMs, NMSMs, EMSMs, and
HMSMs as sub-models [31,32]. Further, this category uses parallel integration framework [22,23].

In this study, we focus on the NMSMs category, whose multiscale models can be subdivided into
three main classes as follows [22, 27]:
[a.] Class 1: Transformation-based nested multiscale models (TRAN-NMSMs): In this class, multiscale

models are formulated by dividing the total population of infected cells into several subclasses.
These subclasses represent the different stages of the pathogen’s life cycle within an infected cell.

[b.] Class 2: Unidirectional coupling-based nested multiscale models (UNID-NMSMs): For this class
of multiscale models, sub-models are coupled as in this article, where the between-cell scale is
linked to the within-cell scale through a once off inflow of initial viral infective inoculum dose from
the between-cell scale to the within-cell scale through the process of infection , while the within-cell
scale is linked to the between-cell scale through the outflow of the virus from the within-cell scale
to between-cell scale through the process of viral shedding or excretion.

[c.] Class 3: Simplification-based nested multiscale models (SIMP-NMSMs): In this class of multiscale
models, the within-cell scale sub-model is streamlined, for instance, by condensing it into a single
composite parameter that influences the between-cell scale sub-model, typically through methods
like singular perturbation analysis [27].

In this article, we are more interested in developing a NMSM for HBV at the lowest level of
biological organization of living systems, which is the cell level, in line with the dictates of the
replication-transmission relativity theory [10, 11]. The published paper [26] is a pioneering work in the
field of multiscale modeling of viral infections, specifically in the context of poliovirus at the cell level
of organization. This multiscale model integrates the intracellular-scale replication of poliovirus and the
intercellular-scale population transmission dynamics of the virus. This multiscale model was further
simplified into a SIMP-NMSMs by reducing the within-cell scale sub-model into a composite parameter
that feeds into the between-cell sub-model. In the same paper [26], it is also demonstrated how the
dynamics of the virus at two scales interact to generate compromises in the life cycle strategy of the
poliovirus, without taking into account the mortality of the host. Information derived from poliovirus
studies indicates that viruses may struggle to reconcile the conflicting interests that exist among various
selection scales at cell level of organization.

This ground-breaking work on multiscale modeling of viral infections [26] was followed by the work [33].
The authors proposed a multiscale model that integrates the within-cell scale and the between-cell scale by
using integro-partial differential equations where the within-cell sub-model and the between-cell sub-model
are linked through time-since-infection [22]. The examination of this multiple-scales model reveals that,
unlike typical monoscale models, the balance of cell populations offers a more instinctive and adaptable
approach for integrating events at both intracellular and intercellular scales during viral infections. This
enhanced ability to depict biological measurement trends yields a more methodical and quantifiable insight
into the spread of viral infections and the most effective methods for managing their dissemination. The
authors in [32] introduced a simple cytoimmuno-epidemiological model of HCV, which is homogeneously
described by a system of ODEs where the within-cell scale is unidirectionnally coupled to the between-cell
scale sub-model; this model is classified as a UNID-NMSM.
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The work in [30] introduced one of the first cell-level multiscale models for HIV-1 disease dynamics.
For this multiscale model, the within-cell scale is described by an ODE sub-model while the between-cell
scale is described by a delay differential equation (DDE) sub-model. The within-cell scale sub-model
is coupled to the between-cell scale sub-model based on class 2 of NMSMs approach. Therefore,
the multiscale model is categorized as a UNID-HMSM. The multiscale model was used to simulate
in vitro experiments that simultaneously include A3G-Vif interactions at the within-cell scale and T
cell-HIV interactions at between-cell scale. As far as we are aware, there is an absence of multiscale
modeling studies of Hepatitis B at cell level. The work in this article is intended to address this gap
in knowledge on multiscale modeling of viral infections by developing a multiscale model of HBV at
cell level of organization. In particular, the objective is to develop a NMSM that can used to test the
impact of HBV therapies in the control of this disease system. The rest of the paper is subdivided in five
sections. Section 2 deals with the derivation of the nested multiscale model. Here, we initially present
the between-cell sub-model, followed by the within-cell sub-model. Furthermore, we link the two
sub-models by using the nested multiscale models category approach. Finally, the full multiscale model
is simplified. In Section 3 we study the positivity of the solutions, and the stability of the equilibrium of
the simplified NMSM, and also perform sensitivity analysis. In Section 4, we present numerical results
that establish the influence of within-cell parameters on between-cell scale variables through shedding
and the influence of between-cell scale on within-cell scale through initial infection. Then, we end the
paper with concluding remarks in Sections 5.

2. Derivation of the nested multiscale model

2.1. The between-cell sub-model of HBV

The between-cell sub-model of HBV is described by the interaction of susceptible cells T , infected
cells Y , and the virus V (see [13]). We make the following assumptions based on [13]:
[a.] Transmission is only through contact of viral load V and susceptible cells T .
[b.] We suppose that, infection follows a mass action principle.
[c.] The dynamics of T , Y , and V are assumed to unfold at a slower time scale t compared to the

intracellular scale sub-model so that T = T (t),Y = Y(t) and V = V(t).
[d.] The mean count of virions in every infected cell is represented by N̂c, serving as an indicator for

the infectious capacity of an infected cell.
Based on these assumptions, the sub-model of HBV transmission dynamics at the between-cell scale becomes:

dT (t)
dt
= Λw − θcV(t)T (t) − δwT (t),

dY(t)
dt
= θcV(t)T (t) − (δw + δℓ)Y(t),

dV(t)
dt
= η1α4N̂cY(t) − δVV(t).

(2.1)

The first equation of system (2.1) models the dynamics of healthy cells. Here, Λw models the rate at
which susceptible cells are produced. The population of susceptible cells reduces through infection at
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rate θc and decay at rate δw. The second equation of system (2.1) models the dynamics of infected cells.
This population grows via infection and diminishes due to natural decay at a rate δw, and additional
decay at rate δℓ due to infection so that the average lifespan of HBV infected cell is 1/(δw+δℓ). The third
equation of system (2.1) models viral load. This population increases through shedding of HBV virus by
infected cells into the extracellular environment and through burst at rate η1α4N̂c. It also decreases due
to natural decay at rate δV . In this work, we show that N̂c is a composite parameter which can be derived
from a multiscale model system. It is a parameter consisting of multiple parameters that determine viral
dynamics within an infected cell, and this makes the single-scale model (2.1) unrealistic. Given the
difficulty in estimating N̂c using monoscale models, we propose a multiple-scales model in this study
that can be deployed to estimate its value.

2.2. The within-cell sub-model of HBV

For the derivation of this nested multiscale model, the within-cell is adopted from the work of [20],
whose work was based on deriving the life cycle of HBV at cell level. We derive our model based
on this work. We make modifications that are based on multiscale considerations. Nevertheless, it is
important to note that the multiscale consideration introduced is the excretion/shedding rate α4, which
is important for multiscale modeling since the within-cell scale sub-model is linked to the between-cell
scale sub-model through pathogen excretion/shedding [23]. The resulting within-cell scale sub-model is
based on life cycle of HBV as follows: The viral entry is facilitated by cell receptors. Once in the liver
cell, the virus degrades and releases the DNA of the viral genome (compartment x). This DNA is then
transported at rate (α1) to rcDNA where it is repaired and converted into cccDNA (compartment y). The
cccDNA is transcripted into pgRNA (compartment rg) at rate µc, mRNA and precRNA (compartment rs) at
rate µs.The mRNA is translated at rate βs into HBsAg (compartment s) while the pgRNA is translated into
polymerase (compartment z) and core proteins (compartment c). These are encapsidated at rates γ1 and γ3

into compartment a and then move to core particles at rate γ2, which include synthesis of the negative
and positive strand. The immature nucleocapsids are either associated with surface antigen (compartment
u) at rate α2 and α3 and excreted at rate α4 into the bloodstream as virion or recycled in the nucleus to
promote overproduction of cccDNA. The meaning of all these variables are listed in Table 1 and we make
the following assumptions:

[a.] There is a supply from extracellular virus at rate Λc, which models the super-infection of the
infected cell.

[b.] Infection of cells occurs solely through interaction with the extracellular viral load V .

[c.] The within-cell scale disease processes occur at fast time scale τ in comparison to the variables of
the between-cell scale sub-model. Hence, we have: x = x(τ), y = y(τ), rg = rg(τ),c = c(τ), a = a(τ),
rs = rs(τ), s = s(τ), z = z(τ), u = u(τ).

[d.] There is no replication of HBV at between-cell scale.

[e.] The within-cell scale variable u(τ) is a proxy for individual cell infectiousness.
Based on the life cycle and the previous assumptions, the within-cell scale sub-model is thus written

as follows:
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

dx(τ)
dτ
= Λc + γ2a(τ) − α1x(τ) − α2x(τ) − δxx(τ),

dy(τ)
dτ
= α1x(τ) − δyy(τ),

drg(τ)
dτ

= µcy(τ) − (βp + δrg)rg(τ)

dz(τ)
dτ
= βprg(τ) − δzz(τ),

dc(τ)
dτ
= βcrg(τ) − δcc(τ)

da(τ)
dτ
= γ1z(τ) + γ3c(τ) − (δa + γ2)a(τ),

drs(τ)
dτ

= µsy(τ) − δrsrs(τ),

ds(τ)
dτ
= βsrs(τ) − δss(τ),

du(τ)
dτ
= α2x(τ) + α3s(τ) − (α4 + δu)u(τ).

(2.2)

Table 1. List of within-cell scale and between-cell scale variables.

No: Variables Description
1. x(τ) Concentration of core particles at time τ
2. y(τ) Covalently close circular DNA at time τ
3. rg(τ) Pregenomic RNA at time τ
4. rs(τ) 2.4 kb RNA at time τ
5. z(τ) Pregenome-polymerase complex at time τ
6. a(τ) Pregenome-polymerase-core protein complex at time τ
7. s(τ) Surface antigen at time τ
8. u(τ) Intracellular virion at time τ
9. c(τ) Core protein at time τ
10. T (τ) Healthy cells at time τ
11. Y(τ) Infected cells at time τ
12. V(τ) Community viral load at time τ
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2.3. Integrating the between-cell scale and the within-cell scale sub-models of HBV dynamics into a
single nested multiscale model

After presenting the two sub-models of HBV at between-cell scale and within-cell scale dynamics that
describe separately the two key processes of HBV, transmission process and replication process [10, 11],
which occur at two different scales in the two previous subsections, we now integrate the two sub-models
of the two scales into a single multiscale model as presented in the conceptual diagram in Figure 1. To
do that, we replace the composite parameter that phenomenologically models the within-cell scale virus
replication process by the variable u(τ). Then, we have the following full nested multiscale model.

dT (t)
dt
= Λw − θcV(t)T (t) − δwT (t),

dY(t)
dt
= θcV(t)T (t) − (δw + δℓ)Y(t),

dV(t)
dt
= η1α4u(τ)Y(t) − δVV(t),

dx(τ)
dτ
= Λc + γ2a(τ) − α1x(τ) − α2x(τ) − δxx(τ),

dy(τ)
dτ
= α1x(τ) − δyy(τ),

drg(τ)
dτ

= µcy(τ) − (βp + δrg)rg(τ)

dz(τ)
dτ
= βprg(τ) − δzz(τ),

dc(τ)
dτ
= βcrg(τ) − δcc(τ)

da(τ)
dτ
= γ1z(τ) + γ3c(τ) − (δa + γ2)a(τ),

drs(τ)
dτ

= µsy(τ) − δrsrs(τ),

ds(τ)
dτ
= βsrs(τ) − δss(τ),

du(τ)
dτ
= α2x(τ) + α3s(τ) − (α4 + δu)u(τ).

(2.3)

The multiscale model for HBV disease dynamics, as defined by system (2.3), is classified as class 2
of nested multiple-scales model. This classification is based on the categorization of multiple-scales
models for infectious disease systems as outlined in [22, 23].
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Figure 1. Diagram representing the complete multiple-scales compartments of the multiscale
model of HBV.

2.4. Simplifying the multiscale model at cell level

Observing the full multiple-scales model system (2.3), it is clear that there are two separate time
scales. The first is the between-cell time scale, which pertains to the transmission process of HBV
among cells that occurs at slow time scale t. The second is the within-cell time scale, which is linked
to the replication process of HBV at the within-cell scale at fast time scale τ. This multiscale model
needs to be simplified through singular perturbation analysis in order to reduce some computational
challenges associated with numerical methods for solving it. A key challenge for solving the full nested
multiscale model (2.3) of HBV dynamics across the two different scales using numerical methods is
that there is a timescale mismatch over the within-cell scale and the between-cell scale.

This suggests that, to solve the nested multiple-scales model (2.3) for HBV dynamics, numerical
methods are necessary that use discretization techniques, where each scale utilizes specific methods in
terms of length and/or time. However, a significant challenge in applying these methods across multiple
scales is that different scales would necessitate different grid densities and time steps. This variation can
complicate the transfer of information between the different scales. Up to this point, several methods
have been developed to reduce dimensions, including statistical methods like principal component
analysis, response and statistical surrogate modeling, and approaches grounded in dynamical systems,
including the theory of central manifolds and analysis of rapid and gradual scale changes [22]. However,
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the complexity of the multiple-scales model system (2.3) can be lessened by expressing the fast and slow
time scales in relation to each other using the equation t = ϵτ, where 0 < ϵ ≪ 1 and ϵ. In this equation, ϵ
is a constant that underscores the rapid time-scale dynamics of the intra-cellular model in comparison to
the slower time-scale dynamics of the inter-cellular scale. We also assume a steady additional death rate
of infected cells at rate δℓ. As a result, the complete multiple-scales model system (2.3) is transformed
to become:



dT (t)
dt
= Λw − θcV(t)T (t) − δwT (t),

dY(t)
dt
= θcV(t)T (t) − (δw + δℓ)Y(t),

dV(t)
dt
= η1α4u(t)Y(t) − δVV(t),

ϵ
dx(t)

dt
= Λc + γ2a(t) − α1x(t) − α2x(t) − δxx(t),

ϵ
dy(t)

dt
= α1x(t) − δyy(t),

ϵ
drg(t)

dt
= µcy(t) − (βp + δrg)rg(t)

ϵ
dz(t)

dt
= βprg(t) − δzz(t),

ϵ
dc(t)

dt
= βcrg(t) − δcc(t)

ϵ
da(t)

dt
= γ1z(t) + γ3c(t) − (δa + γ2)a(t),

ϵ
drs(t)

dt
= µsy(t) − δrsrs(t),

ϵ
ds(t)

dt
= βsrs(t) − δss(t),

ϵ
du(t)

dt
= α2x(t) + α3s(t) − (α4 + δu)u(t).

(2.4)

In what follows, we estimate the value of the composite parameter N̂c by setting ϵ = 0 in the final
nine equations of multiscale model system (2.4) so that the within-cell scale becomes independent of
time, and the nine last equations of the multiscale model system (2.4) can be re-written as follows:
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

ϵ
dx(t)

dt
= Λc + γ2a(t) − α1x(t) − α2x(t) − δxx(t),

ϵ
dy(t)

dt
= α1x(t) − δyy(t),

ϵ
drg(t)

dt
= µcy(t) − (βp + δrg)rg(t)

ϵ
dz(t)

dt
= βprg(t) − δzz(t),

ϵ
dc(t)

dt
= βcrg(t) − δcc(t)

ϵ
da(t)

dt
= γ1z(t) + γ3c(t) − (δa + γ2)a(t),

ϵ
drs(t)

dt
= µsy(t) − δrsrs(t),

ϵ
ds(t)

dt
= βsrs(t) − δss(t),

ϵ
du(t)

dt
= α2x(t) + α3s(t) − (α4 + δu)u(t).

(2.5)

Setting ϵ = 0, Eq (2.4) becomes:

Λc + γ2ã(t) − α1 x̃(t) − α2 x̃(t) − δx x̃(t) = 0,

α1x(t) − δyỹ(t) = 0,

µcỹ(t) − (βp + δrg)r̃g(t) = 0,

βpr̃g(t) − δzz̃(t) = 0,

βcr̃g(t) − δcc̃(t) = 0

γ1z̃(t) + γ3c̃(t) − (δa + γ2)ã(t) = 0,

µsỹ(t) − δrs r̃s(t) = 0,

βsr̃s(t) − δs s̃(t) = 0,

α2 x̃(t) + α3 s̃(t) − (α4 + δu)ũ(t) = 0.

(2.6)

From system (2.6), we get:
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

x̃ =
Λδcδyδz

(
γ2 + δa

)(
βp + δrg

)
δcδyδz

(
α1 + α2 + δx

)(
γ2 + δa

)
− γ2

(
γ1α1βsµcδc + γ3βcµcα1δz

) ,

ỹ =
Λα1

(
γ2 + δa

)(
βp + δrg

)
δcδyδz

δy

((
α1 + α2 + δx

)(
γ2 + δa

)
δcδyδz − γ2

(
γ1α1βsµcδc + γ3βcµcα1δz

)) ,

r̃g =
Λα1µc

(
γ2 + δa

)(
βp + δrg

)
δcδyδz

δy

(
βp + δrg

)((
α1 + α2 + δx

)(
γ2 + δa

)
δcδyδz − γ2

(
γ1α1βsµcδc + γ3βcµcα1δz

)) ,

z̃ =
Λβpα1µc

(
γ2 + δa

)(
βp + δrg

)
δcδyδz

δyδc

(
βp + δrg

)((
α1 + α2 + δx

)
(γ2 + δa)δcδyδz − γ2

(
γ1α1βsµcδc + γ3βcµcα1δz

)) ,

c̃ =
Λα1βcµc

(
γ2 + δa

)(
βp + δrg

)
δcδyδz

δyδc

(
βp + δrg

)((
α1 + α2 + δx

)(
γ2 + δa

)
δcδyδz − γ2

(
γ1α1βsµcδc + γ3βcµcα1δz

)) ,

ã =
Λ(γ1α1βpµcδc + γ3βcµcα1δz)(γ2 + δa)(βp + δrg)δcδyδz

δcδzδy(γ2 + δa)(βp + δrg)(δy(βp + δrg)((α1 + α2 + δx)(γ2 + δa)δcδyδz − γ2(γ1α1βsµcδc + γ3βcµcα1δz)))
,

r̃s =
Λα1µs

(
γ2 + δa

)(
βp + δrg

)
δcδyδz

δyδrs

((
α1 + α2 + δx

)(
γ2 + δa

)
δcδyδz − γ2(γ1α1βsµcδc + γ3βcµcα1δz)

) ,

s̃ =
Λβsα1µs

(
γ2 + δa

)(
βp + δrg

)
δcδyδz

δsδrsδy

((
α1 + α2 + δx

)(
γ2 + δa

)
δcδyδz − γ2

(
γ1α1βsµcδc + γ3βcµcα1δz

)) ,

ũ =
Λ(α2δsδrsδy + α3βsµsα1)

(
γ2 + δa

)(
βp + δrg

)
δcδyδz

δsδyδrs

(
α4 + δu

)((
α1 + α2 + δx

)(
γ2 + δa

)
δcδyδz − γ2

(
γ1α1βsµcδc + γ3βcµcα1δz

)) .
(2.7)

with
δcδyδz

(
α1 + α2 + δx

)(
γ2 + δa

)
− γ2

(
γ1α1βsµcδc + γ3βcµcα1δz

)
> 0.

Furthermore, the singular perturbation analysis helped us to reduce the within-cell scale sub-model
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system into algebraic expressions (2.6), which can be solved to give expressions (2.7). The
aforementioned expressions can be incorporated into the parameters of the intercellular-scale
sub-model, resulting in: 

dT (t)
dt
= Λw − θcV(t)T (t) − δwT (t),

dY(t)
dt
= θcV(t)T (t) − (δℓ + δw)Y(t),

dV(t)
dt
= η1α4ũY(t) − δVV(t).

(2.8)

Here, ũ is an approximation of u that is the total number of extracellular virions excreted. We now let
Nc = ũ so that

Nc = ũ =
Λ
(
α2δsδrsδy + α3βsµsα1

)(
γ2 + δa

)(
βp + δrg

)
δcδyδz

δsδy

(
α4 + δu

)((
α1 + α2 + δx

)(
γ2 + δa

)
δcδyδz − γ2

(
γ1α1βsµcδc + γ3βcµcα1δz

)) .
This can be understood as the mean quantity of intracellular viral load at the endemic equilibrium,
which is ready for excretion to the extracellular environment by each infected cell. Consequently, the
simplified multiple-scales model is as follows:

dT (t)
dt
= Λw − θcV(t)T (t) − δwT (t),

dY(t)
dt
= θcV(t)T (t) − (δℓ + δw)Y(t),

dV(t)
dt
= η1α4NcY(t) − δVV(t).

(2.9)

Based on the categorization of multiscale models [22, 23], the multiscale model (2.9) is a nested
multiscale model of class 3 (SIMP-NMSM). In the next section, we analyze the simplified multiscale
model system (2.9).

3. Mathematical analysis of the multiscale model

3.1. Existence of a positively invariant set

Theorem 1. Given that the initial conditions of the model system (2.9) are positive, then all solutions
remain positive for all t > 0.

Proof. From the first equation, we get a differential inequality given by equation:

dT
dt
= Λw − θcVT − δwT. (3.1)
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dT
T
≥ −(θcV + δw)dt. (3.2)

Now, letting s = sup{t > 0,T > 0,Y > 0,V > 0} ∈ [0, t] and integrating Eq (3.2), we have:

ln(T ) ≥ −
(
δwt +

∫ t

0
θcV(s)ds

)
+ ln

(
T (0)

)
. (3.3)

Thus the solution of Eq (3.1) is given by:

T ≥ T (0)e
−

(
δwt+

∫ t
0 θcV(s)ds

)
> 0. (3.4)

This implies that:

lim inf
t→∞

(T (t)) ≥ 0. (3.5)

We use the same approach to show that:

lim inf
t→∞

(Y(t)) ≥ 0. (3.6)

For the third equation described below:

dV
dt
= η1Ncα4Y − δVV, (3.7)

dV
V
≥ −δVdt. (3.8)

We then use separation of variables to obtain the following solution:

V(t) ≥ V(0)e−δV dt > 0. (3.9)

We thus have:

lim inf
t→∞

(V(t)) ≥ 0. (3.10)

We thus conclude that any positive initial value condition of model (3.19) will then have a positive
solution for all t ≥ 0.

□

Theorem 2. The region

Ω = {(T,Y,V) ∈ R3
+ : 0 ≤ T + Y ≤ M1, 0 ≤ V ≤ M2}, (3.11)

is positively invariant for the multiscale model (2.9) with non-negative initial conditions in R3
+.
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Proof. Since all the variables of the multiscale model given by Eq (2.9) describe cell populations and
viral load, they are positive and all the parameters are non-negative. It can be demonstrated that if the
initial values are non-negative, then the solutions of the multiple-scales model will also be non-negative.
Letting X = T + Y , and adding the two first equations of system (3.19), we then have:

1. dX
dt = Λw − δwX − δ1Y,

2. dV
dt = η1Ncα4Y − δVV.

(3.12)

It follows that, 
1. dX

dt ≤ Λw − δwX,

2. dV
dt ≤ η1Ncα4X − δVV.

(3.13)

From which we get, 
1. X(t) ≤ X(0)e−δwt +

Λw

δw

[
1 − e−δwt

]
,

2. V(t) ≤ V(0)e−δV t +
η1Ncα4Λw

δwδV

[
1 − e−δV t

]
.

(3.14)

Where X(0) and V(0) represent the values of total cell population and the community viral load at cell
level at the initial values of these variables. Taking the limit as time gets large, we then have:

1. limt→∞ sup(X(t)) ≤ Λw
δw
,

2. limt→∞ sup(V(t)) ≤
η1Ncα4Λw

δwδV
.

(3.15)

Hence, all feasible solutions of model (2.9) enter the region Ω, where

M1 =
Λw

δw
and M2 =

η1Ncα4Λw

δwδV
. (3.16)

In this region, the multiscale model described by (2.9) is epidemiologically and mathematically well
posed. This means that every solution of Eq (2.9) with non-negative initial conditions in Ω remains in Ω
for all t > 0.

□

3.2. Equilibrium state and the basic reproduction number

Theorem 3. The disease-free equilibrium,

E0 = (T 0,Y0,V0) =
(
Λw

δw
, 0, 0

)
. (3.17)

is globally asymptotically stable for R0 < 1.
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Proof. We obtain the disease-free equilibrium by setting the left-hand side of Eq (2.9) equal to zero and
Y = V = 0. Thus, we obtain: 

dT (t)
dt
= 0,

dY(t)
dt
= 0,

dV(t)
dt
= 0.

(3.18)

Which gives: 

Λw − θcV(t)T (t) − δwT (t) = 0,

θcV(t)T (t) − (δ1 + δw)Y(t) = 0, with Y = V = 0,

η1α4NcY(t) − δVV(t) = 0.

(3.19)

We thus have that the disease-free equilibrium is given by:

E0 =
(Λw

δw
, 0, 0

)
,

where E0 denotes the disease-free equilibrium of model (2.9). This equilibrium is used to compute the
threshold number R0, which is the basic reproduction number, defined as the expected number of secondary
infections produced by a single infectious individual during their entire infectious period [34]. This number
is then conveniently used to study the endemic steady state. To calculate R0, we used the next generation
matrix approach by using the article of [35]. In order to determine the basic reproductive number R0 of
Eq (2.9), we then decomposed J(E0) into two matrices F andV such that : J(E0) = F −V, where F
represent the paths to infection andV the remaining dynamics corresponding to compartments Y and V ,
where F andV are defined as:

J(E0) =
(
−(δ1 + δw) θcΛw

δw

η1Ncα4 −δV

)
, (3.20)

F =
(
0 θcΛw

δw

0 0

)
,

V =
(
(δ1 + δw) 0
−η1Ncα4 δV

)
.

Hence,

FV−1 =

( θcΛwη1Ncα4
(δ1+δw)δV

θcΛw
δwδV

0 0

)
.

Considering that the basic reproductive number is the principal eigenvalue of the FV−1 matrix, we
therefore conclude that
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R0 =
θcΛwη1α4Nc

(δ1 + δw)δVδw
. (3.21)

This basic reproduction number can be re-written as:

R0 = R01R02, (3.22)

where
R01 =

η1α4Nc

δV
,

and
R02 =

θcΛw

δw(δ1 + δw)
.

We therefore conclude that, based on these two expressions, the cytoimmuno-epidemiological
parameters of HBV contribute to the infection of liver cells. To show the stability of DFE, we define the
following Lyapunov function:

L1(t) = (T − T 0ln(T )) + Y + a1V + T 0(1 − ln(T 0)). (3.23)

The derivative of L1(t) corresponding to the model solutions is:

L̇1 =
[
1 −

T 0

T

]
Ṫ + Ẏ + a1V̇ . (3.24)

Using the fact that Λw = δwT 0 the derivative of L1 becomes:

L̇1 =
[
1 −

T 0

T

][
T 0δw − θcVT − δwT

]
+

[
θcVT − (δ1 + δw)Y

]
+ a1

[
η1Ncα4Y − δVV

]
,

= −
δw

T

[
T − T 0

]2
+

[
θcVT 0 − a1δVV

]
+

[
a1η1Ncα4 − (δ1 + δw)

]
Y,

= −
δw

T

[
T − T 0

]2
+

[
θcT 0 − a1δV

]
V +

[
a1η1Ncα4 − (δ1 + δw)

]
Y. (3.25)

We choose a1 such that:
θcT 0 − a1δV = 0.

And using the fact that V = 0 at DFE, we thus have the following expression:

a1 =
θcT 0

δV
.

Upon simplification and rearrangements of terms in the above Eq (3.25), we will obtain:

L̇1 = −
δw

T

[
T − T 0

]2
+

(
θcT 0

δV
η1Ncα4 − (δ1 + δw)

)
,

= −
δw

T

[
T − T 0

]2
+

[
θcΛwη1Ncα4

(δ1 + δw)δwδV
− 1

](
δ1 + δw

)
Y,

= −
δw

T

[
T − T 0

]2
+

(
δ1 + δw

)[
R0 − 1

]
.
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L̇1 = 0 iff T = T 0 and Y = 0. Since T < T 0, it is clear that L̇1 ≤ 0 whenever R0 < 1. This implies that L1 is
a Lyapunov function. Hence, by the principle of invariance of LaSalle, we conclude that the DFE is GAS.

□
3.3. The endemic equilibrium’s stability analysis

Theorem 4. The unique endemic equilibrium
T̃ =

(δ1 + δw)δV

θcη1Ncα4
, Ỹ =

Λw

(
R0 − 1

)
(δ1 + δw)R0

,

Ṽ =
η1Ncα4Λw

(
R0 − 1

)
(δ1 + δw)δVR0

, R0 =
θcΛwη1α4Nc

(δ1 + δw)δVδw
.

(3.26)

is asymptotically globally stable for R0 > 1.

Proof. To show the result, we define the following Lyapunov function of Goh-Volterra type [36]:

L2(t) =
(
T − T − Tln

(T

T

))
+

(
Y − Y − Yln

(Y

Y

))
+

(
V − V − Vln

(V

V

))
.

Using the inequality 1 − z + ln(z) < 0 for z > 0 with equality if and only if z = 1, the derivative of L2(t)
corresponding to the model solutions gives:

L̇2(t) =
(
1 −

T
T

)
Ṫ +

(
1 −

Y
Y

)
Ẏ +

(
1 −

V
V

)
V̇ . (3.27)

It follows from direct calculation that,

(
1 −

T
T

)
Ṫ =

(
1 −

T
T

)[
Λw − θcVT − δwT

]
, (3.28)

=

(
1 −

T
T

)[
θcT .Y + δwT − θcVT − δwT

]
,

= θcT .V
[
1 −

T

T
−

TV

T .V
+

V

V

]
−
δw

T

(
T − T

)2
,

≤ θcT .V
[
V

V
+ ln

(V

V

)
−

TV

T .V
+ ln

( TV

T .V

)]
.

(
1 −

Y
Y

)
Ẏ =

(
1 −

Y
Y

)[
θcVT −

(
δ1 + δw

)
Y
]
, (3.29)

=

(
1 −

Y
Y

)[
θcVT −

θcV .T

YY

]
,
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=

[
1 −

Y

Y
−

TYV

TYV
+

VT

V .T

]
,

≤ θcT .V
[

TV

T .V
+ ln

( TV

T .V

)
−

VTY

V .TY
+ ln

( VTY

V .TY

)]
.

(
1 −

V
V

)
V̇ =

(
1 −

V
V

)[
η1Ncα4Y − δVV

]
, (3.30)

=

(
1 −

V
V

)[
η1Ncα4Y −

η1Ncα4Y

V
V
]
,

= η1Ncα4Y
[
1 −

V

V
−

YV

YV
+

Y

Y

]
,

≤ η1Ncα4Y
[
Y

Y
− ln

(Y

Y

)
−

YV

YV
+ ln

(YV

YV

)]
.

Substituting Eqs (3.28)–(3.30) into Eq (3.27), we get:

L̇2 ≤ θcT V
[
V

V
+ ln

(V

V

)
−

VTY

V .TY
+ ln

( VTY

V .TY

)]
+ η1Ncα4Y

[
Y

Y
− ln

(Y

Y

)
−

YV

YV
+ ln

(YV

YV

)]
,

≤ θcT V
[
V

V
−

VTY

V .TY
+ ln

( VTY

V .TY

)]
+ η1Ncα4Y

[
Y

Y
−

YV

YV
+ ln

(YV

YV

)]
,

≤ 0.

since −z + log(z) ≤ −1, ∀z > 0, we thus have that L̇2 ≤ 0. Thus, by LaSalle’s invariance principle, we
can say that the endemic equilibrium is GAS. □

3.4. Sensitivity analysis

The parameters values used to evaluate the multiscale model for HBV in this study are given in Table 2.
Due to uncertainty of these parameter values, here we conduct sensitivity analysis based on two disease
dynamics metrics, the basic reproductive number R0 and the endemic value of the between-cell scale
viral load Ṽ , derived from the simplified nested multiscale model given by model (2.9) with respect
to all the 28 parameters in order to inform health planners about prevention and optimal treatment of
HBV. Numerous studies have underscored the significance of sensitivity analysis in pinpointing the key
parameters that can be targeted for managing, eliminating, or even eradicating a disease. For that, we
used the Latin hypercube (LHS) and partial rank correlation coefficient (PRCCs). Per run, we used 1000
simulations to study the impact of each parameter on the basic reproduction number and the endemic
value of CVL. From Figures 2 and 3 we note that both R0 and Ṽ are highly sensitive to the within-cell
scale parameter Λc, which models the super-infection rate. This means that the use of interferon-alpha,
which blocks the novo infection, will likely reduce infection. On the other hand, Figures 2 and 3 also
show that both R0 and Ṽ are highly sensitive to the between-cell scale parameters δw, η1. We also see
that some parameters of the multiscale model at cell level have positive (Λc, η1) and negative (δ1, δw or
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µc) sensitivity index. Parameters with positive PRCCs will increase the value of both R0 and Ṽ when
they are increased, while those with negative PRCCs will decrease when they are increased.

[a.] At between-cell: R0 is highly sensitive to the variation of between-cell scale parameters δw, and η1

while Ṽ is highly sensitive to the variation of between-cell scale parameter δw, η1 and δ1.
[b.] At within-cell: R0 is highly sensitive to the variation of within-cell scale parameters Λc and µc

while Ṽ is highly sensitive to Λc.

Figure 2. Tornado diagram displaying the partial rank correlation coefficients for all model
parameters that have an impact on the HBV transmission process metric R0.

Figure 3. Tornado diagram displaying the partial rank correlation coefficients for all model
parameters that have an impact on the HBV transmission process metric Ṽ .

Based on sensitivity analysis of R0, which characterizes the disease dynamics at the onset of infection,
this study indicates that at the initial stages of hepatitis B virus infection, it is crucial to consider medical
interventions like drugs (including reverse transcriptase inhibitors and nucleos(t)ide analogues). These
interventions aim to limit viral replication and prevent new infections, offering the greatest benefits
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in terms of reducing cell-to-cell transmission. In addition to that, care should be taken during data
collection at between-cell scale if we want to improve the accuracy of these parameters.

Table 2. Values of the within-cell scale and between-cell scale parameters for HBV.

Para-

meter

Description Value [Range explored] Units Source/
Rational

Λc Rate of supply of core particle
through super-infection

0.02[0.01–0.05] min−1 Assumed

α1 Reaction rate of DNA repair 0.01[0.005–0.04] min−1 [20]
α2 Production rate of virion 3.991[2.000–5.000] mol−1min−1Assumed
α3 Production rate of virion 0.51[0.300–0.700] mol−1min−1Assumed
α4 Shedding rate of virion

extracellularly
0.1[0.005–0.3.00] min−1 Assumed

µc Transcription rate of 3.5kb pgRNA 0.09[0.07–0.120] min−1 [20]
µs Transcription rate of 2.4kb mRNA 0.9[0.700–1.200] min−1 [20]
βp Translation rate of Polymerase 0.01[0.005–0.003] min−1 [20]
βc Translation rate of core protein 0.91[0.700–1,200] min−1 [20]
βs Translation rate of surface antigen 0.51[0.300–0.700] min−1 [20]
γ1 Rate of moving from z to a 0.51[0.400–0.650] min−1 Assumed
γ2 Production rate of core particles 0.0001[0.0001–0.0004] min−1 Assumed
γ3 Rate of moving from c to a 0.91[0.700–1.100] min−1 Assumed
δx Degradation rate of core particle 0.001[0.001–0.003] min−1 [21]
δy Degradation rate of cccDNA 0.99[0.800–1.100] min−1 Assumed
δrg Degradation rate of pgRNA 0.01[0.01–0.03] min−1 [20]
δrs Degradation rate of mRNA 0.01[0.01–0.04] min−1 [20]
δz Degradation rate of Pregenome-

polymerase complex
0.01[0.01–0.03] min−1 [21]

δa Degradation rate of Pregenome-
polymerase-core protein complex

0.001[0.001–0.002] min−1 [20]

δc Degradation rate of core protein 0.001[0.001–0.003] min−1 [20]
δs Degradation rate of surface antigen 0.01[0.01–0.04] min−1 [21]
δu Degradation rate of virion 0.01[0.005–0.03] min−1 [20]
Λw Production rate of T cells 150[140–170] day−1ml−1 Assumed
θc Rate of infection 0.009[0.007–1.100] day−1 Assumed
η1 Burst rate of infected cells 0.2[0.01–0.03] viron day−1 Assumed
δV Natural viral clearance 0.0967[0.07.1.100] day−1 Assumed
δ1 Death rate of infected cells due to

infection
0.0014[0.001–0.003] day−1 Assumed

δw Natural death rate of T and Y cells 0.037877[0.02–0.040] day−1 Assumed
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4. Numerical simulations

4.1. The impact of intracellular-scale parameters on intercellular-scale variables

In this section, we showcase numerical simulations of the multiple-scales model as defined by
Eq (2.9) using parameter values as given in Table 2. We demonstrate the reciprocal influence
between the intracellular scale and the intercellular scale through a positive feedback mechanism.
Specifically, we highlight the impact of the four intracellular scale parameters (Λc, βp, βs, α4 and µc)
on the between-cell scale variables (T, Y , and V).

Figure 4 illustrates the variation in healthy cells, infected cells, and between-cells scale viral load for
different values of super-infection rate Λc. The numerical findings indicate that these between-cell scale
variables are influenced by the between-cell scale parameter Λc. The findings also reveal that as the
rate of super-infection increases, the population of infected cells increase and the transmission of virus
among cells also increases.

Figure 5 shows the impact of varying target cells, infected cells, and between-cell scale viral load for
different values of translation rate of pgRNA to polymerase. The numerical findings indicate that the
intercellular scale variables are affected by the intracellular scale parameter βp. The findings also show
that as the rate of translation decreases, the population of infected cells increases and the transmission at
the between-cell scale viral load also increases.

Figure 4. The impact varying of super-infection rate Λc on (a) population of healthy cells
(T), (b) infected cells (Y), and (c) community viral load (V), for different values ofΛc : Λc =

0.008;Λc = 0.01;Λc = 0.02.
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Figure 5. The impact of varying translation rate of pgRNA to polymerase (βp) on (a)
population of healthy cells (T), (b) infected cells (Y), and (c) community viral load (V), for
different values of βp : βp = 0.0095; βp = 0.0098; βp = 0.01.

Figure 6. The impact of varying of translation rate of surface antigen (βs) on (a) population of
healthy cells (T), (b) infected cells (Y), and (c) community viral load (V), for different values
of βs : βs = 0.099; βs = 0.2; βs = 0.3.
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Figure 6 shows the impact of varying target cells, infected cells, and between-cell scale viral load for
different values of translation rate of mRNA to surface antigen. The numerical findings confirm that the
intercellular scale variables are affected by the intracellular scale parameter βs. The results also show
that as the rate of translation increases, the population of infected cells and the between-cell scale viral
load also increases.

Figure 7 shows the impact of varying target cells, infected cells, and community viral load for
different values of shedding rate α4. The numerical findings indicate that the intercellular scale variables
are affected by the intracellular scale parameter α4. The findings also reveal that an increase in the
shedding rate leads to an increase in the population of infected cells and enhances transmission at the
intercellular scale.

Figure 8 shows the impact of varying target cells, infected cells, and between-cell scale viral
load for different values of transcription rate from cccDNA to pgRNA (µc). The numerical findings
indicate that the intercellular variables are affected by the intracellular scale parameter µc. The results
also show that as the transcription rate increases, the population of infected cells and between-cell
scale viral load also increases.

Figure 7. The impact of varying shedding rate of virus from infected cells (α4) on (a)
population of healthy cells (T), (b) infected cells (Y), and (c) viral load at between-cell scale
(V), for different values of α4 : α4 = 0.014;α4 = 0.094;α4 = 0.319.
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Figure 8. The impact of varying transcription rate from cccDNA to pgRNA of virus from
infected cells (µc) on (a) population of healthy cells (T), (b) infected cells (Y), and (c) between-
cell scale viral load (V), for different values of µc : µc = 0.08; µc = 0.085; µc = 0.09.

5. Discussion and conclusions

HBV is a directly and highly transmissible viral infection responsible for approximately 800,000 deaths
annually. Even though WHO has put in place a strategy to fight against this viral infection, more effort is
needed by developing countries in order to completely eradicate this disease. Mathematical models have
been developed and utilized as essential tools to understand the clinical course of infectious diseases. Some
of them have been used to control or even to eradicate these diseases. However, the major contribution
of this paper is the development of a nested multiscale model as mathematical technology that can be
deployed to evaluate the control, elimination, or even eradication of HBV infection from a complex systems
perspective. The analytical results and the numerical simulations presented in this study confirm the need
for deploying a multiscale modeling approach in understanding the dynamics of HBV infection. Numerical
simulations show that, as the infection rate increases, the infected cells population and the viral load
at between-cell scale also increase and, in turn, fuel infection at within-cell scale. This establishes
a multiscale cycle involving a positive feedback mechanism between viral transmission processes at
between-cell scale and viral replication process at within-cell scale. Since multiscale modeling based
on the application of the replication-transmission relativity theory [10, 11] incorporates both pathogen
transmission process and pathogen replication process as the main drivers of disease dynamics, we used
the multiscale model developed in this study to estimate a composite parameter Nc that estimates viral
replication process at within-cell scale by reducing the dimension of the full nested multiscale model.
In general, viral replication process at within-cell scale of a viral disease system involves seven main
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stages: [a.] attachment, [b.] penetration, [c.] uncoating, [d.] replication, [e.] assembly, [f.] maturation,
and [g.] release or excretion/shedding of new virions. We conducted a sensitivity analysis on the two
primary disease dynamics metrics, the basic reproduction number R0 and the endemic quantity of the
intercellular scale viral load Ṽ . These metrics were derived from the simplified nested multiple-scales
model. The goal was to identify the most influential parameters affecting HBV infection dynamics at the
cellular level of this disease system. This analysis allowed us to pinpoint the key parameters at both the
intracellular scale and intercellular scale, that is, intervention targets that are highly sensitive to HBV
disease dynamics. We thus conclude that interventions aimed at reducing the rate of cell infection, such
as the use of protease inhibitors (PIs), which has been demonstrated to be efficient in blocking the novo
infection can produce optimum impact in the control and prevention of HBV. However, like any other
modeling study, the work here leaves room for further improvements. This is because the modeling
work here is based on the replication-transmission relativity theory [10, 11], which only considers
pathogen-centered disease processes in infectious disease dynamics. A more elaborate multiscale model
of HBV infection dynamics can be developed based on the universal theory for multiscale modeling of
infectious disease dynamics [37]. We think that this study lays the groundwork for more comprehensive
multiple-scales models that can be used to guide the management, elimination, or even eradication of
HBV infection at cell level of organization.
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