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Abstract: We considered a time-inhomogeneous diffusion process able to describe the dynamics
of infected people in a susceptible-infectious (SI) epidemic model in which the transmission intensity
function was time-dependent. Such a model was well suited to describe some classes of micro-parasitic
infections in which individuals never acquired lasting immunity and over the course of the epidemic
everyone eventually became infected. The stochastic process related to the deterministic model was
transformable into a nonhomogeneous Wiener process so the probability distribution could be obtained.
Here we focused on the inference for such a process, by providing an estimation procedure for the
involved parameters. We pointed out that the time dependence in the infinitesimal moments of the
diffusion process made classical inference methods inapplicable. The proposed procedure were based
on the generalized method of moments in order to find a suitable estimate for the infinitesimal drift
and variance of the transformed process. Several simulation studies are conduced to test the procedure,
these include the time homogeneous case, for which a comparison with the results obtained by applying
the maximum likelihood estimation was made, and cases in which the intensity function were time
dependent with particular attention to periodic cases. Finally, we applied the estimation procedure to a
real dataset.

Keywords: Time inhomogeneous Wiener process; Estimating procedure; Generalized Method of
Moments

https://www.aimspress.com/journal/mbe
https://dx.doi.org/10.3934/mbe.2024310


7068

1. Introduction

The onset of large epidemics in recent decades, such as the Severe acute respiratory syndrome
(SARS) epidemic, the avian influenza ([1], [2]), Ebola ([3]), and the Covid-19 pandemic ([4], [5]),
have meant that a lot of mathematical models to study various infectious diseases have been developed
(see, for example, [6]–[10]). The main aim of such studies is to forecast the dynamics of the disease,
by using also suitable inference techniques in order to adopt appropriate containment policies (see
[11]-[13]).

Generally in epidemic models, the population is divided into compartments that constitute a parti-
tion of it, that is, each compartment constitutes a subset of the population disjoint from the others and
the union of all the compartments returns the whole population. Among the models that contemplate
this compartmentalized philosophy, the susceptible-infectious-recovered (SIR) type and its derivatives
stand out.

The study of disease propagation through these models, both in their deterministic and stochastic
versions, has experienced a great boom in recent decades, giving rise to an extensive literature. The
range of models considered is very wide, taking into account different points of view. For example,
in [14] and [15], Kalman filtering techniques are applied to estimate the states of a discrete nonlinear
compartmental model. In the stochastic environment, Markovian models occupy a prominent place.
Within them, if we consider models with discrete states, continuous-time Markov chains have been
widely used (see, for instance, [16]-[21]). As for continuous-time Markovian models with continuous
state space, diffusion processes arise naturally by introducing random environments (through a multidi-
mensional Wiener process) into the systems of ordinary differential equations governing deterministic
models.

From the classical SIR model, a number of increasingly complex variants have emerged. Among
the lines on which the evolution of the models has been based, we can highlight the following:

• The partitioning of the total population into an increasing number of compartments, each of which
obeys a particular situation of the individuals. Thus, in addition to the usual susceptible (S),
infected (I) and recovered (R) individuals, there are others such as those with passive immunity
(M), the exposed and uninfected (E) and deceased (D), among others. This has led to an increased
complexity and difficulty in treating compartment models (see, for instance, [22, 23]).
• The inclusion of the mechanisms of contagion of the disease, the so-called incidence function.

The most usual function of this type is the one that relates susceptible individuals to infected
individuals according to the law of mass action, but considering a constant contagion rate and/or
rational functions of both groups of individuals to regulate the contagion scheme ([24, 25]).
• The inclusion of terms describing the effect of vaccination of individuals (including the possibility

of restrictions in the vaccination process), as well as the possible effects of cross-infection (see,
for instance, [26]–[29])
• The emergence of new diseases. The effect of COVID19 on the increase in the literature on this

type of model cannot be denied. Indeed, the analysis of the effects of the pandemic has given
rise to numerous publications focusing on two lines of action: on the one hand, the study of the
evolution of the disease in specific locations using existing models (see [30]) and, on the other
hand, the appearance of new models (see, for example, [31]).

However, it should be noted that a very high number of these publications focus their interest on
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the description of the model and its analysis from a theoretical point of view (existence, uniqueness,
non-explosion of the solution, stability, equilibrium problems and extinction of the disease). However,
especially in stochastic models, the aspects derived from the estimation of the models are not yet well
developed, resorting to simulations and/or Monte Carlo type methods to illustrate the validity of the
proposed models. The main reason for this derives from the difficulty to know the probability distri-
bution governing the dynamic evolution of the model (the more complex the more complicated the
model). Some approximation has been made on simpler models (such as the susceptible-infectious-
susceptible (SIS)) by means of approximations derived from Euler-Maruyama type discretizations (see,
for instance, [32] ), although this requires certain conditions on the model components (e.g. the inci-
dence function). The situation can become even more complex if the rates involved in the model are
not considered constant but time-dependent.

This paper therefore falls along the line of inference in epidemic models. The aim is the inference
of a SI type model, which is essentially a “simplified” version of an SIR type model. Precisely, in the
SI model it is assumed that an individual can be in one of only two states, either susceptible (S ) or
infectious (I). Although this model is quite simple, it is adept at capturing several types of diseases
in which individuals remain infected for life (e.g., brucellosis in domestic and wild populations, fox
rabies). Even the most famous AIDS has been modeled in the literature using an SI type model (see,
for example, [33]).

For t ≥ t0, we denote by S (t) the number of susceptible individuals, by I(t) the number of individuals
infected and by K the total population size, where K = S (t)+I(t) is constant. In similar models, infected
individuals are lifetime infectious. We point out that here the size of the population is assumed to be
constant, i.e., the birth and death rates of both populations S and I are assumed to be negligible. This
is a very strong assumption, but reasonable if one observes the phenomenon for a limited time.

A model with two states is described via ordinary differential equations in the deterministic dynam-
ics. More general models can be built making use of stochastic approaches based on the birth and
death processes or diffusion processes (see, for instance, [6], [34, 35], and references therein); they are
more realistic but more complicated to analyze. Such models try to forecast the spread of the disease
in terms of the total number of infected people and the duration of an epidemic. Moreover, they allow
us to estimate suitable epidemiological parameters, as the transmission rate of the disease measured
via the basic reproduction number, i.e., the expected number of infected cases directly generated by
one case in a population where all individuals are susceptible or infected.

Let I(t) and S (t) be the sizes of the infected and the susceptible populations, respectively. We
consider the deterministic SI model described by the following

dS (t)
dt

= −
λ(t)
K

S (t) I(t),

dI(t)
dt

=
λ(t)
K

S (t) I(t),

where the transmission intensity function λ(t) is a positive, bounded and continuous function of t. It
follows that the population dynamics of the infected I(t) can be described by the Pearl-Verhust logistic
growth differential equation:

dI(t)
dt

=
λ(t)
K

[K − I(t)] I(t), t > t0, (1.1)
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where the transmission intensity function λ(t) is a positive, bounded and continuous function of t. The
solution of (1.1) is

I(t) =
K I(t0)

I(t0) + [K − I(t0)] e−Λ(t|t0) , t ≥ t0, (1.2)

with

Λ(t|t0) =

∫ t

t0
λ(θ) dθ. (1.3)

We note that limt→∞ I(t) = K, so the whole population is destined to become infected, hence the pa-
rameter K identifies the carrying capacity of the infected population. We point out that the susceptible-
infectious epidemic model is an extreme case of the more general models including recovered popula-
tion and can be obtained from them by assuming that the time required to reach an immunity situation
is infinitely long (see, for instance, [36]). The state K is not reachable in finite time, so it is interesting
to consider the time T ∗m required to reach a fixed threshold m. When the process is time-homogeneous
, i.e. the function λ(t) is constant, one can determine the time T ∗m such that I(T ∗m) = m. In particular,
from (1.2) one obtains

T ∗m = t0 +
1
λ

ln
K − I(t0)

(K − m) I(t0)
,

being I(t0) the initial size of the infected population and m ∈ (0,K).
To generate a stochastic diffusion process for I(t), several approaches can be used, generally, they

introduce stochastic elements into the equation (1.1) or into solution (1.2). These two approaches
lead to different processes described by stochastic differential equations of Itô or Stratonovich type,
respectively (see [37]). In this work, the first of the two approaches has been chosen.

In [35], a time-inhomogeneous diffusion process to model the size of the infected population in a
stochastic environment is provided by starting from (1.2). For such a process, the authors study the
probability distribution and derive closed form results for the first-passage time problem through a
constant boundary to obtain the stochastic counterpart of the parameter T ∗m. However, such important
issues as that of model inference were not addressed in this study.

The aim of the present paper is to provide the inference on the stochastic diffusion process built
from (1.2). Indeed, such issue becomes fundamental to study the dynamics of infectious diseases and
to measure their aggressiveness so as to make predictions about future infections.

The paper is organized as follows. Section 2 provides the stochastic model and its probability
distribution, i.e. the transition probability density function (pdf) and the related moments. Section
3 contains the inference procedure based on the Generalized Method of Moments (GMM) for fitting
the parameters and the unknown functions of the model. In Section 4, some simulation experiments
are performed to validate the proposed procedure. An application to real data is also considered in
Section 5. Some conclusions close the paper.

2. The model

Under the assumption of random environment, let {X(t), t ≥ t0} be the stochastic process describ-
ing the size of the infected population at time t, and we interpret Λ(t|t0) as the mean of a time-
inhomogeneous Wiener process {Z(t), t ≥ t0}, described by the stochastic equation

Z(t) = Λ(t|t0) + W
[
V(t|t0)

]
, t ≥ t0, (2.1)
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where W(t) is the standard Wiener process and

V(t|t0) =

∫ t

t0
σ2(θ) dθ, t ≥ t0, (2.2)

with σ(t) being a positive, bounded and continuous function of t describing the breadth of the random
oscillations. Hence, Eq. (1.2) is generalized by the following stochastic equation:

X(t) =
K X(t0)

X(t0) + [K − X(t0)] e−Z(t) , t ≥ t0. (2.3)

As proved in [35], {X(t), t ≥ t0} is a time-inhomogeneous diffusion process defined in (0,K) described
by the following stochastic differential equation:

dX(t) = A1(x, t) dt +
√

A2(x, t) dW(t), X(t0) = x0, (2.4)

where

A1(x, t) =
λ(t)
K

(K−x)x+
1
4
∂A2(x, t)
∂x

=
(K − x)x

K

[
λ(t)+

1
2
σ2(t)

]
, A2(x, t) = σ2(t)

(K − x)2x2

K2 , (2.5)

are the infinitesimal drift and the infinitesimal variance of X(t), respectively, and x0 ∈ (0,K) is the
initial size of the infected population.

As shown in [35], the process X(t) can be transformed into a time-inhomogeneous Wiener process
Y(t) with drift and infinitesimal variance

B1(t) = λ(t), B2(t) = σ2(t), (2.6)

by using the transformation:

y =

∫ x

x0

K dz
z(K − z)

= ln
[

x(K − x0)
x0(K − x)

]
, y0 = 0. (2.7)

We point out that Y(t) is a Gauss Markov process with mean

E[Y(t)] = Λ(t|t0) (2.8)

and covariance function
cov

[
Y(s),Y(t)

]
= V(s|t0), t0 ≤ s ≤ t. (2.9)

Further, since the transition pdf fY(y, t|y0, t0) of Y(t) is normal with mean y0 + Λ(t|t0) and variance
V(t|t0), we can obtain the transition pdf of the process X(t):

fX(x, t|x0, t0) =
K

x(K − x)
1

√
2πV(t|t0)

exp
{
−

[
ln

( x(K−x0)
x0(K−x)

)
− Λ(t|t0)

]2

2 V(t|t0)

}
. (2.10)

Moreover, the transition distribution function of X(t) is

FX(x, t|x0, t0) =
1
2

{
1 + Erf

[ ln
( x(K−x0)

x0(K−x)

)
− Λ(t|t0)

√
2 V(t|t0)

]}
, x, x0 ∈ (0,K). (2.11)
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where Erf(z) = 2
√
π

∫ z

0
e−u2

du is the error function.
The conditional median µ[X(t)|X(t0) = x0] of the process X(t) can be obtained from (2.11) by

imposing that FX(x, t|x0, t0) = 1/2 for t ≥ t0, soone has:

µ[X(t)|X(t0) = x0] =
K x0

x0 + (K − x0) e−Λ(t|t0) , t ≥ t0. (2.12)

Moreover, for m = 1, 2, . . ., the m-th conditional moment of X(t) is:

E[Xm(t)|X(t0) = x0] =
Km

√
π

∫ +∞

−∞

[
1 +

K − x0

x0
exp

{
−z

√
2V(t|t0) − Λ(t|t0)

}]−m

e−z2
dz. (2.13)

Such analytical results will be used in the following section to make inference for the process X(t), to
provide a fitting procedure based on GMM.

3. Inference

The transformation (2.7) is the basis of our estimation procedure for the functions λ(t) and σ2(t).
The idea is to estimate such functions by making inference on the transformed Wiener process Y(t) in
order to fit λ(t) and σ2(t). In particular, from (2.8) and (2.9) we obtain:

λ(t) =
d E[Y(t)]

dt
, (3.1)

σ2(s) =
d cov[Y(s),Y(t)]

ds
. (3.2)

In the following, we assume that the carrying capacity K is known since it represents the total size of
the population, whereas the functions to be estimated are λ(t) and σ2(t), for t belongs to the observation
interval [t0,T ].
We consider a discrete sampling of the process (2.4) based on d sample paths observed at the times t j,
with j = 1, . . . , n. For i = 1, . . . , d, let xi j be the observed values of the i-th path at times t j, and the
values xi1 represent the initial point of the sample paths.
The inference procedure is illustrated in the following:

• From the observed data xi j for i = 1, . . . , d and j = 1, . . . , n of the process X(t), obtain the points
yi j as the following:

yi j = ln
[

xi j(K − xi1)
xi1(K − xi j)

]
(3.3)

Such points can be considered as observations of the Wiener process Y(t) given in (2.6).
• From the data yi j for i = 1, . . . , d, obtain the sample mean µ j

µ j =
1
d

d∑
i=1

yi j ( j = 1, . . . , n) (3.4)

and the sample covariance ν j between two subsequent observations Y(t j−1) and Y(t j):

ν j =
1

d − 1

d∑
i=1

(yi j − µ j)(yi j−1 − µ j−1), j = 2, . . . , n. (3.5)
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• Interpolate the values µ j for j = 1, . . . , n and ν j for j = 2, . . . , n. Let M̂(t) and Σ̂(t) be the functions
obtained.
• Evaluate the derivatives of M̂(t) and Σ̂(t).
• From Eq. (3.1) and (3.2), obtain the estimate of λ(t) and σ2(t) as follows:

λ̂(t) =
d M̂(t)

dt
σ̂2(t) =

d Σ̂(t)
dt

. (3.6)

We point out that the procedure just illustrated combines a GMM estimation with the interpolation of
the sample mean and covariance points, so the consistence of the estimators (3.6) of λ(t) and σ2(t)
derives from the consistence of the GMM estimator and from the uniform convergence of the interpo-
lation method, for example, in our analysis we can consider cubic spline interpolation.
Finally, we note that in real applications, it could happen that the observed paths do not reach the
carrying capacity since the phenomenon is observed before K is achieved. In these cases, we argue
that an a priori rough estimate of the parameter K can be obtained by starting from the maximum ob-
served point. Such an estimate can be used to obtain the points yi j for i = 1, . . . , d and j = 1, . . . , n
from which, by using the previous procedure, we fit the functions λ(t) and σ2(t). An improvement of
the estimate of K could be then obtained by looking at the conditional median function (2.12) and by
implementing a step-by-step procedure similar to that proposed in [11]. This topic will be the subject
of future investigations.

4. Some simulation experiments

In order to evaluate the suggested procedure, in the following we consider several simulation ex-
periments in which d sample-paths of X(t) are simulated, each including n equally spaced observations
in [t0,T ] with t0 = 0, T = 50, ti − ti−1 = ∆ = 0.01 (i = 1, . . . , n) and x0 = 20. The estimation of
the unknown functions is replicated N = 500 times. In all the cases we choose the carrying capacity
K = 200. In Section 4.1 we consider the case in which both the functions λ(t) and σ2(t) are time
independent, whereas in the Section 4.2 one or both of them are continuous functions of the time.

4.1. The time homogenous case

Suppose that λ(t) and σ2(t) in (2.5) are constant functions. In particular, in this simulation study,
we consider

λ(t) = λ = 0.4, σ2(t) = σ2 = 0.1.

In this case, the process X(t) in (2.5) is time homogeneous, so the inference for the parameters λ and
σ2 can be made by means of the classical MLE. Indeed, it is easy to obtain the MLE for λ and σ2 by
looking at the log-likelihood function of the process Y(t) in (2.6):

log LY(λ, σ2) = −
d(n − 1)

2
log(2π∆) −

d(n − 1)
2

logσ2 −
1

2σ2∆

d∑
i=1

n∑
j=2

(yi j − yi j−1 − λ∆)2 (4.1)

In particular, we obtain the following estimator:

λ̂MLE =
1

d(n − 1)∆

d∑
i=1

n∑
j=2

(yi j − yi j−1), σ̂2
MLE =

1
d(n − 1)∆

d∑
i=1

n∑
j=2

(yi j − yi j−1 − λ̂MLE)2. (4.2)
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In Figure 1 we compare the results obtained via the MLE method with those obtained via our proce-
dure in the following denoted by GMM. In particular, in Figure 1 on the top the box-plots of the 500
estimates of λ (on the left) and of σ2 (on the right) are shown. We can see that the estimates of λ
by means of MLE and GMM have quite the same distribution ranging from 0.46 to 0.51. Differently,
the estimates of σ2 via MLE present a very low variability compared to those of the GMM, resulting
that MLE is to be preferred in this case. However, we point out the MLE assumes that the parameters
λ and σ2 are constant and so it looks at the log-likelihood as a function of such parameters; instead,
our procedure can be applied in the general case in which we do not have such information and the
parameters generally depend on time. On the bottom of Figure 1 the kernel density of the MLE and
GMM standardized estimates of λ (on the left) and σ2 (on the right) are shown. The red curves repre-
sent the density of MLE, whereas the black curves refer to GMM. We can observe that the sampling
distributions of both the estimators and both the methods are quite symmetric and superimposable.

MLE GMM

0.
47

0.
48

0.
49

0.
50

MLE GMM

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

−4 −2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

 

N = 500   Bandwidth = 0.2526

D
en

si
ty

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

N = 500   Bandwidth = 0.2597

D
en

si
ty

Figure 1. On the top: Box plot of MLE and GMM estimates of the parameters λ (on the
left) and of σ2 (on the right) based on 500 replicates. On the bottom: Gaussian kernel
density estimates of λ (on the left) and of σ2 (on the right). The smoothing bandwidth is also
indicated. Black curve is the GMM density, while red curve is the MLE density.
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Table 1. Mean relative errors for the MLE and GMM estimators for several choices of the
parameters λ and σ2.

λ σ2 MRE(̂λMLE) MRE(̂λGMM) MRE(σ̂2
MLE) MRE(σ̂2

GMM)
0.4 0.05 0.113 0.110 0.010 0.123
0.6 0.05 0.078 0.075 0.014 0.115
0.8 0.05 0.116 0.119 0.213 0.175
1.0 0.05 0.282 0.284 0.474 0.299
1.2 0.05 0.396 0.398 0.712 0.389
0.4 0.1 0.225 0.223 0.011 0.149
0.6 0.1 0.131 0.128 0.023 0.114
0.8 0.1 0.103 0.106 0.131 0.190
1.0 0.1 0.271 0.273 0.225 0.315
1.2 0.1 0.387 0.389 0.303 0.406

Finally, let

MRE(̂λ) =
1

500

500∑
i=1

|̂λi − λ|

λ
, MRE(σ̂2) =

1
500

500∑
i=1

|σ̂2
i − σ

2|

σ2

be the mean relative error (MRE) of the estimators λ̂ and σ̂2. In Table 1 the MREs are shown for
different choices of the parameters λ and σ2, i.e. λ = 0.4, 0.6, 0.8, 1.2 and σ2 = 0.05, 0.1, and for the
two considered methods. The MREs obtained via the MLE and via the GMM are generally comparable,
especially for λ, even though the MLE method provides lower errors as expected by seeing the box plots
in Figure 1. This one is due to the strong assumption of the constancy of the parameters. Moreover,
the MREs increase as σ2 increases for both the estimators and for both the methods.

4.2. The time inhomogenous case

In this section we consider the general case in which one or both of the functions λ(t) and σ2(t) are
time dependent. In the following we analyze three different cases:

a. λ(t) = 0.4 + sin t, σ2(t) = σ2 = 0.1;
b. λ(t) = 0.4 + sin t, σ2(t) = 0.1 + 0.01(1 − e−2t)2;
c. λ(t) = λ = 0.4, σ2(t) = 0.01(1.2 + sin t).

We note that in all the cases the chosen functions are continuous and bounded. In particular, we choose
λ(t) constant or periodic to consider a seasonality effect of the infectious disease. Further, in the Case a
and Case b, λ(t) periodically becomes negative, including situations in which a period of growth in the
infection rate is followed by a period of regression of it. Three different choices are instead made for
the function σ2(t): constant, asymptotically constant and periodic.

The results for the Case a are shown in Figure 2 for the functions λ(t) (on the left) and for σ2(t)
(on the right). The red curve is the true function and the blue curve is the mean of the 500 obtained
estimates λ̂i(t) and σ̂2

i (t), i.e., λ̂(t) and σ̂2(t). The black lines represent the observed confidence interval
for the functions λ(t) and σ2(t), respectively, obtained as

λ̂(t) ± sd(̂λ(t)), σ̂2(t) ± sd(σ̂2(t)),

Mathematical Biosciences and Engineering Volume 21, Issue 9, 7067–7083.
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where

sd(̂λ(t)) =

√√
1

500

500∑
i=1

[̂
λi(t) − λ̂(t)

]2
, sd(σ̂2(t)) =

√√
1

500

500∑
i=1

[
σ̂2

i (t) − σ̂2(t)
]2

are the standard deviations of the estimators. We can observe on the left of Figure 2 that λ̂(t) fits very
well in the true function λ(t), and also the amplitude of the confidence interval is small due to low
values of the standard deviation. For the function σ2(t), we can see the the estimate σ̂2(t) decreases to
the true value 0.1 starting from the time t = 10 and the confidence interval always contains the true
value.
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Figure 2. Estimates of λ(t) (on the left) and σ2(t) (on the rigth) for λ(t) = 0.4 + sin t and
σ2(t) = σ2 = 0.1. The red curve is the true function and the blue curve is the mean of the
500 obtained estimates. The black lines define the observed confidence interval.

In the Case b we consider the same periodic function of the Case a for λ(t), whereas σ2(t) is a
time dependent function that asymptotically tends to the constant value 0.11 and this value is quickly
reached. This is the reason for which the results for the Case b, illustrated in Figure 3 for the function
λ(t) (on the left) and for σ2(t) (on the right), seem similar to the results in the previous case (Figure 2),
although both the functions depend on time.
Very interesting are the results for the Case c shown in Figure 4. Here, the constant function λ(t) = 0.4
is estimated, by using our procedure and by means of a function λ̂(t) showing a periodicity. Clearly,
such periodicity is due to the presence of sin t in the function σ2(t). In this direction, we have to point
out that the proposed procedure for estimating λ(t) and σ2(t) is nonparametric and the only assumption
on the unknown functions is boundness of such functions. So, in the Case c, the procedure, looking
at the moments, and in particular to the mean and the covariance functions, captures the periodicity
in the model and associates it to both the functions λ(t) and σ2(t). Anyway, the mean estimate λ̂(t)
is very close to the constant function λ(t) = 0.4. Also, the function σ̂2(t) fits very well in the true
function σ2(t) = 0.01(1.2 + sin t) as shown in Figure 4 on the right, although the confidence bands
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are increasingly further apart as time increases. These observations open the way to the possibility of
finding a tool to discriminate between different estimated models. From this perspective, informational
divergence could be a criterion to be used in a future study.
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Figure 3. As in Figure 2 with λ(t) = 0.4 + sin t, and σ2(t) = 0.1 + 0.01(1 − e2t)2.
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Figure 4. As in Figure 2 with λ(t) = 0.4 and σ2(t) = 0.01(1.2 + sin t).

5. An application to real data

In this section, we apply our estimation procedure to the dataset twentymeas included in the R
package tsiR (see [38]). It contains biweekly data (IP=2) related to measles infection for twenty loca-
tions in England from 1944-1964 and was studied in [39]. We point out that the application presented
here is primarily for illustrative purposes of how the proposed procedure can be used with real data.
People infected by measles become immune so more complicated models, such as SIR and susceptible-
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infected- recovered-susceptible (SIRS), may be more adequate. However, even if simplified, we think
that the SI model can also be used in this case. In fact, it is true that individuals who recover from
measles become immune, but they remain infected, in a certain sense. The only difference is that they
cannot infect other individuals. In our opinion, this aspect is taken into account with the fact that the
transmission intensity function depends on time; in particular, we expect that λ(t) becomes very small
as time increases, showing that the disease is transmitted less frequently as recovered people have
become immunized.

For our analysis we first consider the cumulative number of the infected for each location and we
normalize this number by using the maximum number of population size, identified in the variable
“pop” of the dataset. In Figure 5, the sample paths of the infected population and the normalized
sample paths are shown. Here, we consider each normalized time series of the infected people as a
sample path of a same diffusion process X(t) modeled via (2.3). From the normalized process data (on
the right of Figure 5), we fix K = 0.25, i.e., the asymptotic infected population is 25% of the total
population. In Figure 6, the estimated function λ̂(t) (on the top) and σ̂2(t) (on the bottom) are plotted
for the whole period of observation on the left, and for the period 1946 to 1965 on the right. By looking
at λ̂(t), we can see that λ̂(t) presents a sharp decrease in the first period of observation due to its high
initial followed by a rapid tendency to assume constant behavior over time. Further, in this second
period, the behavior of λ̂(t) shows a certain seasonality, as expected in infectious diseases. Also on the
bottom a higher value of the estimate σ̂2(t) is observed in the initial period, and after that it continues
to decrease asymptotically to 0.
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Figure 5. Sample paths of the infected population (on the left) and related normalized sample
paths (on the right).
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Figure 6. Estimate of λ(t) (on the top) and of σ2(t) (on the bottom) in the period 1944-1964
(on the left) and in the period 1946 to 1965 (on the right) for the normalized cumulative
number of infected in England.

6. Conclusion

We have considered a stochastic diffusion process for the time-inhomogeneous deterministic SI
epidemic model and we have proposed an estimating procedure to inferring the considered process. A
relevant issue concerning the model under consideration is the fact that it works quite well in situations
where the total population size is large. In situations where the size is sufficiently small, several authors
recommend the use of discrete state space processes. However, it should be noted that the proposed
estimation procedure allows dealing when the population size is not too large. An example of this can
be found in the example described at the beginning of Section 4, where the total size does not differ so
much from the original (200 vs. 20).

Another interesting aspect is related to the assumption that the total population size is constant,
which is usually a generalized assumption in this type of model. This is due to the fact that they reflect
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a study carried out over a period of time that is not too long to consider relevant variations in the size
of the population. One line of future work is to consider a population growth pattern, either logistic,
Gompertz, or other growth models.

To estimate the functions λ(t) and σ2(t) that characterize the process, we have proposed a proce-
dure based on the GMM method combined with the interpolation of the sample mean and covariance
points, so the consistence of the estimators derives from the consistence of the GMM estimator and
the uniform convergence of the used interpolation method. It should be noted that the proposed pro-
cedure does not make any assumptions about the functional form of the unknown functions. The only
necessary assumption is that the functions involved are continuous and bounded in the observation in-
terval. Several simulation studies have been carried out which demonstrate the validity of the proposed
methodology.

The results for both the estimates obtained in the considered simulation studies seem very close
to the “true” functions. In particular, for the time homogeneous case, we have compared the results
obtained via the MLE procedure with those ones obtained with our procedure: concerning the param-
eter λ, representative of the infection rate, the estimates are very close with those obtained via our
method. Some differences are instead found for the parameter σ2, related to environmental variability,
in which better performances are shown for the MLE due to the strong assumption of the constancy of
the parameters. However, the MREs for the two methods and for the parameters are in all the cases
comparable. Other simulation cases have been analyzed in which the functions λ(t) and/or σ2(t) are
time-dependent, with particular reference to situations in which seasonality effects of the dynamics
of the infection are included. Finally, we have applied our estimation procedure to the dataset twen-
tymeas included in the R package tsiR (see [38]). It contains biweekly data (IP=2) related to measles
infection for twenty locations in England from 1944-1964. Regarding the estimates obtained for λ(t)
and σ2(t) via our method, we observe a sharp decrease in the first period of observation due to their
high initial values, followed by a rapid tendency to assume constant behavior over time. Further, in
this second period, the behavior of the transmission intensity function shows a certain seasonality, as
expected in infectious diseases. Instead, the estimate of σ̂2(t) rapidly decreases to a constant value
without showing any periodicity.

Conflict of interest

The authors are special issue editors for Mathematical Biosciences and Engineering and were not
involved in the editorial review or the decision to publish this article. All authors declare that there are
no competing interests.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research is partially supported by MUR-PRIN 2022, project 2022XZSAFN “Anomalous
Phenomena on Regular and Irregular Domains: Approximating Complexity for the Applied Sci-

Mathematical Biosciences and Engineering Volume 21, Issue 9, 7067–7083.



7081

ences”(Italy), by MUR-PRIN 2022 PNRR, project P2022XSF5H “Stochastic Models in Biomathemat-
ics and Applications”(Italy), by PID2020-1187879GB-100 and CEX2020-001105-M grants, funded by
MCIN/AEI/10.13039/501100011033 (Spain). G. Albano and V. Giorno are members of the GNCS-
INdAM.

References

1. D.M. Rao, A. Chernyakhovsky, V. Rao, Modeling and analysis of global epi-
demiology of avian influenza, Environ. Model. Softw., 24 (2009), 124–134.
https://doi.org/10.1016/j.envsoft.2008.06.011

2. M. Tizzoni, P. Bajardi, C. Poletto, J.J. Ramasco, D. Balcan, B. Goncalves, et al., Real-time nu-
merical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm, BMC Med., 10
(2012), 165. https://doi.org/10.1186/1741-7015-10-165.3

3. G. Webb, C. Browne, X. Huo, O. Seydi, M. Seydi, P. Magal, A model of the
2014 Ebola epidemic in West Africa with contact tracing, PLoS Curr., 7 (2015).
https://doi.org/10.1371/currents.outbreaks.846b2a31ef37018b7d1126a9c8adf22a

4. S. Ahmetolan, A.H. Bilge, A. Demirci, A. Peker-Dobie, What can we estimate from fatality and
infectious case data using the susceptible-infected-removed (SIR) model? A case study of Covid-
19 pandemic, Front. Med., 7 (2020), 570. https://doi.org/10.3389/fmed.2020.556366

5. D. Fanelli, F. Piazza, Analysis and forecast of COVID-19 spreading in China, Italy and France,
Chaos Solitons Fract., 134 (2020), 109761. https://doi.org/10.1016/j.chaos.2020.109761

6. L.J.S. Allen, An Introduction to Stochastic Processes with Applications to Biology, 2nd edition,
Chapman and Hall/CRC, Lubbock, Texas, USA, 2010. https://doi.org/10.1007/978-1-4612-0873-
0

7. L.J.S. Allen, Stochastic Population and Epidemic Models, Persistence and Extinction, Springer
International Publishing, Switzerland, 2015. https://doi.org/10.1007/978-3-319-21554-9

8. M. Aguiar, V. Anam, K.B. Blyuss, C.D.S. Estadilla, B.V. Guerrero, D. Knopoff, et al., Mathe-
matical models for dengue fever epidemiology: A 10–year systematic review, Phys. Life Rev., 40
(2022), 65–92. https://doi.org/10.1016/j.plrev.2022.02.001

9. F. Brauer, The Kermack-McKendrick epidemic model revisited, Math. Biosci., 198 (2005), 119–
131. https://doi.org/10.1016/j.mbs.2005.07.006

10. S. Ahmetolan, A.H. Bilge, A. Demirci, A. Peker-Dobie, A Susceptible-Infectious (SI) model with
two infective stages and an endemic equilibrium, Math. Comput. Simulat., 194 (2022), 19–35.
https://doi.org/10.1016/j.matcom.2021.11.003

11. G. Albano, V. Giorno, Inferring time non-homogeneous Ornstein Uhlenbeck
type stochastic process, Comput. Stat. Data Anal., 150 (2020), 107008–107008.
https://doi.org/10.1016/j.csda.2020.107008

12. G. Albano, V. Giorno, Inference on the effect of non homogeneous inputs in Ornstein Uhlenbeck
neuronal modeling, Math. Biosci. Eng., 17(2020), 328–348. https://doi.org/10.3934/mbe.2020018

Mathematical Biosciences and Engineering Volume 21, Issue 9, 7067–7083.

https://dx.doi.org/https://doi.org/10.1016/j.envsoft.2008.06.011
https://dx.doi.org/https://doi.org/10.1186/1741-7015-10-165.3
https://dx.doi.org/https://doi.org/10.1371/currents.outbreaks.846b2a31ef37018b7d1126a9c8adf22a
https://dx.doi.org/https://doi.org/10.3389/fmed.2020.556366
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.109761
https://dx.doi.org/https://doi.org/10.1007/978-1-4612-0873-0
https://dx.doi.org/https://doi.org/10.1007/978-1-4612-0873-0
https://dx.doi.org/https://doi.org/10.1007/978-3-319-21554-9
https://dx.doi.org/https://doi.org/10.1016/j.plrev.2022.02.001
https://dx.doi.org/https://doi.org/10.1016/j.mbs.2005.07.006
https://dx.doi.org/https://doi.org/10.1016/j.matcom.2021.11.003
https://dx.doi.org/https://doi.org/10.1016/j.csda.2020.107008
https://dx.doi.org/https://doi.org/10.3934/mbe.2020018


7082

13. G. Albano, Detecting time-changes in PM10 during Covid pandemic by means
of an Ornstein Uhlenbeck type process, Math. Biosci. Eng., 18 (2021), 888–903.
https://doi.org/10.3934/mbe.2021047

14. X. Zhu, B. Gao, Y. Zhong, C. Gu, K. Choi, Extended Kalman filter based on stochastic
epidemiological model for COVID-19 modelling, Comput. Biol. Med., 137 (2021), 104810.
https://doi.org/10.1016/j.compbiomed.2021.104810

15. A. Sebbagh, S. Kechida, EKF-SIRD model algorithm for predicting the coronavirus (COVID-19)
spreading dynamics, Sci. Rep., 12 (2022), 13415. https://doi.org/10.1038/s41598-022-16496-6

16. J.R. Artalejo, M.J. Lopez-Herrero, Stochastic epidemic models: New behavioral
indicators of the disease spreading, Appl. Math. Model., 38 (2014), 4371–4387.
https://doi.org/10.1016/j.apm.2014.02.017

17. M. Gamboa, M.J. Lopez-Herrero, Measuring infection transmission in a stochastic SIV model
with infection reintroduction and imperfect vaccine, Acta Biotheor., 68 (2020), 395–420.
https://doi.org/10.1007/s10441-019-09373-9

18. V.E. Papageorgiou, G. Tsaklidis, A stochastic SIRD model with imperfect immu-
nity for the evaluation of epidemics, Appl. Math. Mod., 124 (2023), 768–790.
https://doi.org/10.1016/j.apm.2023.08.011

19. J. Amador, M.J. Lopez-Herrero, Cumulative and maximum epidemic sizes for a nonlinear SEIR
stochastic model with limited resources, Discret. Contin. Dyn. Syst. Series B, 23 (2018), 3137–
3181. https://doi.org/10.3934/dcdsb.2017211

20. V.E. Papageorgiou, Novel stochastic descriptors of a Markovian SIRD model for the as-
sessment of the severity behind epidemic outbreaks, J. Franklin I., 361 (2024), 107022.
https://doi.org/10.1016/j.jfranklin.2024.107022

21. J.R. Artalejo, A. Economou, M.J. Lopez-Herrero, The maximum number of infected individuals
in SIS epidemic models: Computational techniques and quasi-stationary distributions, J. Comput.
Appl. Math., 233 (2010), 2563–2574. https://doi.org/10.1016/j.cam.2009.11.003

22. V.E. Papageorgiou, G. Tsaklidis, An improved epidemiological-unscented Kalman filter (hybrid
SEIHCRDV-UKF) model for the prediction of COVID-19, Application on real-time data, Chaos
Soliton Fract., 166 (2023), 112914. https://doi.org/10.1016/j.chaos.2022.112914

23. V.E. Papageorgiou, P. Kolias, A novel epidemiologically informed particle filter for assessing epi-
demic phenomena. Application to the monkeypox outbreak of 2022, Inverse Probl., 40 (2024),
035006. https://doi.org/10.1088/1361-6420/ad1e2f

24. S.P. Rajasekar, M. Pitchaimani, Q. Zhu, Dynamic threshold probe of stochastic SIR model
with saturated incidence rate and saturated treatment function, Phys. A, 535 (2019), 122300.
https://doi.org/10.1016/j.physa.2019.122300

25. G. Li, Y. Liu, The Dynamics of a Stochastic SIR Epidemic Model with Nonlinear In-
cidence and Vertical Transmission, Discrete Dyn. Nat. Soc., (2021), Article ID 4645203.
https://doi.org/10.1155/2021/4645203

26. T. Xue, X. Fan, Z. Chang, Dynamics of a stochastic SIRS epidemic model with

Mathematical Biosciences and Engineering Volume 21, Issue 9, 7067–7083.

https://dx.doi.org/https://doi.org/10.3934/mbe.2021047
https://dx.doi.org/https://doi.org/10.1016/j.compbiomed.2021.104810
https://dx.doi.org/https://doi.org/10.1038/s41598-022-16496-6
https://dx.doi.org/https://doi.org/10.1016/j.apm.2014.02.017
https://dx.doi.org/https://doi.org/10.1007/s10441-019-09373-9
https://dx.doi.org/https://doi.org/10.1016/j.apm.2023.08.011
https://dx.doi.org/https://doi.org/10.3934/dcdsb.2017211
https://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2024.107022
https://dx.doi.org/https://doi.org/10.1016/j.cam.2009.11.003
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.112914
https://dx.doi.org/https://doi.org/10.1088/1361-6420/ad1e2f
https://dx.doi.org/https://doi.org/10.1016/j.physa.2019.122300
https://dx.doi.org/https://doi.org/10.1155/2021/4645203


7083

standard incidence and vaccination, Math. Biosci. Eng., 19 (2022), 10618–10636.
https://doi.org/10.3934/mbe.2022496

27. V.E. Papageorgiou, G. Tsaklidis, A stochastic particle extended SEIRS model with repeated vacci-
nation: Application to real data of COVID-19 in Italy, Math. Meth. Appl. Sci., 47 (2024), 6504—
6538. https://doi.org/10.1002/mma.9934

28. Y.C. Mao, X.B. Liu, Exit problem of stochastic SIR model with limited medical resource, Theor.
Appl. Mech. Lett., 13 (2023), 100393. https://doi.org/10.1016/j.taml.2022.100393

29. Z. Chang, X. Mengb, T. Hayatd, A. Hobiny, Modeling and analysis of SIR epidemic dynamic-
sin immunization and cross-infection environments: Insights from a stochastic model, Nonlinear
Anal. Model, 27 (2022), 740–765. https://doi.org/10.15388/namc.2022.27.27446

30. A. Bodini, S. Pasquali, A. Pievatolo, F. Ruggeri, Underdetection in a stochastic SIR model for the
analysis of the COVID-19 Italian epidemic, Stoch. Environ. Res. Risk. Assess., 36 (2022), 137—
155. https://doi.org/10.1007/s00477-021-02081-2

31. A. Leitao, C. Vázquez, The stochastic θ-SEIHRDmodel. Adding randomness to the
COVID-19 spread, Commun. Nonlinear Sci. Numer. Simul., 115 (2022), 106731.
https://doi.org/10.1016/j.cnsns.2022.106731

32. J. Pan, A. Gray, D. Greenhalgh, X. Mao, Parameter estimation for the stochastic SIS epidemic
model, Stat. Inference Stoch. Process, 17 (2014), 75–98. https://doi.org/10.1007/s11203-014-
9091-8

33. A. Pugliese, Population models for diseases with no recovery, J. Math. Biol., 28 (1990), 65–82.
https://doi.org/10.1007/BF00171519

34. V. Giorno, A.G. Nobile, Time-inhomogeneous finite birth processes with applications in epidemic
models. Mathematics, 11 (2023), 4521. https://doi.org/10.3390/math11214521

35. V. Giorno, A.G. Nobile, Time-inhomogeneous diffusion process for the SI epidemic model, Lec-
ture Notes in Computer Science, (2024). (in press).

36. H. Ramaswamy, A.A. Oberai, Y.C. Yortsos, A comprehensive spatial-temporal infection model,
Chem. Eng. Sci., 233 (2021), 116347. https://doi.org/10.1016/j.ces.2020.116347

37. L. Arnold, Stochastic Differential Equations: Theory and Applications. Wiley & Sons, New York
(1974).

38. A.D. Becker, B.T. Grenfell, tsiR: An R package for time-series Susceptible-
Infected-Recovered models of epidemics PLoS ONE, 12 (2017), e0185528.
https://doi.org/10.1371/journal.pone.0185528

39. D. He, E.L. Ionides, A.A. King, Plug-and-play inference for disease dynamics: measles
in large and small populations as a case study, J. R. Soc. Interface, 7 (2010), 271–283.
https://doi.org/10.1098/rsif.2009.0151

c© 2024 the author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 21, Issue 9, 7067–7083.

https://dx.doi.org/https://doi.org/10.3934/mbe.2022496
https://dx.doi.org/https://doi.org/10.1002/mma.9934
https://dx.doi.org/https://doi.org/10.1016/j.taml.2022.100393
https://dx.doi.org/https://doi.org/10.15388/namc.2022.27.27446
https://dx.doi.org/https://doi.org/10.1007/s00477-021-02081-2
https://dx.doi.org/https://doi.org/10.1016/j.cnsns.2022.106731
https://dx.doi.org/https://doi.org/10.1007/s11203-014-9091-8
https://dx.doi.org/https://doi.org/10.1007/s11203-014-9091-8
https://dx.doi.org/https://doi.org/10.1007/BF00171519
https://dx.doi.org/https://doi.org/10.3390/math11214521
https://dx.doi.org/https://doi.org/10.1016/j.ces.2020.116347
https://dx.doi.org/
https://dx.doi.org/https://doi.org/10.1371/journal.pone.0185528
https://dx.doi.org/https://doi.org/10.1098/rsif.2009.0151
https://creativecommons.org/licenses/by/4.0

	Introduction
	The model
	Inference
	Some simulation experiments
	The time homogenous case
	The time inhomogenous case

	An application to real data
	Conclusion

