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Abstract: In many applications, complex biological phenomena can be reproduced via structured
mathematical models, which depend on numerous biotic and abiotic input parameters, whose effect on
model outputs can be of paramount importance. The calibration of model parameters is crucial to obtain
the best fit between simulated and experimental data. Sensitivity analysis and uncertainty quantification
constitute essential tools in the field of biological systems modeling. Despite the significant number of
applications of sensitivity analysis in wet anaerobic digestion, there are no examples of global sensitivity
analysis for mathematical models describing the dry anaerobic digestion in plug-flow reactors. For
the first time, the present study explores the global sensitivity analysis and uncertainty quantification
for a plug-flow reactor model. The investigated model accounts for the mass/volume variation that
takes place in these systems as a result of solid waste conversion in gaseous value-added compounds. A
preliminary screening based on the Morris’ method allowed for the definition of three different groups
of parameters. A surrogate model was constructed to investigate the relation between input and output
parameters without running demanding simulations from scratch. The obtained Sobol’ indices allowed
to perform the quantitative global sensitivity analysis. Finally, the uncertainty quantification results
led to the definition of the probability density function related to the investigated quantity of interest.
The study showed that the net methane production is mostly sensitive to the values of the conversion
parameter related to the particulate biodegradable volatile solids in acetic acid k1 and to the kinetic
parameter describing the acetic acid uptake k2. The application of these techniques led to helpful
information for model calibration and validation.
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1. Introduction

The role of partial differential equations (PDEs) is fundamental in modeling and analyzing engi-
neering biological processes that evolve over time and space within bioreactors. PDEs provide a robust
mathematical framework for describing the spatial and temporal distribution of critical variables, such as
nutrient concentrations, microbial populations, and metabolic byproducts. By solving these equations, it
is possible to predict the dynamic behavior of these variables, facilitating the optimization of bioreactor
design and operational parameters in complex and specific applications. This predictive capability is
essential for enhancing process efficiency, achieving precise control over bioprocesses, and maximizing
the yield of desired bioproducts. Anaerobic digestion (AD) is a well known biotechnology for waste and
wastewater treatment, in which the metabolic activities of specific microorganisms are used to convert
complex organic substrates into a value-added gaseous product. During the AD process, complex
organic materials are progressively degraded into simpler organic compounds, until a methane rich
biogas is obtained as the final product. The biogas can be further utilized for clean energy generation
in accordance to environmental policies. Consequently, AD can be considered one of the leading
technologies in the context of biorefining systems. Moreover, it is important to account for additional
by-products usually contained in the residual non-gaseous effluent, i.e., digestate of the AD process. The
digestate is usually rich in nutrients and micro-elements, and it can be successfully used as a fertilizer
for agricultural scopes [1, 2]. However, some digestate constituents are able to negatively affect the
composition of soils and lead to undesired environmental impacts. In some cases, additional treatments
are recommended, such as filtration procedures [3], to reduce the content of polluting components or
to recover dissolved compounds from the liquid fraction of the digestate. The correct management of
digestate, from its generation to the final disposal, represents a crucial point for a sustainable application
of the AD process. Its correct use and utilization allow to fulfill the objectives of the Kyoto Protocol
and EU Policies concerning organic waste disposal and renewable energy production.

Based on the solid content of the fed bio-waste, AD can be performed in dry, semi-dry, or wet
conditions. In dry AD, the total solids (TS) content is higher than 15%, while in semi-dry AD, the TS
content ranges between 10 and 15%. Indeed, the most frequently adopted wet AD is used for diluted
bio-wastes with a TS content lower than 10% [4]. Over the last decades, high attention has been devoted
to the dry AD as its application leads to several advantages compared to wet systems. Small reactor
volume, low water addition, easy management of digested by-products, and reduced pre-treatment
requirement and nutrient loss are crucial design aspects of dry AD [5, 6].

The most used configuration for AD processes are continuously stirred tank reactor (CSTR) and
plug-flow reactor (PFR). CSTR is an ideal hydrodynamic model where perfect mixing is hypothesized.
For this reason, the concentration of soluble and particulate compounds is supposed to be homogeneous
in each point of the reactor [7]. In a real-scale AD plant, this ideal condition is warranted by continuous
mixing systems; the more efficient is the mixing system, the closer is the real-scale reactor to the CSTR
model. The PFR is characterized by a preferential axial direction in which a continuous flow of waste
is forced to pass. The PFR scheme is constituted by a cylindrical/tubular shape reactor where the
concentration of different components is a spatial variable in the axial direction. Conversely, soluble and
particulate compound concentrations along the radial direction are supposed to be homogeneous. For
this reason, the total volume of a PFR can be schematized as an infinite number of in series CSTR [8].
This leads to higher average substrate concentrations and related conversion rates, which could be
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beneficial for bioreactor design and performances.
In real-scale AD plants, CSTR configuration is commonly used for wet AD [9], while PFR is

adopted for dry AD due to the higher viscosity of the medium and the consequent complexity of mixing
procedures [10]. The implementation of wet or dry systems has similar costs in terms of investment
and management. On the other hand, the two systems are substantially different from an environmental
point of view. Typically, wet AD leads to the consumption of around 1m3 of fresh water per ton of
waste, e.g., the organic fraction of municipal solid waste (OFMSW), while the water demand of dry AD
reactors is ten-fold lower. For this reason, the volume of digestate produced by dry AD processes is
several-fold lower than that generated by wet AD systems [6].

1.1. Modeling of AD

Due to the complex biological interaction occurring in AD processes, the role of mathematical
modeling is crucial for the development of management/optimization tools able to predict methane
production in full-scale applications. The anaerobic digestion model 1 (ADM1) [11] is one of the
most popular mathematical models for the prediction of AD dynamics in wet conditions. From its
first publication in 2002, several authors were inspired by the ADM1 approach and proposed different
modifications to account for specific mechanisms occurring in the AD process or to include relevant
phenomena that were neglected in the original version. For instance, the variation of kinetics and
stoichiometric parameters due to different pressure levels in AD bioreactors has been recently addressed
in [12]. Mathematical models of wet AD are typically based on ordinary differential equation (ODE)
systems [13]. Since each state variable only depends on time, they are homogeneous in the reactor
domain. On the other hand, the mathematical problem of PFR is described by a PDE system, where
the state variables are functions of space and time. This aspect is relevant as it highly increases the
complexity of the mathematical modeling of dry AD processes. The effects of turbulence, dispersion,
and accumulation of particles in bioreactors strongly affect dry AD performance, as these phenomena
are naturally characterized by great uncertainty levels. For this reason, it is possible to state that the
modeling of dry AD is a less explored field than wet AD. Some authors avoided to solve the complete
PDE system by schematizing the PFR as a number of n in series CSTR [8, 14, 15]. Other attempts
considered a fixed velocity inside the reactor [16] or coupled computational fluid dynamics analysis
with a steady-state kinetic model described with ODE [17].

Recently, Panaro et al. [18] proposed an original one-dimensional mathematical model for dry AD in
PFR systems. The model was based on mass balance principles for selected state variables resulting in a
non-linear PDE system. The convective velocity of the substrate moving along the reactor represented a
further unknown, and the model was able to consider the mass/volume variation of the waste along the
reactor. Indeed, the solids conversion in gaseous compounds led to a relevant mass variation in dry AD,
which in wet systems is negligible due to the high quantity of water in the system. In the same work, the
velocity variation was obtained under two main hypotheses: i) the density of the waste substrate moving
along the reactor was supposed constant over time, and ii) the volume fractions of the bio-components
constituting the treated substrate were constrained to sum up to the unity. These statements implied
that the mass of the substrate mixture was constant along the reactor, and the mass reduction of volatile
solids (VS) due to the degradation processes was continuously balanced by the variation of velocity.
Under these hypotheses, the crucial role of relatively low convective velocity as well as the contextual
effect of diffusion and biological reactions in a PFR was addressed. It represents the first mathematical
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model able to completely describe the bio-physics of the dry anaerobic conversion accounting for the
reactor geometry, substrate characteristics, and microbial activities and interactions.

1.2. Quantification of uncertainty and sensitivity analysis

In many mathematical models of biosystems, global sensitivity analysis (GSA) plays a critical
role by identifying key parameters that significantly impact model outputs. This analysis helps in
simplifying complex models by focusing on the most influential variables, thereby making the models
more manageable and interpretable. GSA also quantifies the impact of uncertainties in input parameters,
providing insights into the robustness and reliability of model predictions. Additionally, GSA guides
model validation and calibration by highlighting discrepancies between model outputs and experimental
data, leading to more accurate and predictive models.

In mathematical models including several governing equations, the role of model parameters is
crucial to capture specific real world dynamics [19]. To better fit the experimental data, adequate
calibration procedures are required, and sensitivity analysis (SA) methods, e.g., GSA techniques, are
considered powerful tools to obtain a meaningful screening of model parameters relevance [20]. Indeed,
several works explored the input space along mono-dimensional corridors, e.g., local sensitivity analysis
(LSA), with a consequent neglect of a significant part of the space of parameters. In their literature
review, the authors noticed that 42% of the cited papers do not satisfy the requirements to properly
explore the space of input parameters. It is clear that the introduction of high-quality practices and
standard procedures is essential to the fields of SA and uncertainty quantification (UQ).

Despite many mathematical models focused on the AD process, only a few studies include GSA.
The majority of available works focused on local procedures, thus neglecting more exhaustive global
techniques [21]. Several examples of LSA procedures can be found in literature. Tartakovsky et al. [22]
used relative sensitivity functions to reduce the number of parameters of an ADM1-based model of
an up-flow anaerobic sludge blanket (UASB) reactor; Noykova and Gyllenberg [23] used a similar
approach in the case of a mathematical model for an anaerobic process influenced by substrate inhibition;
Bernard et al. [24] performed a LSA for an AD process model in an upflow fixed bed reactor (FBR)
using sensitivity coefficients evaluated for the chosen output variable; and Vavilin et al. [25] adopted
a similar approach for a distributed model of solid waste AD in batch and continuous reactors. They
identified the key parameters by changing their baseline values by a certain percentage. Similarly,
Lin and Wu [26] used the least-square (LS) method for the parameters of an AD model including the
degradation of phenolic compounds. However, these works are based on analysis that overlook the
effect of the possible interactions between parameters on model outputs.

On the other hand, only a few works focused on the GSA of AD models, and they were all related
to wet AD in CSTR. Solon et al. [27] performed a GSA on the ADM1 implemented in the context of
the benchmark simulation model no. 2 (BSM2) using the standardized regression coefficients method
and the Morris’ elementary effects screening method. They tested different reactor configurations
and concluded that sensitivity results were more accurate when AD was performed at a low sludge
retention time (SRT) and mesophilic conditions (around 35◦C). In the open-loop version of the BSM2,
a GSA study on the ADM1 using Monte Carlo (MC) tests and linear regression was proposed [28].
They focused on the reduction of computational time and on the optimal number of simulations to
achieve an acceptable sensitivity analysis result. They highlighted the importance of the numerical
solver optimization and stated that the optimal number of simulations to warrant an accurate GSA result
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depends on the number of investigated parameters, that should be multiplied by 50. Zonta et al. [29]
used a Bayesian SA tool to evaluate the variance-based SA index in a ADM1-based model accounting
for inhibitory phenomena. Carrera-Chapela et al. [30] developed a simplified mathematical model
for the AD process to account for hydrogen sulphide generation and related gaseous emissions. They
carried out a GSA using ANOVA decomposition and determined the higher sensitive parameters on the
model output by changing the inlet flow and the substrate concentration in the reactor. Based on the
sensitivity profiles, they selected the less influenced parameters using a collinearity analysis.

To the best of our knowledge, there are no examples of GSA related to PDE models describing
dry AD in PFR. Indeed, the objective of the present work is to apply GSA and UQ techniques to
perform an exhaustive GSA of the model presented in [18], as it is uniquely able to account for the
effective mass variation occurring during the anaerobic biological conversion in PFR. The screening
of model parameters represents a helpful reference for further calibration and validation works related
to mathematical modeling of dry AD, in particular for real-scale PFR applications. Moreover, the
adopted GSA technique allowed to highlight the most influencing aspects affecting model outputs and
results. The present work is organized into six main sections. The complete model of dry anaerobic
digestion in PFR is recalled in Section 2, and the model parameters and QoI selection for SA and UQ
studies are introduced in Section 3. Moreover, that section outlines the test case and the databases used
for simulations. Section 4 describes the Morris’ screening and the surrogate-based SA, which are the
adopted methods for UQ and SA. Section 5 synthesizes the main results of the study, and Section 6
contains remarks and future perspectives.

2. Model of plug-flow reactor

The one-dimensional mathematical model proposed in [18] describes the evolution of soluble and
particulate components in a PFR. The state variables represent the concentrations of these components
and are functions of time t and space, where z represents the spatial coordinate, which is oriented along
the reactor axis and directed from the inlet to the outlet section. For each state variable, a convection-
diffusion-reaction equation describes the transport, along the reactor, and the related bio-chemical
transformation. The convective and diffusive fluxes are characterized by the velocity v(z, t) and by a
constant diffusion coefficient D along the z direction, respectively. The feeding waste substrate was
composed by different components Xi with the same density ρ(z, t) = ρ. Specifically, it was constituted
by water X1, particulate inert X2, biodegradable X3 and non-biodegradable X4 VS, microbial biomass X5,
and additional dissolved compounds (i.e., soluble acetic acid S 1 and soluble methane S 2). The produced
biogas was supposed to be constituted of methane gas G, and it was collected in the head-space of
the reactor.

The kinetic scheme describing the bio-conversion processes occurring in dry AD is reported in
Figure 1. The degradation of the biodegradable VS fraction X3 in soluble acetic acid S 1 is regulated by
the kinetic rate r1, which considers the disintegration process as the rate-limiting step for acetic acid
generation; S 1 is further consumed through the non-linear Monod-type kinetic rate r2 producing both
soluble methane S 2 and microbial biomass X5; the microbial biomass decay r4 leads to the production
of further biodegradable X3 and non-biodegradable X4 VS; finally, soluble S 2 and gaseous G methane is
regulated by a gas-transfer law with the kinetic rate r3. Note that the only microbial biomass explicitly
considered as a particulate component in the model is X5, representing methanogenic bacteria using
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acetate S 1 for methane production.

Figure 1. Kinetic scheme of AD conversion processes.

The convection-diffusion-reaction equations related to each compound constitute the non-linear PDE
systems (2.1) and (2.2):

∂Xh(z, t)
∂t

+
∂(v(z, t)Xh(z, t))

∂z
− D
∂2Xh(z, t)
∂z2 = FX,h (z, t,X,S,G) ,

0 < z < L, t > 0, h = 1, ..., 5, (2.1)

∂S l(z, t)
∂t

+
∂(v(z, t)S l(z, t))

∂z
− D
∂2S l(z, t)
∂z2 = FS ,l (z, t,X,S,G) ,

0 < z < L, t > 0, l = 1, 2, (2.2)

where:

• X = (X1, ..., X5);
• S = (S 1, S 2);
• FX,h (z, t,X,S,G) , h = 1, ..., 5, is the reaction term of the compound Xh;
• FS ,l (z, t,X,S,G) , l = 1, 2, is the reaction term of the dissolved compound S l.
• FX,1 (z, t,X,S,G) = FX,2 (z, t,X,S,G) = 0;
• FX,3 (z, t,X,S,G) = f r4 − r1;
• FX,4 (z, t,X,S,G) = (1 − f )r4;
• FX,5 (z, t,X,S,G) = Yr2 − r4;
• FS ,1 (z, t,X,S,G) = m(r1 − r2);
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• FS ,2 (z, t,X,S,G) = m(1 − Y)r2 − r3;
• D is the diffusion coefficient;
• r1 = k1X3;
• r2 = k2X5S 1/ (K1 + S 1);
• r3 = k3(S 2 − RT KHG);
• r4 = k4X5;
• m is the conversion factor of VS in COD

[
gCOD g−1

VS

]
;

• Y is the yield of biomass on substrate;
• f is the fraction of dead microbial biomass converted in biodegradable substrate;
• k1 is the rate of volatile solids X3 consumption, with the dimension of

[
T−1
]
;

• k2 is the Monod maximum specific uptake rate for the acetic acid
[
T−1
]
;

• K1 is the half-saturation constant
[
M L−3

]
for the acetic acid;

• k3 is the gas-liquid transfer coefficient
[
T−1
]
;

• R is the gas law constant
[
L2 T−2 Θ−1

]
;

• T is the operating temperature [Θ];
• KH is the Henry’s law coefficient

[
L2 T−2

]
;

• k4 is the first-order decay rate of the microbial biomass X6

[
T−1
]
.

The velocity displacement in the preferential direction of the reactor constitutes a further unknown
of the problem, and the equation describing its variation is derived by assuming, for any time and space:

∑5
h=1 Xh (z, t) /ρh = 1,
ρh = ρ, h = 1, ..., 5

=⇒

5∑
h=1

Xh(z, t) = ρ. (2.3)

Equation (2.3) implies that the total mass of the waste (composed of water, inert, VS, and microbial
biomass) is constant over time. This results in varying the convection velocity along the reactor. Its
variation depends on the kinetics of the mixture’s compounds. To keep the mass constant, the velocity
variation must balance the VS consumption.

By summing Eq (2.1) on h = 1, ..., 5 and considering Eq (2.3),

∂v(z, t)
∂z

=
Yr2 − r1

ρ
. (2.4)

In addition, the mass balance on the head-space volume Vgas = AgasL leads to an additional differential
equation describing the dynamics of the gaseous methane G (t) (Eq (2.5)):

dG(t)
dt
=

A
Vgas

∫ L

0
r3 (z, t) dz, (2.5)

where A is the constant cross-sectional area occupied by the treated substrate. Equation (2.5) accounts
for the total gas-transfer rate in the PFR. The ratio between A and the volume of gas Vgas connects the
gas-transfer kinetic rate to the volume of the treated substrate.

Finally, boundary and initial conditions are prescribed according to Eqs (2.6) to (2.13):

v(0, t) = v0, t ≥ 0, (2.6)
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−D
∂Xh(0, t)
∂z

= v0(Xh,IN − Xh(0, t)), h = 1, ..., 5, t > 0, (2.7)

∂Xh(L, t)
∂z

= 0, h = 1, ..., 5, t > 0, (2.8)

−D
∂S l(0, t)
∂z

= v0(S l,IN − S l(0, t)), l = 1, 2, t > 0, (2.9)

∂S l(L, t)
∂z

= 0, l = 1, 2, t > 0, (2.10)

Xh(z, 0) = Xh,0, h = 1, ..., 5, 0 ≤ z ≤ L, (2.11)

S l(z, 0) = S l,0, l = 1, 2 0 ≤ z ≤ L. (2.12)

G(0) = G0. (2.13)

The value v0 in Eq (2.6) can be obtained by fixing the hydraulic retention time (HRT) of the components
moving along the reactor:

v0 =
L

HRT
. (2.14)

In general, HRT refers to the mean residence time of a certain substrate within a biological reactor. This
concept, usually used in CSTR, is equally applicable to PFR, wherein the HRT is intrinsically linked to
the convective velocity of all compounds traversing the reactor. As a consequence, the HRT in a PFR
can be defined as a function of the physical dimensions (L) and flow dynamics within the reactor system.
In Eqs (2.7) and (2.8), Xh,IN and S l,IN are the concentrations of water or particulate components, and
dissolved compounds in the incoming flow rate, respectively.

It is important to emphasize that, unlike conventional ADM1-based models, the only microbial
biomass described in the present model is methanogenic bacteria that utilize acetate as the organic source
for methane production. This approximation can appear highly limiting, as it fails to account for the
various fermentation pathways and associated byproducts accumulating in an AD reactor. Specifically,
the inability to predict the dynamics of all classical anaerobic species restricts the determination of
crucial compounds, such as volatile fatty acids, which are known to cause pH inhibition processes
affecting system dynamics. Nevertheless, when limited information is available about microbial species
in an AD bioreactor, the model can still successfully reproduce real-case experimental data. An
illustrative example is provided in [18], where model parameters were adjusted to replicate lab-scale
experimental data, with Tables 1 and 2 listing all the parameters used for data fitting and related
boundary conditions.

3. Uncertainty sources, quantities of interest, and databases

In the presented mathematical model, the state variables whose dynamics are described by the system
of Eqs (2.1)–(2.3) and (2.5), coupled with boundary (2.6)–(2.10) and initial conditions (2.11)–(2.13),
depend on a significant set of parameters. As recently reported [18], the knowledge about model
responses to the variation of parameters is crucial for calibration and validation procedures based on
real-world data. In the present investigation, seven different parameters have been selected as reported
in Table 1. The first group includes i) the first-order kinetic constant for the conversion process of
biodegradable VS in acetic acid k1, ii) the Monod maximum specific uptake rate for acetate k2, iii) the
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first-order decay rate for the microbial biomass k4, iv) the half-saturation constant K1, and v) the yield
of biomass on substrate Y linked to bio-chemical processes. The second group is constituted by vi)
the gas-transfer coefficient k3, and vii) the diffusion coefficient D, which was assumed constant for
all the components. For the input parameters, uniform distributions were assumed in their physically
meaningful literature range [11, 16].

Table 1. Parameters investigated and related variation ranges.

Parameter Description Range Value Reference
k1 VS degradation rate 0.005-0.5 0.1 d−1 [18]
k2 Acetate maximum uptake rate 0.080-8.0 8.00 d−1 [11]
k3 Gas transfer coefficient 0.300-300 20 d−1 [18]
k4 Microbial biomass decay rate 0.001-0.05 0.02 d−1 [11]
K1 Half-saturation constant 0.015-1.5 0.15 gCODl−1 [11]
D Diffusion coefficient 10−8-10−6 10−7 m2s−1 [18]
Y Yield of biomass on substrate 0.04-0.1 0.05 [11]

3.1. Quantity of interest

The PFR model describes the AD process evolving in time t ∈ (0, τ) and space x ∈ (0, L). It also
accounts for the already mentioned key variable G(t), which is the biologically produced methane
described as a function of time, Xh(z, t), h = 1, ..., 5, and S l(z, t), l = 1, 2, which are spatially distributed
state variables. To gain a deeper understanding of how uncertain inputs influence the behavior of the
PFR model, it is crucial to concentrate on a select set of scalar outputs.

A specific quantity of interest (QoI) has been considered in this study; denoting with y the time
integral from t = 0 and t = τ of the total methane volume accumulated in the head-space of the reactor
at normal temperature and pressure conditions, it is possible to obtain the equation

y =
∫ τ

0

RT0

P0
Vgas

G(t)
64

dt [lCH4d], (3.1)

where:

- G(t) is the gaseous methane concentration expressed in gCOD l−1
gas;

- T0 and P0 represent the values of temperature and pressure at normal conditions;
- 64 is a stoichiometric coefficient expressing the grams of COD per mole of methane.

The selection of the QoI is strictly connected to the main objective AD process: to realize an efficient
biological treatment for the waste organic compounds fed to the PFR by producing methane. Hence, the
main goal of the present analysis is the reduction of the uncertainty related to this specific model output.

3.2. Description of test case

To achieve useful information and significant datasets for the SA, a test case was built for numerical
simulations. The test case was based on experimental evidence and procedures aimed at maximizing the
methane production from AD in a real PFR. Indeed, many experimental studies focused on the measured
methane yield variation when different feeding or environmental conditions were applied to bioreactors,
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such as different organic loading rates (OLR) or solid contents, different pretreatment on the organic
substrate, and different working temperature [31]. These parameters can strongly affect bioreactor
design and performances, as well as uncertainty quantification results. In the present study, the more
frequent parameters adopted for real-scale PFR were selected. More precisely, OLR is a measure of the
organic compounds fed to the bio-reactor, evaluated as the ratio between the concentration of VS in
the inlet flow and the HRT, which represents the average treatment time of fed components in the AD
process. All these aspects were fundamental to the test case definition.

Table 2 reports the value of the defined geometric and operational parameters adopted in this study.
These parameters include the PFR length L, the cross-sectional area A, the reactor head-space volume
Vgas, the HRT, the inlet convective velocity v0, the OLR, and the temperature T . The conversion
coefficient of VS in COD was fixed at m = 1.5 gCOD g−1

VS , while the fraction of dead microbial biomass
converted in biodegradable substrate was set at f = 0.2. The composition of the feeding substrate
was chosen in accordance to lab-scale experiments and is reported in Table 3. The initial substrate
consisted of a mixture of biodegradable, non-biodegradable, and microbial biomass solids, the latter
constituting the microbial biomass required as the inoculum for the anaerobic process. Initial and
boundary conditions used for simulations are summarized in Table 4. The simulation time was fixed
to 120 d, as it is a common practice to suppose that the reactor stabilization is achieved when three HRT
have been performed by the PFR in the same working conditions (HRT = 40 d).

Table 2. Operating parameters of the test case.

Parameter Description Dimension Value
L Reactor length m 1.34
A Reactor cross-section m2 0.0224
Vgas Volume of the head-space l 10.0
HRT Hydraulic retention time d 40.0
v0 Incoming flow rate velocity cm d−1 3.35
OLR Organic loading rate gVS l−1 d−1 6.0
T Reactor temperature regime ◦C 37.0

Table 3. Initial mixture and inlet substrate characterization.

Parameter Dimension Initial mixture Inlet substrate
Total solids gTS g−1 0.15 0.30
Volatile solids gVS g−1

TS 0.80 0.80
Biodegradable VS gVS g−1

VS 0.07 0.396
Non-biodegradable VS gVS g−1

VS 0.905 0.60
Microbial biomass gVS g−1

VS 0.025 0.004
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Table 4. Initial conditions and inlet flow concentrations used in model simulations.

Parameter Symbol Unit Value
Density of the treated substrate ρ g l−1 1000.0
Initial H2O concentration X1,0 g l−1 850.0
Initial inert concentration X2,0 g l−1 30.0
Initial biodegradable VS concentration X3,0 gVS l−1 8.4
Initial non-biodegradable VS concentration X4,0 gVS l−1 108.6
Initial soluble acetic acid concentration S 1,0 gCOD l−1 0.0
Initial soluble methane concentration S 2,0 gCOD l−1 0.0
Initial microbial biomass concentration X5,0 gVS l−1 3.0
Initial gas-phase methane concentration G0 gCOD l−1 0.0
Inlet H2O concentration X1,IN g l−1 700.0
Inlet inert concentration X2,IN g l−1 60.0
Inlet biodegradable VS concentration X3,IN gVS l−1 95.04
Inlet non-biodegradable VS concentration X4,IN gVS l−1 144.0
Inlet soluble acetic acid concentration S 1,IN gCOD l−1 0.0
Inlet soluble methane concentration S 2,IN gCOD l−1 0.0
Inlet microbial biomass concentration X5,IN gVS l−1 0.96

3.3. Experimental designs and databases

By using a design of experiments, the input space ZΘ ∈ Rd (hypercube) of uncertain parameters
(d = 7 is the number of parameters investigated) was discretized. In this way, N realizations of the
parameters θi were defined. The PFR model was treated as a “black box” to generate N functional
outputs y. The functional outputs were further analyzed, and useful statistics were obtained. The
ensemble was compiled into a databaseDN:

DN =
{(
θ(l), y(l)

)
1≤l≤N

}
, (3.2)

where y(l) = F
(
θ(l)
)

is the integration of the PFR model F obtained by fixing the lth set of input
parameters θ(l).

Table 5. DatasetsDN of the PFR model [32] simulations for the Morris screening, the building
of surrogates (“training”), and for the validation (“validation”).

Method Aim Sample size
Randomized algorithm Morris screening 400
Halton’s sequence Surrogate training 210

Faure’s sequence Surrogate validation 210

In this study, the parameter set used to carry out the screening θMorris consisted of NM = 400 samples.
It was generated using the random algorithm proposed in [32]. For the surrogate-based study, quasi-
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Monte Carlo sampling methods were selected to compile two different databases of size N = 210.
Halton’s sampling was used to generate the first database, which was utilized as a training set. Faure’s
sampling was used to generate the second database, or validation database. Indeed, the latter was used
to investigate the precision of various surrogate techniques. Table 5 summarizes the compiled databases.
Remarkably, the considered PFR model features significant non-linearities for the QoI y when θ varies in
ZΘ. Figure 2 portrays 40 representative PFR model output snapshots sampled from the Morris database.
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Figure 2. CH4 profiles from the Morris’ algorithm sampling database with different values
of θ.

4. Surrogate-based SA

A two-phase SA was conducted on the PFR model: 1) the more rapid preliminary screening process
using the elementary effect test (EET), proposed by Morris in [32]; and 2) the exhaustive surrogate-based
GSA (4.2), aimed to achieve more accurate results. All GSA computations were pursued with the
Python package OpenTURNS [33] (see www.openturns.org). Moreover, the PFR model was developed
and integrated in the MATLAB platform. An original software, based on the finite difference upwind
method, was used for numerical simulations. The method is conditionally stable and it was implemented
according to [18].

4.1. Morris’ scheme screening

According to Morris [32], an effective screening sensitivity measure for identifying a model’s most
significant parameters is the elementary effect (EE). Based on the computation of incremental ratios (the
EEs), whose mean is used to measure global sensitivity, the method determines the overall significance
of each input parameter on the QoI. The analysis was conducted by adopting randomized single-variable
experiments, i.e., One-At-Time (OAT). These involve systematically changing one variable at a time
while keeping others constant, with the order of changes randomized to reduce bias and better understand
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the impact of each variable on the outcome. Initially, the input parameters were initially assumed to be
uniformly distributed within [0, 1], and then their distributions were mapped from the unit hypercube to
their corresponding distributions.

For a given value of θi ∈ θ, the elementary effect EEi can be expressed as:

EEi =
y(θ∗1, . . . , θ

∗
i + δi, . . . , θ

∗
d) − y(θ∗1, . . . θ

∗
i , . . . , θ

∗
d)

δi
, (4.1)

where δ ∈
{

1
nl−1 , 1 −

1
nl−1

}
, nl is the number of levels, θ∗ = (θ∗1, . . . , θ

∗
d) is a random value in the hypercube

Zθ such that the point (θ∗ + eiδ) still maps to a point in Zθ for each i ∈ 1, . . . , d, and ei is a zero valued
vector except for its ith component ei = 1. For each input parameter θi, the empirical distribution of
elementary effects EEi was derived, with a random sampling of θ, s.t. EEi ∼ Fi, and its mean µi, and
standard deviation σi were used as sensitivity measures. Moreover, the correction to the µi introduced
in [34] was adopted. To avoid eliminating increments of different signs, their alternative measure
employs the absolute value of the EEs instead of the mean µi. Their measure can be written as:

S i = µ
∗
Morris =

1
n

n∑
j=1

EE j =
1
n

n∑
j=1

∣∣∣∣∣∣∣y(θ j
1, . . . θ

j
i + δ

j
i , . . . , θ

j
d) − y(θ j

1, . . . θ
j
i , . . . , θ

j
d)

δ
j
i

∣∣∣∣∣∣∣ ci. (4.2)

To avoid large databases of experiments and/or simulations, it is a common practice to sample r
elementary effects from each Fi and constructing r trajectories of (d + 1) points in the input parameter
space, which provides d elementary effects. The total cost of the experimental set is thus r(d + 1) model
evaluations. Apart from the mean (and its eventual corrections), standard deviation of the EEs provides
useful information. It may constitute a proxy of the level of interaction between the parameters and it
allows to understand if a certain factor has non-linear effects on the QoI.

4.2. Surrogate modeling

An emulator (also known as metamodel, or surrogate model) of the PFR model described in Section 2
was built by adopting two distinct algorithms: i) the generalized polynomial chaos (gPC) expansion,
and ii) the Gaussian process (GP) model. Indeed, gPC-expansion and GP model are robust and widely
spread techniques, which are well described in literature. In particular, the mathematical setting is
detailed in [35,36] and the previous work of Roy et al. [37]. Both approaches created a surrogate for the
QoI y using a (finite) sum of basis functions:

y =
∑
α∈A

γαΨα. (4.3)

The Halton’s training database DN with N = 210 (see Section 3.3) was used to determine the
coefficients {γα}α∈A and the basis functions {Ψα}α∈A in Eq (4.3). The coefficients can be determined
using different methods.

Three different algorithms were tested in the present work: two variations of the gPC-expansion
and an application of the GP. While performing a polynomial chaos, the basis functions of Eq (4.3) are
multivariate orthonormal polynomial functions (see e.g., [38]). The two implementations of gPC differ
by the rule that determines the finite sum of polynomial basis in Eq (4.3). One variant of gPC, referred
to as standard least squares, used a linear truncation scheme to guide the choice of the polynomial basis,
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while the second attempt, based on least angle regression, employs a sparse strategy for the truncation
scheme [39]. Finally, the execution of the GP used the squared exponential (radial basis function) as
the correlation kernel [40]. The algorithms to compute a gPC-expansion and GP surrogate are reported
in [41] and adapted for the specific application. For the GP surrogate, the radial basis function (RBF)
kernel was used according to [35].

5. Results

5.1. Morris’ screening

Figure 3 and Table 6 summarize the results of Morris’ screening procedure applied to the QoI y. The
parameters were classified in three groups in terms of relevance. First, the most relevant parameters for
the specific QoI are the kinetic constant related to the conversion process of the biodegradable VS in
acetic acid k1 and the Monod maximum uptake rate of acetic acid k2. These results were expected from
a biological point of view, as k1 affects the kinetics of the disintegration process, which is one of the
most limiting bio-process in AD, and determines the conversion rate of the substrate in intermediate
products [42]. Moreover, k2 directly affects the methane production rate and is recognized as one of
the most influencing parameter in AD modeling [43]. However, the results suggest that it could be
appropriate to focus future research on the disintegration kinetics modeling occurring in this case, and
take into account the particle size distribution of biodegradable components as in Panaro et al. [44].
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Figure 3. Morris algorithm with respect to y.
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Table 6. Uniform distribution, Morris (M) rank, and Sobol’ indices (SI) rank for the investi-
gated parameters. Uniform marginal PDFs associated to the vector θ are reported in the third
column. U(min,max) is the uniform distribution between the minimum and the maximum
value of the specified parameter.

Parameter Description Uniform distribution M rank SI rank
k1 VS degradation rate U(0.005, 0.5) 1 3
k2 Acetate maximum uptake rate U(0.08, 8.0) 2 1
k3 Gas-liquid transfer coefficient U(0.3, 300) 3 6
k4 Microbial biomass decay rate U(0.001, 0.05) 6 5
K1 Half-saturation constant U(0.015, 1.5) 7 2
D Diffusion coefficient U(1 × 10−8, 1 × 10−6) 4 7
Y Yield of biomass on substrate U(0.04, 0.1) 5 4

A second group made of physical parameters includes k3, and D, which are sufficiently relevant in
determining the QoI value. The gas-transfer coefficient k3 regulates the amount of soluble methane
released in the gas-phase from the reactor environment. Of course, its low value leads to a small amount
of soluble methane transferred in the gas-phase. When the value of k3 exceeds a specific threshold, all
the methane is released in the gas-phase and the value of the gas-transfer coefficient becomes negligible
with respect to the QoI. It is clearly important to notice that this observation is due to the atmospheric
pressure level considered for the PFR. Indeed, pressure and consequent gas-transfer conditions are
critical factors influencing the overall efficiency of the biogas generation process. Elevated pressures
can enhance the solubility of gases, thereby potentially increasing the contact between microorganisms
and substrates, which can lead to higher methane yields. However, excessively high pressures may also
inhibit microbial activity and disrupt the delicate balance of microbial communities, ultimately reducing
methane production [12]. Therefore, optimizing pressure conditions is essential for maximizing methane
output while maintaining the stability and performance of PFR. Regarding the diffusion coefficient, it
was unexpected for D to be so less important than biological parameters for the specific QoI, as the PFR
model reproduces convective-diffusive-reactive phenomena. This observation highlighted the crucial
role of kinetic coefficients when modeling the effect of diffusion on the process development. Indeed,
it has been demonstrated that diffusion strongly affects the hydrolysis of complex material in dry AD
processes [45, 46]. The one-dimensional structure of the PFR model leads to neglecting the influence of
different values of the diffusion coefficient along other directions, which can affect the determination of
the QoI in 2D and 3D models. In these cases, a more relevant relationship between the diffusion and
the rate of conversion of substrates in methane could emerge, as different diffusion processes in the
other directions may influence acids and by-products distribution in the PFR [47]. Moreover, a different
formulation of kinetics parameters including the effect of the diffusion coefficient in such particular
environment could be proposed for future works.

The last qualitative information obtained through the Morris’ screening was that the group of
parameters consisting in the half-saturation constant K1, the microbial biomass decay rate k4, and the
yield of biomass on substrate Y present very small sensitivities. The roles of the half-saturation constant
and the yield of biomass on substrate are not emerging in the qualitative preliminary screening. Indeed,
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when K1 assumes very small values, the consumption kinetic of the acetic acid becomes linear, which
means that the methane production process is more efficient. The yield of biomass on substrate Y
determines the amount of acetic acid that becomes methane and, even if it varies among 0 and 1, it
is expected to influence methane production. These aspects required a deeper investigation with the
quantitative variance based GSA.

5.2. Estimation of the error

Metamodels of the PFR model for UQ and SA must be evaluated for their ability to reproduce model
variability. Indeed, it is possible to compute the a posteriori approximation error resulting from the
surrogate model by

ϵemp =
1

Nhalton

Nhalton∑
l=1

(
y(l) − ŷ(l)

)
, (5.1)

where y(l) is the lth element of the training set, ŷ(l) is the corresponding prediction (gPC or GP), and
N = 210 (see Table 5). It is noteworthy that this estimator of the metamodel error is prone to issues of
overfitting, which could result in a severe underestimation of the mean square error [39]. Furthermore,
since the GP model interpolates the training set points, it is guaranteed to achieve ϵemp = 0 when
noise-free kernels are used. For any surrogate model, algorithm, and configuration that were tested, the
ratio of the empirical error, ϵemp, to the empirical mean of the QoI, y, calculated over the Halton dataset,
remains consistently below 4.0 × 10−3.

To avoid the aforementioned limitations, the surrogates were validated by employing the Q2 predictive
coefficient, a cross-validation error metric that utilizes an independent dataset derived from Faure’s low
discrepancy sequence, as reported in Table 5. In Eq (5.2), this coefficient is described as

Q2 = 1 −

NFaure∑
l=1

(
y(l) − ŷ(l)

)2
NFaure∑
l=1

(
y(l) − y

)2 , (5.2)

where y denotes the empirical mean calculated from Faure’s validation set (Nfaure = 210). The Q2

predictor coefficient (with 1 as the target value) provides a normalized estimation of the generalization
error, which quantifies the surrogate model’s error when evaluating points that are not included in
Halton’s training set, thereby offering a measure of the model’s predictive performance on unseen
data [48]. The closer Q2 approaches 1, the better the surrogate replicates the PFR dynamical system. By
applying the Q2 indicator, it is possible to rank surrogate models based on their ability to reproduce the
PFR model dynamics. When the g-PC technique is applied, the surrogate model characterized by a total
polynomial order P demonstrates superior accuracy, yielding the most precise results compared to other
adopted models with different polynomial orders. In this study, the polynomial order P ranged from 1
to 7.

Figure 4(a) presents the adequacy plots, which illustrate the performance of the metamodel by
comparing it with the actual forward model F runs, using points from the design of experiment (DoE)
to assess how well the metamodel approximates the forward model. By plotting the Q2 values in
Figure 4(b), the robustness of the LAR-gPC algorithm is illustrated. When P > 4, the dimensionality

Mathematical Biosciences and Engineering Volume 21, Issue 9, 7139–7164.



7155

of the underlying statistical model hinders the convergence. As a final note, Table 7 provides a
comprehensive overview of the error estimators associated with the various surrogate techniques that
have been applied, detailing the measures used to evaluate the accuracy and reliability of each technique.
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(a) Adequacy plot for the LAR gPC algorithm
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(b) Q2 test for varying maximum order of gPC from p0 = 1 to p1 = 7

Figure 4. Adequacy plots (a) and Q2 test (b) related to the LAR-based gPC algorithm.
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Table 7. Values of observed errors related to the different surrogate models built in this study.
The most favorable results for the LAR-gPC and the SLS-gPC, corresponding to the explored
range of values for P, are reported.

Metamodel Q2 ϵemp/y
SLS-gPC (P = 4) 0.972 3.40e − 03
LAR-gPC (P = 4) 0.975 3.79e − 03
GP (RBF Kernel) 0.993 0

5.3. Quantitative GSA

Variance decomposition-based analysis is usually performed using Sobol’ indices [49, 50]. These
allow to quantify the weight of the uncertainty of a single input parameter, considered as an independent
variable with respect to the other parameters, based on the variance of the QoI y. By indicating the
variance of the output random variable y and the variance linked to the variability of the ith parameter
as V(y) and Vi(y), respectively, the first-order Sobol’ index S i, referred to the ith parameter of Θ, is
defined as:

S i =
Vi(Y)
V(Y)

. (5.3)

Indeed, S i values ranges between 0 and 1. To account for parameter interactions while defining the
measure of the ith input parameter contribution on the output variance, the total Sobol’ index S Ti is
defined as:

S Ti =
∑

I⊂{1,...,d}
I∋i

S I . (5.4)

Consequently, S Ti ≥ S i by definition. By observing the difference between the first-order and the
total indices, it is possible to detect the presence of these interactions. In the case of the GP-surrogate
approach, the Sobol’ indices were obtained through a stochastic process, with Martinez’s formulation
employed as a stable and reliable estimator to ensure precision and robustness in the calculation of these
indices [51]. The first-order and total Sobol’ indices are derived directly from the gPC coefficients for
the LAR gPC expansion. As an example, the first-order Sobol index is expressed as:

S i,pc =
1
σ2

y

∑
α∈A,

αi>0 and αk,i=0

γ2
α, (5.5)

where σy is the empirical output sample STD (see [35, 36]).
The first-order and total Sobol’ indices obtained by the three algorithms are shown in Figure 5.

Based on the Q2 error, the GP surrogate was the best-performing algorithm, so the SA and UQ results
related to this algorithm were discussed. A comparison of first-order and total Sobol’ indices reveals
interactions between factors. It is noteworthy that the range of parameters utilized in the investigation
can significantly influence the analysis outcomes. To mitigate errors, the parameters were selected
based on a comprehensive review of various anaerobic digestion models that examine the bioconversion
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of different substrates under anaerobic conditions [52–54]. The specific ranges of these parameters
are detailed in Table 6. Considering the specific QoI (methane production), Sobol’ indices analysis
confirmed the Morris screening results for k2. Both the Sobol’ index and the total Sobol’ index of the
Monod maximum uptake rate k2 were higher than all the other parameters. As expected, the kinetic
constant k1 maintained its relevance, while the half-saturation constant K1 and the yield Y gained
positions on k3, k4, and D. As already remarked, the half-saturation constant K1 and the yield Y directly
affect the acetic acid maximum consumption rate and the consumed acetic acid, respectively. As a
result of the Morris screening, the QoI was not affected by the variation in these parameters. However,
quantitative SA highlighted their effects. Finally, the small sensitivities of the microbial decay rate
kinetic constant k4, and physical parameters k3 and D were confirmed by the quantitative SA with
Sobol’ indices.

k1 k2 k3 k4 K1 D Y

0.01

0.10

0.25
0.50 Sobol indices GP

Total Sobol indices GP
Sobol indices SLS

Total Sobol indices SLS
Sobol indices LAR
Total Sobol indices LAR

Figure 5. First-order and total Sobol’ indices (logarithmic scale) related to uncertain pa-
rameters θ and their effect on y. For the GP, orange and red are first-order and total Sobol’
indices, respectively. For the SLS-gPC, light blue and dark blue are first-order and total Sobol’
indices, respectively. For the LAR-gPC, gray and dark gray are first-order and total Sobol’
indices, respectively.

5.4. Uncertainty quantification

Based on the Q2 error estimator, the analysis was restricted to the surrogate model that provides
the highest level of accuracy, such as the Gaussian process metamodel. To achieve a comprehensive
statistical characterization of the QoI, including its statistical moments and PDF, a Monte Carlo random
sampling method was employed to sample the uncertain input space ZΘ with a sample size of 10, 000
members, followed by the evaluation of the GP surrogate model to analyze the resulting data. The mean,
standard deviation, skewness, and kurtosis of the QoI, computed from such Monte Carlo samples are
given in Table 8.
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Table 8. Statistical moments for the PDF.

Moment y (lCH4d)
Mean 398514.91
Standard deviation 353356
Skewness 0.275
Kurtosis 1.5638

Figure 6 presents the QoI PDF related to the CH4 net production. Relevant information can be
inferred from both the shape of the distribution and its higher-order moments, as these elements
collectively provide insight into the underlying characteristics and behavior of the data. Depending on
the model parameter values and the initial conditions, the two different peaks revealed a high probability
of having a small amount of produced methane (corresponding to the failure of the system) and a
medium-high probability of reaching high methane production. Indeed, when the input parameter vector
is characterized by unfavorable values, with slow conversion of the biodegradable COD in acetic acid or
slow conversion of the acetic acid, it is very difficult to reach a valuable methane production. On the
other hand, when the vector of parameters is characterized by a favorable combination of input factors
with respect to the reactor working conditions, there is a good chance to achieve relevant methane
productions. The PDF drops to zero, after the value of approximately 1 × 106 [lCH4 · d

]
. This result

highlights that it is impossible to produce more methane in the corresponding period of time with
the used values of HRT , v0, and OLR. This revealed the significant limitation due to the operational
conditions influencing the performance of the PFR.
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Figure 6. Probability density function for the quantity of interest y with the GP metamodel.
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6. Conclusions

Using non-intrusive techniques, UQ and GSA techniques were adopted on a novel dry AD model
in a PFR. The model depends on a conspicuous set of input parameters and, up to now, had lacked
rigorous studies serving as bases for the application of effective calibration an validation procedures.
GSA application leads to identifying which parameters most significantly influence model outputs,
thereby guiding targeted adjustments and ensuring that model predictions are robust and reliable. On
the other hand, UQ addresses the inherent uncertainties in model inputs and parameters, providing a
comprehensive understanding of the range and likelihood of possible outcomes, which is essential for
accurate model validation and for making informed decisions in any biotechnological application. The
use of these techniques was aimed at predicting the overall effect of uncertainty of the input parameters
on CH4 production, which represents the value-added product achievable from this bio-tecnology.
The identification of the most sensitive parameters upon which the dry AD process depends, and the
identification of the uncertainty associated with their variation within reasonable ranges, represent an
initial step in reducing the process-related uncertainty.

The Morris screening test and the quantitative sensitivity analysis with Sobol’ indices showed, with a
good accordance, that the net methane concentration is mostly sensitive to the values of the conversion
parameter related to the particulate biodegradable volatile solids in acetic acid k1, and to the kinetic
parameter describing the acetic acid uptake k2. The relevance of the half-saturation constant K1 and
the yield of biomass on substrate Y were highlighted by the quantitative sensitivity analysis through
the Sobol’ indices. The selected QoI was less sensitive to other biochemical and physical parameters.
According to the presented results, it is possible to claim that in 1-D PFR models, the role of the
diffusion coefficient is negligible with respect to more relevant kinetic parameters. It is important
to emphasize that the primary objective of the present study was to investigate the bioconversion
of acetic acid into methane in a PFR. Consequently, microbial species responsible for acetic acid
accumulation, along with other common metabolic species such as sulfate-reducing bacteria, have
been excluded from consideration. A natural progression of this research would involve developing
an extended mathematical model that includes a broader range of microbial species and associated
parameters. An analytical study of this extended model, combined with the application of SA and UQ
techniques, could provide valuable insights into the most influential metabolic processes under these
more comprehensive conditions.

Finally, the present analysis revealed the crucial role of UQ for adequate calibration procedures and
further validation of such complex mathematical models. These routines, ranging from simple screening
analysis to more complex and computationally demanding variance-based metamodel analysis, constitute
a robust asset for modelers, designers, and managers of anaerobic reactors. For the performance
evaluation of a dry AD process, the group of more sensitive parameters are those connected to the
kinetic description of the biological process, leading to the contextual waste substrate degradation and
methane production in anaerobic reactors.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Mathematical Biosciences and Engineering Volume 21, Issue 9, 7139–7164.



7160

Acknowledgments

This work has been partially developed in the context of D.D. n. 1377 on June 5, 2017, additional
PhD fellowships for 2017/2018 academic year, course XXXIII within the framework of the “Programma
Operativo Nazionale Ricerca e Innovazione (PON RI 2014/2020) Action I.1 - Innovative PhDs with
industrial characterization”.

VL acknowledges the project “FBIOMA-Fermentative BIOhydrogen production MAthematical
modeling” (CUP: E63C22004130001).

MRM acknowledges support from the National Research Center for Agricultural Technologies -
Agritech, funded by the European Union NextGenerationEU (PIANO NAZIONALE DI RIPRESA E
RESILIENZA PNRR, Missione 4 Componente 2 Investimento 1.4 - D.D. 1032 17/06/2022, Project
code CN00000022) The present work has been performed under the auspices of the GNFM of INdAM.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. G. Esposito, L. Frunzo, F. Liotta, A. Panico, F. Pirozzi, Bio-methane potential tests to measure
the biogas production from the digestion and co-digestion of complex organic substrates, Open
Environ. Eng. J., 5 (2012), 1–8. https://doi.org/10.2174/1874829501205010001

2. G. Esposito, L. Frunzo, A. Giordano, F. Liotta, A. Panico, F. Pirozzi, Anaerobic co-digestion of
organic wastes, Rev. Environ. Sci. Bio/Technol., 11 (2012), 325–341. https://doi.org/10.1007/s11157-
012-9277-8

3. V. Luongo, M. R. Mattei, L. Frunzo, B. D’Acunto, K. Gupta, S. Chellam, et al., A transient
biological fouling model for constant flux microfiltration, Math. Biosci. Eng., 20 (2023), 1274–
1296. https://doi.org/10.3934/mbe.2023058

4. Y. Li, S. Y. Park, J. Zhu, Solid-state anaerobic digestion for methane production from organic waste,
Renewable Sustainable Energy Rev., 15 (2011), 821–826. https://doi.org/10.1016/j.rser.2010.07.042

5. O. Karthikeyan, C. Visvanathan, Bio-energy recovery from high-solid organic substrates by dry
anaerobic bio-conversion processes: A review, Rev. Environ. Sci. Bio/Technol., 12 (2013), 257–284.
https://doi.org/10.1007/s11157-012-9304-9

6. P. Vandevivere, New and broader applications of anaerobic digestion, Critical Rev. Env. Sci. Technol.,
29 (1999), 151–173. https://doi.org/10.1080/10643389991259191

7. G. Policastro, V. Luongo, L. Frunzo, N. Cogan, M. Fabbricino, A mechanistic mathematical model
for photo fermentative hydrogen and polyhydroxybutyrate production, Math. Biosci. Eng., 20
(2023), 7407–7428. https://doi.org/10.3934/mbe.2023321

8. A. Donoso-Bravo, C. Sadino-Riquelme, D. Gómez, C. Segura, E. Valdebenito, F.
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