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Abstract: Mathematical modeling plays a crucial role in understanding and combating infectious
diseases, offering predictive insights into disease spread and the impact of vaccination strategies. This
paper explored the significance of mathematical modeling in epidemic control efforts, focusing on
the interplay between vaccination strategies, disease transmission rates, and population immunity. To
facilitate meaningful comparisons of vaccination strategies, we maintained a consistent framework by
fixing the vaccination capacity to vary from 10 to 100% of the total population. As an example, at a
50% vaccination capacity, the pulse strategy averted approximately 45.61% of deaths, while continuous
and hybrid strategies averted around 45.18 and 45.69%, respectively. Sensitivity analysis further
indicated that continuous vaccination has a more direct impact on reducing the basic reproduction
number R0 compared to pulse vaccination. By analyzing key parameters such as R0 , pulse vaccination
coefficients, and continuous vaccination parameters, the study underscores the value of mathematical
modeling in shaping public health policies and guiding decision-making during disease outbreaks.
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1. Introduction

The field of epidemiological modeling has a rich history, with seminal concepts introduced by
Kermack and McKendrick in 1927 [1]. Since then, a variety of models have been developed, ranging
from deterministic compartmental models to more complex stochastic and network-based approaches.
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The susceptible-infected-recovered (SIR) model, a specific case of the susceptible-exposed-infected-
recovered-susceptible (SEIRS) model, has been widely used in the study of infectious diseases [2].
However, the simplicity of these models has led to the development of more complex ones that attempt
to account for more details of real-world disease processes. The threshold theorem, a key result in
epidemiology, predicts the critical fraction of susceptibles in the population that must be exceeded for
an epidemic to occur [3].

Recent studies have emphasized the importance of incorporating latent periods in infectious disease
models, with a focus on the incidence rate function. Takeuchi [4] and Hattaf [5] have both explored
the use of general incidence rate functions in delayed epidemic models. The study in [6] has extended
this work by incorporating a dual time delay and Caputo fractional derivative in a viral system model,
while Al-Darabsah [7] has applied a time-delayed susceptible-vaccinated-exposed-infected-recovered
(SVEIR) model with a non-monotone incidence rate to the dynamics of infectious diseases with an
imperfect vaccine. Ghosh has also considered the impact of vaccination and delay in SIR models [8].
Notably, recent studies have explored general incidence rate functions satisfying mild conditions [9–
11].

Recent work [12] has further highlighted the importance of combining vaccination with other
therapeutic measures, such as the treatment of infected individuals, to enhance disease control. It
demonstrated that the combination of vaccination and treatment can be more effective in reducing the
spread of infectious diseases like dengue, compared to vaccination alone, particularly when vaccine
efficacy is not optimal. This finding underscores the potential for integrated approaches in
epidemiological models to achieve more robust disease control outcomes.

The field of epidemiology has seen significant growth due to the prevalence of infectious diseases,
leading to the development of various vaccination methods. Traditional approaches such as
susceptible-vaccinated-infected-recovered (SVIR) and SVEIR have been used, with the pulse
vaccination strategy (PVS) emerging as an effective method. This strategy has been applied in various
models, including SEIR with time delay [13], SEIR with latent period [14], and SVEIRS with two
time delays and saturated incidence [15]. These studies have shown that a high vaccination rate, short
pulse of vaccination, and long latent period can lead to disease extinction, making PVS a promising
tool for disease control. The primary objective of PVS [16] is to minimize the number of susceptible
individuals, facilitating their direct transition to the recovered population without becoming infected.
This strategy involves repeated vaccination actions within a population during periods of rising
infection rates, persisting until disease spread ceases.

In this work, we introduce a novel epidemic model that incorporates both impulsive and continuous
vaccination strategies aimed at preventing disease occurrence, termed the disease-free state. We will
show a unique periodic solution known as the disease-free periodic solution (DFPS). The analysis
of the dynamics associated with this solution provides valuable insights into the effectiveness of a
fixed and periodic vaccination strategy. Moreover, we explore scenarios where recovered individuals
may experience waning immunity, which highlights the importance of ongoing vaccination efforts.
To determine whether the disease will persist or be eradicated, we employ the basic reproduction
number, R0, utilizing the spectral radius approach. This method, pioneered by Diekmann et al. [17],
extends our understanding of disease dynamics and informs long-term control strategies. Through the
presentation of a hybrid SIRS model incorporating pulse and continuous vaccination strategies, our
study contributes to the broader understanding of infectious disease dynamics and offers guidance for
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effective disease control and prevention measures.

2. Model formulation and main results

To study and compare the effect of pulse vaccination and continuous vaccination strategies, we
introduce the following hybrid model.

Figure 1. Flow diagram for delayed SIRS model.

When t , kτ, k ∈ N, we have the following delay differential equations governing the disease
dynamics: 

dS
dt = Λ − βS (t)I(t) − (µ + λ)S (t) + αR(t),
dI
dt = βe

−µωS (t − ω)I(t − ω) − (µ + d + γ)I(t),
dR
dt = γI(t) + λS (t) − (µ + α)R(t).

(2.1)

When t = kτ, k ∈ N, we have the following pulse vaccination applied:
S (t+) = S (t) − θS (t)
I(t+) = I(t)
R(t+) = R(t) + θS (t)

(2.2)

Table 1. Explanation of Parameters.

Parameters Meaning
µ natural death
Λ birth rate
α rate of losing immunity
β transmission rate
γ recovery rate for all positive constants
d disease-induced death rate
τ period between two pulse vaccinations
ω latent period of the disease
θ pulse vaccination intensity
λ continuous vaccination rate
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The system can be described using the flow diagram presented in Figure 1, where the arrows show
the direction of the single individual to become susceptible, then infected, and in the end recovered.
However, in this research work, reinfection is possible because immunity wanes over time, allowing
recovered individuals to become susceptible to the disease again. Another thing to note is the
vaccination parameters θ and λ that point from susceptible to the recovered compartment by making
the individuals immune to the disease. Other parameters are standard and their definitions are
explained in the table.

We note several differences between the model above and classical models. While many traditional
approaches use autonomous systems, our model employs delay differential equations. Specifically,
we chose a delay formulation over the SIRS model’s latent class to better represent the incubation
period with a uniform distribution, in contrast to the exponential distribution used in the SIRS model.
Moreover, in our model, the nonlinear term gets multiplied by e−µω. This term represents the probability
that an infected individual remains infectious after a delay ω, which might correspond to the incubation
period or the time between initial infection and becoming infectious to others. Similar approaches were
considered earlier, see e.g., [18–20]. This is similar to the exponential term in Nicholson’s blowfly
equation, which describes the survival probability of blowflies as their population increases [21].

We note that similar models, without continuous vaccination, were studied earlier. In [19], authors
discuss a SEIRS epidemic model with pulse vaccination, time delay, and varying total population size.
The study highlighted the effectiveness of pulse vaccination in disease control and eradication,
emphasizing that a short interpulse time or a high pulse vaccination intensity can lead to disease
elimination. Although the authors did not directly calculate the basic reproduction number, they
estimated both upper (R∗) and lower (R∗) bounds. These estimates helped determine the conditions for
disease persistence: values of R∗ > 1 indicate that the disease is likely to persist in the population,
while values of R∗ < 1 suggest that the disease will likely fade out. A later study [20] significantly
improves [19] by establishing an exact threshold parameter for determining disease eradication and
uniform persistence. By deriving the basic reproduction number R0 and analyzing the global
attractivity of the disease-free periodic solution, the paper enhances the understanding of disease
dynamics and control strategies. Building upon the work of [20], authors in [22] provided a more
comprehensive analysis of global stability in the context of pulse vaccination and nonlinear incidence
rates, contributing to the generalization and advancement of mathematical models in epidemiology.

3. Threshold dynamics

Note that the impulsive delay systems (2.1) and (2.2) are a generalized version of the work in [20]
with the inclusion of continuous vaccination and a continuation of the study in [22] with vaccination
policy involved. Thus, one can easily show that the total size of the whole population satisfies the
following inequalities:

Λ

µ + d
≤ lim inf

t→∞
N(t) ≤ lim sup

t→∞
N(t) ≤

Λ

µ
.

In other words, N(t) is bounded by a constant
Λ

µ
. Thus, it is sufficient to analyze the solutions in a

bounded and biologically feasible set:
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Ω =

{
(S , I,R,N) ∈ R+ : N ≤

Λ

µ

}
Therefore, the set Ω is positively invariant with respect to the initial system and the model is well-
posed.

Arguing as in [22], one can show that there exists a unique globally asymptotically stable disease-
free periodic solution E0(t) = (S ∗(t), 0, Λ

µ
− S ∗(t)) of the systems (2.1) and (2.2) where S ∗(t) is given

by:
S ∗(t) = (S (0) − X)e−(µ+λ+α)(t−kτ) + X, kτ < t ≤ (k + 1)τ, (3.1)

where X =
Λ(µ + α)
µ(µ + λ + α)

. Thus, it can be concluded that the recovered compartment oscillates in the

same way as the susceptible part with the same period τ.

3.1. Implicit formula for the basic reproduction number

The basic reproduction number cannot be calculated using the next-generation matrix method
because the system is not continuous. Therefore, we use the linearization technique at E0(t), which
approximates I in (2.1) by replacing the non-linear term with i(t) := βe−µωS ∗(t − ω)I(t − ω). This
leads to the differential equation:

dI
dt
+ (µ + d + γ)I(t) = i(t).

Following similar steps as in [22], one can show that i(t) satisfies the following equation:

i(t) = i0(t) +
∫ t

0
K(t, x)i(t − x)dx,

where i0(t) = βe−µωS ∗(t − ω)I(0)e−(µ+d+γ)(t−ω) and

K(t, x) =

0, if x < ω

βe−µωS ∗(t − ω)e−(µ+d+γ)(x−ω), if x ≥ ω

Let us define the linear operator L : R→ R:

L : v(t) 7→
∫ ∞

0
K(t, x)v(t − x)dx.

Note that K(t, x) can be expressed as K(t, x) = c(t)G(x), where c(t) = βe−µωS ∗(t − ω),

G(x) =

0, if x < ω,

e−(µ+d+γ)(x−ω), if x ≥ ω.

It follows from [23] that the basic reproduction number can be represented as the spectral radius
r(L) of the linear operator L. Thus, to find the basic reproduction number R0 = r(L), the following
eigenvalue problem can be solved:∫ ∞

0
K(t, x)u(t − x)dx = R0u(t), u ∈ R.
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In other words, one can solve

c(t)
∫ ∞

0
G(x)u(t − x)dx = R0u(t), u ∈ R. (3.2)

Using the similar steps as in [22] one derives the following expression for R0 from the last equation:

R0 =

∫ τ
0

c(t)u(t−ω)
u(t) dt

(µ + d + γ)τ

It is easy to see that when ω = 0, the above expression is simplified as follows:

R0 =

∫ τ
0

c(t)dt

(µ + d + γ)τ
.

We are ready to state the results on the threshold dynamics of the model based on the basic
reproduction number R0. The proof will be omitted as it is the same as in Theorems 4.1 and 4.2
of [22].

Theorem 1. If R0 < 1, then the disease-free periodic solution E0(t) of the systems (2.1) and (2.2) are
globally attractive. If R0 > 1, then there exist ξ > 0 such that I(t) satisfies lim inft→∞ I(t) ≥ ξ for every
positive solution of the systems (2.1) and (2.2). That is, the disease will persist.

Figure 2 illustrates the scenario where global stability is achieved, with parameters set to the values
specified in Table 4.

(a) Dynamics of S and R (b) Dynamics of I

Figure 2. SIRS dynamics with τ = 20, θ = 0.09, λ = 0.013.

4. Comparison of various vaccination strategies

In this section, we outline three vaccination strategies: periodic impulsive vaccination (pulse),
continuous vaccination (continuous), and a hybrid approach (hybrid). These strategies are evaluated
based on their effectiveness in reducing mortality during infectious disease outbreaks.
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The pulse vaccination strategy administers vaccines at specific intervals. The key parameters are the
pulse period τ, determining the frequency of vaccination events, and the pulse rate θ, representing the
proportion of the population vaccinated during each pulse. This approach is effective when resources
are limited and vaccines are deployed in bursts.

The continuous vaccination strategy involves vaccinating at a constant rate λ over time, gradually
increasing population immunity. This method is suited for large-scale programs with a steady vaccine
supply.

The hybrid strategy combines pulse and continuous approaches. A portion of the population is
vaccinated continuously at rate λ, with additional pulses at intervals τ and pulse rate θ. This strategy
balances continuous coverage with periodic boosts, ideal for dynamic environments requiring both
steady and rapid responses.

To simulate disease dynamics and compare results, we use the parameter values specified in
Table 4 for calibration. These values are selected to closely approximate the COVID-19 parameters
for Kazakhstan [22]. To compare vaccination strategies, we use the percentage of deaths averted as
the dependent variable and control for time by setting it to 365 days in our simulations. This is
calculated by comparing the total number of deaths in a scenario without vaccination to the total
number of deaths with the implemented vaccination strategy. Specifically, the percentage of deaths
averted is determined using the formula:

% of Deaths Averted =
Total Deaths without Vaccination − Total Deaths with Vaccination

Total Deaths without Vaccination
× 100%

This calculation quantifies the impact of the vaccination strategy on reducing mortality by comparing
it to a baseline scenario where no vaccination is applied. The contour plot, depicted in Figure 3,
illustrates the percentage of deaths averted as a function of the pulse vaccination period (τ) and pulse
vaccination intensity (θ). The color gradient, ranging from cool to warm hues, indicates the proportion
of deaths averted, with specific contour lines highlighting the 25, 50 and 75% thresholds.

Figure 4 visually represents how the continuous vaccination rate (λ) impacts the percentage of
deaths averted in a population over a specified period.

To facilitate meaningful comparisons of vaccination strategies, we maintain a consistent
framework by fixing the vaccination capacity to vary from 10% to 100% of the total population.
While the correlation between vaccination and reduced deaths may seem intuitive, it is not
immediately clear which strategy is more effective in averting deaths when vaccination capacity is
taken as a control variable. Since the amount of vaccination and its cost are highly correlated, fixing
the vaccination capacity effectively means treating cost as a control variable.

In our methodology, we define the percentage of deaths averted as a function of the vaccination
parameters and use Python’s minimize function to find the optimal parameter values. The minimize
function employs the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm as the default
optimization method. BFGS employs gradient information to find local minima efficiently without
computing the Hessian matrix [24]. This method helps in identifying the optimal configurations for
the vaccination strategies by minimizing the defined function.

The tables offer valuable insights into both the optimal parameters for vaccination deployment
(Table 2) and the resulting impact on mortality rates (Table 3). Across diverse vaccination rates and
strategies, the data unveils nuanced relationships between parameter configurations and mortality
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Figure 3. Deaths Averted by Pulse Vaccination Strategies (%).

outcomes. Particularly striking is the positive correlation between higher vaccination rates and
increased percentages of deaths averted, highlighting the pivotal role of vaccination coverage in
mortality mitigation. Moreover, variations in vaccination strategies, including pulse, continuous, and
hybrid approaches, yield comparable effectiveness levels, with subtle performance discrepancies
observed at varying vaccination rates.

Comparing the percentage of deaths averted under different vaccination strategies—pulse,
continuous, and hybrid—across various vaccination rates unveils notable effectiveness differences.
For example, at a 50% vaccination capacity, the pulse strategy averts approximately 45.61% of
deaths, while the continuous and hybrid strategies avert around 45.18 and 45.69%, respectively,
indicating relatively similar effectiveness levels among these strategies. Furthermore, delving into the
optimal timing and frequency of periodic pulse vaccinations, exemplified by parameters such as (τ, θ),
highlights insights into maximizing the death avertion rate. For instance, for a 50% vaccination rate,
an optimal configuration might be (τ = 23, θ = 0.0460), shedding light on how parameter variations
impact vaccination campaign scheduling and mortality outcomes. Additionally, examining how these
strategies influence vaccine coverage rates over time, particularly at critical vaccination rates like
50%, provides valuable insights into the dynamic interaction between vaccination strategies and their
efficacy in mortality mitigation.

The regression analysis in Figure 5 shows strong linear relationships between the parameters and the
percentage of deaths averted. For pulse vaccination with a fixed period τ = 23, an R2 of 0.997 indicates
a nearly perfect linear relationship between vaccination capacity and deaths averted. A 10% increase in
coverage results in a 9.2% rise in deaths averted (p-value = 1.37 × 10−11). The continuous vaccination
rate λ also has a robust relationship, with a slope of 22374.39 and an R2 of 0.9876, indicating that small
increases in λ can significantly improve outcomes (p-value = 6.47 × 10−9). Similarly, the intensity of
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Figure 4. Deaths averted by continuous vaccination strategies (%).

pulse vaccination θ has a near-perfect linear relationship with a slope of 998.5 and an R2 of 0.998,
highlighting its importance in reducing mortality (p-value = 1.71 × 10−10). These results emphasize
the effectiveness of both continuous and pulse vaccination strategies in saving lives, with optimal
parameter adjustments offering substantial public health benefits.

5. Sensitivity analysis

The objective of this analysis is to determine the sensitivity of different parameters in the SIRS
model to the final outcomes of infected, vaccinated, and deceased. Moreover, we also study the
sensitivity on the basic reproduction number. We use the partial rank correlation coefficient (PRCC)

Table 2. Optimal parameters according to the rate of vaccination.

Vaccination Capacity Pulse (τ, θ) Continuous (λ) Hybrid (λ, τ, θ)
10% (23, 0.0092) 0.0004 (0.00001, 23, 0.0091)
20% (23, 0.0185) 0.0008 (0.00007, 23, 0.0169)
30% (23, 0.0277) 0.0012 (0.00004, 23, 0.0269)
40% (23, 0.0368) 0.0015 (0.00008, 23, 0.0349)
50% (23, 0.0460) 0.0019 (0.00002, 23, 0.0457)
60% (23, 0.0554) 0.0023 (0.00007, 23, 0.0538)
70% (23, 0.0650) 0.0027 (0.0002, 23, 0.0612)
80% (23, 0.0751) 0.0032 (0.0005, 23, 0.0633)
90% (23, 0.0859) 0.0036 (0.0003, 23, 0.08)
100% (5, 0.0209) 0.0042 (0.0005, 23, 0.0863)
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Table 3. Deaths averted (%) with various vaccination capacity.

Strategy 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Pulse 8.19 16.84 25.98 35.60 45.61 55.75 65.61 74.65 82.37 88.47
Continuous 8.04 16.55 25.60 35.17 45.18 55.37 65.31 74.45 82.27 88.41
Hybrid 8.26 16.89 26.02 35.65 45.69 55.83 65.69 74.70 82.4 88.47

Figure 5. Linear regression analysis.

to quantify the relationships between input parameters and the model outcomes, providing insights
into the significance and impact of each parameter on the disease dynamics.

5.1. Sensitivity analysis of parameters across different compartments

A total of 4000 parameter sets were generated using Latin hypercube sampling from the parameter
ranges provided in Table 4, and the model was simulated for 365 days for each set. PRCC values
were computed between each parameter and the final outcomes of the compartments to measure the
sensitivity and the strength of association. PRCC values close to +1 or −1 indicate a strong positive
or negative correlation, respectively, while values near 0 indicate weak or no correlation. The PRCC
values for each parameter with respect to the final outcomes in the compartments I, V , and D were
computed and plotted. Statistical significance was assessed using p-values, the significance of the
PRCC values was indicated by asterisks, with *** for p < 0.001, ** for p < 0.01, and * for p < 0.05.

Bar plots illustrate the PRCC values for each parameter across all compartments. Positive and
negative correlations were color-coded, and significant correlations were marked. A color bar was
included to represent the magnitude of PRCC values. Scatterplots were generated to visualize the
relationship between each parameter and the final values of the compartments. These plots aid in
understanding the nature of correlations and the spread of data points.

PRCC values for each parameter affecting compartment I are depicted in Figure 6. Additionally, a
correlation scatterplot is provided in Figure 8 to visualize the sensitivity of the parameters on I(365).
From the flow diagram (Figure 1), we know that the parameters β, µ, d, and γ have a direct effect on I.

The analysis shows that while the continuous vaccination rate (λ) negatively impacts I, the rate of
losing immunity (α) has a positive effect. Moreover, increasing the pulse vaccination period also leads
to an increase in I.

The dynamics of PRCC values for I(t) are shown in Figure 8. An interesting observation is that,
during the initial stages until approximately day 225, the incubation period ω has a negative effect on
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Table 4. Parameter values and ranges for analysis.

Parameter Description Value Range
N(0) Total population 19,000,000 -
S (0) Initial susceptible individuals 19,000,000 -
I(0) Initial infected individuals 2000 -
R(0) Initial recovered individuals 200,000 -
Λ Birth rate 1000 -
µ Natural death rate 0.00004 -
d Disease-induced death rate 0.015 -
γ Disease recovery rate 0.08 (0.001,0.1)
β Transmission rate 0.19 (0.01, 0.9)
α Rate of losing immunity 0.005 (0.001, 0.01)
ω Latent period of the disease 10 (1, 20)
τ Pulse vaccination period 20 (1, 30)
θ Pulse vaccination intensity 0.009 (0.001, 0.01)
λ Continuous vaccination rate 0.013 (0.0001, 0.01)

I(t). However, after day 225, this relationship becomes positive.
While we do not consider death as a separate compartment in the model, it can still be tracked using

the equation:
dD
dt
= dI.

The PRCC values for each parameter affecting the death compartment D are depicted in Figure 6.
Additionally, a correlation scatterplot is provided in Figure 11 to visualize the sensitivity of the
parameters on D(365).

From Figure 6, it is evident that the transmission rate (β) has a very strong positive correlation with
D. In contrast, the vaccination rate (λ), recovery rate (γ), and incubation period (ω) all have moderate
negative effects on the death toll.

Figure 6. The PRCC value for the parameters against I(365).

Mathematical Biosciences and Engineering Volume 21, Issue 9, 7103–7123.
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Figure 7. Scatterplot of PRCC value for each parameter against I(365).

The dynamics of PRCC values for D(t) are shown in Figure 11. We note that from day 300 onwards,
the PRCC values start converging.

To study the sensitivity of the parameters to the vaccinated population, we introduce the vaccination
compartment V . The rate of change of V is given by:

dV
dt
= (λ + θ)S or λS

depending on whether time t is divisible by τ or not, respectively. From Figure 12, we see that all the
parameters have a significant impact on V . The scatterplot in Figure 13 provides a visual representation
of these correlations, illustrating the sensitivity of the parameters on the vaccination compartment.

As before, we provide the PRCC dynamics of V(t) on the parameters in Figure 14.

5.2. Numerical approximation of R0 and sensitivity analysis

The basic reproduction number depends on two pulse vaccination coefficients such as τ and θ,
therefore, the numerical approach is considered to check the dependence on these two parameters,
which is the discretization method.

The discretization approach is a procedure of transforming the continuous functions or expressions
into discrete intervals to calculte them using computer software. So the finite set of values are used to
get an answer close to the original system’s solution.

From Eq (3.2):

R0u(t) = c(t)
∫ ∞

0
G(x)u(t − x)dx

R0u(t) = c(t)
∫ ∞

ω

G(x)u(t − x)dx

Mathematical Biosciences and Engineering Volume 21, Issue 9, 7103–7123.
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Figure 8. The PRCC values for parameters with respect to I(t).

Figure 9. The PRCC value for parameters against D(365).

R0u(t) = c(t)
∫ ∞

ω

e−(µ+d+γ)(x−ω)u(t − x)dx

Making a change of variable t − x = s:

R0u(t) = −c(t)
∫ −∞

t−ω
e−(µ+d+γ)(t−s−ω)u(s)ds

= c(t)
∫ t−ω

−∞

e−(µ+d+γ)(t−s−ω)u(s)ds.

Dividing the integral into two parts and discretizing the second part:

R0u(t) = −c(t)
( ∫ t−ω

0
e−(µ+d+γ)(t−ω−s)u(s)ds +

∞∑
n=0

∫ −τn

−τ(n+1)
e−(µ+d+γ)(t−ω−s)u(s)ds

)
Mathematical Biosciences and Engineering Volume 21, Issue 9, 7103–7123.
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Figure 10. Scatterplot of PRCC value for each parameter against D(365).

= −c(t)
( ∫ t−ω

0
e−(µ+d+γ)(t−ω−s)u(s)ds +

∞∑
n=0

∫ τ

0
e−(µ+d+γ)(t−ω+(n+1)τ−s)u(s)ds

)
The integral and summation sign can be swapped to notice that:

∞∑
n=0

e−(µ+d+γ)(t−ω+(n+1)τ−s) =
e−(µ+d+γ)(t−ω+τ−s)

1 − e−(µ+d+γ)τ

The result is as follows:

R0u(t) = −c(t)
( ∫ t−ω

0
e−(µ+d+γ)(t−ω−s)u(s)ds +

∫ τ

0

e−(µ+d+γ)(t−ω+τ−s)

1 − e−(µ+d+γ)τ u(s)ds
)

∫ τ

0

e−(µ+d+γ)(ti−ω+τ−s)

1 − e−(µ+d+γ)τ u(s)ds = lim
N→∞

τ

N

N−1∑
j=0

e−(µ+d+γ)(ti−ω+τ−t j)

1 − e−(µ+d+γ)τ Y j

If i < k: ∫ ti−ω

0
e−(µ+d+γ)(t−ω−s)u(s)ds = lim

N→∞

τ

N

i−k∑
j=0

e−(µ+d+γ)(ti−ω−t j)Y j

If i ≥ k: ∫ ti−ω

0
e−(µ+d+γ)(ti−ω−s)u(s)ds = −

∫ τ

τ+ti−ω
e−(µ+d+γ)(ti−ω+τ−s)u(s)ds

= lim
N→∞
−
τ

N

N−1∑
j=N+i−k

e−(µ+d+γ)(ti−ω+τ−t j)Y j

Mathematical Biosciences and Engineering Volume 21, Issue 9, 7103–7123.
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Figure 11. The PRCC values for parameters with respect to D(t).

Figure 12. The PRCC values for parameters against V(365).

ρ0Y = AY

Ai j =
c(ti)τe−(µ+d+γ)(ti−ω+τ−t j)

N(1 − e−(µ+d+γ)τ)
+

c(ti)τ
N
· D,

where

D =


e−(µ+d+γ)(ti−ω−t j), if i > kand j ≤ i − k,

0, if i > kand j > i − k,

e−(µ+d+γ)(ti−ω+τ−t j), if i ≤ kand j ≥ N + i − k

0, if i ≤ kand j < N + i − k.

The plots in Figure 15 depict the convergence behavior of the basic reproduction number (R0)
approximation method across different numbers of subintervals (N). Notably, it is observed that
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Figure 13. Scatterplot of PRCC values for each parameter against V(365).

convergence stabilizes within N = 100 steps, indicating that this value provides a reliable
approximation. Therefore, for subsequent estimations of R0, we adopt N = 100 as it ensures accurate
results while maintaining computational efficiency.

We consider parameter ranges as outlined in Table 4 and employ a random selection of 2000
parameters using Latin hypercube sampling to compute PRCC for R0 against each parameter.

The sensitivity analysis of the basic reproduction number (R0) provides valuable insights into the
dynamics of the modeled system. This analysis not only highlights the system’s responsiveness to
changes in parameters but also underscores the inherent uncertainties in the model. To address
sensitivity, we adopted the approach from [25], which offers robust methods for managing and
analyzing uncertainty in complex systems. We refer to [26] for other approaches to address
uncertainty. Notably, the transmission rate (β) exhibited a strong positive correlation (PRCC Value:
0.730) with R0. Conversely, the continuous vaccination rate (λ), displayed a moderate negative
correlation (PRCC Value: −0.297), suggesting its influence in reducing the system’s basic
reproduction number. Parameter (α), representing the rate of losing immunity, demonstrated a
moderate positive correlation (PRCC Value: 0.280), implying its contribution to the system’s
dynamics. Parameters d and γ, representing the disease-induced death rate and recovery rate,
respectively, exhibited moderate negative correlations (PRCC Values: −0.222 and −0.241),
highlighting their impact on the R0. Additionally, parameter ω, representing the latent period of the
disease, displayed a weaker negative correlation (PRCC Value: −0.103), indicating its limited
influence on the system. The period between two pulse vaccinations (τ) showed weaker correlations
(PRCC Values: −0.103). The pulse vaccination intensity θ showed insignificant impact (P-value:
0.266). Comparatively, although both continuous vaccination and pulse vaccination strategies
contribute to disease control efforts, the sensitivity analysis suggests that increasing the continuous
vaccination rate has a more direct and significant impact on reducing the basic reproduction number.
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Figure 14. The PRCC values for the parameters with respect to V(t).

The absence of a similar effect of pulse vaccination stems from its dependence on two interrelated
parameters, τ and θ, which should not be analyzed in isolation.

6. Conclusions

This study evaluated various vaccination strategies, including pulse, continuous, and hybrid
methods, to determine their effectiveness in controlling infectious diseases and reducing mortality.
Key findings revealed that continuous vaccination has a strong negative correlation with the basic
reproduction number (R0), making it a robust method for reducing transmission rates and mitigating
mortality. The transmission rate (β) showed a strong positive correlation with R0, while the
continuous vaccination rate (λ) displayed a moderate negative correlation. At a 50% vaccination
capacity, the pulse strategy averted approximately 45.61% of deaths, while continuous and hybrid
strategies averted around 45.18 and 45.69%, respectively. Sensitivity analysis indicated that
continuous vaccination has a more direct impact on reducing R0 compared to pulse vaccination.
Although pulse vaccination is effective, it requires precise scheduling for optimal results. Ultimately,
the study highlights the importance of high vaccination coverage and optimal strategy selection in
public health policies to effectively combat infectious diseases.

In this work, we fixed the vaccination capacity as a control variable, which indirectly accounts for
the associated cost. Other studies have explored how different vaccination strategies affect economic
costs (see e.g., [28]), and similar analyses could be integrated into our model to further understand the
economic implications of vaccination strategies.

One limitation of our study is the assumption that all susceptible individuals will eventually be
vaccinated. In reality, as seen with COVID-19, a significant portion of the population may choose
to remain unvaccinated, as discussed by Ledder [27]. Future work could incorporate more realistic
vaccination strategies into the model to address this issue. Another limitation of this study is that
impulse vaccination strategies are rarely used in real-world scenarios, and continuous vaccination rates
(λ) typically vary over time, which complicates the validation of our results with real-life data. Another
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Figure 15. Convergence of the numerical approximation for R0.

possible avenue for future work is to investigate the dependence of vaccination strategies on time.
In this study, we fixed the time period to 365 days and treated it as a control variable rather than a
dependent one. Future research could explore whether the optimal vaccination strategy varies with
different time periods.

Figure 16. The PRCC values for the parameters with respect to R0.
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