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Abstract: Clusters of COVID-19 in high-risk settings, such as schools, have been deemed a critical 

driving force of the major epidemic waves at the societal level. In Japan, the vaccination coverage 

among students remained low up to early 2022, especially for 5–11-year-olds. The vaccination of the 

student population only started in February 2022. Given this background and considering that vaccine 

effectiveness against school transmission has not been intensively studied, this paper proposes a 

mathematical model that links the occurrence of clustering to the case count among populations aged 

0–19, 20–59, and 60+ years of age. We first estimated the protected (immune) fraction of each age 

group either by infection or vaccination and then linked the case count in each age group to the number 

of clusters via a time series regression model that accounts for the time-varying hazard of clustering 

per infector. From January 3 to May 30, 2022, there were 4,722 reported clusters in school settings. 

Our model suggests that the immunity offered by vaccination averted 226 (95% credible interval: 219–

232) school clusters. Counterfactual scenarios assuming elevated vaccination coverage with faster roll-

out reveal that additional school clusters could have been averted. Our study indicates that even 

relatively low vaccination coverage among students could substantially lower the risk of clustering 

through vaccine-induced immunity. Our results also suggest that antigenically updated vaccines that 

are more effective against the variant responsible for the ongoing epidemic may greatly help decrease 

not only the incidence but also the unnecessary loss of learning opportunities among school-age 

students. 

Keywords: Vaccine effectiveness; coronavirus disease 2019 (COVID-19); population-level immunity; 

transmission cluster; classroom closure; time series regression model  
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1. Introduction  

The world has suffered substantially from the morbidity and mortality caused by severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, China, in late 2019. 

As a respiratory pathogen, the transmission of SARS-CoV-2 is mainly thought to occur through close 

contact between humans, although aerosol transmission has also attracted considerable attention [1–3]. 

high transmissibility and mode of transmission of SARS-CoV-2 have led to countless clusters 

throughout the (technically ongoing) pandemic [4–8]. Following an outbreak on a cruise ship that 

docked in Japan in February 2020, local chains of transmission of coronavirus disease 2019 (COVID-

19) were gradually established, and it grew into an epidemic in March 2020. At that time, 

countermeasures in Japan focused on contact tracing, containment, and the prevention of clusters 

focusing on high-risk settings [9]. In early 2020, it was already evident that COVID-19 transmission 

tended to occur in high-risk settings that were heavily linked to nightlife and other indoor activities, 

which acted as the key driving force of the major epidemic [10–12]. This trend remained consistent in 

Japan until mid-2022 [13]. However, as the COVID-19 pandemic progressed, other types of clusters 

emerged, including school clusters [14]. The behavioral nature of students frequently leads to close 

contact and aggregations. One important factor that may explain the surge of infections in school 

settings is the relatively low vaccination rate among the school population. The low vaccination rate 

was presumably caused by parents’ hesitancy toward vaccination and, in the case of Japan, the delayed 

approval process for the vaccination of school-age children [15,16]. 

One of the key public health concerns regarding school clusters is the number of clusters averted 

by vaccination. This is because clusters may not only harm the health of students or their families but 

also lead to the closure of classrooms or entire schools, thus disrupting school activities, which are 

important for students’ physical and mental well-being [17,18]. For non-educational settings, Sasanami 

et al. built a mathematical model to elucidate the effectiveness of vaccination in preventing clusters in 

healthcare and welfare facilities [19]. Their study showed that vaccination played a substantial role in 

preventing clusters in such settings during the period before the emergence of the Omicron variant 

(B.1.1.529). However, in the school setting, the extent to which vaccine-induced protection prevented 

clusters in Japan has yet to be quantified.  

The role of schools in COVID-19 transmission has been studied from various angles. Some 

studies have evaluated the impact of nationwide or regionwide school closures on COVID-19 

incidence at the societal level, particularly during the early phases of the pandemic [20–23]. Though 

these studies do not strongly support the effectiveness of school closures against reductions in 

population-level COVID-19 incidences, these earlier results might not be applicable to the current 

situation under the larger epidemic size with Omicron variants. At a finer scale than societal 

perspectives, there are studies that quantified the risk of COVID-19 transmission itself, as well as 

preventive measures such as masking, physical distancing, screening, increased ventilation, and 

vaccination in school settings [24–31]. There have been studies focused on the occurrence of clusters 

within school settings [7,8,32]. Results from Tupper et al. in the pre-Omicron variant period in Canada 

suggest that larger clusters are responsible for more infections than smaller clusters, and that reduction 

of transmissibility and contact among students was effective in reducing total cases [7]. While other 

studies also investigated the risk of cluster occurrence as well as possible mitigation strategies in the 

school setting, these studies were conducted prior to the emergence of the Omicron variant. This makes 

it difficult to deduce similar results to the current situation in Japan, where a high number of cases 
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have been caused by Omicron variants. Also, the abovementioned studies did not specifically address 

the vaccine effectiveness for preventing school clusters. Contrary to the relatively small contribution 

of the school-aged population to the entire COVID-19 incidence in 2020[10,33] , COVID-19 

transmissions in school settings played a growing role during the course of the pandemic [34]. The 

school clusters became more prominent since the spread of Omicron variants began in late 2021 in 

Japan. The original series of mRNA vaccines appeared to be less effective against Omicron than earlier 

circulating variants, and even before the emergence of Omicron variants, it was suggested that 

vaccinated students had a substantial risk of contracting COVID-19 [25]. Thus, a key question 

regarding COVID-19 transmission in schools concerns the impact of vaccination against the clustering 

of COVID-19 in school settings during the period in which Omicron variants were active.  

In this paper, we propose a modeling framework for quantifying the effect of vaccination 

programs on preventing clusters in school settings throughout the time period in which Omicron BA.2 

was predominant in Japan, namely from January to May 2022. First, we deploy mathematical models 

to estimate the population-level immunity against Omicron BA.2 and back-calculate the case count 

using surveillance data arranged by date of reporting [35]. Subsequently, we apply a time series 

regression model to account for the relationship between infection counts in three age groups (0–19, 

20–59, and 60+ years) and clustering in a time-varying manner, considering the population-level 

immunity among those aged from 0 to 19 years. Finally, we consider counterfactual scenarios to clarify 

the further effect of vaccination on the occurrence of school clusters. 

2. Materials and methods 

2.1. Epidemiological data 

The present study used both the epidemiological data of COVID-19 as well as the record of 

vaccination at the national level. Our epidemiological data mainly consisted of cluster data available 

from the website of the Ministry of Health, Labour and Welfare [36] and the daily case count data in 

each age group from Health Center Real-Time Information-sharing System on COVID-19 (HER-SYS). 

The cluster data were subclassified into incidences in various settings including clusters in schools, 

which is the outcome variable in the subsequent analysis. Additional epidemiological data used in our 

study include the open data from the Tokyo Metropolitan government, which provide anonymized 

individual-level information on the date of onset, date of diagnosis, or date of report for some portion 

of cases [37]. 

As for the vaccination record, we retrieved the data from the Vaccination Record System (VRS). 

This record includes information on the daily number of vaccinations, classified by 5-year age groups. 

Other than the original datasets from Japan, we referred to published estimates of the generation time 

as well as the incubation period of SARS-CoV-2 Omicron variants [38,39]. 

2.2. Estimating the immune proportion within each age group  

As a setup for the main analysis of cluster incidence, we estimated the population-level immunity 

(i.e., protected fraction of the population by age and time) following the methodology described by 

Sasanami et al. [35] While Sasanami et al. estimated the population-level immunity for the adult 

population, we also conducted an estimation for the younger 0–19-year-old age group. Otherwise, our 

analysis is based on the same methodology and data (HER-SYS for case counts and VRS for 
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vaccination records. For simplicity, we used the median of estimates of population-level immunity for 

subsequent analysis.  

2.3. Estimating the incidence by the date of infection  

To estimate the incidence by the date of infection, we first quantified the delay distribution from 

infection to reporting as follows. Let 𝐷 be the dataset consisting of all case records from Jan 1, 2022, 

to May 31, 2022, with complete information on the date of illness onset. Assuming that the delay 

distribution from symptom to onset is sufficiently described by some parametric probability density 

function with parameter 𝜃, the discretized probability mass function as a function of time since the 

onset of illness can be described as follows: 

𝑝𝑂𝑛𝑠𝑒𝑡→𝑅𝑒𝑝𝑜𝑟𝑡(𝑡|𝜃) = 𝐶𝐷𝐹𝑂𝑛𝑠𝑒𝑡→𝑅𝑒𝑝𝑜𝑟𝑡(𝑡 + 1|𝜃) − 𝐶𝐷𝐹𝑂𝑛𝑠𝑒𝑡→𝑅𝑒𝑝𝑜𝑟𝑡(𝑡|𝜃). (1) 

The likelihood function for observing 𝐷 can then be described as  

𝐿(𝜃|𝐷) = ∏
𝑝𝑂𝑛𝑠𝑒𝑡→𝑅𝑒𝑝𝑜𝑟𝑡(𝑡𝑖,𝑟𝑒𝑝𝑜𝑟𝑡 − 𝑡𝑖,𝑜𝑛𝑠𝑒𝑡|𝜃)

𝑝𝑂𝑛𝑠𝑒𝑡→𝑅𝑒𝑝𝑜𝑟𝑡(𝑇 − 𝑡𝑖,𝑜𝑛𝑠𝑒𝑡|𝜃)
𝑖∈𝐷

,  (2) 

where 𝑇 is May 31, 2022, which was the last date of observation. Assuming a Weibull-distributed 

delay function and using maximum likelihood estimation on 𝐿(𝜃|𝐷), we obtained the best fit estimate 

𝜃. Using 𝑝𝑂𝑛𝑠𝑒𝑡→𝑅𝑒𝑝𝑜𝑟𝑡(𝑡|𝜃) together with the reported incubation period of Omicron variants[39], 

the relationship between the incidence by date of reporting 𝑌𝑡 and that by date of infection 𝐼𝑡 can be 

described as follows:  

𝑌𝑡 = ∑ 𝐼𝑡−𝑇 ∑ 𝑝𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛(𝜏)𝑝𝑂𝑛𝑠𝑒𝑡→𝑅𝑒𝑝𝑜𝑟𝑡(Τ − 𝜏)

Τ

𝜏=0

∞

Τ=0

  (3) 

Using this relationship, we estimated 𝐼𝑡 as the daily case count by means of nonparametric back-

calculation using the R package “surveillance” [40]. 

2.4. Estimation of the relationship between cluster incidence and immune proportion  

Based on the abovementioned preparation, we built a time-varying regression model to estimate 

the effect of vaccine-induced immunity on the incidence of clustered transmission events. The model 

is as follows: 

𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟,𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑡),  (4) 

𝜆𝑡 = 𝜅𝑡Σ𝛽𝑎𝐽𝑎, 𝑡
𝐿 ,  

(5) 

where 𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟,𝑡, the number of clusters in week 𝑡, is assumed to follow a Poisson distribution with 

expected value 𝜆𝑡. The back-calculated infection count by date of infection is denoted as 𝐼𝑎, 𝑡 (𝑎: 0–

19, 20–59, or 60+ years), and the number of infected individuals in age group 𝑎  contributing to 

infection in week 𝑡  is described as 𝐽𝑎, 𝑡  using the renewal equation [41–43] (described in 

Supplementary methods). Equation (5) describes the expected number of clusters, 𝜆𝑡 , as a linear 

combination of 𝐽𝑎, 𝑡
𝐿   ( 𝐽𝑎, 𝑡  lagged by 𝐿  weeks) with a fixed coefficient 𝛽𝑎  scaled by 𝜅𝑡 . For 
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subsequent analysis, we fixed 𝐿 to 1 week based on a cross-correlation analysis between the time 

series of cluster numbers and 𝐽𝑎, 𝑡. The temporal variation of 𝜅𝑡 was modeled as a random walk with 

standard deviation 𝜎, as described in Supplementary methods. The parameters Θ = (𝛽𝑎,  𝜅𝑡 ,  𝜎) were 

estimated using a Bayesian framework via the Markov Chain Monte Carlo (MCMC) method. The 

priors we used are available in the supplementary material. For each estimation, we generated 1,500 

MCMC samples from four chains, discarding 500 warm-up iterations from each chain. Convergence 

was confirmed by an R-hat value below 1.01, and no divergent chains were observed in the trace plots. 

Based on the estimates from MCMC, the expected number, 𝜆𝑡(𝑆, 𝐴), and expected difference, 

∆𝜆(𝑆, 𝐴) , in the number of clusters compared with the number of observed clusters 𝜆𝑡 , which 

corresponds to counterfactual scenarios on vaccination programs, were calculated as follows:  

𝜆𝑡(𝑆, 𝐴) = 𝜆𝑡

1 − 𝑣𝑣𝑎𝑥
𝑆 − 𝐴𝑣𝑖𝑛𝑓

1 − 𝑣𝑣𝑎𝑥 − 𝐴𝑣𝑖𝑛𝑓
,  (6) 

∆𝜆(𝑆, 𝐴) = ∑ 𝜆𝑡(𝑆, 𝐴) − 𝜆𝑡

𝑡

,  (7) 

where 𝐴 accounts for the ascertainment ratio of the true infection count compared with the reported 

case count, and 𝑆  denotes counterfactual scenarios for vaccination programs and vaccine-induced 

immunity. In equation (6), the denominator of the second term is for removing the effect of population-

level immunity in the observation, and the numerator is for reflecting the population-level immunity 

in counterfactual scenarios. (Note that 𝐴𝑣𝑖𝑛𝑓  is the population-level immunity offered by true 

infections as observed in epidemiological data, so is not involved in counterfactual analysis.) Thus, 

using equation (6), we can obtain counterfactual predictions of the number of clusters for each 

counterfactual scenario 𝑆. The cumulative difference between the counterfactual number of clusters 

and observed clusters throughout the study period can be obtained by equation (7). Following an 

estimate of the ascertainment rate of COVID-19 cases in Japan, we assumed 𝐴 = 4 [44]. 

As of May 30, 2022, the approximate cumulative proportions that had already received a second 

vaccine dose were 11.1% among children aged 5–11 years and 65.7% among children aged 12–17 

years. By the same date, 18.5% of the 12–17-year-olds had already received a third booster dose. This 

proportion was calculated using an approximate population count derived from the 5-year age class 

population data as of June 1, 2022 [45]. Based on these figures, we tested the counterfactual scenarios 

listed below (for a summary of all counterfactual scenarios, see supplementary material): 

- Scenario 0: No vaccination. 

- Scenario 1: Accelerating the second-dose vaccination program among children aged 5–11 years, 

completing it 8 weeks earlier and elevating the daily dose by a factor of eight. 

- Scenario 2: Relatively elevating the second-dose vaccination coverage among 12–17-year-olds by 

50%, as well as accelerating the third-dose vaccination program for the same population by 8 weeks 

and elevating the daily doses by a factor of four. 

- Scenario 3: Combination of scenarios 1 and 2. 

- Scenario 4: An extreme scenario where all 0–19-year-olds received the third booster vaccine on 

December 18, 2021. (Peak population-level immunity reached on January 1, 2022.)  

2.5. Software 
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All statistical and numerical analyses were performed using R version 4.2.2 (The R Project for 

Statistical Computing, Vienna, Austria) and Cmdstan version 2.33.0 [46–48]. Information on the prior 

distributions is presented in the supplementary material. 

3. Results 

In Figure 1, panel (A) shows the back-calculated weekly infection counts by age groups (left y-

axis), which are overlaid with the weekly number of reported school clusters (right y-axis). Panel (B) 

shows the cumulative vaccination coverage and estimated immune fraction against symptomatic 

COVID-19 infection among those aged 0–19 years. During the first epidemic wave caused by the 

Omicron variant, vaccination coverage was maintained at a rather low level among school children. 

Thus, mainly because of infection-acquired immunity and partly because of vaccine-acquired 

immunity, the immune fraction was elevated during the course of the corresponding epidemic wave as 

shown in panel (C) of Figure 2. 

Based on these descriptive and preliminary analyses, we estimated the coefficients for the infector 

population of each age group, 𝛽𝑎, in equation (5). Coefficients 𝛽𝑎 were estimated at 4.388 [95% 

credible interval (CrI): 3.776, 4.820] among those aged 0–19 years, 0.145 (95% CrI: 0.040, 0.385) 

among those aged 20–59 years, and 0.133 (95% CrI: 0.034, 0.361) among those aged 60+. As for the 

interpretation of 𝛽𝑎, it can be seen as the per-person contribution by infectors in age group 𝑎. The 

highest per-person contribution was seen in the youngest population, but a small yet substantial 

contribution from those aged 20–59 and 60+ was also noted. See Supplementary Materials for results 

of scaling factor 𝜅𝑡, contributions to cluster occurrence by each age group, and standard deviation 𝜎𝜅.  

The expected number of school clusters is shown in Figure 2. We compare those based on (A) 

counterfactual scenario 0, (B) scenario 1, (C) scenario 2, (D) scenario 3, and (E) scenario 4. In line 

with the estimated difference between observed versus counterfactual vaccine-induced immune levels, 

panel (A) shows that when the vaccination effect was nullified, the number of clusters could have been 

higher in each time step. In contrast, panels (B), (C), and (D) show that accelerated vaccination 

programs with increased vaccination coverage among children aged 5–11 years or 12–19 years could 

have led to a gradual decrease in the number of school clusters compared with the actual observation.  
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Figure 1. Weekly case and cluster counts (A), vaccinated (B), and immune (C) proportion 

among those aged 0–19 years. In panel (A), weekly case numbers among residents aged 

0–19 (red), 20–59 (purple), and 60+ years (green) are overlaid with the count of school 

clusters (dots). Case count was reconstructed by means of back-calculation, as described 

in Methods, and then aggregated as weekly data. In panel (B), the proportion of the 0–

19-year-old population that had completed either the second (red) or third vaccination 

dose using the monovalent mRNA vaccine is shown as the time series. The vertical 

dashed lines represent the start of the second monovalent vaccine among children aged 

5–11 years (left) and the third monovalent vaccine among those aged 12–17 years, 

respectively. In panel (C), the immune fraction of the 0–19-year-old population estimated 

from the vaccination record among those aged 0–19 years is shown by the solid black 

line, whereas the solid blue line represents immunity acquired by infection. The red, gold, 

green, and purple dashed lines correspond to the immune fractions in counterfactual 

scenarios 1, 2, 3, and 4, as described in the Methods section. 

 

 

Figure 2. Expected number of observed school clusters (green line with shades) as time 

series in comparison with the reported number of clusters (black dots) and those from 

counterfactual scenario 0 (A), scenario 1 (B), scenario 2 (C), scenario 3 (D), and scenario 

4 (E) (red line with shades). In each panel, solid lines and shades are median estimates 

and 95% credible intervals, respectively. 
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Table 1 summarizes ∆𝜆(𝑆, 𝐴) , the expected cumulative difference in school clusters for 

counterfactual scenarios compared with the observed number of clusters. The number of clusters was 

expected to increase in scenario 0 by 222.8 (95% CrI: 216.6, 229.1), whereas in scenarios 1, 2, 3, and 

4, accelerating the vaccination schedule and elevating the coverage among children aged 5–11 years 

or 12–19 years could have reduced school transmission clusters substantially throughout the study 

period. In scenarios 1, 2, and 3, the expected numbers of averted clusters were estimated as 310.6 (95% 

CrI: 299.7, 322.1), 335.8 (95% CrI: 324.1, 348.2), and 646.5 (95%CrI: 624.3, 670.1), respectively. In 

addition to these results, the extreme assumption in scenario 4 led to aversion of 2101 (95% CrI: 2044, 

2161) clusters, which amounts to about 44% reduction from the total of 4722 clusters that were 

observed during the study period. See supplementary material for results from other counterfactual 

scenarios. 

Table 1. Summary of averted numbers of clusters, as informed by ∆𝜆(𝑆, 𝐴)  for each 

counterfactual scenario.  

Scenarios ∆𝜆(𝑆, 𝐴) (95% CrI) 

0 222.8 (216.6, 229.1) 

1 -310.6 (-322.1, -299.7)  

2 -335.8 (-348.2, -324.1) 

3 -646.5 (-670.1, -624.3) 

4 -2101 (-2161, -2044) 

4. Discussion 

The present study employed a statistical model that accounts for vaccination coverage in relation 

to the number of clustering events in school settings in Japan. Unfortunately, the second-dose 

vaccination coverage among students aged below 20 years was only 33.9% as of May 30, 2022. By 

fitting the statistical model to the empirical data and exploring counterfactual scenarios with potentially 

elevated vaccination coverage, we have shown that vaccine-induced immunity led to substantial 

aversion of school clusters during the BA.1 epidemic wave in 2022.  

The importance of our study lies not only in the revelation of vaccine effectiveness against school 

clusters but also in the implication that higher vaccination coverage would have prevented a substantial 

number of school clusters, substantially averting both negative health impacts and loss of learning 

opportunities. Our counterfactual scenario 4 suggests that 100% coverage of third vaccination among 

those aged 0–19 years just before the arrival of Omicron variants could have prevented around 44% of 

the observed clusters, which should lead to a substantial reduction in terms of infection counts among 

this population. Other scenario analyses also suggest that vaccination campaigns could have prevented 

about 5%–14% of observed clusters in school settings even with lower vaccination rates and increasing 

infection-acquired immunity. Despite the relatively low effectiveness and rapid decay of vaccine-

induced immunity elicited by mRNA vaccines that used the original Wuhan strain, these results 

highlight the importance of vaccination for stopping the occurrence of school clusters and averting a 

substantial number of infections among students. This finding is in line with studies that demonstrated 

the role of vaccination in minimizing school closure[31] and adds to studies that highlighted the 

importance of reducing transmissibility and contact among students to reduce school clusters and 

school closures [7,32]. Given that the school-aged population largely contributes to the COVID-19 
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transmission dynamic than in the earlier pandemic periods [34], our result strongly suggests the 

importance of vaccination among this population. 

Moreover, our study also shows that, on a weekly scale, infector populations in older age groups 

contributed to the elevated incidence of school clusters. Though their contribution was smaller than 

those of school students, it seems substantial especially at around the peak of the epidemic wave (mid-

January to mid-February). The contribution by infectors in older age groups may account both for 

direct transmission in the school setting and for indirect transmission outside of the school setting. 

Considering that the mean generation interval of Omicron variants may lie in the order of 3 days [38], 

it is possible that older age groups contributed mostly in an indirect manner. However, it is also possible 

that teachers or classroom assistants belonging to the older population may have played a substantial 

role in the occurrence of school clusters. Regarding this finding, exploring the effect of vaccination in 

older age groups will be the scope of future research. 

Beyond the abovementioned revelations and insights from our results, the simplicity of our model 

is of key importance in the present study. This simple time-varying regression model revealed the age-

group-specific contribution to school cluster incidence in a readily interpretable manner. Additionally, 

when the immunity level among student populations is estimable, our model provides a straightforward 

means of implementing counterfactual analyses. Although situations regarding immune profiles in the 

present day against COVID-19 are becoming increasingly complex because of the seamless emergence 

of SARS-CoV-2 variants and infections, and vaccination histories are becoming more intricate, if 

combined with social or serological surveys, our framework may still be applicable in the future. 

There are four key limitations of our study. First, the data used in our study did not include 

background details including the cluster size and chronological process of cluster identification. That 

is, while we handled each cluster as having an equivalent incidence, the nature of transmission in 

different clusters might be completely different, even provided all clusters in discussion were in 

schools [7]. However, our model did at least account for the random variability of the mechanism 

(nature) of transmission by the time-varying scaling factor, accounting for the average overdispersion 

of transmission at the national level. Second, we only considered the direct impact of vaccination on 

the occurrence of school clusters in our counterfactual scenarios. In reality, changes in vaccination 

strategies might substantially change the transmission dynamics for the entire population. Elucidating 

the roles of schools in modifying the transmission dynamics of COVID-19 of the entire population is 

the key to success in appropriately quantifying the impact of vaccination in schools [49]. Third, our 

model did not consider the reduction of transmissibility by vaccination at an individual level [50]. We 

were not able to separate this effect from others in the model because the case count data were not 

accompanied by the vaccination status for each individual, so the suppressive effect of vaccination on 

school clusters may have been even larger than suggested by our modeling. Fourth, epidemiological 

approaches to counterfactual scenarios for factors that alter transmission are yet subject to technical 

debates. For instance, while the direct impact of vaccination can be evaluated via hypothesis testing 

by comparing risks in vaccinated and unvaccinated individuals, the entire impact (i.e., direct plus 

indirect effects) of vaccination programs requires comparing the transmission dynamics in actual and 

hypothetical (theoretical) scenarios, and conducting comparative assessment has yet to be formalized. 

Despite these limitations, the present study revealed that school clusters may have been 

substantially reduced if the vaccination rate in the school population had been higher during the BA.1 

epidemic in Japan in 2022. The resulting classroom closures caused a substantial loss of learning 

opportunities for students, and the burden of COVID-19, including post-acute sequelae of COVID-19 



7097 

Mathematical Biosciences and Engineering  Volume 21, Issue 9, 7087–7101. 

and the overwhelmed healthcare system, has been disastrous. Beyond these implications, our simple 

yet interpretable model is important in that it is readily applicable to the analysis of clusters in other 

settings if relevant data on clusters and population-level immunity are available.  

5. Conclusions 

In the present study, we built and deployed a time-varying regression model to reveal the impact 

of vaccine-induced immunity on the incidence of school clusters. Our counterfactual scenarios 

revealed that vaccination programs contributed substantially to the reduction of school clusters, despite 

the relatively low vaccination coverage among school-aged populations. Additionally, intensifying and 

accelerating the vaccination program could have averted more clusters, even without considering the 

effect of the vaccination program on the population-level COVID-19 dynamics. Even in the fifth year 

of the COVID-19 pandemic, a substantial proportion of the student population remains vaccine-naïve 

in Japan.  
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